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ABSTRACT

Direct determination of formation shear wave iravel time is impossible in
“slow" formations where the shear wave velocity is lower than the borehole fluid
{mud) velocity. However, the Stoneley waves in these formations are very
sensitive to changes in formation shear wave properties and can be used to
indirectly determine the formation shear velocity. In addition, the P wave
packet is highly dependent on the Poisson's ratio and thus can be used to
estimmate the shear velocity once the P wave velocity is lknown. These
phenomena are demconstrated with both numserical and field examples.

INTRODUCTION

Full waveform acoustic logs have rapidly become a very important set of
borehole measurements. In addition to increasing the radius of investigation
by having a larger source-receiver offset than the conventional sonic log, full
waveform acoustic logs can provide measurements of formation shear wave
velocity and attenuation (Paillet, 1980; Cheng and Toksdz, 1981; Ingram et al.,
1981; Willis and Toksoz, 1882). Direct determination of shear wave travel times
is possible only in “fast” or "hard” formations where the shear wave velocities
are higher than the mud or borehole fluid velocity. It is impossible to obtain
shear wave travel times directly from the full waveform acoustic logs in "slow”
or “soft” formations, where the shear wave velocities are lower than the mud
velocity, because there are no refracted shear wave arrivals. The
characteristics of the full wavefortn acoustic log microseismograms in “slow" or
“soft" formations are distinctly different from those in '‘fast” formations.
Specifically, the P wave train appears to be of lenger duration, the pseude-
Rayleigh {or normal mode) waves no longer exist, and the Stoneley waves are
more dispersive and are shifted to lower frequencies. In addition, there exists a
direct mud arrival under these conditions. This mud arrival can be quite
prominent in situations where the mud attenuation is low (Qf is high) and can
easily be misidentified either as a shear wave arrival or the Stoneley wave
arrival. At well logging frequencies, the Stoneley wave velocity in a ''slow”
formation is significantly lower than the well known tube wave velocity. Unlike
the case of a ""fast" formation, the Stoneley wave velocity in a ''slow' formation
is very sensitive to changes in formation shear wave velocity. Thus, to measurse
the shear wave velocity in a “slew” formation, cne can first obtain the velocity
of the Stoneley wave, and then invert for the shear wave velocity using the



dispersion characteristics of the Stoneley wave. This inversion can be dene
numerically by computer or graphically using a velocity cross-plot. In cases
where the Stoneley waves are hard to identify, such as areas of high shear
attenuation, or where the frequency response of the tool is insufficiently low,
the amplitude and duration of the P wave train will provide an estimate of the
Poisson's ratio and, accordingly, the formation shear.wave velocity.

The propagation characteristics of the Stoneley wave in “slow’ formations
will first be discussed. Velocity cross-plots of Stoneley wave velocity versus
formation shear velocity will be presented, as well as the dispersion equation
from which the formation shear wave velocity can be sclved for a given Stoneley
wave velocity. Finally the effects of different formation parameters on {full
waveform acoustic log microseismograms in “slow” formations will be
investigated using both synthetic examples and field data.

PROPAGATION CHARACTERISTICS OF STONELEY WAVES

The propagation of Stoneley (or tube) waves in a borehele is a well studied
prablermn. Until recently, however, the interest has been in "fast” formations
where the shear velocities are higher than the borehole Auid velocity. In a
"fast’ formation, the Stoneley wave is not very dispersive (Biot, 1952; White,
1062; Cheng and Toksdz, 1981) and it propagates with a velocity roughly 0.9
times the borehole fluid or mud velocity (Cheng and Tokssz, 1981). This
velocity is generally known as the tube wave velocity (White, 1962). The
propagation and dispersion of Steneley waves have a minimal dependence on
formation properties (Cheng and Toksoz, 1981). This is most readily seen on a
variable density display (or variable area display, or bit plot) of full waveform
acoustic log microseismograms as a function of depth. The Stoneley wave in a
"fast'" formation is a very coherent arrival whereas the P and S wave arrivals
may show significant variations with lithology. An example of this from a
sandstone/shale sequence is shown in Figure 1.

In a "slow"” formation cn the other hand, the Stoneiey wave is much more
dispersive. At well logging frequencies both its phase and group velocities are
significantly lower than the tube wave velocity and they are very sensitive to
the formation shear wave velocity (Cheng ef al., 1982). In addition, most of the
energy of the Stoneley wave is concentrated at lower frequencies. On a variable
density display of microseismograms versus depth, the Stoneley wave in a
“slow"” formation will appear as a broader band than the P wave and will
“wiggle” as the lithology changes (Figure 2).
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Dispersion Equation

The equation for the dispersion of Stoneley waves in a '‘slow"” formation is
given by (Biot, 1952; Cheng et al., 1982):
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@ s the angular frequency:; ¢ is the phase velocity of the Stoneley wave;
k = w/c is the axial wave number; a, §, and &, are the P and S wave velocity in
the formation and the borehole fluid velocity respectively; & is the borehole
radius; p and p, are the formation and fluid density; and [ and K] are the
modified Bessel functions of the i** order. Figure 3 is a plot of the phase and
group velocity of Stoneley waves in a "slow” formation as a function of
frequency. The parameters used are given in Table 1.

. The inverse problem of determining the formation shear wave velocity from
observed Stoneley wave velocities can be done easily with equation (1), given
the formation and borehole fluid compressional wave velocities and densities, as
well as borehole radius. If the Stoneley wave phase velocity ¢ and the frequency
of the Stoneley wave are determined frorm the full waveform acoustic logs, the
formation shear wave velocity can be obtained from equation (1) by using a
sirmple root finder.

VYelocity Cross-piots

A more graphic method of examining the dependence of the Stoneley wave
velocity on different formation and borehole parameters is through velocity
cross-plots (Figures 4-7). The Stoneley wave phase velocity ¢ is plotted against

. the formation shear wave velocity 8 (both normnalized to the borehole fluid
velocity o) for eight different values of formation to fluid density ratio at
frequencies of 2 kHz (Figure 4a) and 10 kHz (Figure 4b). The radius of the hole
is = 4 inches. The formation Poisson's ratioc ¢ is constant at 0.25, and the
borehole fluid velecity is a, = 5 kft/s. The density ratios are plotted from p/ oy
= 1.4 to 2.B at 0.2 intervals. Figure 4 shows that for a given formation shear
wave velocity, the Stoneley wave phase velocity decreases with decreasing
density ratio. The decrease is more rapid at the lower frequency (Figure 4a). It
is clear from Figure 4 (and subsequent figures) that the Stoneley wave phase
velocity is a strong function of formation shear wave velocity. There is almost a
one to one relationship between the two velocities. Cheng et al. (198R2) showed
that the normalized partial derivative (partition coefficient) of the Stoneley

2-3



wave phase wvelocity with respect to the formation shear wave velocity in a
“slow"” formation is approximately C.8.

Figure 5 shows the effect of frequency on the Stoneley wave—formation
shear wave velocity cross-plot. Results for five different frequencies are
plotted: 2 kHz, 5 kHz, 10 kHz, 15 kHz and the high frequency asymptotic limit.
The density ratio is taken to be p/py = 2.0. Other parameters are the same as
those in Figure 4. For a given formaticn shear wave velocity, the Stoneley wave
phase velocity decreases as a function of increasing frequency. Beyond 10 kHz,
there is very little frequency dependence. However, al lower frequencies the
Stoneley wave phase velocities show a significant frequency dependence. Since
the Stoneley wave in a "slow” formation tends te travel at a lower frequency
than the body (P and S) waves (e.g., Figure 2), this frequency dependence must
be taken intec account when solving for the formation shear wave velocity from
the Stoneley wave phase velocity.

The effect of the formation P to S wave veloeity ratic («/f, roughly
proportional to the square root of the Poigson’'s ratio) on the Stoneley
wave—formation shear wave velocity cross-plot is shown in Figure 8. Tive values
of a/ A are plotted, from a/f8 = 1.8 to 2.4 in 0.2 intervals, corresponding to
Poisson's ratio o & (.16, 0.28, 0.33, 0.37 and 0.40. The density ratio p/ gy is 2.0
and the frequency is & kHz. All other parameters are the same as those in
Figure 4. It can be seen from Figure 6 that the Stoneley wave phase velocity
has only a weak dependence on the P to S wave velecity ratio of the formation.
Thus, to a first approximation, the effect of the formation P wave velocity can
be ignored when estimating the formation shear wave velocity from the
Stoneley wave phase velocity.

Finally, the effect of borehole radius on the Stoneley wave—forrmation shear
wave velocity cross-plot is shown in Figure 7. The Poisson's ratio is taken to be
o = 0.23, with the density ratio o/ p, = 2.0, and the {requency at 5 kHz. The
other parameters are the same as those in Figure 4. Five values of the borehole
radius are plotted, from F =2 inches to & = 6 inches, at 1 inch intervals. For a
radius of 4 inches or greater, the dependence of the Stoneley wave velocity on
the formation shear wave velocity is very weak. Thersfore we only need to make
a radius correction in the formation shear wave wvelocity obtained from the
Stoneley wave phase velocity if the borehole radius is significantly smaller than
4 inches. Normal variations in borehole radius will not significantly affect the
Stoneley wave phase velocity. '

NUMERICAL AND FIELD EXAMPLES

In this section the effects of in silu attenuation and formation Poisson's
ratio on the full waveform accoustic log microseismograms in “slow” formations
are demonstrated using synthetic microseismograms generated by the discrete
wavenumber summation technique (Bouchon and Aki, 1977, Cheng and Toksoz,
1981; Cheng et al., 1982). A Kelly type source (Kelly ef al., 1978) is used, with a
center frequency of about 11 kHz. A FIR (finite instantaneous response)
bandpass filter with a passband of 5 to 15 kHz is used to simulate the receiver
response. A comparison between the synthetic and actual fleld
microseismograrms is presented.
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Attenuation

In situ attenuation has significant influence on the observed waveforms of
microseismograms. In general, attenuation affects the relative amplitudes of
the body and the guided waves (Cheng and Toksdz, 1981), and reduces the
amplitudes of the high frequency components relative to those of the lower
frequency components. The synthetic microseismogram in a “slow” formation
without attenuation is presented in Figure 8. The formation P wave arrival is
easily identified, along with the Stoneley wave arrival. The P wave packet is
large in amplitude, relatively monochromatic, and of long duration. The
Stoneley wave packet is much lower in frequency and pulse-like. In addition,
there ig an easily identifiable direct fluid or mud arrival. It is this mud arrival
that is easily misidentified as a formation shear arrival, especially in situations
where the mud attenuation is low. The proper identification of the low
frequency Stoneley wave together with a good measurement of the fluid or mud
veloceity will make the identification of this mud arrival unambigucus.

Figure Bb shows the synthetic microseismogram in the same formation with
attenuation (@, =100, @ =50, g =25). As can be expected, the higher
frequency P wave packet is reduced in amplitude when compared with the
Stoneley wave packet. The direct mud arrival is also significantly reduced in
amplitude, although it can still be identified.

Poisson's Ratio

In the cases where the Stoneley waves are hard to identify, such as in
areas of high shear wave and/or mud attenuation, or where the frequency
response of the tool is not loew enough, the amplitude and duration of the P
wave train will provide an estimate of the Poisson's ratio and hence the
formation shear wave velocity. The P wave train consists of P leaky modes that
are very dispersive and are bound by the formation and fluid P wave velocities
(Paillet, personal communication). The amplitude of the P wave train is roughly -
proporticnal to the Poisson's ratio of the formatien. In Figure 9 synthetic
microseismograms of three "slow” formations with different Poisson's ratios are
plotted. All parameters except the formation P wave velocity are held constant.
The Stoneley waves do not change significantly in amplitude or arrival time.
This is-consistent with the results from the solution of the period equation
previously shown (Figure 8). The P wave train, however, shows significant
decrease in both amplitude and duration going from a high Peisson’'s ratio
formation (a/8=2.4, 6=0.395, Figure %a), through an intermediate Poisson's
ratio formation (a/g=2.0, ¢=0.333, Figure 9b), to  a low Poisson's ratio
formation (a/ g =1.8, =0.18, Figure 9¢). The same phenomenon was observed
by Tsang and Rader (1979) and Cheng and Tokssz (1981) in “'fast’” formations,
though the effect is less dramatic since the P wave paclets in ‘'fast” formations
are usually much smaller than the guided (pseudo-Rayleigh and Stoneley) wave
packets. At present, the exact analytical relationship between the amplitude of
the P wave leaky mode and the formation Poisson's ratic has not been
determined. Nevertheless, from the analysis of synthetic microseismograms,
the P wave train is a very good qualitative indicator of the Poissen's ratic of the
formation.



Field Example

A field example of a full waveform acoustic log microseismogram in a ‘'slow"
formation is shown in Figure 10a. This is the x-y plot of one of the traces shown
on the variable density plot. of Figure 2. The formation P wave velocity is
approximately B.7 kit/s, and the formation S wave velocity is approximately 3.5
kft/s, as determined from the Stoneley wave phase velocity. The general
waveform shape of the microseismogram is quite similar to the shapes of the
synthetic microseismograms shown earlier. The Stoneley wave is of very low
frequency (~ 2 kHz) and is quite pulse-like. The direct P wave and leaky mode
packet is very mwonochromatic, with a center frequency of approximately 6 kHz,
The amplitude of the P wave packet is large compared with the Stoneley wave,
the former about 4 to 5 times the latter. There appears to be a recognizable
direect fluid or mud arrival after the P wave packet. On the whole, the character
of the microseismogram is consistent with the prediction from theory.

The synthetic microseismogram generated using the formation parameters
measured from the field example discussed above is presented in Figure 10b.
The source used was a narrow band Tsang and Rader {1979) type source, with a
center frequency of 6 kHz. A FIR bandpass filter with a passband of 2 to 10 kHz
was also applied to the time series. The synthetic microseismogram shows a
good qualitative agreement with the actual field microseismogram, despite the
uncertainties in the source and receiver response, and in in sifu atienuation.

DISCUSSIONS AND CONCLUSIONS

It is possible to determine the formation shear wave velocity from full
waveform acoustic logs in a “slow” or "soft” formation. One method is to
determine the formation shear wave velocity from the measured Stoneley wave
phase velocity. Given the formation and borehole fluid compressional wave
velocities and densities, as well as borehole radius, the fermation shear wave
velocity can be obtained from the Stoneley wave phase velocity and frequency
by solving the peried equation (1). All the necessary parameters, except for the
mud velocity a;, are readily obtainable from conventional sonic, gamma density
and caliper logs. Measurement of a; can be done in the mud pit, although an
accurate in sifu measurement of o, in the borehole as a function of depth is
preferable.

The Stoneley wave velocity is very sensitive to formation shear wave
velocity in a “slow” formation at well logging frequencies. There is almost a cne
to one correspondence between the formation shear wave and Stoneley wave
velocities. Thus, the shear velocity can be determined by either measuring the
group velocity of the Stoneley wave from a single trace {e.g. using the Burg
algorithm) or by measuring the phase velocity using the moveout between two
or more traces. Measuring the moveout eliminates the high uncertainty in the
determination of arrival times of low frequency signals and, since the Stoneley
wave packet is distinctive and non reverberating, cycle skipping is also minimal
in phase velocity determination.
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The P wave and leaky mode packet is found to be very sensitive to changes
in the Poisson’s ratio of the formation. The amplitude of the P wave packet
relative to the Stoneley wave packet increases with increasing Peisson's ratio.
Since the formation P wave velocity is easily determined, the formation S wave
velocity can be estimated from the amplitude of the P wave packet,
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TABLE 1—Model parameters used in this study

. a g8 o fo J R z
Figure ! f

(kft/s) | (kft/s) | (kft/s) | (g/em®) | (g/cm?) {in) (ft)

3 9 4 5 2.1 1.2 4 -

8 10 5 8 2.1 1.2 4 8
%a 12 5 6 2.1 1.2 4 B
9b 10 5 6 2.1 1.2 4 8
Sc 8 5 8 2.1 1.2 4 8
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Figure 3: Dispersion characteristics of the Stoneley wave in a "slow” formation.
The velocities are normalized to ®y..The shear wave velocity in this example is
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