
Auto-Tuning on the Macro Scale:

Algorithmic Auto-Tuning for Scientific

Applications

by

Cy P. Chan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

ARCHIVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 0 1 2012

LIBPARIES

@ Massachusetts Institute of Technology 2012. All rights reserved.

Author.
Department of Electrical Engineering and Computer Science

May 23, 2012

Certified by.................. ... ...
Alan Edelman

Professor of Applied Mathematics
Thesis Supervisor

Accepted by............. /. . 0i ....... . ..
S Leslie Kolodziej ski

Chairman, Department Committee on Graduate Students

High Level



Auto-Tuning on the Macro Scale: High Level Algorithmic

Auto-Tuning for Scientific Applications

by

Cy P. Chan

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

In this thesis, we describe a new classification of auto-tuning methodologies span-
ning from low-level optimizations to high-level algorithmic tuning. This classification
spectrum of auto-tuning methods encompasses the space of tuning parameters from
low-level optimizations (such as block sizes, iteration ordering, vectorization, etc.) to
high-level algorithmic choices (such as whether to use an iterative solver or a direct
solver).

We present and analyze four novel auto-tuning systems that incorporate several
techniques that fall along a spectrum from the low-level to the high-level: i) a multi-
platform, auto-tuning parallel code generation framework for generalized stencil loops,
ii) an auto-tunable algorithm for solving dense triangular systems, iii) an auto-tunable
multigrid solver for sparse linear systems, and iv) tuned statistical regression tech-
niques for fine-tuning wind forecasts and resource estimations to assist in the integra-
tion of wind resources into the electrical grid. We also include a project assessment
report for a wind turbine installation for the City of Cambridge to highlight an area
of application (wind prediction and resource assessment) where these computational
auto-tuning techniques could prove useful in the future.

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics

2



Acknowledgments

To Alan Edelman, thank you for your invaluable advice during my graduate career. I

especially want to thank you for your continuous encouragement and enthusiasm for

my interests as they varied through my time at MIT. I consider myself very lucky to

have had the benefit of your support, your experience, and your guidance.

To Saman Amarasinghe, Steve Connors, Martin Rinard, John Shalf, and James

Stalker, thank you for your time, feedback, advice, and mentorship. The combined

lessons learned from all of you helped shape not only the research conducted under

your supervision, but also the goals and directions of my future career.

To Jason Ansel, Shoaib Kamil, Plamen Koev, Lenny Oliker, Sam Williams, and

Yee Lok Wong, thank you for helping make my time at MIT and LBL both enjoyable

and fruitful. It has been an immense pleasure and honor working with such incredibly

talented people, and I very much look forward to future collaboration.

To Akamai, Lincoln Laboratory, and the Martin family, thank you for your gener-

ous financial support. The work presented in this thesis was also partially supported

by Microsoft (Award #024263), Intel (Award #024894), U.C. Discovery (Award

#DIG07-10227), the ASCR Office in the DOE Office of Science (Award #DE-AC02-

05CH11231), NSF (Award #CCF-0832997), and an award from the Gigascale Sys-

tems Research Center.

To my parents, Sriwan and Stanley, thank you for the love and values you have

instilled in me. I would not be where I am today if not for the sacrifices you made to

help me get here. To Ceida and Nick, thank you for your love and support. It's been

so great having you both close by to share in life's journey and to see Ian and Ryan

take their first steps. Finally, to my wife, Jess, this thesis is dedicated to you. Your

presence in my life has brought me so much happiness. Thank you for your continual

patience, love, and companionship.



Contents

1 Introduction

1.1 Original contributions . . . . . . . . . . . . .

2 Auto-tuning generalized stencil codes

2.1 Introduction . . . . . . . . . . . . . . . . . . .

2.2 Related Work . . . . . . . . . . . . . . . . . .

2.3 Stencils & Architectures . . . . . . . . . . . .

2.3.1 Benchmark Kernels . . . . . . . . . . .

2.3.2 Experimental Platforms . . . . . . . .

2.4 Auto-tuning Framework . . . . . . . . . . . .

2.4.1 Front-End Parsing . . . . . . . . . . .

2.4.2 Stencil Kernel Breadth . . . . . . . . .

2.5 Optimization & Codegen . . . . . . . . . . . .

2.5.1 Serial Optimizations . . . . . . . . . .

2.5.2 Parallelization & Code Generation . .

2.6 Auto-Tuning Strategy Engine . . . . . . . . .

2.7 Performance Evaluation . . . . . . . . . . . .

2.7.1 Auto-Parallelization Performance . . .

2.7.2 Performance Expectations . . . . . . .

2.7.3 Performance Portability . . . . . . . .

2.7.4 Programmer Productivity Benefits . .

2.7.5 Architectural Comparison . . . . . . .

2.8 Summary and Conclusions . . . . . . . . . . .

4

17

22

24

. . . . . . . . . . . 24

. . . . . . . . . . . 27

. . . . . . . . . . . 29

. . . . . . . . . . . 30

. . . . . . . . . . . 32

. . . . . . . . . . . 33

. . . . . . . . . . . 34

. . . . . . . . . . . 34

. . . . . . . . . . . 35

. . . . . . . . . . . 36

. . . . . . . . . . . 36

. . . . . . . . . . . 39

. . . . . . . . . . . 41

. . . . . . . . . . . 41

. . . . . . . . . . . 43

. . . . . . . . . . . 43

. . . . . . . . . . . 45

. . . . . . . . . . . 45

46



3 Auto-tuning triangular solve 48

3.1 Description of Triangular Solve . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Algorithmic Variants and Optimizations . . . . . . . . . . . . 49

3.2 Tunable Algorithm Description . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Hierarchical Structure . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Matrix Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 PetaBricks Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 PetaBricks Language Design . . . . . . . . . . . . . . . . . . . 58

3.3.2 PetaBricks Implementation . . . . . . . . . . . . . . . . . . . . 59

3.4 Performance Analysis and Discussion . . . . . . . . . . . . . . . . . . 61

3.4.1 Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Serial optimizations . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.3 Auto-tuned Algorithms . . . . . . . . . . . . . . . . . . . . . . 64

3.4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 69

4 Auto-tuning the multigrid linear solver's cycle shapes

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Auto-tuning multigrid . . . . . . . . . . . . . . . . . .

4.2.1 Algorithmic choice in multigrid . . . . . . . . .

4.2.2 Full dynamic programming solution . . . . . . .

4.2.3 Discrete dynamic programming solution . . . .

4.2.4 Extension to Auto-tuning Full Multigrid . . . .

4.2.5 Limitations . . . . . . . . . . . . . . . . . . . .

4.3 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 Auto-tuned multigrid cycle shapes . . . . . . . .

4.3.2 Performance . . . . . . . . . . . . . . . . . . . .

4.3.3 Effect of Architecture on Auto-tuning . . . . . .

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . .

74

. . . . . . 74

. . . . . . 76

. . . . . . 77

. . . . . . 78

. . . . . . 79

. . . . . . 81

. . . . . . 83

. . . . . . 84

. . . . . . 85

. . . . . . 87

. . . . . . 93

. . . . . . 93

5



4.5 Future W ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6



List of Figures

1-1 Intel CPU Trends. Transistor count (000), clock speed (MHz), power

(W), and performance per clock (ILP) over time. As CPU clock fre-

quencies have leveled off since the mid 2000s, parallelism has increased

to maintain the exponential growth of computational power. Source:

Herb Sutter. [38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2-1 (a) Laplacian, (b) Divergence, and (c) Gradient stencils. Top:

3D visualization of the nearest neighbor stencil operator. Middle:

code as passed to the parser. Bottom: memory access pattern as

the stencil sweeps from left to right. Note: the color represents

cartesian component of the vector fields (scalar fields are gray). . 30

2-2 Stencil auto-tuning framework flow. Readable domain-specific

code is parsed into an abstract representation, transformations

are applied, code is generated using specific target backends, and

the optimal auto-tuned implementation is determined via search. 33

2-3 Four-level problem decomposition: In (a), a node block (the full

grid) is broken into smaller chunks. All core blocks in a chunk

are processed by the same subset of threads. One core block from

the chunk in (a) is magnified in (b). A single thread block from

the core block in (b) is then magnified in (c). A thread block

should exploit common resources among threads. Finally, the

magnified thread block in (c) is decomposed into register blocks,

which exploit data level parallelism. . . . . . . . . . . . . . . . . . 37

7



2-4 Laplacian (top row), Divergence (middle row), and Gradient (bot-

tom row) performance as a function of auto-parallelization and

auto-tuning - on the four evaluated platforms. Note: the green

region marks performance extrapolated from Stream bandwidth.

For comparison, the yellow diamond shows performance achieved

using the original stencil kernel with OpenMP pragmas and NUMA-

aware initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-5 Peak performance and power efficiency after auto-tuning and par-

allelization. GTX280 power efficiency is shown based on system

power as well as the card alone. ...... ..................... 44

3-1 Greedy update pattern to solve triangular system AX = B. The array

B is in an intermediate state in transition to containing the solution

matrix X. The dark gray represents the region of B that has already

been solved. The medium gray represents the regions of A and B

accessed during current the block solve phase. Finally, the light gray

represents the regions of A and B accessed during the greedy update. 52

3-2 Lazy update pattern to solve triangular system AX = B. The array

B is in an intermediate state in transition to containing the solution

matrix X. The light gray represents the regions of A and B accessed

during the lazy update. The medium gray represents the region of A

that is accessed and the region of B that is solved during the current

stage. ......... ................................... 53

3-3 Hierarchical organization of the triangular solve algorithm. The auto-

tuner explores all of the algorithmic choices presented in the figure.

The values in the gray ovals represent tunable parameters to control

the behavior of the algorithm. The algorithm has the option of skip-

ping over intermediate stages given the appropriate tunable parameter

values. The recursive and blocked algorithms call a tunable matrix

multiply algorithm described in Section 3.2.2 and shown in Figure 3-4. 55

8



3-4 Organization of the matrix multiply sub-routine. The auto-tuner ex-

plores all of the algorithmic choices presented in the figure. The values

in the gray ovals represent tunable parameters to control the behav-

ior of the algorithm. As with the triangular solve, this algorithm has

the option of skipping over intermediate stages given the appropriate

tunable parameter values. The non-blocked choices: IJK, JIK, and

JKI refer to the iteration order in which values are computed. Note

that the external BLAS kernel includes many of its own optimizations

independent of those shown here. . . . . . . . . . . .. . . . . . . . . . 57

3-5 Performance of serial, non-blocked reference algorithms for solving

NxN lower triangular system on N right-hand side vectors on the Sandy

Bridge platform. a) shows the performance with no array reordering

applied (column-major storage), while b) shows the performance with

array reordering applied (row-major storage). . . . . . . . . . . . . . 63

3-6 Summary of level of parallelism and tile shapes and sizes that result

from the algorithmic configurations given in Table 3.1 for each hard-

ware platform and input size. The values in the orange cells are com-

puted from the configuration values given in the blue cells. . . . . . 65

3-7 Performance of hybrid auto-tuned parallel algorithm versus best ref-

erence serial non-blocked algorithm, nafve parallel algorithm, and AT-

LAS for solving NxN lower triangular system on N right-hand side

vectors on a) Intel Harpertown, b) Intel Westmere-EP, and c) Intel

Sandy Bridge i3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3-8 Performance of hybrid auto-tuned parallel algorithm versus best ref-

erence serial non-blocked algorithm, naive parallel algorithm, and AT-

LAS for solving NxN upper triangular system on N right-hand side

vectors on a) Intel Harpertown, b) Intel Westmere-EP, and c) Intel

Sandy Bridge i3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9



3-9 Performance comparison between the auto-tuned algorithm and AT-

LAS. Since there is some overhead introduced by the PetaBricks system

outside the scope of this work, the performance of a simple na~ive serial

algorithm is given in both PetaBricks and C to help gauge the approx-

imate effect of the overhead. Note that on the Sandy Bridge platform,

where the difference in performance between the auto-tuned algorithm

and ATLAS is the greatest, the difference between the two naive serial

algorithms is also the greatest. . . . . . . . . . . . . . . . . . . . . . 73

4-1 Simplified illustration of choices in the multigrid algorithm. The diag-

onal arrows represent the recursive case, while the dotted horizontal

arrows represent the shortcut case where a direct or iterative solution

may be substituted. Depending on the desired level of accuracy a dif-

ferent choice may be optimal at each decision point. This figure does

not illustrate the auto-tuner's capability of using multiple iterations at

different levels of recursion; it shows a single iteration at each level. . 77

4-2 (a) Possible algorithmic choices with optimal set designated by squares

(both hollow and solid). The choices designated by solid squares are the

ones remembered by the auto-tuner, being the fastest algorithms better

than each accuracy cutoff line. (b) Choices across different accuracies

in multigrid. At each level, the auto-tuner picks the best algorithm

one level down to make a recursive call. The path highlighted in red is

an example of a possible path for accuracy level P2. . . . . . . . . . . 80

4-3 Conceptual breakdown of full multigrid into an estimation phase and a

solve phase. The estimation phase can be thought of as just a recursive

call to full multigrid up to a coarser grid resolution. This recursive

structure, in addition to the auto-tuned "V-type" multigrid cycles, is

used to build tuned full multigrid cycles. . . . . . . . . . . . . . . . . 82

10



4-4 Call stacks generated by calls to auto-tuned MULTIGRID-V 4 for a) un-

biased and b) biased random inputs of size N = 4097 on an In-

tel Xeon server. Discrete accuracies used during auto-tuning were

(Pi)i=1..5 = (10, 103, 105, 107, 109). The recursion level is displayed on

the left, where the size of the grid at level k is 2k + 1. Note that

each arrow connecting to a lower recursion level actually represents a

call to RECURSEj, which handles grid coarsening, followed by a call to

MULTIGRID-V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4-5 Optimized multigrid V (a and b) and full multigrid (c and d) cycles

created by the auto-tuner for solving the 2D Poisson's equation on an

input if size N = 2049. Subfigures a) and c) were trained on unbiased

uniform random data, while b) and d) were trained on biased uniform

random data. Cycles i), ii), iii), and iv), correspond to algorithms that

yield accuracy levels of 10, 10, 101, and 10', respectively. The solid

arrows at the bottom of the cycles represent shortcut calls to the direct

solver, while the dashed arrow in c)-i) represents an iterative solve

using SOR. The dots present in the cycle represent single relaxations.

Note that some paths in the full multigrid cycles skip relaxations while

moving to a higher grid resolution. The recursion level is displayed on

the left, where the size of the grid at level k is 2 k + 1. . . . . . . . . 87

4-6 Performance for algorithms to solve Poisson's equation on unbiased

uniform random data up to an accuracy of 109 using 8 cores. The basic

direct and SOR algorithms as well as the standard V-cycle multigrid

algorithm are all compared to the tuned multigrid algorithm. The

iterated SOR algorithm uses the corresponding optimal weight W0 pt for

each of the different input sizes. . . . . . . . . . . . . . . . . . . . . 88

11



4-7 Performance for algorithms to solve Poisson's equation up to an ac-

curacy of 109 using 8 cores. The auto-tuned multigrid algorithm is

presented alongside various possible heuristics. The graph omits sizes

less than N = 65 since all cases call the direct method for those inputs.

To see the trends more clearly, Figure 4-8 shows the same data as this

figure, but as ratios of times taken versus the auto-tuned algorithm. 89

4-8 Speedup of tuned algorithm compared to various simple heuristics to

solve Poisson's equation up to an accuracy of 109 using 8 cores. The

data presented in this graph is the same as in Figure 4-7 except that the

ratio of time taken versus the auto-tuned algorithm is plotted. Notice

that as the problem size increases, the higher accuracy heuristics be-

come more favored since they require fewer iterations at high resolution

grid sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4-9 Parallel scalability. Speedup as more worker threads are added. Run

on an 8 core (2 processor x 4 core) x86_64 Intel Xeon System. . . . 91

4-10 Relative performance of auto-tuned multigrid algorithms versus refer-

ence V cycle and full multigrid algorithms for solving the 2D Poisson's

equation on unbiased uniform random data to an accuracy level of 105

on a) Intel Harpertown, b) AMD Barcelona, and c) Sun Niagara. . . 96

4-11 Relative performance of auto-tuned multigrid algorithms versus refer-

ence V cycle and full multigrid algorithms for solving the 2D Poisson's

equation on biased uniform random data to an accuracy level of 105

on a) Intel Harpertown, b) AMD Barcelona, and c) Sun Niagara. . . 97

4-12 Relative performance of auto-tuned multigrid algorithms versus refer-

ence V cycle and full multigrid algorithms for solving the 2D Poisson's

equation on unbiased uniform random data to an accuracy level of 109

-on a) Intel Harpertown, b) AMD Barcelona, and c) Sun Niagara. . . 98

12



4-13 Relative performance of auto-tuned multigrid algorithms versus refer-

ence V cycle and full multigrid algorithms for solving the 2D Poisson's

equation on biased uniform random data to an accuracy level of 109

on a) Intel Harpertown, b) AMD Barcelona, and c) Sun Niagara. . . 99

4-14 Sensitivity of multigrid cycle performance to tuning configuration dur-

ing a single stage of the auto-tuning search for 1024 x 1024 input to an

accuracy level of 10'. Performance of each configuration is given rela-

tive to the best configuration found. Note the spread between the best

and worst configuration is roughly a factor of three, showing diversity

in the search space even within a single stage. . . . . . . . . . . . . . 100

4-15 Comparison of tuned full multigrid cycles across machine architectures:

i) Intel Harpertown, ii) AMD Barcelona, iii) Sun Niagara. All cycles

solve the 2D Poisson's equation on unbiased uniform random input to

an accuracy of 105 for an initial grid size of 2". . . . . . . . . . . . . 101

13



List of Tables

1.1 Seventeen recent auto-tuning systems listed by first author and

year of publication. Most auto-tuning systems are domain specific

and explore performance on a particular type of hardware plat-

form. Some abbreviations used: FFT = fast fourier transform,

GEMM = general matrix multiply, SpMV = sparse matrix vector

multiply, LA = linear algebra, GMRES = generalized minimum

residual, LBMHD = lattice Boltzmann magnetohydrodynamics. 19

1.2 Optimizations explored by each of the auto-tuning systems listed

in Table 1.1. Each optimization has been classified as either low-

level, medium-level, or high-level. Low-level optimizations are

those that are most closely tied to the hardware, such as loop

unrolling, loop tiling, and explicit prefetching. Medium-level op-

timizations are those that explore organizational variants of an

algorithm, such as when to switch between recursive and serial

versions of a code. High-level optimizations are those that ex-

plore different algorithms to solve a problem, such as using a di-

rect solver versus an iterative solver. . . . . . . . . . . . . . . . . 20

1.3 Continuation of Table 1.2. . . . . . . . . . . . . . . . . . . . . . . 21

14



2.1 Average stencil characteristics. Arithmetic Intensity is defined as

the Total Flops / Total DRAM bytes. Capacity misses represent a

reasonable estimate for cache-based superscalar processors. Auto-

tuning benefit is a reasonable estimate based on the improvement

in arithmetic intensity assuming a memory bound kernel without

conflict m isses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Architectural summary of evaluated platforms. tEach of 2 thread

groups may issue up to 1 instruction. tA CUDA thread block is

considered 1 thread, and 8 may execute concurrently on a SM.

**16 KB local-store shared by all concurrent CUDA thread blocks

on the SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Attempted optimizations and the associated parameter spaces ex-

plored by the auto-tuner for a 2563 stencil problem (NX, NY, NZ =

256). All numbers are in terms of doubles. t Actual values for

minimum core block dimensions for GTX280 dependent on prob-

lem size. t Thread block size constrained by a maximum of 256

threads in a CUDA thread block with at least 16 threads coalesc-

ing memory accesses in the unit-stride dimension. *The CUDA

code generator is capable of register blocking the Y and Z dimen-

sions, but due to a confirmed bug in the NVIDIA nvcc compiler,

register blocking was not explored in our auto-tuned results. . . 40

15



3.1 Auto-tuned algorithms found by PetaBricks genetic auto-tuner.

The tuned algorithms vary across problem (lower vs upper tri-

angular solve), problem size, and hardware platform. Abbrevi-

ations used: R/NR: array reorder/no reorder; Sx: parallel split

using split size x; Rx: recursive decomposition using cut-off x;

BGx/BLx: blocked greedy/lazy traversal using block size x; GR/GC/L-

R/LC: greedy row-wise/greedy column-wise/lazy row-wise/lazy

column-wise traversal. In all cases where a matrix multiply was

used, the auto-tuner chose to use the serial, non-blocked BLAS

library code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

16



Chapter 1

Introduction

High performance parallel computing is well on its way to becoming a mainstream

computational resource, breaking free from the confines of server rooms and data

centers. Since clock frequencies have largely flattened out since the mid 2000s due to

heat and power limitations (see Figure 1-1), the number of parallel cores being inte-

grated into computational hardware have been increasing to maintain the exponential

growth of computing power. One of the major challenges in transitioning computing

platforms to highly parallel architectures will be developing systems to productively

program these increasingly parallel machines to achieve high performance.

High performance parallel computers can achieve their peak performance only

through effective utilization of their many computational units. Unfortunately, ob-

taining efficient utilization on these architectures usually requires an intensive opti-

mization process. The conventional approach is to hand-tune individual algorithms

for each specific hardware platform in use. Under this development paradigm, when

software is migrated to a new hardware platform, it must be re-tuned to match the

characteristics of the new architecture. Instead of writing a new hand-tuned imple-

mentation of code for every hardware target, a smarter approach to achieving high

performance across multiple architectures is through the use of auto-tuning: search-

ing for the best algorithmic parameters by empirically measuring the performance of

the program while varying the parameters.

Auto-tuning is increasingly being recognized as an essential tool for extracting the

17



10,000,000

Intel CPU Tren s
(souices: In , Wip dia, K. 0 ulatun)

100,000

10,000

100

10 ______Z

10

0

1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 1-1: Intel CPU Trends. Transistor count (000), clock speed (MHz), power
(W), and performance per clock (ILP) over time. As CPU clock frequencies have
leveled off since the mid 2000s, parallelism has increased to maintain the exponential
growth of computational power. Source: Herb Sutter. [38]

best performance from high performance parallel systems. Existing auto-tuning sys-

tems such as FFTW and ATLAS have already demonstrated the power of automatic

parameter search to increase both performance and portability of an algorithm. In the

circumstance that one has already chosen a particular algorithm to solve a problem,

it is natural to focus on tweaking various low-level parameters of that algorithm (e.g.

prefetch distance, block sizes, loop unrolling, etc.) to achieve the best performance.

This is roughly what auto-tuners such as ATLAS, OSKI, and many others focus on.

Knowing which algorithm to use and when is just as important as tuning the

parameters of each individual algorithm. This thesis pushes auto-tuning into newer,

harder domains by exploring the idea of High-Level Algorithmic Tuning, which moves

algorithm selection to the forefront as a primary tuning "variable" in the auto-tuning

18



# First Author Year Nickname Domain Hardware Platform
1 Ali 2007 UHFFT FFT shared memory
2 Bondhugula 2008 PLuTO loops shared memory
3 Chen 2005 ECO GEMM/stencil shared memory
4 Choi 2010 SpMV shared memory
5 Datta 2008 stencil shared memory/Cell/GPU
6 Frigo 2005 FFTW FFT shared memory
7 Hartono 2009 LA/Stencil shared memory
8 Im 2004 SPARSITY SpMV shared memory
9 Kuroda 2010 GMRES cluster
10 Kurzak 2011 GEMM GPU
11 Puschel 2005 SPIRAL Signal Proc. shared memory
12 Shin 2009 small GEMM serial
13 Tiwari 2009 Active Harmony general shared memory
14 Vuduc 2005 OSKI SpMV shared memory
15 Whaley 2000 ATLAS GEMM/LA shared memory
16 Williams 2007 SpMV shared memory/Cell
17 Williams 2011 1 LBMHD cluster

Table 1.1: Seventeen recent auto-tuning systems listed by first author and

year of publication. Most auto-tuning systems are domain specific and explore

performance on a particular type of hardware platform. Some abbreviations

used: FFT = fast fourier transform, GEMM = general matrix multiply, SpMV

= sparse matrix vector multiply, LA = linear algebra, GMRES = generalized

minimum residual, LBMHD = lattice Boltzmann magnetohydrodynamics.

search space. The techniques introduced here demonstrate the benefits of combining

an auto-tuning approach with the flexibility of higher-level algorithmic search and

selection.

Tables 1.1, 1.2, and 1.3 list a sample of seventeen recently developed auto-tuning

systems along with their optimization search space and their tuning method. The

optimization types have been roughly categorized from low-level to high-level. Under

our categorization, low-level optimizations are those that are most closely tied to op-

timizing for specific hardware characteristics, such as loop unrolling and reordering to

explore floating point pipeline depth, explicit prefetching to hide memory latency, or

loop tiling to increase temporal locality in registers or cache. Medium-level optimiza-

tions are those that explore organizational variants of an algorithm, such as when to

switch between recursive and serial versions of a code. High-level optimizations are

those that explore completely different algorithms to solve a problem, such as using

a direct algorithm versus an iterative algorithm to solve a linear system.

19



Low-level Medium-level High-level Search method
access pattern, expert constrained brute-force

1 register block, mathematical for codelets; dynamic
instruction schedule, formulae programming to assemble

data structure transforms from codelets

2 loop reorder, cost function
domain decomposition minimization

loop reorder,
register and cache block,

3 scalar replacement, model-constrained
array copy and pad, brute-force search

explicit prefetch

4 data structure, expert-constrained,
block sizes model-assisted search

NUMA-aware,
loop reorder,

register and cache block,

5 scalar replacement, expert constrained
array pad, brute-force search

explicit prefetch
explicit vectorize
local store DMA

array copy and permute, radix choice, Direct,
6 operation order, order of recursive Cooley-Tukey, dynamic programming

explicit vectorize decomposition Rader, Bluestein
array align and copy, expert and heuristic
loop reorder and tile, constrained,

7 scalar replacement, brute-force,
explicit vectorize Nelder-Mead,

OpenMP parallelize simulated annealing
register and cache block, model-assisted,

8 data storage, expert-constrained
multiple vector, brute-force search

loop unroll,

9 data storage, expert-constrained
explicit prefetch, brute-force search

communication model,

Table 1.2: Optimizations explored by each of the auto-tuning systems listed in

Table 1.1. Each optimization has been classified as either low-level, medium-

level, or high-level. Low-level optimizations are those that are most closely tied

to the hardware, such as loop unrolling, loop tiling, and explicit prefetching.

Medium-level optimizations are those that explore organizational variants of an

algorithm, such as when to switch between recursive and serial versions of a

code. High-level optimizations are those that explore different algorithms to

solve a problem, such as using a direct solver versus an iterative solver.

Though the boundaries between these categories are far from black-and-white, this

classification serves a useful purpose in demonstrating that most of the auto-tuning

20



# Low-level Medium-level High-level Search method

register and shmem block,

10 domain decomposition, expert and hardware-constrained
thread block shape, brute-force search
texture cache usage

loop unroll, code set of rules for

11 reorder, explicit code formula expansion, dynamic programming,
optimization rule application evolutionary search

order

12 loop reorder and unroll expert-guided
explicit vectorization brute-force search

loop tiling,

13 loop unroll-and-jam, parameter space exploration
scalar replacement, via simplex transformation

array copy

register and cache block,
data storage,

14 multiple vector, expert-constrained
variable block size, brute-force search

array splitting,
array reordering

register and cache block, probe hardware properties,

15 loop reorder and unroll, expert-constrained
loop skew, brute-force search

array copy and reorder
register and cache block,

TLB block,
data storage, heuristics for most optimizations

16 software pipelining, brute-force search for blocking
explicit prefetch, strategy and prefetch distance
explicit vectorize,

domain decomposition

loop unroll,
instruction reorder,

virtual vectors, dual stage,
17 explicit prefetch, expert-constrained

explicit vectorize, brute-force search
domain decomposition,
parallelization model

Table 1.3: Continuation of Table 1.2.

systems in the literature currently focus on low-level optimizations of algorithms to

make them run more efficiently. A few of them within the domain of signal process-

ing explore breaking down problems in different ways by varying the ways in which

problems are recursively decomposed, and one of them (FFTW) even has a family of

different algorithmic types from which to choose.

21



The goal of this thesis is to push auto-tuning from the sphere of low-level optimiza-

tions "up the stack" into the higher-level optimization space, where one deliberately

expresses different algorithmic ways to approach a problem and uses that additional

flexibility to attain greater performance in different contexts. The work described ap-

plies this methodology to new application areas that may benefit from the additional

performance that increased algorithmic flexibility may provide.

In some cases, tuning algorithmic choice could simply mean choosing the appro-

priate top-level technique during the initial function invocation; however, for many

problems it is better to be able to utilize multiple techniques within a single function

call or solve. For example, in the C++ Standard Template Library's sort routine,

the algorithm switches from using the divide-and-conquer 0(n log n) merge sort to

0(n 2 ) insertion sort once the working array size falls below a set cutoff. In multigrid,

an analogous strategy might switch from recursive multigrid calls to a direct method

such as Cholesky factorization and triangular solve once the problem size falls below

a threshold.

In this thesis, several auto-tuning application domains are explored, each of which

can be placed on the spectrum that ranges from low-level to high-level algorithmic

tuning. In Chapter 2, we explore the low-end: auto-tuning blocking sizes and other

low-level parameters for a generalized class of stencil computations on shared memory

and GPU architectures. In Chapter 3, we examine the middle of the spectrum: the

use of hybridized algorithmic variants (e.g. lazy vs. greedy, blocked vs. recursive) in

conjunction with lower-level optimizations for dense triangular solves. In Chapter 4,

we investigate the high level: the combined use of direct, iterative, and recursive

algorithms in the implementation of a tuned multigrid linear solver.

1.1 Original contributions

This thesis makes the following original contributions:

* A novel auto-tuning framework for stencil computations:

22



- First domain-specific, yet kernel independent stencil auto-tuner

- Multi-path code generator that outputs optimized, parallel Fortran, C, and

CUDA code from a serial Fortran stencil loop input

* An algorithmic auto-tuner for triangular solve

- Combines algorithmic and low-level optimizations into a single tunable

algorithm

- Auto-tunes over a rich search space:

* Provides choices between different computation and memory access

variants (greedy and lazy)

* Utilizes three individually tunable algorithmic variants: serial, blocked,

and recursive

- Hybridizes algorithms across different input sizes - the algorithm can

switch algorithmic variants as the problem is decomposed into smaller

chunks

* A novel high-level algorithmic auto-tuner for multigrid solvers

- An auto-tuner that tunes multigrid cycle shapes

- An accuracy metric that can be used to make comparisons between direct,

iterative, and recursive algorithms in a multigrid setting for the purposes

of auto-tuning

- A dynamic programming methodology for efficiently building tuned multi-

grid algorithms that combine methods with varying levels of accuracy while

providing that a final target accuracy is met

- An accuracy-aware auto-tuner that produces families of optimized multi-

grid algorithms for different input sizes and accuracy targets

- A demonstration that the performance of tuned multigrid algorithms is

superior to more basic reference approaches and that their structure is

dependent on platform architecture

23



Chapter 2

Auto-tuning generalized stencil

codes

2.1 Introduction

This chapter presents a stencil auto-tuning framework that takes a stencil kernel as

an input and produces tuned parallel implementations across a variety of hardware

targets. We investigate the production of auto-tuned code by manipulating an ab-

stract syntax tree representation of the input stencil kernel to implement various

low-level optimizations. The framework automatically parallelizes the stencil compu-

tation in addition to auto-tuning the size and shape of the domain decomposition,

cache blocks, register blocks, and varying array indexing strategies. This approach

allows new stencil kernels to be automatically parallelized and tuned with low pro-

grammer effort. The code generator is capable of producing Fortran, C, and CUDA

code for use on shared memory multi-core machines in addition to NVIDIA GPGPUs.

Petascale systems are becoming available to the computational science community

with an increasing diversity of architectural models. These high-end systems, like all

computing platforms, will increasingly rely on software-controlled on-chip parallelism

to manage the trade-offs between performance, energy-efficiency and reliability [4].

This results in a daunting problem for performance-oriented programmers. Scientific

progress will be substantially slowed without productive programming models and

24



tools that allow programmers to efficiently utilize massive on-chip concurrency. The

challenge is to create new programming models and tools that enable concise program

expression while exposing fine-grained, explicit parallelism to the hardware across a

diversity of chip multiprocessors (CMPs). Exotic programming models and domain-

specific languages have been proposed to meet this challenge but run counter to the

desire to preserve the enormous investment in existing software infrastructure.

This work presents a novel approach for addressing these conflicting require-

ments for stencil-based computations using a generalized auto-tuning framework.

Our framework takes as input a straightforward sequential Fortran 95 stencil ex-

pression and automatically generates tuned parallel implementations in Fortran, C,

or CUDA, thus providing performance portability across diverse architectures that

range from conventional multicore processors to some of the latest graphics processing

units (GPUs). This approach enables a viable migration path from existing appli-

cations to codes that provide scalable intra-socket parallelism across a diversity of

emerging chip multiprocessors - preserving portability and allowing for productive

code design and evolution.

Our work addresses the performance and portability of stencil (nearest-neighbor)

computations, a class of algorithms at the heart of many calculations involving struc-

tured (rectangular) grids, including both implicit and explicit partial differential equa-

tion (PDE) solvers. These solvers constitute a large fraction of scientific applications

in such diverse areas as heat transfer, climate science, electromagnetics, and engi-

neering fluid dynamics. Previous efforts have successfully developed stencil-specific

auto-tuners [10, 27, 35], which search over a set of optimizations and their parameters

to minimize runtime and provide performance portability across a variety of architec-

tural designs. Unfortunately, the stencil auto-tuning work to date has been limited

to static kernel instantiations with pre-specified data structures. As such, they are

not suitable for encapsulation into libraries usable by most real-world applications.

The focus of our study is to examine the potential of a generalized stencil auto-

parallelization and auto-tuning framework, which can effectively optimize a broad

range of stencil computations with varying data structures, dimensionalities, and

25



topologies. Our novel methodology first builds an abstract representation from a

straightforward user-provided Fortran stencil problem specification. We then use

this intermediate representation to explore numerous auto-tuning transformations.

Finally, our infrastructure is capable of generating a variety of shared-memory parallel

(SMP) backend code instantiations, allowing optimized performance across a broad

range of architectures.

To demonstrate the flexibility of our framework, we examine three stencil com-

putations with a variety of different computational characteristics, arising from the

3D Laplacian, Divergence, and Gradient differential operators. Auto-parallelized and

auto-tuned performance is then shown on several leading multicore platforms, in-

cluding the AMD Barcelona, Sun Victoria Falls, NVIDIA GTX280, and the recently

released Intel Nehalem. Results show that our generalized methodology can deliver

significant performance gains of up to 22x speedup compared with the reference se-

rial version, while allowing portability across diverse CMP technologies. Furthermore,

while our framework only requires a few minutes of human effort to instrument each

stencil code, the resulting code achieves performance comparable to previous hand-

optimized code that required several months of tedious work to produce. Overall

we show that such domain-specific auto-tuners hold enormous promise for architec-

tural efficiency, programmer productivity, performance portability, and algorithmic

adaptability on existing and future multicore systems.

This chapter describes joint work with Shoaib Kamil, Leonid Oliker, John Shalf,

and Samuel Williams. My primary contribution to this original research was the

design and implementation of the auto-parallelizing code generator for the various

hardware targets and the auto-tuning strategy engines that determine the space of

optimizations over which to search. I have included a complete description of the

auto-tuning system here to give appropriate context for the work.

26



2.2 Related Work

Auto-tuning has been applied to a number of scientific kernels, most successfully to

dense and sparse linear algebra. ATLAS [42] is a system that implements BLAS (basic

linear algebra subroutines) and some LAPACK [29] kernels using compile-time auto-

tuning. Similarly, OSKI [41] applies auto-tuning techniques to sparse linear algebra

kernels, using a combination of compile-time and run-time tuning. FFTW [16] is a

similar system for producing auto-tuned efficient signal processing kernels.

Unlike the systems above, SPIRAL [32] is a recent auto-tuning framework that

implements a compiler for a specific class of kernels, producing high-performance

tuned signal processing kernels. While previous auto-tuners relied on simple string

manipulation, SPIRAL's designers defined an algebra suitable for describing a class

of kernels, and built a tuning system for that class. Our work's goal is to create a

similar system for stencil auto-tuning.

Optimizing stencil calculations have primarily focused on on tiling optimiza-

tions [35, 33, 30] that attempt to exploit locality by performing operations on cache-

sized blocks of data before moving on to the next block. A study of stencil opti-

mization [9] on (single-core) cache-based platforms found that tiling optimizations

were primarily effective when the problem size exceeded the on-chip cache's ability

to exploit temporal recurrences. Previous work in stencil auto-tuning for multicore

and GPUs [10, 9] demonstrated the potential for greatly speeding up stencil kernels,

but concentrated on a single kernel (the 7-pt Laplacian in 3D). Because the tuning

system was hand-coded for that particular kernel, it cannot easily be ported to other

stencils instantiations. In addition, it does not allow easy composition of different

optimizations, or the integration of different search strategies such as hill-climbing.

Compiler optimizations for stencils concentrate on the polyhedral model [5] for im-

proving performance by altering traversals to minimize (modeled) memory overhead.

Auto-parallelization of stencil kernels is also possible using the polyhedral model [14].

Future work will combine/compare the polyhedral model with our auto-tuning sys-

tem to explore the tradeoffs of simple models and comprehensive auto-tuning. Some

27



planned optimizations (particularly those that alter the data structures of the grid)

are currently not handled by the polyhedral model.

The goal of our framework is not just to automatically generate parallel stencil

codes and tune the associated parallelization parameters, but also to tune the paral-

lelization parameters in tandem with lower-level serial optimizations. Doing so will

find the globally optimal combination for a given parallel machine.

Related work on optimizing stencils without the use of auto-tuning includes the

ParAgent [31] tool, which uses static analysis to help minimize communication be-

tween compute nodes in a distributed memory system. The PLuTo system [14],

strives to simultaneously optimize parameters for both data locality and paralleliza-

tion, utilizing a polyhedral model and a unified cost function that incorporates aspects

of both intra-tile locality and inter-tile communication. The recent Pochoir stencil

compiler [39] utilizes a cache-oblivious decomposition based on earlier work [18] to

automatically parallelize and optimize the locality of memory access for user-specified

stencils. Our work differs from these methods primarily in our choice of optimization

space and the fact that we leverage auto-tuning to find optimal parameters. Auto-

tuning provides better results in cases where machine characteristics are difficult to

model effectively using static analysis or where heuristically chosen parameters are

sub-optimal.

This work presents a novel advancement in auto-tuning stencil kernels by building

a framework that incorporates experience gained from building kernel-specific tuners.

In particular, the framework has the applicability of a general domain-specific com-

piler like SPIRAL, while supporting multiple backend architectures. In addition,

modularity allows the framework to, in the future, support data structure trans-

formations and additional front- and backends using a simple plugin architecture.

A preliminary overview of our methodology was presented at a recent Cray User's

Group Workshop [26]; our current work extends this framework for a wider spec-

trum of optimizations and architectures including Victoria Falls and GPUs, as well

as incorporating performance model expectations and analysis.

28



Cache Flops Compulsory Writeback Write Capacity Naive Tuned Expected
References per Read Trafic Allocate Miss Arithmetic Arithmetic Auto-tuning

Stencil (doubles) Stencil Traf Traffic I Traffic Traffic Intensity Intensity Benefit

Laplacian 8 8 Bytes 8 Bytes 8 Bytes 16 Bytes 0.20 0.33 1.66x
ivergence 7 24 ytes ytes ytes 1 ytes 0.14 0. 0 1. x

ra ent 9 6 ytes ytes ytes 1 ytes . .11 1. x

Table 2.1: Average stencil characteristics. Arithmetic Intensity is defined as
the Total Flops / Total DRAM bytes. Capacity misses represent a reasonable
estimate for cache-based superscalar processors. Auto-tuning benefit is a rea-
sonable estimate based on the improvement in arithmetic intensity assuming a
memory bound kernel without conflict misses.

2.3 Stencils & Architectures

Stencil computations on regular grids are at the core of a wide range of scientific codes.

These applications are often implemented using iterative finite-difference techniques

that sweep over a spatial grid, performing nearest neighbor computations called sten-

cils. In a stencil operation, each point in a multidimensional grid is updated with

weighted contributions from a subset of its neighbors within a fixed distance in both

time and space, locally solving a discretized version of the PDE for that data ele-

ment. These operations are then used to build solvers that range from simple Jacobi

iterations to complex multigrid and adaptive mesh refinement methods.

Stencil calculations perform repeated sweeps through data structures that are typ-

ically much larger than the data caches of modem microprocessors. As a result, these

computations generally produce high memory traffic for relatively little computation,

causing performance to be bound by memory throughput rather than floating-point

operations. Reorganizing these stencil calculations to take full advantage of memory

hierarchies has therefore been the subject of much investigation over the years.

Although these recent studies have successfully shown auto-tuning's ability to

achieve performance portability across the breadth of existing multicore processors,

they have been constrained to a single stencil instantiation, thus failing to provide

broad applicability to general stencil kernels due to the immense effort required to

hand-write auto-tuners. In this work, we rectify this limitation by evolving the auto-

tuning methodology into a generalized code generation framework, allowing signifi-

cant flexibility compared to previous approaches that use prepackaged sets of limited-

29



y

do k-2,nz-1,1
do j-2,ny-1,1
do i-2,nx-1,1

UNext(i ,j,k)-
alpha*u(ij,k)+
beta*(u(i+1,j,k)+u(i-1,j,k)+

u(i ,j+1,k)+u(i ,j-1,k)+
u(i ,j,k+1)+u(i ,j,k-1)

enddo
enddo
enddo

do k-2,nz-1,1
do j-2,ny-1,1
do 1-2,nx-1,1

uCi, jk)
alpha*C x(i+1,j,k)-x(i-1,j,k)
beta*C yCij+1,k)-yCi,j-1,k)

gamma*C z(ij,k+1)-z(ij,k-1)

enddo
enddo
enddo

do k-2,nz-1,1
do j-2,ny-1,1
do i-2,nx-1,1

x (i, j, k)=al pha*( u(i+1, j,k)-u(i -1,J, k) )
y(i,j,k)= beta*( u(i,j+1,k)-u(i,j-1,k) )
z(i,j,k)=gamma*( u(i.j,k+1)-u(i,j,k-1) )

enddo
enddo
enddo

)

r-d armf 7 red arraf V( I -ad -w 7

write array[{ 7wnte array{ I

(a) (b) (c)

Figure 2-1: (a) Laplacian, (b) Divergence, and (c) Gradient stencils. Top: 3D
visualization of the nearest neighbor stencil operator. Middle: code as passed
to the parser. Bottom: memory access pattern as the stencil sweeps from left
to right. Note: the color represents cartesian component of the vector fields

(scalar fields are gray).

functionality library routines. Our approach complements existing compiler technol-

ogy and accommodates new architecture-specific languages such as CUDA. Implemen-

tation of these kernels using existing languages and compilers destroys domain-specific

knowledge. As such, compilers have difficulty proving that code transformations are

safe, and even more difficulty transforming data layout in memory. The framework

side-steps the complex task of analysis and presents a simple, uniform, and familiar

interface for expressing stencil kernels as a conventional Fortran expression - while

presenting a proof-of-concept for other potential classes of domain-specific generalized

auto-tuners.

2.3.1 Benchmark Kernels

To show the broad utility of our framework, we select three conceptually easy-to-

understand, yet deceptively difficult to optimize stencil kernels arising from the ap-

30

y W
y V



Core AMD Intel Sun NVIDIA
Architecture Barcelona Nehalem Niagara2 GT200 SM

superscalar superscalar HW multithread HW multithread
Type out of order out of order dual issue SIMD

Clock (GHz) 2.30 2.66 1.16 1.3
DP GFlop/s 9.2 10.7 1.16 2.6
Local-Store - - 16KB**

Li Data Cache 64KB 32KB 8KB -

private L2 cache 512KB 256KB --- _ -

System Opteron 2356 Xeon X5550 UltraSparc T5140 GeForce
Architecture (Barcelona) (Gainestown) (Victoria Falls) GTX280

# Sockets 2 2 2 1
Cores per Socket 4 4 8 30

Threads per Sockett 4 8 64 240

primary memory HW prefetch HW prefetch Multithreading Multithreading

parallelism paradigm with coalescing

shared L3 cache 2x2MB 2x8MB 2x4MB

(shared by 4 cores) (shared by 4 cores) (shared by 8 cores)

DRAM Capacity 16GB 12GB 32GB 1GB (device)
DRAM Pin 21.33 51 2__42.66(read)_ 4GB (host)

Bandwidth (GB/s) 2 21.33(write) 4 (PCIe)
DP GFlop/s 73.6 85.3 18.7 78

DP Flop:Byte Ratio 3.45 1.66 0.29 0.55

Threading Pthreads Pthreads Pthreads CUDA 2.0
Compiler gcc 4.1.2 gcc 4.3.2 gcc 4.2.0 nvec 0.2.1221

Table 2.2: Architectural summary of evaluated platforms. tEach of 2 thread

groups may issue up to 1 instruction. 1A CUDA thread block is considered 1

thread, and 8 may execute concurrently on a SM. **16 KB local-store shared

by all concurrent CUDA thread blocks on the SM.

plication of the finite difference method to the Laplacian (unext +- V 2u), Diver-

gence (u <- V - F) and Gradient (F +- Vu) differential operators. Details of these

kernels are shown in Figure 2-1 and Table 2.1. All three operators are implemented

using central-difference on a 3D rectahedral block-structured grid via Jacobi's method

(out-of-place), and benchmarked on a 2563 grid. The Laplacian operator uses a sin-

gle input and a single output grid, while the Divergence operator utilizes multiple

input grids (structure of arrays for Cartesian grids) and the Gradient operator uses

multiple output grids. Note that although the code generator has no restrictions on

data structure, for brevity, we only explore the use of structure of arrays for vector

31



fields. As described below, these kernels have such low arithmetic intensity that they

are expected to be memory-bandwidth bound, and thus deliver performance approx-

imately equal to the product of their arithmetic intensity - defined as the ratio of

arithmetic operations to memory traffic - and the system stream bandwidth.

Table 2.1 presents the characteristics of the three stencil operators and sets per-

formance expectations. Like the 3C's cache model [24], we break memory traffic into

compulsory read, write back, write allocate, and capacity misses. A naive implemen-

tation will produce memory traffic equal to the sum of these components, and will

therefore result in the shown arithmetic intensity ( " "), ranging from 0.20-0.08.

The auto-tuning effort explored in this work attempts to improve performance by

eliminating capacity misses; thus it is possible to bound the resultant arithmetic in-

tensity based only on compulsory read, write back, and write allocate memory traffic.

For the three examined kernels, capacity misses account for dramatically different

fractions of the total memory traffic. Thus, we can also bound the resultant potential

performance boost from auto-tuning per kernel - 1.66x, 1.40x, and 1.28x for the

Laplacian, Divergence, and Gradient respectively. Moreover, note that the kernel's

auto-tuned arithmetic intensity will vary substantially from each other, ranging from

0.33-0.11. As such, performance is expected to vary proportionally, as predicted by

the Roofline model [45].

2.3.2 Experimental Platforms
To evaluate our stencil auto-tuning framework, we examine a broad range of leading

multicore designs: AMD Barcelona, Intel Nehalem, Sun Victoria Falls, and NVIDIA

GTX 280. A summary of key architectural features of the evaluated systems appears

in Table 2.2; space limitations restrict detailed descriptions of the systems. As all

architectures have Flop:DRAM byte ratios significantly greater than the arithmetic

intensities described in Section 2.3.1, we expect all architectures to be memory bound.

Note that the sustained system power data was obtained using an in-line digital power

meter while the node was under a full computational load, while chip and GPU

card power is based on the maximum Thermal Design Power (TDP), extrapolated

32



rN r trategy Engines r\Code N. rt Search
tog Generators Engines

Reference Myriad of equivalent, Best performing
Implemetationoptimized, Implementations roe Implementation

Transformation (plus test hamess) and configuration
b Engine L( _parameters

Figure 2-2: Stencil auto-tuning framework flow. Readable domain-specific code
is parsed into an abstract representation, transformations are applied, code is
generated using specific target backends, and the optimal auto-tuned imple-
mentation is determined via search.

from manufacturer datasheets. Although the node architectures are diverse, most

accurately represent building-blocks of current and future ultra-scale supercomputing

systems.

2.4 Auto-tuning Framework

Stencil applications use a wide variety of data structures in their implementations,

representing grids of multiple dimensionalities and topologies. Furthermore, the de-

tails of the underlying stencil applications call for a myriad of numerical kernel op-

erations. Thus, building a static auto-tuning library in the spirit of ATLAS [42] or

OSKI [41] to implement the many different stencil kernels is infeasible.

This work presents a proof-of-concept of a generalized auto-tuning approach,

which uses a domain-specific transformation and code-generation framework com-

bined with a fully-automated search to replace stencil kernels with their optimized

versions. The interaction with the application program begins with simple annota-

tion of the loops targeted for optimization. The search system then extracts each

designated loop and builds a test harness for that particular kernel instantiation; the

test harness simply- calls the kernel with random data populating the grids and mea-

sures performance. Next, the search system uses the transformation and generation

framework to apply our suite of auto-tuning optimizations, running the test harness

for each candidate implementation to determine its optimal performance. After the

search is complete, the optimized implementation is built into an application-specific

33



library that is called in place of the original. The overall flow through the auto-tuning

system is shown in Figure 2-2.

2.4.1 Front-End Parsing

The front-end to the tranformation engine parses a description of the stencil in a

domain-specific language. For simplicity, we use a subset of Fortran 95, since many

stencil applications are already written in some flavor of Fortran. Due to the modular-

ity of the transformation engine, a variety of front-end implementations are possible.

The result of parsing in our preliminary implementation is an Abstract Syntax Tree

(AST) representation of the stencil, on which subsequent transformations are per-

formed.

2.4.2 Stencil Kernel Breadth

Currently, the auto-tuning system handles a specific class of stencil kernels of certain

dimensionality and code structure. In particular, the auto-tuning system assumes a

2D or 3D rectahedral grid, and a stencil based on arithmetic operations and table

lookups (array accesses). Future work will further extend the generality to allow grids

of arbitrary dimensionality. Although this proof-of-concept framework does auto-tune

serial kernels with imperfect loop nests, the parallel tuning relies on perfect nesting in

order to determine legal domain decompositions and NUMA (non-uniform memory

access) page mapping initialization - future framework extensions will incorporate

imperfectly nested loops. Additionally, we currently treat boundary calculations as

a separate stencil, although future versions may integrate stencils with overlapping

traversals into a single stencil. Overall, our auto-tuning system can target and accel-

erate a large group of stencil kernels currently in use, while active research continues

to extend the generality of the framework.

34



2.5 Optimization & Codegen

The heart of the auto-tuning framework is the transformation engine and the backend

code generation for both serial and parallel implementations. The transformation

engine is in many respects similar to a source-to-source translator, but it exploits

domain-specific knowledge of the problem space to implement transformations that

would otherwise be difficult to implement as a fully generalized loop optimization

within a conventional compiler. Serial backend targets generate portable C and For-

tran code, while parallel targets include pthreads C code designed to run on a variety

of cache-based multicore processor nodes as well as CUDA versions specifically for

the massively parallel NVIDIA GPGPUs.

Once the intermediate form is created from the front-end description, it is manip-

ulated by the transformation engine across our spectrum of auto-tuned optimizations.

The intermediate form and transformations are expressed in Common Lisp using the

portable and lightweight ECL compiler [13], making it simple to interface with the

parsing front-ends (written in Flex and YACC) and preserving portability across a

wide variety of architectures. Potential future alternatives include implemention of

affine scaling transformations or more complex AST representations, such as the one

used by LLVM [7], or more sophisticated transformation engines such as the one

provided by the Sketch [37] compiler.

Because optimizations are expressed as transformations on the AST, it is possible

to combine them in ways that would otherwise be difficult using simple string sub-

stitution. For example, it is straightforward to apply register blocking either before

or after cache-blocking the loop, allowing for a comprehensive exploration of opti-

mization configurations. In the rest of this section, we discuss serial transformations

and code generation; auto-parallelization and parallel-specific transformations and

generators are explored in Section 2.5.2.

35



2.5.1 Serial Optimizations

Several common optimizations have been implemented in the framework as AST

transformations, including loop unrolling/register blocking (to improve innermost

loop efficiency), cache blocking (to expose temporal locality and increase cache reuse),

and arithmetic simplification/constant propagation. These optimizations are imple-

mented to take advantage of the specific domain of interest: Jacobi-like stencil kernels

of arbitrary dimensionality. Future transformations will include those shown in pre-

vious work [10]: better utilization of SIMD instructions and common subexpression

elimination (to improve arithmetic efficiency), cache bypass (to eliminate cache fills),

and explicit software prefetching. Additionally, future work will support aggressive

memory and code structure transformations.

We also note that, although the current set of optimizations may seem identical to

existing compiler optimizations, future strategies such as memory structure transfor-

mations will be beyond the scope of compilers, since such optimizations are specific to

stencil-based computations. Our restricted domain allows us to make certain assump-

tions about aliasing and dependencies. Additionally, the fact that our framework's

transformations yield code that outperforms compiler-only optimized versions shows

compiler algorithms cannot always prove that these (safe) optimizations are allowed.

Thus, a domain-specific code generator run by the user has the freedom to implement

transformations that a compiler may not.

2.5.2 Parallelization & Code Generation

Given the stencil transformation framework, we now present parallelization optimiza-

tions, as well as cache- and GPU-specific optimizations. The shared-memory parallel

code generators leverage the serial code generation routines to produce the version

run by each individual thread. Because the parallelization mechanisms are specific to

each architecture, both the strategy engines and code generators must be tailored to

the desired targets. For the cache-based systems (Intel, AMD, Sun) we use pthreads

for lightweight parallelization; on the NVIDIA GPU, the only parallelization option is

36



(a) (b) (c)
Decomposition of a Node Block Decomposition into Decomposition into

into a Chunk of Core Blocks Thread Blocks Register Blocks

Figure 2-3: Four-level problem decomposition: In (a), a node block (the full
grid) is broken into smaller chunks. All core blocks in a chunk are processed by
the same subset of threads. One core block from the chunk in (a) is magnified
in (b). A single thread block from the core block in (b) is then magnified in (c).
A thread block should exploit common resources among threads. Finally, the
magnified thread block in (c) is decomposed into register blocks, which exploit
data level parallelism.

CUDA thread blocks that execute in a SPMD (single program multiple data) fashion.

Since the parallelization strategy influences code structure, the AST - which rep-

resents code run on each individual thread - must be modified to reflect the chosen

parallelization strategy. The parallel code generators make the necessary modifica-

tions to the AST before passing it to the serial code generator.

Multicore-specific Optimizations and Code Generation

Following the effective blocking strategy presented in previous studies[10], we de-

compose the problem space into core blocks, as shown in Figure 2-3. The size of

these core blocks can be tuned to avoid capacity misses in the last level cache. Each

core block is further divided into thread blocks such that threads sharing a common

cache can cooperate on a core block. Though our code generator is capable of using

variable-sized thread blocks, we set the size of the thread blocks equal to the size of

the core blocks to help reduce the size of the auto-tuning search space. The threads

of a thread block are then assigned chunks of contiguous core blocks in a round robin

fashion until the entire problem space has been accounted for. Finally each thread's

stencil loop is register blocked to best utilize registers and functional units. The core

block size, thread block size, chunk size, and register block size are all tunable by the

37



framework.

The code generator creates a new set of loops for each thread to iterate over its

assigned set of thread blocks. Register blocking is accomplished through strip mining

and loop unrolling via the serial code generator.

NUMA-aware memory allocation is implemented by pinning threads to the hard-

ware and taking advantage of first-touch page mapping policy during data initial-

ization. The code generator analyzes the decomposition and has the appropriate

processor touch the memory during initialization.

CUDA-specific Optimizations and Code Generation

CUDA programming is oriented around CUDA thread blocks, which differ from the

thread blocks used in the previous section. CUDA thread blocks are vector ele-

ments mapped to the scalar cores (lanes) of a streaming multiprocessor. The vector

conceptualization facilitates debugging of performance issues on GPUs. Moreover,

CUDA thread blocks are analogous to threads running SIMD code on superscalar

processors. Thus, parallelization on the GTX280 is a straightforward SPMD domain

decomposition among CUDA thread blocks; within each CUDA thread block, work

is parallelized in a SIMD manner.

To effectively exploit cache-based systems, code optimizations attempt to employ

unit-stride memory access patterns and maintain small cache working sets through

cache blocking - thereby leveraging spatial and temporal locality. In contrast, the

GPGPU model forces programmers to write a program for each CUDA thread. Thus,

spatial locality may only be achieved by ensuring that memory accesses of adjacent

threads (in a CUDA thread block) reference contiguous segments of memory to exploit

hardware coalescing. Consequently, our GPU implementation ensures spatial locality

for each stencil point by tasking adjacent threads of a CUDA thread block to perform

stencil operations on adjacent grid locations. Some performance will be lost as not

all coalesced memory references are aligned to 128-byte boundaries.

The CUDA code generator is capable of exploring the myriad different ways of

dividing the problem among CUDA thread blocks, as well as tuning both the number

38



of threads in a CUDA thread block and the access pattern of the threads. For example,

in a single time step, a CUDA thread block of 256 CUDA threads may access a tile

of 32 x 4 x 2 contiguous data elements; the thread block would then iterate this tile

shape over its assigned core block. In many ways, this exploration is analogous to

register blocking within each core block on cache-based architectures.

Our code generator currently only supports the use of global "device" memory,

and so does not take advantage of the low-latency local-store style "shared" memory

present on the GPU. As such, the generated code does not take advantage of the

temporal locality of memory accesses that the use of GPU shared memory provides.

Future work will incorporate support for exploitation of CUDA shared memory.

2.6 Auto-Tuning Strategy Engine

In this section, we describe how the auto-tuner searches the enormous parameter

space of serial and parallel optimizations described in previous sections. Because the

combined parameter space of the preceding optimizations is so large, it is clearly

infeasible to try all possible strategies. In order to reduce the number of code in-

stantiations the auto-tuner must compile and evaluate, we used strategy engines to

enumerate an appropriate subset of the parameter space for each platform.

The strategy engines enumerate only those parameter combinations (strategies)

in the subregion of the full search space that best utilize the underlying architecture.

For example, cache blocking in the unit stride dimension could be practical on the

Victoria Falls architecture, while on Barcelona or Nehalem, the presence of hardware

prefetchers makes such a transformation non-beneficial [9].

Further, the strategy engines keep track of parameter interactions to ensure that

only legal strategies are enumerated. For example, since the parallel decomposition

changes the size and shape of the data block assigned to each thread, the space of

legal serial optimization parameters dependends on the values of the parallel param-

eters. The strategy engines ensure all such constraints (in addition to other hardware

restrictions such as maximum number of threads per processor) are satisfied during

39



Optimization Parameter Tuning Range by Architecture
Category Parameter Name Barcelona/Nehalem Victoria Falls GTX280

Data Allocation NUMA Aware / N/A
CX NX {8...NX} {16t..NX}

Core Block Size CY {8...NY} {8...NY} {16t..NY}
CZ {128...NZ} {128...NZ} {16t..NZ}

Domain TX CX CX 1. }
Decomposition Thread Block Size TY CY CY { CY}*

TZ CZ CZ {.CZ}t

Chunk Size {1... C xNY xNreads } N/A

Array Indexing 1'
Low RX {1...8 1...8} 1
Level Register Block Size R Y {1...2} {1...2} 1*

RZ {1...2} {1...2} 1*

Table 2.3: Attempted optimizations and the associated parameter spaces ex-

plored by the auto-tuner for a 2563 stencil problem (NX, NY, NZ = 256). All
numbers are in terms of doubles. t Actual values for minimum core block

dimensions for GTX280 dependent on problem size. t Thread block size con-

strained by a maximum of 256 threads in a CUDA thread block with at least 16
threads coalescing memory accesses in the unit-stride dimension. *The CUDA
code generator is capable of register blocking the Y and Z dimensions, but due

to a confirmed bug in the NVIDIA nvcc compiler, register blocking was not

explored in our auto-tuned results.

enumeration.

For each parameter combination enumerated by the strategy engine, the auto-

tuner's search engine then directs the parallel and serial code generator components

to produce the code instantiation corresponding to that strategy. The auto-tuner

runs each instantiation and records the time taken on the target machine. After all

enumerated strategies have been timed, the fastest parameter combination is reported

to the user, who can then link the optimized version of the stencil into their existing

code.

Table 2.3 shows the attempted optimizations and the associated parameter sub-

space explored by the strategy engines corresponding to each of our tested platforms.

While the search engine currently does a comprehensive search over the parameter

subspace dictated by the strategy engine, future work will include more intelligent

search mechanisms such as hill-climbing or machine learning techniques [19], where

the search engine can use timing feedback to dynamically direct the search.

40



2.7 Performance Evaluation

In this section, we examine the performance quality and expectations of our auto-

parallelizing and auto-tuning framework across the four evaluated architectural plat-

forms. The impact of our framework on each of the three kernels is compared in Fig-

ure 2-4, showing performance of: the original serial kernel (gray), auto-parallelization

(blue), auto-parallelization with NUMA-aware initialization (purple), and auto-tuning

(red). The GTX280 reference performance (blue) is based on a straightforward imple-

mentation that maximizes CUDA thread parallelism. We do not consider the impact

of host transfer overhead; previous work [10] examined this potentially significant

bottleneck in detail. Overall, results are ordered such that threads first exploit multi-

threading within a core, then multiple cores on a socket, and finally multiple sockets.

Thus, on Nehalem, the two thread case represents one fully-packed core; similarly, the

GTX280 requires at least 30 CUDA thread blocks to utilize the 30 cores (streaming

multiprocessors).

2.7.1 Auto-Parallelization Performance

The auto-parallelization scheme specifies a straightforward domain decomposition

over threads in the least unit-stride dimension, with no core, thread, or register

blocking. To examine the quality of the framework's auto-parallelization capabilities,

we compare performance with a parallelized version using OpenMP [15], which ensures

proper NUMA memory decomposition via first-touch pinning policy. Results, shown

as yellow diamonds in Figure 2-4, show that performance is well correlated with our

framework's NUMA-aware auto-parallelization. Furthermore, our approach slightly

improves Barcelona's performance, while Nehalem and Victoria Falls see up to a 17%

and 25% speedup (respectively) compared to the OpenMP version, indicating the

effectiveness of our auto-parallelization methodology even before auto-tuning.

41



12
Barcelona

5
10

4- 8

0 06

2 i 4

1 2

1 2 4 8a
Threads

3. Barcelona
3 6

2.5- 5

2-2

0.5 1
0.

LAPLACIAN
Nehalem

.il
1 2 4 8 18 '

Threads

DIVE
Nehalem 5

-4

0
2

millin

RGENCE
Victoria Falla

1 2 4 8 1 24816 8 16 32 64 128 -er 1 2 4 8 16 32 4122555121K
Threads Threads Threads CUDA Thread Blocks

GRADIENT
2 4 . . . .3

Barcelona Nehalem V ictoria Falls TX28
3.5

2.5
1.5- - .

0 5 
26

21.2 2 s -2

1.5 4

0.51

0.5 2

01.5 8 01 0 3 128 Ref 16 32 64 122565121K

Threads Threads Threads CUDA Thread Blocks

baseline = auto-parallel - +NUMA - +auto-tuning - OpenMP 0

Figure 2-4: Laplacian (top row), Divergence (middle row), and Gradient (bot-
tom row) performance as a function of auto-parallelization and auto-tuning -
on the four evaluated platforms. Note: the green region marks performance ex-
trapolated from Stream bandwidth. For comparison, the yellow diamond shows
performance achieved using the original stencil kernel with OpenMP pragmas
and NUMA-aware initialization.

42



2.7.2 Performance Expectations

When tuning any application, it is important to know when you have reached the

architectural peak performance, and have little to gain from continued optimization.

We make use of a simple empirical performance model to establish this point of

diminishing returns and use it to evaluate how close our automated approach can come

to machine limits. We now examine achieved performance in the context of this simple

model based on the hardware's characteristics. Assuming all kernels are memory

bound and do not suffer from an abundance of capacity misses, we approximate

the performance bound as the product of streaming bandwidth and each stencil's

arithmetic intensity (0.33, 0.20 and 0.11 - as shown in Table 2.1). Using an optimized

version of the Stream benchmark [8], which we modified to reflect the number of read

and write streams for each kernel, we obtain expected peak performance based on

memory bandwidth for the CPUs. For the GPU, we use two versions of Stream: one

that consists of exclusively read traffic, and another that is half read and half write.

Our model's expected performance range is represented as a green line (for the

CPUs) and a green region (for the GPUs) in Figure 2-4. For Barcelona and Ne-

halem, our optimized kernels obtain performance essentially equivalent to peak mem-

ory bandwidth. For Victoria Falls, the obtained bandwidth is around 20% less than

peak for each of the kernels, because our framework does not currently implement

software prefetching and array padding, which are critical for performance on this

architecture. Finally, the GTX280 results were also below our performance model

bound, likely due to no array padding [10]. Overall, our fully tuned performance

closely matches our model's expectations, while highlighting areas which could ben-

efit from additional optimizations.

2.7.3 Performance Portability

The auto-tuning framework takes a serial specification of the stencil kernel and

achieves a substantial performance improvement, due to both auto-parallelization

and auto-tuning. Overall, Barcelona and Nehalem see between 1.7x to 4x improve-

43



14 16 10 s
Laplacian Divergence Gradient Avg Pwr Efficiency

12 14

10 12 -

10 40 -
eS

2 28 _5- 30
U. . U.

65 0, 4
4 3L

22

0* 0 00

barcelona nehalem - VF - GTX280 - GTX28O(card only)

Figure 2-5: Peak performance and power efficiency after auto-tuning and paral-
lelization. GTX280 power efficiency is shown based on system power as well as
the card alone.

ment for both the one and two socket cases over the conventional parallelized case,

and up to 10 times improvement over the serial code. The results also show that auto-

tuning is essential on Victoria Falls, enabling much better scalability and increasing

performance by 2.5x and 1.4x on 64 and 128 threads respectively in comparison

to the conventional parallelized case, but a full 22x improvement over an unparal-

lelized example. Finally, auto-tuning on the GTX280 boosted performance by 1.5x

to 2x across the full range of kernels - a substantial improvement over the baseline

CUDA code, which is implicitly parallel. This clearly demonstrates the performance

portability of this framework across the sample kernels.

Overall, we achieve substantial performance improvements across a diversity of

architectures - from GPU's to multi-socket multicore x86 systems. The auto-tuner

is able to achieve results that are extremely close to the architectural peak per-

formance of the system, which is limited ultimately by memory bandwidth. This

level of performance portability using a common specification of kernel requirements

is unprecedented for stencil codes, and speaks to the robustness of the generalized

framework.

44



2.7.4 Programmer Productivity Benefits

We now compare our framework's performance in the context of programming pro-

ductivity. Our previous work [10] presented the results of Laplacian kernel opti-

mization using a hand-written auto-tuning code generator, which required months of

Perl script implementation, and was inherently limited to a single kernel instantia-

tion. In contrast, utilizing our framework across a broad range of possible stencils

only requires a few minutes to annotate a given kernel region, and pass it through

our auto-parallelization and auto-tuning infrastructure, thus tremendously improving

productivity as well as kernel extensibility.

Currently our framework does not implement several hand-tuned optimizations [10],

including SIMDization, padding, or the employment of cache bypass (movntpd). How-

ever, comparing results over the same set of optimizations, we find that our frame-

work attains excellent performance that is comparable to the hand-written version.

We obtain near identical results on the Barcelona and even higher results on the Vic-

toria Falls platform (6 GFlop/s versus 5.3 GFlop/s). A significant disparity is seen

on the GTX280, where previous hand-tuned Laplacian results attained 36 GFlop/s,

compared with our framework's 13 GFlop/s. For the CUDA implementations, our

automated version only utilizes optimizations and code structures applicable to gen-

eral stencils, while the hand-tuned version explicitly discovered and exploited the

temporal locality specific to the Laplacian kernel - thus maximizing performance,

but limiting the method's applicability. Future work will continue incorporating ad-

ditional optimization schemes into our automated framework.

2.7.5 Architectural Comparison

Figure 2-5 shows a comparative summary of the fully tuned performance on each

architecture. The GTX280 consistently attains the highest performance, due to its

massive parallelism at high clock rates, but transfer times from system DRAM to

board memory through the PCI Express bus are not included and could significantly

impact performance [10]. The recently-released Intel Nehalem system offers a sub-

stantial improvement over the previous generation Intel Clovertown by eliminating

45



the front-side bus in favor of on-chip memory controllers. The Nehalem obtains the

best overall performance of the cache-based systems, due to the combination of high

memory bandwidth per socket and hardware multithreading to fully utilize the avail-

able bandwidth. Additionally, Victoria Falls obtains high performance, especially

given its low clock speed, thanks to massive parallelism combined with an aggregate

memory bandwidth of 64 GB/s.

Power efficiency, measured in (average stencil) MFlop/s/Watt, is also shown in

Figure 2-5. For the GTX280 measurements we show the power efficiencies both with

(red) and without the host system (pink). The GTX280 shows impressive gains over

the cache-based architecture if considered as a standalone device, but if system power

is included, the GTX280's advantage is diminished and the Nehalem becomes the

most power efficient architecture evaluated in this study.

2.8 Summary and Conclusions

Performance programmers are faced with the enormous challenge of productively

designing applications that effectively leverage the computational resources of leading

multicore designs, while allowing for performance portability across the myriad of

current and future CMP instantiations. In this work, we introduce a fully generalized

framework for stencil auto-tuning that takes the first steps towards making complex

chip multiprocessors and GPUs accessible to domain-scientists, in a productive and

performance portable fashion - demonstrating up to 22x speedup compared with

the default serial version.

Overall we make a number of important contributions that include the (i) in-

troduction of a high performance, multi-target framework for auto-parallelizing and

auto-tuning multidimensional stencil loops; (ii) presentation of a novel tool chain

based on an abstract syntax tree (AST) for processing, transforming, and generating

stencil loops; (iii) description of an automated parallelization process for targeting

multidimensional stencil codes on both cache-based multicore architectures as well

as GPGPUs; (iv) achievement of excellent performance on our evaluation suite using

46



three important stencil access patterns; (v) utilization of simple performance model

that effectively predicts the expected performance range for a given kernel and archi-

tecture; and (vi) demonstration that automated frameworks such as these can enable

greater programmer productivity by reducing the need for individual, hand-coded

auto-tuners.

The modular architecture of our framework enables it to be extended through the

development of additional parser, strategy engine, and code generator modules. Fu-

ture work will concentrate on extending the scope of optimizations (see Section 2.7.4),

including cache bypass, padding, and prefetching. Additionally, we plan to extend

the CUDA backend for a general local store implementation, thus leveraging tem-

poral locality to improve performance and allowing extensibility to other local-store

architectures such as the Cell processor. We also plan to expand our framework to

broaden the range of allowable stencil computation classes (see Section 2.4.2), in-

cluding in-place and multigrid methods. Finally, we plan to demonstrate our frame-

work's applicability by investigating its impact on large-scale scientific applications,

including a forthcoming optimization study of an icosahedral atmospheric climate

simulation [23, 20].

47



Chapter 3

Auto-tuning triangular solve

Moving up the scale from low-level to medium-level optimizations, this chapter ex-

amines auto-tuning solvers for triangular, linear system of equations with multiple

right-hand sides. This problem appears frequently on its own and as a subroutine in

various dense linear algebra functions, such as dense (non-triangular) linear solves or

the Cholesky and LU matrix factorizations, and is thus an important computational

kernel. The tunable algorithm presented here explores the flexibility inherent in the

structure of the algorithm, varying the ways in which the input matrix is decomposed

and iterated over during the computation.

3.1 Description of Triangular Solve

A triangular solve consists of solving the equation AX = B for the matrix X given

triangular matrix A and matrix B. Common variations include A being lower or

upper triangular, A being unit or non-unit on the diagonal, or solving the alternate

equation XA = B. Though this chapter only examines the AX = B, non-unit, lower

and upper triangular versions, these variations should have similar computational

characteristics on most platforms, and the optimizations explored in this chapter can

be applied in all of these cases.

A naive implementation of lower-triangular solve is given in Algorithm 3.1. This

is an "in-place" version of the algorithm: the array B is an input/output argument.

48



Algorithm 3.1 TRISOLVE-NAIVE(A, B)
1: for i = 1: M do
2: for j = 1: N do
3: B(i, j) = B(i, j)/A(i, i)
4: end for
5: for j = 1: N do
6: for k=i+1:M do
7: B(k,j) = B(kj) - A(ki) * B(ij)
8: end for
9: end for

10: end for

On entry, the array B contains the values of the matrix B. On exit, the array B

contains the values of the solution matrix X.

The algorithm requires 0(n3 ) floating-point operations over 0(n2) data, yielding

a high arithmetic intensity of computation. Therefore, the algorithm can be expected

to have good performance if the utilization of the computational units and memory

bandwidth can be effectively managed through optimization. Of particular conse-

quence are the reuse of data in cache (temporal locality) and the order in which data

are accessed (spatial locality) so that any bottlenecks due to the memory subsys-

tem are minimized. Also important is the parallelization strategy, which affects the

algorithm's ability to scale effectively on machines with many computational units.

There are many optimizations (discussed in the next section), both algorithmic and

low-level, that attempt to increase locality and parallelism in different ways to increase

performance.

3.1.1 Algorithmic Variants and Optimizations

The following sections describe the set of optimizations explored by the auto-tunable

triangular solve algorithm presented in this chapter. They include recursive, blocked,

and non-blocked algorithmic variants; greedy versus lazy computation and memory

access patterns; low-level array and loop reordering; and finally, parallelization strat-

egy.

Let the input to the problem be an M x M triangular matrix A and a M x N right-

49



hand side matrix B. The algorithm solves for the matrix X, such that AX = B. The

problem formulation is equivalent to N independent M x M times M x 1 matrix-vector

triangular solves. Let NB denote the blocking dimension for any blocked algorithm.

Blocked and recursive versions

Blocking the triangular solve involves rearranging the computation to solve for mul-

tiple rows in groups. By breaking up the problem into multiple smaller triangular

solves, this improves the temporal locality of the computation by reducing the reuse

distance between memory accesses. Blocking also allows the expression of parts of the

computation in terms of dense matrix multiplications, which in turn enables leverag-

ing the increased efficiency of an optimized matrix multiply (e.g. Level 3 BLAS).

Algorithm 3.2 TRISOLVE-BLOCKED(A, B)
1: for ib = 1: NB: M do
2: Let A1 be the NB x NB diagonal block of A starting at index ib
3: Let B 1 be the NB x N row block of B starting at row ib
4: TRISOLVE( A1 , B1 ) // call non-blocked code on row block
5: Let K <- (M - (ib+ NB))
6: Let A 2 be the K x NB panel below A1

7: Let B 2 be the K x N trailing sub-matrix below B 1

8: B 2 <- B2 - A2B1 // matrix multiply to update trailing sub-matrix
9: end for

Algorithm 3.2 shows a greedy blocked version of triangular solve. In this algo-

rithm, A1 and B 1 correspond to the medium gray regions in Figure 3-1, while A 2 and

B 2 correspond to the light gray regions. Line 4 computes the solution for the current

row block, while Line 8 does the greedy update by computing a matrix-multiply-and-

add calculation on the trailing sub-matrix of B. The iteration proceeds for each row

block of B until the entire matrix has been solved.

The recursive variant of triangular solve (shown in Algorithm 3.3) is similar to the

blocked version with a block size equal to half the input matrix. However, instead

of calling a non-blocked triangular solve for each half, the algorithm recursively calls

itself until some tunable cut-off size is reached, after which the algorithm switches to

some non-recursive variant.

50



Algorithm 3.3 TRISOLVE-RECURSIVE(A, B)
1: if M < cutoff-value then
2: TRISOLVE(A, B) // call non-recursive code
3: else
4: Let All, A21, and A 22 be the upper-left, lower-left, and lower-right quadrants

of A, respectively
5: Let B 1 and B 2 be the upper and lower halves of B, respectively
6: TRISOLVE-RECURSIVE(Aal, B 1 ) // recursive call
7: B 2 <- B 2 - A 21B1 // matrix multiply to update lower half of B
8: TRISOLVE-RECURSIVE(A 22 , B 2 ) // recursive call
9: end if

One advantage of having a recursive decomposition as opposed to just using the

blocked version is that it allows for the simultaneous blocking of multiple levels of

the memory hierarchy, whereas a blocked algorithm is typically optimized for a single

level. The tunable hybridized version presented in this chapter takes this flexibility

one step further and allows mixing of the recursive version with blocked versions of

different blocking sizes for different input sizes.

Greedy versus Lazy

There are two broad classes of triangular solve algorithms characterized by their

computation and memory access patterns: the greedy and lazy variants described in

[25].

In the greedy variant, immediately after a row (or block row) of B is solved, the

region of B that depends on those values is updated. This computational pattern

results in a rank-NB update to the trailing K x N sub-matrix during each iteration

(K x NB times NB x N). The height of the trailing sub-matrix K varies from

M - NB to NB as the algorithm sweeps over B. Figure 3-1 shows the memory

access pattern of the greedy variant.

In the lazy variant, the algorithm updates the values of a row (or block row) using

previously computed values immediately before the final values of that row (or block

row) are solved. This computational pattern results in variable-rank updates to the

current NB x N block row during each iteration (NB x K times K x N). The rank

51



A B

Figure 3-1: Greedy update pattern to solve triangular system AX = B. The array
B is in an intermediate state in transition to containing the solution matrix X. The
dark gray represents the region of B that has already been solved. The medium
gray represents the regions of A and B accessed during current the block solve phase.

Finally, the light gray represents the regions of A and B accessed during the greedy

update.

K of the updates increases from NB to M - NB as the algorithm sweeps over B.

Figure 3-1 shows the memory access pattern of the lazy variant.

Depending on the input and blocking sizes, as well as the cache sizes and im-

plementation of matrix multiply, the two different access patterns could have very

different performance characteristics. For example, consider a machine where only

one NB x N panel of B fits in cache at a time. The greedy variant requires that the

current panel as well as the trailing sub-matrix of B be both read and written during

each iteration. While the lazy variant also requires that the current panel be read and

written, the leading sub-matrix needs only be read. Thus, under some circumstances,

the lazy variant could be favored since fewer dirty cache lines have to be flushed to

main memory compared to the greedy variant, reducing write traffic in the memory

subsystem.

On the other hand, if the implementation uses a parallel matrix multiply where

the threading domain decomposition relies on a large output matrix size for increased

parallelism, then the greedy variant would be favored since the output is K x N,

where K varies between NB and M - NB, rather than being fixed at NB x N for

each iteration. Having the flexibility to choose between these algorithmic variants

52



A B

Figure 3-2: Lazy update pattern to solve triangular system AX = B. The array B

is in an intermediate state in transition to containing the solution matrix X. The

light gray represents the regions of A and B accessed during the lazy update. The

medium gray represents the region of A that is accessed and the region of B that is

solved during the current stage.

depending on the circumstances allows the user to achieve better performance by

exploring different combinations of optimizations.

Low-level optimizations

In addition to the medium-level algorithmic variations described above, there are

many low-level optimizations that can be implemented. This chapter focus on two

such optimizations: loop reordering and array copying/reordering.

Consider the loop traversal shown in Algorithm3.1. The outermost loop iterates

over the rows of the right-hand side, while the innermost two loops compute the up-

date to the trailing sub-matrix. The order of traversal (row-wise versus column-wise)

during the update of the trailing sub-matrix can significantly affect performance, since

the traversal order dictates the memory access pattern. Depending on the layout of

the matrix in memory (explored by the next optimization) and the hardware charac-

teristics (e.g. presence of hardware prefetchers), performance can vary significantly.

The implementation of array reordering used here focuses on the storage format

(column-major versus row-major) of the right-hand side matrix B. Since a triangular

solve involves multiple traversals of this matrix, using a storage format that favors

spatial locality of access can help tremendously. On the other hand, changing the

53



storage format at run-time incurs an O(n2 ) performance penalty, so the decision to

do this optimization should depend on the particular system and input problem size.

The combination of tuning the storage format and the traversal via loop reordering

allows finding the optimal combination for the best performance. While the algorithm

presented here uses a column-major storage for the triangular matrix input A, this

parameter could be tuned in future work.

There are many other low-level optimizations that could be explored to increase

computation throughput, including loop unrolling, register tiling, explicit prefetching,

explicit vectorization, software pipelining, and more. The focus of this work is mainly

on auto-tuning the algorithmic optimizations, though adding in additional low-level

optimizations should make the performance of the algorithm even better.

Parallelization

There are two ways the algorithm extracts parallelism from the triangular solve com-

putation with multiple right-hand sides. The first is by partitioning B column-wise

into sub-matrices and solving for each sub-matrix in parallel. Since the N right-hand

side vectors can be solved independently from one another, this step is "embarrass-

ingly parallel", requiring no communication between threads and synchronization

only at the end of the computation.

The second way the algorithm extracts parallelism from the computation is during

the update phase of the algorithm, immediately before or after a row block is solved,

depending on whether the lazy or greedy variant is being used. Since the update

involves a matrix-matrix multiply, this update can be parallelized through a recursive

or blocked domain decomposition.

Generally speaking, once the problem has been tiled, there are many valid sched-

ules to execute the computation (as in [22]). The algorithm searches through a subset

of possible schedules consisting of the bulk-synchronous schedules that result from the

recursive and blocked decompositions described earlier in this section.

54



FArray Reorder

(Splilt Siz.)e Parallel Split

Cut-off Size Recursive Decomposition Matrix Multiply

Block Size Blocked Greedy Lazy rl Matrix Multiply

Greedy Lazy

Non-Blocked
Row-wise Column-wise

-- - - - - - - - - - - - -- - - - - - - - - - - - I

Figure 3-3: Hierarchical organization of the triangular solve algorithm. The auto-

tuner explores all of the algorithmic choices presented in the figure. The values in the

gray ovals represent tunable parameters to control the behavior of the algorithm. The

algorithm has the option of skipping over intermediate stages given the appropriate

tunable parameter values. The recursive and blocked algorithms call a tunable matrix

multiply algorithm described in Section 3.2.2 and shown in Figure 3-4.

3.2 Tunable Algorithm Description

3.2.1 Hierarchical Structure

The tunable algorithm presented here leverages all of the optimizations described in

Section 3.1.1: parallelization strategy; recursive versus blocked versus non-blocked;

greedy versus lazy; and low-level optimizations such as loop and array reordering.

The code is organized as shown in Figure 3-3. At the top-most level, a choice

is given to reorder the right-hand side matrix B to change from column-major to

row-major storage. The result is then passed to a function that splits B in the N

dimension for parallelization of the solve. The matrix is recursively split until a

55



tunable cut-off value is reached.

The recursive split in the N dimension is followed by a recursive decomposition of

both A and B matrices in the M dimension until a tunable cut-off value (separate from

the previous value) is reached. Once the cut-off is reached, a row-blocked algorithm

is then utilized, which can choose between a greedy and a lazy variant in addition to

tuning the row block size.

The blocked algorithm uses a non-blocked algorithm as a subroutine to solve for

each row block of the output. Finally, the non-blocked algorithm chooses between

four base cases: each of the four combinations of greedy versus lazy and row-wise

versus column-wise traversal.

The tunable triangular solve algorithm presented here is quite descriptive. Not

only is it able to express complex algorithmic variants, simple variants are also ex-

pressible using the appropriate parameters and algorithm choices. For example, if

recursive decomposition is not desired, the tunable cut-off value can be set to the size

of the input. Similarly, if blocking is not desired, the block size can be set to the

input size, skipping that stage of the algorithmic hierarchy.

3.2.2 Matrix Multiply

Since matrix multiply is a subroutine used in the recursive and blocked versions of

the triangular solve, it can also be tuned to achieve greater performance. Additional

performance may also be gained through the parallelism of a blocked matrix multiply.

The matrix multiply used by the tunable triangular solve algorithm presented in this

chapter utilizes a hierarchical structure similar to the one developed for the triangular

solve. Figure 3-4 shows how the code is organized.

At the top-most level, a choice is given to reorder either input matrices to change

from column-major to row-major storage. The output is then passed to a function

that recursively decomposes the matrix until a tunable cut-off value is reached. The

resulting matrix chunks are then passed to a blocked algorithm that does an IJK

block traversal (the innermost loop loops over the innermost matrix dimension).

The blocked algorithm calls a non-blocked algorithm as a subroutine to compute

56



Non-Blocked lK JIK JKI BLAS

------------------------------------------- I-

Figure 3-4: Organization of the matrix multiply sub-routine. The auto-tuner explores
all of the algorithmic choices presented in the figure. The values in the gray ovals
represent tunable parameters to control the behavior of the algorithm. As with the

triangular solve, this algorithm has the option of skipping over intermediate stages

given the appropriate tunable parameter values. The non-blocked choices: IJK, JIK,
and JKI refer to the iteration order in which values are computed. Note that the

external BLAS kernel includes many of its own optimizations independent of those

shown here.

each block of the output. The non-blocked algorithm has three traversal order choices:

a IJK traversal, a JIK traversal, and a JKI traversal., The IJK and JIK traversals

both iterate over the innermost dimension in the innermost loop, but differ in their

traversal of the output matrix values (row-wise versus column-wise, respectively).

The JKI traversal does multiple column-wise rank-1 updates over the output matrix.

This traversal is the one used by the generic BLAS, which was found to typically have

very good performance for matrices in column-major storage on architectures with

hardware prefetching.

Finally, the non-blocked code may call an optimized BLAS DGEMM kernel, which

sometimes provides better matrix multiply performance than the other non-blocked

choices, likely due to enhanced low-level optimizations not present in this version (e.g.

register blocking, explicit prefetching, and explicit vectorization).

57



3.3 PetaBricks Language

The PetaBricks programming language [2] and compiler were leveraged to implement

the tunable algorithm presented in this chapter. PetaBricks is an implicitly parallel

programming language in which algorithmic choice is a first class language construct.

PetaBricks allows the user to describe many ways to solve a problem and how they

fit together. The PetaBricks compiler and runtime use these choices to auto-tune

the program in order to find an optimal hybrid algorithm. The triangular solve

algorithm presented in this chapter was written in the PetaBricks language and uses

the PetaBricks genetic auto-tuner to conduct the search. For more information about

the PetaBricks language, compiler, and auto-tuner see [2] and [3]; the following

summary is included for background.

3.3.1 PetaBricks Language Design

The main goal of the PetaBricks language is to expose algorithmic choice to the

compiler in order to empower the compiler to perform auto-tuning over aspects of the

program not normally available to it. PetaBricks is an implicitly parallel language,

where the compiler automatically parallelizes PetaBricks programs.

The PetaBricks language is built around two major constructs, transforms and

rules. The transform, analogous to a function, defines an algorithm that can be

called from other transforms or invoked from the command line. The header for a

transform defines to, from, and through arguments, which represent inputs, outputs,

and intermediate data used within the transform. The size in each dimension of these

arguments is expressed symbolically in terms of free variables, the values of which

must be determined by the PetaBricks runtime.

The user encodes choice by defining multiple rules in each transform. Each rule

computes a region of data in order to make progress towards a final goal state. Rules

can have different granularities and intermediate state. The compiler is required to

find a sequence of rule applications that will compute all outputs of the program.

Rules have explicit dependencies, allowing automatic parallelization and automatic

58



detection and handling of corner cases by the compiler. The rule header references

to and from regions which are the inputs and outputs for the rule. Free variables in

these regions can be set by the compiler allowing a rule to be applied repeatedly in

order to compute a larger data region. The body of a rule consists of C++-like code

to perform the actual work.

3.3.2 PetaBricks Implementation

The PetaBricks implementation consists of three components: a source-to-source com-

piler from the PetaBricks language to C++, an auto-tuning system and choice frame-

work to find optimal choices and set parameters, and a runtime library used by the

generated code.

PetaBricks Compiler

The PetaBricks compiler works using three main phases. In the first phase, applicable

regions (regions where each rule can legally be applied) are calculated for each possible

choice using an inference system. Next, the applicable regions are aggregated together

into choice grids. The choice grid divides each matrix into rectilinear regions where

uniform sets of rules may legally be applied. Finally, a choice dependency graph is

constructed and analyzed. The choice dependency graph consists of edges between

symbolic regions in the choice grids. Each edge is annotated with the set of choices

that require that edge, a direction of the data dependency, and an offset between

rule centers for that dependency. The output code is generated from this choice

dependency graph.

PetaBricks code generation has two modes. In the default mode, choices and

information for auto-tuning are embedded in the output code. This binary can then

be dynamically tuned, generating an optimized configuration file; subsequent runs

can then use the saved configuration file. In the second mode, a previously tuned

configuration file is applied statically during code generation. The second mode is

included since the C++ compiler can make the final code incrementally more efficient

59



when the choices are fixed.

Auto-tuning System and Choice Framework

The auto-tuner uses the choice dependency graph encoded in the compiled application.

This choice dependency graph is also used by the parallel scheduler. This choice

dependency graph contains the choices for computing each region and also encodes

the implications of different choices on dependencies.

The intuition of the auto-tuning algorithm is to take a bottom-up approach to

tuning. To simplify auto-tuning, it is assumed that the optimal solution to smaller

sub-problems is independent of the larger problem. In this way algorithms are built

incrementally, starting on small inputs and working up to larger inputs.

The auto-tuner builds a multi-level algorithm. Each level consists of a range

of input sizes and a corresponding algorithm and set of parameters. Rules that

recursively invoke themselves result in algorithmic compositions. In the spirit of a

genetic tuner, a population of candidate algorithms is maintained. This population is

seeded with all single-algorithm implementations. The auto-tuner starts with a small

training input and on each iteration doubles the size of the input. At each step, each

algorithm in the population is tested. New algorithm candidates are generated by

adding levels to the fastest members of the population. Finally, slower candidates in

the population are dropped until the population is below a maximum size threshold.

Since the best algorithms from the previous input size are used to generate candidates

for the next input size, optimal algorithms are iteratively built from the bottom up.

In addition to tuning algorithm selection, PetaBricks uses an n-ary search tuning

algorithm to optimize additional parameters such as parallel-sequential cutoff points

for individual algorithms, iteration orders, block sizes (for data parallel rules), data

layout, as well as user specified tunable parameters.

All choices are represented in a flat configuration space. Dependencies between

these configurable parameters are exported to the auto-tuner so that the auto-tuner

can choose a sensible order to tune different parameters. The auto-tuner starts by

tuning the leaves of the graph and works its way up. If there are cycles in the

60



dependency graph, it tunes all parameters in the cycle in parallel, with progressively

larger input sizes. Finally, it repeats the entire training process, using the previous

iteration as a starting point, a small number of times to better optimize the result.

Runtime Library

The runtime library is primarily responsible for managing parallelism, data, and con-

figuration. It includes a runtime scheduler as well as code responsible for reading,

writing, and managing inputs, outputs, and configurations. The runtime scheduler

dynamically schedules tasks (that have their input dependencies satisfied) across pro-

cessors to distribute work. The scheduler attempts to maximize locality using a greedy

algorithm that schedules tasks in a depth-first search order. Following the approach

taken by Cilk [17], work is distributed with thread-private deques and a task stealing

protocol.

3.4 Performance Analysis and Discussion

To demonstrate the effectiveness of the algorithmic auto-tuning approach presented

here, two triangular solve algorithms (upper triangular solve and lower triangular

solve) were tuned on three Intel hardware platforms spanning three micro-architecture

generations (Core, Nehalem, and Sandy Bridge), with each platform having different

amounts of available parallelism. The algorithmic choices and parameters chosen by

the auto-tuner and the performances of the resulting algorithms vary across platforms.

3.4.1 Hardware Platforms

The oldest platform benchmarked is the server-class, dual-socket, quad-core Intel

Harpertown X5460 based on the Core micro-architecture. Its cores are clocked at

3.16 GHz, have 32 KB private Li data cache, and share 6 MB of L2 cache between

pairs of cores. Both processors are connected through a common memory controller to

quad-channel DDR2-667 RAM which provides a maximum theoretical shared memory

bandwidth of 21 GB/s.

61



The second platform benchmarked is the server-class, dual-socket, hexa-core Intel

Westmere-EP X5650 based on the Nehalem micro-architecture. Compared to the

Harpertown, this machine has a higher level of available parallelism but a lower clock

at 2.67 GHz. Each processor has an integrated memory controller connected to triple-

channel DDR3-1333 RAM, providing a theoretical 32 GB/s of bandwidth per socket,

or 64 GB/s total aggregate bandwidth. Additionally, the two processors are directly

connected to each other via a Quick Path interface. The Quick Path interface provides

full-duplex 25.6 GB/s of bandwidth (12.8 GB/s each way).

Finally, the newest platform tested is a desktop-class, single socket, dual-core In-

tel Sandy Bridge i3-2100. Hyper-threading is enabled to present four logical cores

from two hardware cores, which may increase throughput if the scheduler can more

fully utilize the available computational units. The integrated memory controller pro-

vides a dual-channel interface to DDR3-1333 RAM, yielding a potential total memory

bandwidth of 21 GB/s. Although this total bandwidth is the same as the Harpertown

platform's total bandwidth, it is split between two physical cores instead of eight, so

the optimal algorithmic parameters that manage the trade-off between computational

performance and memory bandwidth usage could differ.

All platforms have hardare prefetching enabled, which detects strided memory

access patterns and attempts to prefetch cache lines from main memory so that the

waiting time for data to arrive in cache is reduced.

3.4.2 Serial optimizations

To get a sense of the benefit from the serial, non-blocked optimizations, the perfor-

mance of each of the variants were tested on an N x N lower-triangular input A with

an N x N right-hand side B, for N equal to powers of 2 between 16 and 1024. Below

size 16, the differences between algorithms is so low as to fall below the noise thresh-

old of the measurements. Figure 3-5 shows the execution time required to compute a

lower-triangular solve on the Sandy Bridge platform for each of the four serial, non-

blocked algorithms. Figure 3-5(a) shows the performance using no array reordering

transformation (using column-major storage), while Figure 3-5(b) shows performance



100 II .

Greedy Col-wise --
Lazy Cal-wise ---x ---

10 Greedy Raw-wee -
Lazy Raw-wise Ao/

1 --

0.1

0.01 -

0.001

0.0001

1 e-05
16 64 256 1024

Problem Size

(a)

100
Greedy Colwe ----

Lazy Cal-wise ---"* --
10 Greedy Row-wee ... a

Lazy Raw-wise - -

1 9

0.1
E *

0.01

0.001

0.0001

1le-05
16 64 256 1024

Problem Size

(b)

Figure 3-5: Performance of serial, non-blocked reference algorithms for solving NxN
lower triangular system on N right-hand side vectors on the Sandy Bridge platform.
a) shows the performance with no array reordering applied (column-major storage),
while b) shows the performance with array reordering applied (row-major storage).

after an array reordering transformation (using row-major storage). In each graph,

the memory access pattern was varied using either greedy or lazy updates, and the

array update was varied using either column-wise or row-wise traversal.

As can be seen from the graphs, the best serial performance is generally achieved

when the traversal matches the array ordering in such a way that the inner-most loop

accesses the arrays in a unit-stride fashion. This confirms expectations that accessing

memory in such a fashion provides enhanced spatial locality, increasing both cache

line utilization and the effectiveness of the hardware prefetchers.

63



(a) Lower-triangular solve

Size Harpertown Westmere-EP Sandy Bridge
16 NR GC R LR R GR
32 NRGC RLR RGR
64 NR R16 -GC R LR NR S32 -LR
128 NR BG16 -+GC RS64 -R64 -LR NR S32 -GC
256 NR S64 -+R128 -BG16- GC R S64 -R64 LR NR S64-+GC
512 NR S64 R128 BG16 GC R S64 R64 LR NR S32 GC
1024 NR S128 -R128 -+BG16 -GC R S64 -R64 LR NR S16 -GC

(b) Upper-triangular solve

ISize Harpertown Westmere-EP Sandy Bridge

16 NRGC NRLR NRGC
32 NRGC NRLR NRLC
64 NR S32 -+ GC NR GC NR LC
128 NR S32 -+ GC NR R32 - GC NRGC
256 NR S32 -BL135 -GC NR S32 - R644 GC NR S64 -+GC
512 NR S64 -BL112 -GC NR S64 R64 GC NR S16 GC
1024 NR S128 -BG112 -+GC NR S128 -R32 -GC NR S16 -GC

Table 3.1: Auto-tuned algorithms found by PetaBricks genetic auto-tuner.
The tuned algorithms vary across problem (lower vs upper triangular solve),
problem size, and hardware platform. Abbreviations used: R/NR: array re-
order/no reorder; Sx: parallel split using split size x; Rx: recursive decomposi-
tion using cut-off x; BGx/BLx: blocked greedy/lazy traversal using block size
x; GR/GC/LR/LC: greedy row-wise/greedy column-wise/lazy row-wise/lazy
column-wise traversal. In all cases where a matrix multiply was used as a sub-
routine, the auto-tuner chose to use a generic, ATLAS library DGEMM.

3.4.3 Auto-tuned Algorithms

The auto-tuned algorithms discovered by the PetaBricks genetic auto-tuner are shown

in Table 3.1. The optimal algorithmic choices discovered by the auto-tuner vary ac-

cording to several variables, including problem type, input size, and hardware plat-

form.

The notation used indicates which optimizations were applied, the algorithmic

choices used for each optimization (depicted by the white rectangles in Figure 3-3),

and the corresponding size parameters chosen (depicted by the grey ovals in Figure 3-

3). For example, "NR GC" means that no array re-order optimization was applied

(NR), and a greedy update with a column-wise traversal (GC) was used. In this case,

no recursion or blocking was applied.

The more complex specification "NR S128 -+ R128 -+ BG16 -+ GC" indicates

that no array re-ordering was applied (NR), a parallel split to blocks of size 128 (S128)

64



Harpertown (8-core, 32KB L1 24MB L) Westmere-EP (12-core, 32KB LI,
_________________32KB_1,_24BL2)256KB L2, 24MB L3)

Column Row Tile Size Column Row Tile Size
Size Split Block Parallelism (KB) Split Block Parallelism (KB)

16 16 16 1 2 16 16 1 2

321 32 32 1 8 32 32 1 8
641 32 64 2 6 64 64, 1 32

128 32 128 4 2 128 32 1 32
256 32 135 8 34 32 64 8 16
5121 64 112 561 64 64 8 32

1024 128 112 8 112 128 32 8

Sandy Bridge i3 (4-core, 32 KB L1,
256 KB L2, 3MB L3)

Column Row Tile Size
Size Split Block Parallelism (KB)

16i 16 16 1 2
321 32 32 1 8
64 64 64 1 32

1281 128 128 1 128
256 64 256 4 128
5121 16 512 32 64

10241 16 1024 64 128

Figure 3-6: Summary of level of parallelism and tile shapes and sizes that result
from the algorithmic configurations given in Table 3.1 for each hardware platform
and input size. The values in the orange cells are computed from the configuration
values given in the blue cells.

was applied to the N dimension, and a recursive decomposition down to blocks of

size 128 (R128) was applied to the M dimension. To handle the resulting 128 x 128

chunks of the matrix, a blocked, greedy traversal utilizing blocks of size 16 (BG16) is

used, along with a non-blocked base case using a greedy column-wise (GC) traversal.

Figure 3-6 summarizes the level of parallelism and tile shapes and sizes determined

by the parallel split phase and recursive and blocked decomposition phases of the

algorithm for each platform and for different input sizes.

Examination of Table 3.1 and Figure 3-6 yields a number of insights. There is

a clear dependence of the optimal problem decomposition strategy on the hardware

platform. On the Sandy Bridge platform, the only layer of complexity necessary when

running on larger input sizes is the parallel split phase shown at the top of Figure 3-3.

On the other hand, the tuned algorithms for the Westmere platform make use of the

65



recursive decomposition in addition to the parallel split. Further, some of the tuned

algorithms for the Harpertown platform make use of both recursive decomposition

and blocked traversal in addition to the parallel split optimization.

The primary difference between these approaches is the size of the vertical dimen-

sion of the panels updated by the serial, non-blocked code. The Sandy Bridge archi-

tecture appears to favor taller, skinnier panels with an unbroken unit-stride memory

access pattern, while the other architectures appear to favor the enhanced temporal

locality exposed by shorter blocks. This preference could be a result of enhancements

made to the hardware prefetchers in the Sandy Bridge architecture.

Another interesting feature in the table is how the parallel split size varies with

problem size. For the Harpertown and Westmere architectures, the amount of paral-

lelism (problem size divide by split size) increases towards about 8 as the problem size

increases, which is to be expected for these machines given the amount of hardware

parallelism available. On the other hand, for the Sandy Bridge platform, the amount

of parallelism continues to increase up to 64 (with a split size of 16 on problems of

size 1024). This indicates that the platform may require greater thread-level paral-

lelism to get the best performance, possibly by utilizing the extra parallelism to hide

memory latency.

3.4.4 Performance

To illustrate the performance of the auto-tuned triangular solve algorithm, it is com-

pared to both a naive PetaBricks algorithm and the parallel DTRSM function from

the ATLAS 3.8.4 auto-tuning framework [44]. The naive PetaBricks algorithm simply

selects the best serial, non-blocked configuration and parallelizes by splitting B into n

column blocks, where n is the maximum number of logical hardware threads (includ-

ing hyper-threading, if enabled) available on the platform. For example, if there are

8 logical cores available on the machine, a 1024 x 1024 matrix is split into 1024 x 128

panels, where each panel is independently solved by a separate thread. For ATLAS,

the framework was built and tuned from source on each tested hardware platform.

Figures 3-7 and 3-8 show the performance of lower and upper triangular solves,

66



respectively, for each of the hardware platforms. The performance of the auto-tuned

algorithm is shown alongside the best performing serial, non-blocked algorithm, the

naive parallel algorithm, as well as ATLAS. The problem size varies along the x-axis,

while the y-axis shows the time to solve the system on a logarithmic scale.

The auto-tuned algorithms offer a significant performance improvement over the

naive strategies for nearly all configurations. On the 1024 input size, for the lower-

and upper-triangular problem types, respectively, a 14x and 11x speedup is observed

on the Harpertown platform, a 14x and 9x speedup on the Westmere platform, and a

3x speedup for both problem types on the Sandy Bridge platform. These performance

improvements are a result of finding the best combination of algorithmic choices and

low-level optimizations to leverage the available hardware resources on each particular

platform.

The performance of the auto-tuned algorithm is quite good even when compared

to the performance of ATLAS, except perhaps in the case of the Sandy Bridge plat-

form. ATLAS performs 13% faster, 4% slower, and 322% faster than the auto-tuned

PetaBricks algorithms on the Harpertown, Westmere-EP, and Sandy Bridge plat-

forms, respectively.

Use of the PetaBricks language and runtime (based on C++) introduces some

overhead to the computation when compared to pure C or Fortran as is used by

ATLAS. Sources of this overhead include extra function calls made necessary by the

manipulation of objects and a layer of abstraction around the data arrays. The effect

of the overhead is apparent at the lower input sizes on all platforms. As the input size

increases, both the auto-tuned algorithm and ATLAS show superior scaling behavior

versus the naive algorithms; however, ATLAS retains a performance advantage due

not only to the optimizations available to it that are not currently supported by the

auto-tuned PetaBricks algorithm, but also to this overhead.

In order to get a better sense of the effect of the overhead, Figure 3-9 shows

the performance of four algorithms when solving a 1024 x 1024 lower triangular

system. In addition to the auto-tuned PetaBricks algorithm and ATLAS, a naive

serial algorithm was implemented in both PetaBricks and C to measure the overhead

67



that exists independent of any tuning. The larger performance gap between the two

naive implementations on the Sandy Bridge platform suggest that increased overhead

could account for at least some of the performance differential between the auto-tuned

PetaBricks algorithm and ATLAS on that platform.

Since the optimization space of this work is geared towards higher-level algorithmic

optimizations, whereas ATLAS focuses exclusively on low-level optimizations, it can

be hypothesized that combining the optimization search spaces of the two would

yield even better results than either framework in isolation. Indeed, the types of

algorithmic optimizations presented in this work do not preclude the use of additional

low-level optimizations such as register blocking, loop unrolling, and explicit software

prefetching and vectorization. The combination of algorithmic optimizations with a

full set of low-level optimizations is an exciting future direction.

3.5 Related Work

There has been much prior investigation in tuning dense matrix computations. Much

of the prior work has focused on matrix-matrix multiply (DGEMM), and matrix

factorizations such as Cholesky, LU and QR. Some of the lessons learned from those

auto-tuning programs can be applied to dense triangular solve. Indeed, many of them

utilize dense triangular solve as a sub-routine and may benefit from auto-tuning of

the triangular solve in addition to their existing optimizations.

Perhaps the most prominent dense linear algebra auto-tuner is the ATLAS project

[44]. ATLAS leverages empirical timings to profile the hardware and identify the best

optimizations for an Li cache-contained dense matrix-matrix multiply. It then utilizes

this kernel to build optimized Level 3 BLAS functions.

There have been numerous studies in tuning the blocking or recursion strategy

for dense matrix computations. The PLASMA [22] [1] and MAGMA [40] projects

allow great algorithmic flexibility in the matrix computations by representing them

as graph of dependent computations, utilizing a pruned search for optimal tile and

block sizes and a static schedule for execution. Whaley investigated auto-tuning of

68



the NB blocking factor used in ATLAS's included LAPACK functions [43].

There has also been related work on automatic generation of valid dense linear

algebra code variants without a focus on auto-tuning. For example, the FLAME sys-

tem is a formal system for generating provably valid linear algebra algorithm variants

[21]. Another example is work by Yi et. al. [46], which achieves automatic blocking

of the LU and QR factorizations via dependence hoisting.

The primary distinction between the work presented here and these prior works is

the higher-level algorithmic view of auto-tuning the computation. A hierarchy of al-

gorithmic variants is used to increase the breadth of the optimization space available

to the auto-tuner. Instead of focusing on a particular class of optimizations, such as

blocking size, a structured holistic view of the problem as a set of hierarchical algo-

rithmic variants (see Figure 3-3) is taken. Additionally, the algorithm is sensitive to

the interactions between the algorithmic variants and the low-level optimizations and

finds the best combination of these choices and parameters for optimal performance.

3.6 Conclusions and Future Work

Tuning the algorithmic aspects of triangular solve results in significant improvement in

execution time compared to untuned or naively tuned code. Still, the raw performance

of the algorithm in its current form may not achieve the peak potential possible on the

hardware tested. There are many ways in which the performance of the auto-tuned

code could be improved through further low-level optimizations. For example, manual

register tiling and unrolling, instruction reordering, and explicit vectorization could

potentially increase register reuse and increase instruction-level parallelism. Explicit

prefetching could help decrease the number of stalled cycles spent waiting for data

before the hardware prefetchers spin up. NUMA-aware data initialization and thread

scheduling could also affect parallel performance on platforms with multiple sockets.

While the current algorithm does not incorporate these optimizations, the per-

formance benefits of higher-level algorithmic auto-tuning should carry over to codes

in which lower-level optimizations are performed. In other words, even optimized

69



codes which have focused on low-level optimizations could stand to benefit from the

types of higher-level algorithmic optimizations shown here. Since higher-level choices

affect the context in which the low-level optimizations operate, they can change the

structure of the computation in ways those optimizations cannot replicate. Because

of this, combining algorithmic tuning with further low-level tuning should present

more opportunities for synergistic optimization. These possibilities will be explored

in future work.

70



100

10 Auto-tunea -'araiei -
ATLAS -U-

1 --

0.1 - .--

0.01

0.001 --

0.0001 -

1e-05
16 64 256 1024

Problem Size

(a)

100
Best Serial (Greedy Row-wise) -+-

Naive Parallel --- w--
10 Auto-tuned Parallel -- s---

ATLAS -a-

1

0.1

0.01

0.001 -

0.0001 '" -- - ,..-'

1 a05
16 64 256 1024

Problem Size

(b)

Beat Serial (Lazy Raw-wise) -+-
Naive Parallel --- +w--

10 Auto-tuned Parallel --- e---
ATLAS -a-

1-

0.1
0.1..-. -- '

0.01 -

0.001

0.0001 - ....-

1e-05
16 64 256 1024

Problem Size

(c)

Figure 3-7: Performance of hybrid auto-tuned parallel algorithm versus best reference
serial non-blocked algorithm, naive parallel algorithm, and ATLAS for solving NxN
lower triangular system on N right-hand side vectors on a) Intel Harpertown, b) Intel
Westmere-EP, and c) Intel Sandy Bridge i3.

71



100

10 r'1 u "... W"" ...
ATLAS --

0.1

0.01

0.0001

16 64 256 1024
Problem Size

(a)

100
Best Serial (Greedy Row-wise) ---

Naive Parallel --- x---
10 . Auto-tuned Parallel -..

ATLAS --

1-

0.1

0.01

0.001

0.0001

1e-05
16 64 256 1024

Problem Size

(b)

100
Best Serial (Greedy Row-wise) ---

Naive Parallel -----
10 Auto-tuned Parallel - -

ATLAS --

1-

0.1 - -
E .. '

0.01

0.0001 . ---

le-05
16 64 256 1024

Problem Size

(c)

Figure 3-8: Performance of hybrid auto-tuned parallel algorithm versus best reference
serial non-blocked algorithm, naive parallel algorithm, and ATLAS for solving NxN
upper triangular system on N right-hand side vectors on a) Intel Harpertown, b) Intel
Westmere-EP, and c) Intel Sandy Bridge i3.

72



1024 x 1024 Lower Triangular Solve

10

1

4 Naive Serial - Petabricks
'0IE Naive Serial - C

M Auto-tuned - Petabricks
0.1 - Auto-tuned - ATLAS

0.01
Harpertown Westmere-EP Sandy Bridge i3

Platform

Figure 3-9: Performance comparison between the auto-tuned algorithm and ATLAS.
Since there is some overhead introduced by the PetaBricks system outside the scope
of this work, the performance of a simple naive serial algorithm is given in both
PetaBricks and C to help gauge the approximate effect of the overhead. Note that on
the Sandy Bridge platform, where the difference in performance between the auto-
tuned algorithm and ATLAS is the greatest, the difference between the two naive

serial algorithms is also the greatest.

73



Chapter 4

Auto-tuning the multigrid linear

solver's cycle shapes

4.1 Introduction

Multigrid is a prime example of a technique where high-level algorithmic auto-tuning

has the potential to enable greater performance. Not only is it possible to make

algorithmic choices at the input grid resolution, but a program can switch techniques

as the problem is recursively coarsened to smaller grid sizes to take advantage of

algorithms with different scaling behaviors. The algorithm is further complicated

by the fact that, being an iterative algorithm, it can produce outputs of varying

accuracy depending on its parameters. Users with different convergence criteria must

experiment with parameters to yield a tuned algorithm that meets their accuracy

requirements. Finally, once an appropriately tuned algorithm has been found, users

often have to start all over when migrating from one machine to another.

This chapter presents an algorithm and auto-tuning methodology that address

all of these issues in an efficient manner. It describes a novel dynamic programming

strategy that allows fair comparisons to be made between various iterative, recursive,

and direct methods, resulting in an efficient, tuned algorithm for user-specified con-

vergence criteria. The resulting algorithms can be visualized as tuned multigrid cycle

shapes that apply targeted computational power to meet the accuracy requirements

74



of the user.

These cycle shapes dictate the order in which grid coarsening and grid refine-

ment are interleaved with both iterative methods, such as Jacobi or Successive Over-

Relaxation, as well as direct methods, which tend to have superior performance for

small problem sizes. The need to make choices between all of these methods brings the

issue of variable accuracy to the forefront. Not only must the auto-tuning framework

compare different possible multigrid cycle shapes against each other, but it also needs

the ability to compare tuned cycles against both direct and (non-multigrid) iterative

methods. This problem is addressed by defining an accuracy metric that measures

how effectively each cycle shape reduces error, and then making comparisons between

candidate cycle shapes based on this common yardstick. The results show that the

flexibility to trade performance versus accuracy at all levels of recursive computation

enables excellent performance on a variety of platforms compared to algorithmically

static implementations of multigrid.

The methodology presented here does not tune cycle shapes by manipulating

the shapes directly; it instead categorizes algorithms based on the accuracy of the

results produced, allowing it to make high-level comparisons between all types of

algorithms (direct, iterative, and recursive) and make tuning decisions based on that

common yardstick. Additionally, the auto-tuner has the flexibility of utilizing different

accuracy constraints for various components within a single algorithm, allowing the

auto-tuner to independently trade performance and accuracy at each level of multigrid

recursion.

This work on multigrid was developed using the PetaBricks programming lan-

guage [2]. A summary of the PetaBricks language and compiler is given in Section 3.3

of Chapter 3. As stated in that section, PetaBricks is an implicitly parallel program-

ming language where algorithmic choice is a first class construct, to help programmers

express and tune algorithmic choices and cutoffs such as these to obtain the fastest

combination of algorithms to solve a problem. While traditional compiler optimiza-

tions can be successful at optimizing a single algorithm, when an algorithmic change

is required to boost performance the burden is put on the programmer to incorporate

75



the new algorithm. Programs written in PetaBricks can naturally describe multiple

algorithms for solving a problem and how they can fit together. This information is

used by the PetaBricks compiler and runtime to create and auto-tune an optimized

multigrid algorithm.

4.2 Auto-tuning multigrid

Although multigrid is a versatile technique that can be used to solve many differ-

ent types of problems, the 2D Poisson's equation will be used as an example and

benchmark to guide the discussion. The techniques presented here are generalizable

to higher dimensions and the broader set of multigrid problems.

Poisson's equation is a partial differential equation that describes many processes

in physics, electrostatics, fluid dynamics, and various other engineering disciplines.

The continuous and discrete versions are

V24 = f and Tx = b, (4.1)

where T, x, and b are the finite difference discretizations of the Laplace operator, 4,
and f, respectively.

Three basic algorithmic building blocks are used to build an auto-tuned multi-

grid solver for Poisson's equation: one direct (band Cholesky factorization through

LAPACK's DPBSV routine), one iterative (Red-Black Successive Over Relaxation),

and one recursive (multigrid). The table below shows the computational complexity

of using any single algorithm to compute a solution.

Algorithm Direct SOR Multigrid

Complexity n 2 (N 4 ) n1 (N 3 ) n (N 2)

Prom left to right, each of the methods has a larger overhead, but yields a better

asymptotic serial complexity [12]. N is the size of the grid on a side, and n = N 2 is

the number of cells in the grid.

76



In
U)

Cw
U)
L..to
0
U

(

Direct or iterative method

Iterate & coarsen grid

Refine grid & Iterate

Figure 4-1: Simplified illustration of choices in the multigrid algorithm. The diagonal
arrows represent the recursive case, while the dotted horizontal arrows represent the
shortcut case where a direct or iterative solution may be substituted. Depending on
the desired level of accuracy a different choice may be optimal at each decision point.
This figure does not illustrate the auto-tuner's capability of using multiple iterations
at different levels of recursion; it shows a single iteration at each level.

4.2.1 Algorithmic choice in multigrid

Multigrid is a recursive algorithm that uses the solution to a coarser grid resolution

as part of the algorithm. This section addresses tuning symmetric "V-type" cycles.

An extension to full multigrid will be presented in Section 4.2.4.

For simplicity, assume all inputs are of size N = 2k ± 1 for some positive integer k.

Let x be the initial state of the grid, and b be the right hand side of Equation (4.1).

Algorithm 4.1 MULTIGRID-V-SIMPLE(x, b)
1: if N < 3 then
2: Solve directly
3: else
4: Relax using some iterative method
5: Compute the residual and restrict to half
6: Recursively call MULTIGRID-V-SIMPLE
7: Interpolate result and add correction terr
8: Relax using some iterative method
9: end if

resolution
on coarser grid

m to current solution

It is at the recursive call on line 6 that the auto-tuning compiler can make a choice

of whether to continue making recursive calls to multigrid or take a shortcut by using

the direct solver or one of the iterative solvers at the current resolution. Figure 4-1

shows these possible paths of the multigrid algorithm.

The idea of choice can be implemented by defining a top level function MULTIGRID-

77



V, which makes calls to either the direct, iterative, or recursive solution. The function

RECURSE implements the recursive solution.

Algorithm 4.2 MULTIGRID-V(x, b)
1: either
2: Solve directly
3: Use an iterative method
4: Call RECURSE for some number of iterations
5: end either

Algorithm 4.3 RECURSE(x, b)
1: if N < 3 then
2: Solve directly

3: else
4: Relax using some iterative method
5: Compute the residual and restrict to half resolution
6: On the coarser grid, call MULTIGRID-V
7: Interpolate result and add correction term to current solution
8: Relax using some iterative method
9: end if

Making the choice in line 1 of MULTIGRID-V has two implications. First, the

time to complete the algorithm is choice dependent. Second, the accuracy of the

result is also dependent on choice since the various methods have different abilities

to reduce error (depending on parameters such as number of iterations or weights).

To make a fair comparison between choices, one must take both performance and

accuracy of each choice into account. To this end, the auto-tuner keeps track of not

just a single optimal algorithm at every recursion level, but a set of such optimal

algorithms for varying levels of desired accuracy.

4.2.2 Full dynamic programming solution

This section describes a full dynamic programming solution to handling variable ac-

curacy. Define an algorithm's accuracy level to be the ratio between the error norm of

its input xi, versus the error norm of its output xzt compared to the optimal solution

78



I I in -Xopt 112

This ratio was chosen instead of its reciprocal so that a higher accuracy level is

better, which is more intuitive. In order to assess the accuracy level of a potential

tuned algorithm, it is assumed the user has access to representative training data so

that the accuracy level of the algorithms during tuning closely reflects their accuracy

level during use.

Let level k refer to an input size of N = 2 ' + 1. Suppose that for level k - 1, the

tuner has solved for some set Ak-1 of optimal algorithms, where optimality is defined

such that no optimal algorithm is dominated by any other algorithm in both accuracy

and compute time.

In order to construct the optimal set Ak, each of the algorithms in Ak_1 are

substituted for step 6 of RECURSE. Parameters in the other steps of the algorithm

are also varied, including the choice of iterative methods and the number of iterations

(possibly zero) in steps 4 and 8 of RECURSE and steps 3 and 4 of MULTIGRID-V.

Trying all of these possibilities will yield many algorithms that can be plotted as in

Figure 4-2(a) according to their accuracy and compute time. The optimal algorithms

added to Ak are the dominant ones designated by square markers.

The reason to remember algorithms of multiple accuracies for use in step 6 of

RECURSE is that it may be better to use a less accurate, fast algorithm and then

iterate multiple times, rather than use a more accurate, slow algorithm. Note that

even if a direct solver is used in step 6, the interpolation in step 7 will invariably

introduce error at the higher resolution.

4.2.3 Discrete dynamic programming solution

Since the optimal set of tuned algorithms can grow to be very large, the auto-tuner

offers an approximate version of the above solution. Instead of remembering the full

optimal set Ak, the compiler remembers the fastest algorithm yielding an accuracy of

at least pi for each pi in some set {P1, P2, ... , pm}. The vertical lines in Figure 4-2(a)

79



Accuracy
1 2 3

00 0 0P

0 00

F 00

0 0
0

Accuracy eo so-o
(a) (b)

Figure 4-2: (a) Possible algorithmic choices with optimal set designated by squares
(both hollow and solid). The choices designated by solid squares are the ones re-
membered by the auto-tuner, being the fastest algorithms better than each accuracy
cutoff line. (b) Choices across different accuracies in multigrid. At each level, the
auto-tuner picks the best algorithm one level down to make a recursive call. The path
highlighted in red is an example of a possible path for accuracy level P2.

indicate the discrete accuracy levels pi, and the optimal algorithms (designated by

solid squares) are the ones remembered by the auto-tuner. Each highlighted algorithm

is associated with a function MULTIGRID-V1 , which achieves accuracy pi on all input

sizes.

Due to restricted time and computational resources, to further narrow the search

space, only SOR is used as the iteration function since it was found experimentally

that it performed better than weighted Jacobi on the training data for similar compu-

tation cost per iteration. In MULTIGRID-V1 , the weight parameter of SOR is fixed

to w0pt, the optimal value for the 2D discrete Poisson's equation with fixed boundaries

[12]. In RECURSE2 , SOR's weight parameter is fixed to 1.15 (chosen by experimen-

tation to yield fast convergence). The number of iterations of SOR in steps 4 and

8 in RECURSE1 is fixed to one. As more powerful computational resources become

available over time, the restrictions on the algorithmic search space presented here

may be relaxed to find a more optimal solution.

The resulting accuracy-aware Poisson solver is a family of functions, where i is

80



the accuracy parameter:

Algorithm 4.4 MULTIGRID-Vi(x, b)
1: either
2: Solve directly
3: Iterate using SOR.I, until accuracy pi is achieved

4: For some j, iterate with RECURSEj until accuracy pi is achieved

5: end either

Algorithm 4.5 RECURSEi(x, b)

1: if N < 3 then
2: Solve directly

3: else
4: Compute one iteration of SOR 1.15

5: Compute the residual and restrict to half resolution

6: On the coarser grid, call MULTIGRID-Vi
7: Interpolate result and add correction term to current solution

8: Compute one iteration of SOR 1 .15

9: end if

The auto-tuning process determines what choices to make in MULTIGRID-Vi for

each i and for each input size. Since the optimal choice for any single accuracy for an

input of size 2 k ± 1 depends on the optimal algorithms for all accuracies for inputs of

size 2 k-1 + 1, the auto-tuner tunes all accuracies at a given level before moving to a

higher level. In this way, the auto-tuner builds optimal algorithms for every specified

accuracy level and for each input size up to a user specified maximum, making use of

the tuned sub-algorithms as it goes.

The final set of multigrid algorithms produced by the auto-tuner can be visualized

as in Figure 4-2(b). Each of the versions has the flexibility to choose any of the other

versions during its recursive calls, and the optimal path may switch between accuracies

many times as the algorithm recurses down towards either the base case or a shortcut

case.

4.2.4 Extension to Auto-tuning Full Multigrid

Full multigrid methods have been shown to exhibit better convergence behavior than

traditional symmetric cycle shapes such as the V and W cycles by utilizing an esti-

81



Estimation phase Solve phase

Figure 4-3: Conceptual breakdown of full multigrid into an estimation phase and a
solve phase. The estimation phase can be thought of as just a recursive call to full
multigrid up to a coarser grid resolution. This recursive structure, in addition to the
auto-tuned "V-type" multigrid cycles, is used to build tuned full multigrid cycles.

mation phase before the solve phase (see Figure 4-3). The estimation phase of the

full multigrid algorithm can be thought of as just a recursive call to itself at a coarser

grid resolution. The auto-tuning ideas presented thus far are extended to leverage

this structure and produce auto-tuned full multigrid cycles.

The following simplified code for ESTIMATE and FULL-MULTIGRID illustrates

how to construct an auto-tuned full multigrid cycle.

Algorithm 4.6 ESTIMATE (x, b)
1: Compute residual and restrict to half resolution
2: Call FULL-MULTIGRIDi on restricted problem
3: Interpolate result and add correction to x

Algorithm 4.7 FULL-MULTIGRIDi(x, b)
1: either
2: Solve directly
3: For some j, compute estimate by calling ESTIMATEj(x, b), then either:
4: Iterate using SOR,,, until accuracy pi is achieved
5: For some k, iterate with RECURSEk until accuracy pi is achieved
6: end either

The discrete dynamic programming technique presented in Section 4.2.3 is used

again here, where only small sets of optimized FULL-MULTIGRIDj and MULTIGRID-

Vk functions are maintained for use in recursive calls. In FULL-MULTIGRIDi, there

82



are three choices: the first is just a direct solve (line 2), while the latter two choices

(lines 4 and 5) are similar to those given in MULTIGRID-Vi except an estimate is first

calculated and then used as a starting point for iteration. Note that this structure is

descriptive enough to include the standard full multigrid V or W cycle shapes, just

as the MULTIGRID-Vi algorithm can produce standard regular V or W cycles.

The parameters j and k in FULL-MULTIGRID can be chosen independently,

providing a great deal of flexibility in the construction of the optimized full multigrid

cycle shape. In cases where the user does not require much accuracy in the final

output, it may make sense to invest more heavily in the estimation phase, while

in cases where very high precision is needed, a high precision estimate may not be

as helpful as most of the computation would be done in relaxations at the highest

resolution. Indeed, patterns of this type can be seen in the experimental results.

4.2.5 Limitations

It should be clear that the algorithms produced by the auto-tuner are not meant

to be optimal in any theoretical sense. Because of the compromises made in the

name of efficiency, the resulting auto-tuning algorithm merely strives to discover

near-optimal algorithms from within the restricted space of cycle shapes reachable

during the search. There are many cycle shapes that fall outside the space of searched

algorithms; for example, this approach does not check algorithms that utilize different

choices in succession at the same recursion depth instead of choosing a single choice

and iterating. Future work may examine the extent to which this restriction impacts

performance.

Additionally, the scalar accuracy metric is an imperfect measure of the effective-

ness of a multigrid cycle. Each cycle may have different effects on the various error

modes (frequencies) of the current guess, all of which would be impossible to capture

in a single number. Future work may expand the notion of an "optimal" set of sub-

algorithms to include separate classes of algorithms that work best to reduce different

types of error. Though such an approach could lead to a better final tuned algorithm,

this extension would obviously make the auto-tuning process more complex.

83



The results given in Section 4.3 demonstrate that although this methodology is

not exhaustive, it can be quite descriptive, discovering cycle shapes that are both un-

conventional and efficient. That section will present actual cycle shapes produced by

the multigrid auto-tuner and show their performance compared to less sophisticated

heuristics.

4.3 Results

This section presents the resulting multigrid algorithm cycle shapes produced by the

auto-tuner and their observed performance when optimized on three parallel archi-

tectures designed for a variety of purposes: Intel Xeon E7340 server processor, AMD

Opteron 2356 Barcelona server processor, and the Sun Fire T200 Niagara low power,

high throughput server processor. These machines provided architectural diversity,

allowing the results to show not only how auto-tuned multigrid cycles outperform

reference multigrid algorithms, but also how the shape of optimal auto-tuned cycles

can be dependent on the underlying machine architecture.

To the best of the author's knowledge, there are no standard data distributions

currently in wide use for benchmarking multigrid solvers. Since random uniform

matrix inputs result in uniform spectral error frequency characteristics, they were

chosen to test the solvers presented in this chapter. The matrices have entries drawn

from two different random distributions: 1) uniform over [-232, 232] (unbiased), and

2) the same distribution shifted in the positive direction by 231 (biased). The random

entries were used to generate right-hand sides (b in Equation 4.1) and boundary

conditions (boundaries of x) for the problem. Experiments were done specifying a

small number of random point sources/sinks in the right-hand side, but since the

observed results were similar to those found with the unbiased random distribution,

those results are not included in interest of space. If one wishes to obtain tuned

multigrid cycles for a different input distribution, the training should be done using

that data distribution.

84



4.3.1 Auto-tuned multigrid cycle shapes

During the tuning process for the MULTIGRID-Vi algorithm presented in Section 4.2.3,

the auto-tuner first computes the number of iterations needed for the SOR and

RECURSEj choices before determining which is the fastest option to attain accu-

racy pi for each input size. Representative training data is required to make this

determination. Once the number of required iterations of each choice is known, the

auto-tuner times each choice and chooses the fastest option.

Figures 4-4(a) and 4-4(b) show the traces of calls to the tuned MULTIGRID-V 4

algorithms for unbiased and biased uniform random inputs of size N = 4097, on

the Intel machine. As you can see, the algorithm utilizes multiple accuracy levels

throughout the call stack. In general, whenever greater accuracy is required by the

tuned algorithm, it is achieved through some repetition of optimal substructures

determined by the dynamic programming method. This may be easier to visualize

by examining the resulting tuned cycles corresponding to the auto-tuned multigrid

calls.

Figures 4-5(a) and 4-5(b) show some tuned "V-type" cycles created by the auto-

tuner for unbiased and biased uniform random inputs of size N = 2049 on the AMD

Opteron machine. The cycles are shown using standard multigrid notation with some

extensions: The path of the algorithm progresses from left to right through time.

As the path moves down, it represents a restriction to a coarser resolution, while

paths up represent interpolations. Dots represent red-black SOR relaxations, solid

horizontal arrows represent calls to the direct solver, and dashed horizontal arrows

represent calls to the iterative solver.

As seen in the figure, a different cycle shape is used depending on what level of

accuracy is required by the user. Cycles shown are tuned to produce final accuracy

levels of 10, 10 3 , 105 , and 107. The leverage of optimal subproblems is clearly seen in

the common patterns that appear across cycles. Note that in Figure 4-5(b), the call

to the direct solver in cycle i) occurs at level 4, while for the other three cycles, the

direct call occurs at level 5. This is an example of the auto-tuner trading accuracy

85



MULTIGRID 1  MULTIGRID2  MULTIGRID 4
12 2
11

10

9
8 .22 x

6 x 1X DIRECT
5

(a)

MULTIGRID1  MULTIGRID2  MULTIGRID 3  MULTIGRID 4
12-
11

10

9

8 1
7

5

(b)

Figure 4-4: Call stacks generated by calls to auto-tuned MULTIGRID-V 4 for a)

unbiased and b) biased random inputs of size N = 4097 on an Intel Xeon server.

Discrete accuracies used during auto-tuning were (pi)i=1..5 = (10, 103, 105, 107, 109).
The recursion level is displayed on the left, where the size of the grid at level k is 2 k-±-1.

Note that each arrow connecting to a lower recursion level actually represents a call

to RECURSE, which handles grid coarsening, followed by a call to MULTIGRID-V.

for performance while accounting for the accuracy requirements of the user.

Figures 4-5(c) and 4-5(d) show auto-tuned full multigrid cycles for unbiased and

biased uniform random inputs of size N = 2049 on the AMD Opteron machine.

Although similar substructures are shared between these cycles and the "V-type"

cycles in 4-5(a) and 4-5(b), some of the expensive higher resolution relaxations are

avoided by allowing work to occur at the coarser grids during the estimation phase

of the full multigrid algorithm. The tuned full multigrid cycle in Figure 4-5(d)-iv)

shows how the additional flexibility of using an estimation phase can dramatically

alter the tuned cycle shape when compared to Figure 4-5(b)-iv).

It is important to realize that the call stacks in Figure 4-4 and the cycle shapes in

86



I) ii iii) I)Ii ii

11 iv)

(a)

I)

9-f

ii ii

1) \ / IiI) \ A

IV)

(C)

11 IV)
10

7 \-LA
(b)

ii

(d)

Figure 4-5: Optimized multigrid V (a and b) and full multigrid (c and d) cycles
created by the auto-tuner for solving the 2D Poisson's equation on an input if size
N = 2049. Subfigures a) and c) were trained on unbiased uniform random data,
while b) and d) were trained on biased uniform random data. Cycles i), ii), iii),
and iv), correspond to algorithms that yield accuracy levels of 10, 103, 105, and 107,
respectively. The solid arrows at the bottom of the cycles represent shortcut calls to
the direct solver, while the dashed arrow in c)-i) represents an iterative solve using
SOR. The dots present in the cycle represent single relaxations. Note that some paths
in the full multigrid cycles skip relaxations while moving to a higher grid resolution.
The recursion level is displayed on the left, where the size of the grid at level k is

2 k + 1.

Figure 4-5 are all dependent on the specific situation at hand. They would all likely

change were the auto-tuner run on other architectures, using different training data,

or solving other multigrid problems. The flexibility to adapt to any of these changing

variables by tuning over algorithmic choice is the auto-tuner's greatest strength.

4.3.2 Performance

This section will provide data showing the performance of the tuned multigrid Pois-

son's equation solver versus reference algorithms and heuristics. Test data was pro-

duced from the same distributions used for training described in Section 4.3.

87

I) V H) W III)

:V W



1000 
, Direct -----

SOR -*

100 Multigrid - .-
Autotuned

10

1

a 0.1E 1

0.01

0.001

0.0001 -

1e-05
1 4 16 64 256 1024 4096 16384

Input Size

Figure 4-6: Performance for algorithms to solve Poisson's equation on unbiased
uniform random data up to an accuracy of 109 using 8 cores. The basic direct and
SOR algorithms as well as the standard V-cycle multigrid algorithm are all compared
to the tuned multigrid algorithm. The iterated SOR algorithm uses the corresponding
optimal weight wopt for each of the different input sizes.

Auto-tuned multigrid V algorithm

To demonstrate the effectiveness of the dynamic programming methodology, this

section compares the auto-tuned MULTIGRID-V algorithm against more basic ap-

proaches to solving the 2D Poisson's equation to an accuracy of 109, including several

multigrid variations. Results presented in the section were collected on the Intel Xeon

server testbed machine.

Figure 4-6 shows the performance of the auto-tuned multigrid algorithm for accu-

racy 109 on unbiased uniform random inputs of different sizes. The auto-tuned algo-

rithm uses internal accuracy levels of f10, 10 3, 101, 10 7, 109} during its recursive calls.

The figure compares the auto-tuned algorithm with the direct solver, iterated calls to

SOR, and iterated calls to the reference V-cycle multigrid algorithm MULTIGRID-

V-SIMPLE given in Section 4.2.1 (labeled Multigrid). Each of the iterative methods

is run until an accuracy of at least 109 is achieved.

As to be expected, the auto-tuned algorithm outperforms all of the simple algo-

rithms shown in Figure 4-6. At sizes greater than N = 65, the auto-tuned algorithm

88



1000

100 strategy 10-/10~ .....
Strategy 1 /10

autotuned - -

10

E

0.1

0.01 -

32 64 128 256 512 1024 2048 4096 8192 16384
Input Size

Figure 4-7: Performance for algorithms to solve Poisson's equation up to an accuracy
of 109 using 8 cores. The auto-tuned multigrid algorithm is presented alongside
various possible heuristics. The graph omits sizes less than N = 65 since all cases
call the direct method for those inputs. To see the trends more clearly, Figure 4-8
shows the same data as this figure, but as ratios of times taken versus the auto-tuned
algorithm.

performs slightly better than MULTIGRID-V-SIMPLE because it utilizes a more

complex tuned strategy.

Figure 4-7 compares the tuned algorithm with various heuristics more complex

than MULTIGRID-V-SIMPLE. The training data used in this graph was drawn from

the biased uniform distribution. Strategy 109 refers to requiring an accuracy of 109

at each recursive level of multigrid until the base case direct method is called at

N = 65. Strategies of the form 10'/109 refer to requiring an accuracy of 10' at

each recursive level below that of the input size, which requires an accuracy of 109.

Thus, all strategies presented result in a final accuracy of 109; they differ only in

what accuracies are required at lower recursion levels. All heuristic strategies call

the direct method for smaller input sizes whenever it is more efficient to meet the

accuracy requirement.

The lines in Figure 4-7 are somewhat close together and difficult to see on the

logarithmic time scale, so Figure 4-8 presents the same data but showing the ratio of

times taken versus the auto-tuned algorithm. One can more clearly see in this figure

89



32

16 Strategy 10 /10-9
-o Strateg 10/10-

2 A~utotuned -+

8

4

E
1........... ......

0.5 ' - - - -
32 64 128 256 512 1024 2048 4096 8192 16384

Input Size

Figure 4-8: Speedup of tuned algorithm compared to various simple heuristics to
solve Poisson's equation up to an accuracy of 109 using 8 cores. The data presented
in this graph is the same as in Figure 4-7 except that the ratio of time taken versus
the auto-tuned algorithm is plotted. Notice that as the problem size increases, the
higher accuracy heuristics become more favored since they require fewer iterations at
high resolution grid sizes.

that as the input size increases, the most efficient heuristic changes from Strategy

101/109 to 103/109 to 105/109. The auto-tuner does better than just choosing the

best from among these heuristics, since it can also tune the desired accuracy at each

recursion level independently, allowing greater flexibility. This figure highlights the

complexity of finding an optimal strategy and showcases the utility of an auto-tuner

that can efficiently find this optimum.

Another big advantage this methodology provides is that it allows the user to

easily produce optimized algorithms for both sequential performance and parallel

performance. Figure 4-9 shows the speedup achieved by the tuned MULTIGRID-

V algorithms on the Intel testbed machine, illustrating how the auto-tuner makes

different choices depending on the number of cores available.

Auto-tuned full multigrid algorithm

In order to evaluate their performance on multiple architectures, the auto-tuned

MULTIGRID-V and'FULL-MULTIGRID algorithms were run on each platform for

90

Strategy 10 -
Strategy 1051109



8

7

6

M- 5-

c 4 -

3

2

1 2 3 4 5 6 7 8
Number of Threads

Figure 4-9: Parallel scalability. Speedup as more worker threads are added. Run

on an 8 core (2 processor x 4 core) x86_64 Intel Xeon System.

problem sizes up to N = 4097 (up to 2049 on the Sun Niagara) for target accuracy

levels of 10 5 and 10 alongside two reference algorithms: an iterated V cycle and a

full multigrid algorithm. The reference V cycle algorithm runs standard V cycles

until the accuracy target is reached, while the reference full multigrid algorithm runs

a standard full multigrid cycle (as in Figure 4-3), then standard V cycles until the

accuracy target is reached. These two reference algorithms were chosen since they

are easy to understand and commonly implemented. From these starting points, per-

formance tweaks are often manually applied to tailor the solver to each user's specific

application domain.

Figure 4-10 shows the performance of both reference and auto-tuned multigrid

algorithms for unbiased uniform random data relative to the reference iterated V-

cycle algorithm on all three testbed machines. Figure 4-11 shows similar comparisons

for biased uniform random data. The relative time (lower is better) to compute the

solution up to an accuracy level of 10' is plotted against problem size.

On all three architectures, it can be seen that the auto-tuned algorithms provide

an improvement over the reference algorithms' performances. There is an especially

marked difference for small problem sizes due to the auto-tuned algorithms' use of

91



the direct solve without incurring the overhead of recursion. Speedups relative to the

reference full multigrid algorithm are also observed at higher problem sizes: e.g., for

problem size N = 2049, speedups of 1.2x, 1.1x, and 1.8x are observed on the unbiased

uniform test inputs, and 2.9x, 2.5x, and 1.8x on the biased uniform test inputs for

the Intel, AMD, and Sun machines, respectively.

Figures 4-12 and 4-13 show similar performance comparisons, except to an ac-

curacy level of 109. The auto-tuner had a more difficult time beating the reference

full multigrid algorithm when training for both high accuracy and large size (greater

than N = 257). For sizes greater than 257, auto-tuned performance is essentially tied

with the reference full multigrid algorithm on the Intel and AMD machines, while

improvements were still possible on the Sun machine. For input size N = 2049, a

speedup of 1.9x relative to the reference full multigrid algorithm was observed on the

Niagara for both input distributions. It is possible that performance gains are more

difficult to achieve when solving for both high accuracy and size in some part due to

a greater percentage of compute time being spent on unavoidable relaxations at the

finest grid resolution.

Configuration Sensitivity

Figure 4-14 shows the sensitivity of the auto-tuned full multigrid algorithm's perfor-

mance to the tuning configuration during a single stage of the auto-tuning search on

the Harpertown platform. All configurations shown in the figure solve an input of

size 1024 x 1024 up to an accuracy level of 107, but differ in the choices made dur-

ing the recursive estimation and solve phases, which affect the resulting cycle shape.

Measured performance is given relative to the best configuration found in a single

stage of tuning.

The fastest configuration in the set is almost three times faster than the slow-

est configuration observed, and yields an approximate eight percent improvement in

performance compared to the next best configuration. Slower configurations within

the search space that either fall below a given threshold or are known to be inferior

at particular input sizes are skipped by the auto-tuner to speed the tuning process

92



and are not shown in the figure. Note that the search space is already pruned as

described in Section 4.2.3, and the sensitivity of the performance to small changes in

configuration is dependent on the granularity of those changes. However, it is clear

from the figure that the algorithm's performance can vary substantially, even within

a single stage of the auto-tuning search.

4.3.3 Effect of Architecture on Auto-tuning

Multicore architectures have drastically increased the processor design space resulting

in a large variance in processors currently on the market. Such variance significantly

hinders porting efforts of performance critical code.

Figure 4-15 shows the different optimized cycles chosen by the auto-tuner on

the three testbed architectures. Though all cycles were tuned to yield the same

accuracy level of 105, the auto-tuner found a different optimized cycle shape on each

architecture. These differences take advantage of the specific characteristics of each

machine. For example, the AMD and Sun machines recurse down to a coarse grid

level of 2' versus 25 on the Intel machine. The AMD and Sun's cycles appear to make

up for the reduced accuracy of the coarser direct solve by doing more relaxations at

medium grid resolutions (levels 9 and 10).

The performance of tuned multigrid cycles appears to be quite sensitive to where

the auto-tuning is performed in some cases. For example, the use of the auto-tuned

full multigrid cycle for unbiased uniform inputs of size N = 2049 trained on the

Sun Niagara but run on the Intel Xeon results in a 29% slowdown compared to the

natively trained algorithm. Likewise, using the cycle trained on the Xeon results in

a 79% slowdown compared to using the natively trained cycle on the Niagara.

4.4 Related Work

Some multigrid solvers using algorithmic choice have been presented in the past.

SuperSolvers [6] is not an auto-tuner but rather a system for designing composite

algorithms that leverage multiple algorithmic choices to solve sparse linear systems

93



reliably. The approach given here differs in the use of tuning algorithmic choice at

different levels of the multigrid hierarchy and the use of tuned subproblems during

recursion. Unfortunately, no direct performance comparison was possible here due to

the lack of availability of source code.

Cache-aware implementations of multigrid have also been developed. In [36], [34],

and [28] optimizations improve cache utilization by reducing capacity and conflict

misses during linear relaxation and inter-grid transfers. An auto-tuner was presented

in [11] to automatically search the space of cache and memory optimizations for the

relaxation step over a variety of hardware architectures. The optimizations presented

in these related works are for the most part orthogonal to the approach taken here.

There is no reason lower-level optimizations cannot be combined with algorithmic

tuning at the level of cycle shape.

4.5 Future Work

An interesting direction this work could be taken in is toward the domain of tuning

multi-level algorithms across distributed memory systems. The problem of discovering

the best data layout and communications pattern for such a solver is very complex.

One specific problem this framework may help address is when to migrate data

between machines. For example, one might want to use a smaller subset of machines

once the problem is sufficiently small to reduce the surface area to volume ratio of each

machine's working set. Doing so reduces the communications overhead of relaxations,

but incurs the cost of the data transfer. One could extend the ideas presented here

to produce "optimal" algorithms parameterized not just on size and accuracy, but

also on data layout. The dynamic programming search could then take data transfers

into account when comparing the costs of utilizing various "optimal" sub-algorithms,

each with their own associated layouts.

Another direction to explore is the use of dynamic tuning where an algorithm

has the ability to adapt during execution based on some features of the intermediate

state. Such flexibility would allow the auto-tuned algorithm to classify inputs and

94



intermediate states into different distribution classes and then switch between tuned

versions of itself, providing better performance across a broader range of inputs.

For example, it may be desirable to switch between cycle shapes during execution

depending on the dominant error frequencies observed in the residual.

95



1.2

0.8

0.6

0.4

0.2

0

12

0.8

0.6

0.4

02

0

12

1

0.8

0.6

0.4

021

0

16 64 256
Problem Size

(a)

Aeference V
(F.39frece Full MG

.. .......* . oue

- -

- -

.-nf

- - - - - %

16 64 256
Problem Size

(b)

16 64 256
Problem Size

1024 4096

1024 4096

1024 4096

(c)

Figure 4-10: Relative performance of auto-tuned multigrid algorithms versus refer-
ence V cycle and full multigrid algorithms for solving the 2D Poisson's equation on
unbiased uniform random data to an accuracy level of 105 on a) Intel Harpertown, b)
AMD Barcelona, and c) Sun Niagara.

96

E

-- Reference 'V
"M Referpce Full MG -e-

Ajtotuned V ...-
-grutut ruIf IVu-

-- J-A

1

p.... ~-

-I

-' - - - - - -

E

I-

E
F=

Reference V -+-
Reference Full MG -B-

AutotunedV --- -

-V.

- -' -%

:J %

1

1



12

0.8 --

0.6 -

Cc 0.4 .

02

0 -
16 64 256 1024 4096

Problem Size

(a)

Reference V---
Reference Full MG -3-

Autotuned V -- -

0.8

E
0.6 -

a 0.4 -

02/

0-
16 64 256 1024 4096

Problem Size

. Reference V
Reference Full MG -e-

1....Autotuned V ...
1 Fu - -O

1 0.8 . .

0.6 - -

0.4.~0.4--

02 -

0 -:~
16 64 256 1024 4096

Problem Size

(c)

Figure 4-11: Relative performance of auto-tuned multigrid algorithms versus refer-
ence V cycle and full multigrid algorithms for solving the 2D Poisson's equation on
biased uniform random data to an accuracy level of 101 on a) Intel Harpertown, b)
AMD Barcelona, and c) Sun Niagara.

97



1

0.8

0.6

0.4

02

0

12

16 64 256 1024 40
Problem Size

(b)

Reference V ----
Reference Full MG -'--

Autotuned V ----

16 64 256
Problem Size

(c)

1024 4096

Figure 4-12: Relative performance of auto-tuned multigrid algorithms versus refer-
ence V cycle and full multigrid algorithms for solving the 2D Poisson's equation on
unbiased uniform random data to an accuracy level of 109 on a) Intel Harpertown, b)
AMD Barcelona, and c) Sun Niagara.

98

Reference V ----
Reference Full MG -e-

-, Autotuned V --.-
I ututur ull u U--

16 64 256 1024 40
Problem Size

(a)

Reference V ----
Reference Full MG -e-

Autotuned V --...

0.8

0.6

0.4

E

a,

E

a:

96

96

S.-

-a

02

0

12

E

F:

0.8

0.6

0.4

02

10 U-

I%

%

0



16 64 25
Problem Size

(a)

16 64 25
Problem Size

(b)

6 1024 4096

6 1024 4096

16 64 256 1024 4096
Problem Size

(c)

Figure 4-13: Relative performance of auto-tuned multigrid algorithms versus refer-
ence V cycle and full multigrid algorithms for solving the 2D Poisson's equation on
biased uniform random data to an accuracy level of 10' on a) Intel Harpertown, b)
AMD Barcelona, and c) Sun Niagara.

99

12

0.8

0.6

0.4

02

E

12

.E

F-

Cc

0.8

0.6

0.4

02

12

.9

V
0

0.8

0.6

0.4

02

IReference V-+-
Reference Full MG-s-

Autotuned V ----

- - *.uni r ,M.

-~-

.L

-*

0'



1.2

1

4.A
(U

w

0.8

0.6

0.4

0.2

0
lii 'Ililili.- N(1 1(4L 1 -N1 U1 I I4 I ll0 . N(1 11410N~0

Configuration

Figure 4-14: Sensitivity of multigrid cycle performance to tuning configuration during

a single stage of the auto-tuning search for 1024 x 1024 input to an accuracy level

of 10 7 . Performance of each configuration is given relative to the best configuration

found. Note the spread between the best and worst configuration is roughly a factor

of three, showing diversity in the search space even within a single stage.

100



11 .

10

9

8

7

6

5

4

ii)

11 ...

10
9

8

7

6

5

4

Figure 4-15: Comparison of tuned full multigrid cycles across machine architectures:

i) Intel Harpertown, ii) AMD Barcelona, iii) Sun Niagara. All cycles solve the 2D
Poisson's equation on unbiased uniform random input to an accuracy of 105 for an
initial grid size of 211.

101



Bibliography

[1] Emmanuel Agullo, Bilel Hadri, Hatem Ltaief, and Jack Dongarrra. Comparative

study of one-sided factorizations with multiple software packages on multi-core

hardware. In Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis, SC '09, pages 20:1-20:12, New York, NY,

USA, 2009. ACM.

[2] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-

man, and Saman Amarasinghe. Petabricks: A language and compiler for al-

gorithmic choice. In PLDI '09: Proceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2009.

[3] Jason Ansel, Maciej Pacula, Saman Amarasinghe, and Una-May O'Reilly. An

efficient evolutionary algorithm for solving incrementally structured problems.

In Proceedings of the 13th annual conference on Genetic and evolutionary com-

putation, GECCO '11, pages 1699-1706, New York, NY, USA, 2011. ACM.

[4] K. Asanovic, R. Bodik, B. Catanzaro, et al. The landscape of parallel computing

research: A view from Berkeley. Technical Report UCB/EECS-2006-183, EECS,

University of California, Berkeley, 2006.

[5] Cedric Bastoul. Code generation in the polyhedral model is easier than you think.

In PACT '04:Parallel Architectures and Compilation Techniques, Washington,

DC, 2004.

[6] Sanjukta Bhowmick, Padma Raghavan, and Keita Teranishi. A combinatorial

scheme for developing efficient composite solvers. In ICCS '02: Proceedings of

102



the International Conference on Computational Science-Part II, pages 325-334,

London, UK, 2002. Springer-Verlag.

[7] Chris Lattner and Vikram Adve. The LLVM Instruction Set and Compilation

Strategy. Tech. Report UIUCDCS-R-2002-2292, CS Dept., Univ. of Illinois at

Urbana-Champaign, Aug 2002.

[8] Kaushik Datta. Auto-tuning Stencil Codes for Cache-Based Multicore Platforms.

PhD thesis, EECS Department, University of California, Berkeley, Dec 2009.

[9] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and

Katherine Yelick. Optimization and performance modeling of stencil computa-

tions on modern microprocessors. SIAM Review, 51(1):129-159, 2009.

[10] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,

Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil Com-

putation Optimization and Auto-Tuning on State-of-the-art Multicore Architec-

tures. In SC '08: Proceedings of the 2008 ACM/IEEE conference on Supercom-

puting, pages 1-12, Piscataway, NJ, USA, 2008. IEEE Press.

[11] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,

Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil com-

putation optimization and auto-tuning on state-of-the-art multicore architec-

tures. In SC '08: Proceedings of the 2008 ACM/IEEE conference on Supercom-

puting, pages 1-12, Piscataway, NJ, USA, 2008. IEEE Press.

[12] James W. Demmel. Applied Numerical Linear Algebra. SIAM, August 1997.

[13] Embeddable Common Lisp. http://ecls.sourceforge.net/.

[14] Bondhugula et al. A practical automatic polyhedral parallelizer and locality

optimizer. SIGPLAN Not., 43(6):101-113, 2008.

[15] OpenMP API Specification for Parallel Programming. http://openmp.org.

103



[16] Matteo Frigo. A fast fourier transform compiler. SIGPLAN Not., 34(5):169-180,

1999.

[17] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation

of the Cilk-5 multithreaded language. In Proceedings of the A CM SIGPLAN Con-

ference on Programming Language Design and Implementation, pages 212-223,

Montreal, Quebec, Canada, Jun 1998. Proceedings published ACM SIGPLAN

Notices, Vol. 33, No. 5, May, 1998.

[18] Matteo Prigo and Volker Strumpen. Cache oblivious stencil computations. In

Proceedings of the 19th annual international conference on Supercomputing, ICS

'05, pages 361-366, New York, NY, USA, 2005. ACM.

[19] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. A case for machine learning

to optimize multicore performance. In Workshop on Hot Topics in Parallelism,

March 2009.

[20] GreenFlash. http://www.lbl.gov/CS/html/greenflash.html.

[21] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de

Geijn. FLAME: Formal Linear Algebra Methods Environment. ACM Transac-

tions on Mathematical Software, 27(4):422-455, December 2001.

[22] A Haidar, H Ltaief, A YarKhan, and J Dongarra. Analysis of dynamically

scheduled tile algorithms for dense linear algebra on multicore architectures.

Technical report, Innovative Computing Laboratory, University of Tennessee,

2011.

[23] R. Heikes and D.A. Randall. Numerical integration of the shallow-water equa-

tions of a twisted icosahedral grid. part i: basic design and results of tests. Mon.

Wea. Rev., 123:1862-1880, 1995.

[24] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches. IEEE

Trans. Comput., 38(12):1612-1630, 1989.

104



[25] Thierry Joffrain. Parallel implementation of triangular solve, 1998.

[26] S. Kamil, C. Chan, S. Williams, et al. A generalized framework for auto-tuning

stencil computations. In Cray User Group, 2009.

[27] S. Kamil, K. Datta, S. Williams, et al. Implicit and explicit optimizations for

stencil computations. In Workshop Memory Systems Performance and Correct-

ness, San Jose, CA, 2006.

[28] Markus Kowarschik and Christian Weiss. Dimepack - a cache-optimized multi-

grid library. In Proc. of the International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA 2001), volume I, pages 425-

430. CSREA, CSREA Press, 2001.

[29] LAPACK: Linear Algebra PACKage. http://www.netlib.org/lapack/.

[30] A. Lim, S. Liao, and M. Lam. Blocking and array contraction across arbitrarily

nested loops using affine partitioning. In ACM Symposium on Principles and

Practice of Parallel Programming, June 2001.

[31] S. Mitra, S. C. Kothari, J. Cho, and A. Krishnaswamy. ParAgent: A Domain-

Specific Semi-automatic Parallelization Tool, pages 141-148. Springer, 2000.

[32] M. Piischel, J. Moura, J. Johnson, et al. SPIRAL: Code generation for DSP

transforms. Proceedings of the IEEE, special issue on "Program Generation,

Optimization, and Adaptation", 93(2):232- 275, 2005.

[33] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computations. In

Proceedings of SC'00, Dallas, TX, November 2000.

[34] Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3d scientific com-

putations. In Supercomputing '00: Proceedings of the 2000 ACM/IEEE confer-

ence on Supercomputing (CDROM), page 32, Washington, DC, USA, 2000. IEEE

Computer Society.

105



[35] S. Sellappa and S. Chatterjee. Cache-efficient multigrid algorithms. International

Journal of High Performance Computing Applications, 18(1):115-133, 2004.

[36] Sriram Sellappa and Siddhartha Chatterjee. Cache-efficient multigrid algorithms.

Int. J. High Perform. Comput. Appl., 18(1):115-133, 2004.

[37] Armando Solar-Lezama, Gilad Arnold, Liviu, et al. Sketching stencils. In In-

ternational Conference on Programming Languages Design and Implementation

(PLDI), June 2007.

[38] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency

in Software. Dr. Dobb's Journal, 30(3), 2005.

[39] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk,

and Charles E. Leiserson. The pochoir stencil compiler. In Proceedings of the

23rd ACM symposium on Parallelism in algorithms and architectures, SPAA '11,

pages 117-128, New York, NY, USA, 2011. ACM.

[40] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear

algebra solvers for multicore with gpu accelerators. In IPDPS Workshops'10,

pages 1-8, 2010.

[41] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A library

of automatically tuned sparse matrix kernels. In Proceedings of SciDAC 2005,

Journal of Physics: Conference Series, San Francisco, CA, USA, June 2005.

Institute of Physics Publishing.

[42] R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimization

of Software and the ATLAS project. Parallel Computing, 27(1-2):3-35, 2001.

[43] R. Clint Whaley. Empirically tuning lapacks blocking factor for increased perfor-

mance. In Proceedings of the International Multiconference on Computer Science

and Information Technology, page 303310, 2008.

106



[44] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra

software. In Supercomputing '98: Proceedings of the 1998 ACM/IEEE conference

on Supercomputing (CDROM), pages 1-27, Washington, DC, USA, 1998. IEEE

Computer Society.

[45] S. Williams, A. Watterman, and D. Patterson. Roofline: An insightful visual per-

formance model for floating-point programs and multicore architectures. Com-

munications of the A CM, April 2009.

[46] Qing Yi, Ken Kennedy, Haihang You, Keith Seymour, and Jack Dongarra. Auto-

matic blocking of qr and lu factorizations for locality. In Proceedings of the 2004

workshop on Memory system performance, MSP '04, pages 12-22, New York,

NY, USA, 2004. ACM.

107


