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Abstract

Stochastic Modeling of Intracellular Signaling Dynamics for the
Purpose of Regulating Endothelial Cell Migration

by

Micha611e Ntala Mayalu

Submitted to the Department of Mechanical Engineering
on May 11, 2012 in partial fulfillment of the requirements of the Degree of

Masters of Science in Mechanical Engineering

Abstract

Effective control of cellular behaviors has serious implications in the study of biological
processes and disease. However, phenotypic changes may be difficult to detect instantaneously
and are usually associated with noticeable delay between input cue and output cellular response.
Because of this, relying on detection of phenotypic behaviors for use in feedback control may
lead to instability and decreased controller performance. In order to alleviate these issues, a new
approach to regulating cell behaviors through control of intracellular signaling events is
presented.

Many cell behaviors are mediated by a network of intracellular protein activations that
originate at the membrane in response to stimulation of cell surface receptors. Multiple protein
signaling transductions occur concurrently through diverse pathways triggered by different
extracellular cues. Cell behavior differs, depending on the chronological order of multiple
signaling events.

This thesis develops several modeling frameworks for an intracellular signaling network
specific to endothelial cell migration in angiogenesis. Unlike previous works, the models
developed in this thesis exploit the effect of signaling order on extracellular response. Our
approach examines the transduction time associated with each pathway of a cascaded signaling
network. Transduction times of multiple pathways are compared, and the probability that the
multiple signaling events occur in a desired chronological order is evaluated.

We begin our development with an input-output time-delay model derived from simulated
data that is used to predict the optimal extracellular input intensity for a desired response. We
then present a stochastic "pseudo-discrete" model of the signal transduction time. We conclude
by presenting several control strategies for control of intracellular signaling events.

Thesis Supervisor: H. Harry Asada

Title: Ford Professor Mechanical Engineering
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Introduction

1.1 Thesis Objectives

Using signaling dynamics for the purpose of controlling cellular response requires

identification and manipulation of intracellular signals. Consequently, an appropriate model is

needed to describe the biological system. The purpose of this thesis is to model internal protein

signaling dynamics within the cell and use the model to predict extracellular response to various

external inputs and cues. The ultimate aim is to verify model predictions with experimental data

and create a model structure that is usable for control. Some desired model characteristics

include a "condensed" modeling framework with few parameters that capture key biological

mechanisms. In addition, we wish to create a model that incorporates heterogeneity among cells

and the inherent stochasticity of intermolecular interactions.

1.2 The Angiogenic Process

1.2.1. Definition

In order to model the intercellular signaling process that leads to endothelial cell migration

during angiogenesis, it is important to understand the key mechanisms in the angiogenic process.

Angiogenesis is a cell migration dependent process involving the movement of endothelial cells

to form blood vessels. It is present in physiological situations such as tissue repair and skin

renewal as well as in pathological situations such as cancer, arthritis, and vascular disease.

Migration of endothelial cells is driven by a growth factor gradient such as VEGF, which has

been known to induce angiogenesis [1].

1EGF V GF
Gel Matrix Ti ell

Gel Mat 
dot elial Cells

Figure 1-1: The Angiogenic Process. Endothelial cells migrate to form blood vessels in response to a

biochemical growth factor (VEGF).
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In cancer, tumors secrete VEGF in order to initiate blood vessel formation. The blood vessels

grow towards the concentration of VEGF and supply nutrients [2].

1.2.2. Angiogenic Growth Assays

It has been shown that the angiogenic process may be manipulated in a 3D in-vitro

microfluidic environment by varying environmental factors and external cues such as growth

factor concentration [3]. As described in [3], angiogenic response can be regulated using a

microfluidic device consisting of 2 channels separated by a central region containing

extracellular gel matrix. By varying the growth factor concentration in the channels, a

concentration gradient is established across the gel region to stimulate cellular responses (see

Figure 1-2).

PDMS
Glass / Device
Coverslip

Channel

Figure 1-2: Microfluidic device used to monitor endothelial cell migration. Source: Wood, L. B.

Quantitative modeling and control of nascent spout geometry in in-vitro angiogenesis. Unpublished

Doctoral Thesis, Massachusetts Institute of Technology, 2012, Cambridge, Ma.

Using this technology we may implement a control system in hardware consisting of a

confocal microscope to measure overall vessel morphology. This may then be feedback and

compared to a reference or desired morphology. A control law may then be designed to calculate

the optimal growth factor concentrations for the microfluidic device to drive the output vessel.

morphology to the desired vessel morphology(see figure 1-3).

10



Introduction

Actuation/Physical Seasor: Comfocal
Control Generation System

yd (desired y (sprout
morphology) characteristics)

Calculaa GF Cofocal
co1nfcetadn gmdiawt MF device nedyatv mkspe de&-M
ipat t ME deice basd aflwfor ckae in GF muw . epeg

Figure 1-3: Diagram describing the control of angiogenesis using cell population characteristics for

feedback

However, morphological changes are difficult to detect instantaneously and are usually

associated with noticeable delay between input cue and output cellular response. Because of this,

relying on detection of morphological characteristics alone may lead to instability and decreased

performance in feedback control. In order to alleviate these issues, intracellular signaling

dynamics are observed and modeled in response to extracellular cues.

1.3 Signal Transduction Process

1.3.1. Definition

Cellular response is regulated by the transfer of information from the environment to within

the cell. This transfer is realized through a complex network of protein signaling transduction

pathways. Multiple protein signaling transductions occur concurrently through diverse pathways

triggered by different extracellular cues. Signals from various pathways are synthesized to

determine the overall cellular response.

Signal transduction is initiated when a ligand binds to a receptor present on the cell

membrane. The receptor then underdoes a change (conformational or polymerization with other

trans-membrane proteins) to become active. The active receptor then activates other proteins

present inside the cell which in turn activates other pr[4](Bauer, Jackson, Jiang, & Rohlf,

2010)oteins downstream. This leads to a cascade which travels to the nucleus where a specific

function is performed.

11
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Fig. 1-4 illustrates a signal transduction network that characterizes some of the key signaling

pathways during angiogenesis[4]. Arrows between nodes signify activation and hammerheads

signify inhibition. As can be seen, pathways originating at specific membrane receptors interact

to form an intricate network. In addition, the network indicates that varying activation/inhibition

Proliferation Apoptosis Motility

Figure 1-4: Reduced signal transduction network specific to angiogenesis. Illustrates the complex

interplay between growth factor, integrin, and cadherin stimulated pathways to decide the cell's

phenotypic response. Colors associate downstream molecules with the initiating receptor: blue is the GF-

RTK pathway, red the ITG pathway, yellow is the cadherin pathway, and purple and green signify

molecule influenced by multiple pathways. An arrow signifies activation and a hammerhead indicates

inhibition. Source: Bauer, A. L., Jackson, T. L., Jiang, Y., & Rohlf, T. (2010). Receptor cross-talk in

angiogenesis: Mapping environmental cues to cell phenotype using a stochastic, boolean signaling

network model. Journal of Theoretical Biology, 264(3), 838-846.

sequences lead to a different overall phenotypic response.
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1.3.2. Activation mechanisms

In a simple linear signaling cascade, stimulation of a receptor leads to consecutive activation

of several downstream protein kinases. Each protein undergoes a covalent modification cycle in

which the protein can transition between an active and inactive state (see Fig 1-5). Excluding the

first protein, activation of the i-th protein (P) is triggered by an enzymatic reaction with the

previous activated protein (P*i.). The activated protein (P*) is inactivated by a second reaction

catalyzed by enzyme protein (Ei ). The last activated protein in the pathway may then interact

molecules from different pathways.

input

I active ative- ;*-

Deactivator-E I active P, ctive-

Deactivator-En Node molecule
interaction

Figure 1-5: Simple Network showing linear covalent modification cycles for each a given pathway

With the exception of the first activated protein in the pathway, the modification cycle of the

i-th protein can be described by the following enzymatic reactions in table 1-1. Here, P*i,:P, ,

and E,:P*1 represent the intermediate complexes and a,#,, A are reaction constants. Real signal

transduction pathways are generally more complex due positive and negative feedback and

signaling amplification.
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Table 1-1: Enzymatic reactions describing the covalent modification cycle.

Reaction Chemical equation

Activation P* +P " ' P* -kP i *P* +P*.

Deactivation E,+P* 'E : P* > P + E

1.3.3. Measurement techniques

Recent breakthroughs in imaging are providing us with the tools needed for building a

signaling dynamics model. Among others, Fluorescence Resonance Energy Transfer (FRET)

imaging technology allows activation of targeted signaling molecules to be observed in a live

cell in real time. Fluorescence Resonance Energy Transfer or FRET is a distance-dependent

interaction between two fluorescent molecules or fluorophores in which emission of the first

fluorophores (donor) is used to excite the 2nd fluorophores (acceptor).The efficiency of FRET is

dependent on the inverse sixth power of the separation, making it useful technique in the study of

biological occurrences that produce changes in molecular proximity. One experimental approach

engineers both fluorophores into a single molecule which undergoes a conformational change

upon activation or interaction with a specific ligand. The fluorophores are integrated into the

protein so that the conformational change brings about a change in proximity or orientation of

the fluorophores that alters FRET efficiency (see figure 1-6).

Using FRET, a unique signal can be detected that reveals the location and concentration of an

activated species [5]. Limitations to FRET measurement are that only one bio-sensor can be used

at a time. Furthermore, the number of experimental data sets is limited. Recently, a biosensor for

the key signaling molecule Src has been developed and experimental data has been obtained [6].

The molecular dynamics resemble an impulse response to a second order or higher system.

14
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Figure 1-6:Diagram describing the Fluorescence Resonance Energy Transfer Process

Using this technique, has demonstrated that varying external cues may cause different

signaling hierarchies, which lead to different modes of response [7]. This suggests a correlation

between the sequence of protein activations and mode of phenotypic response.

Since controlling the migratory state of endothelial cells in angiogenesis may be difficult

Data Pmcessing / Actuation/Physical Seas.r: Fluorescent
Control Generation Microscop

Yd (desired prote-ny (tiae dependent protein
concentration) comcetration)

Camula es e cotr sigalnAn MF device modipedmcoedec
to afowfor ekafse in

Figure 1-7: Diagram describing the control of angiogenesis using signaling dynamics for feedback
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based on its output morphology alone, future control designs may incorporate the use of FRET

biosensors to measure activation of proteins in migration specific pathways. The measurements

obtained through FRET may then be used for feedback control to the microfluidic device [8].

1.4 Effect of Signaling Order on Cellular Response

Signaling molecules having multiple binding domains often exhibit complex phenotypic

behaviors. Depending on which domain binds first the behavior is strikingly different. Figure 1-8

illustrates a signal transduction network that characterizes the key signaling pathways during

endothelial cell migration [1]. As can be seen, pathways originating at specific membrane

receptors (VEGFR-2 and integrin) interact to form an intricate network. In the figure, both

pathways reach the same node molecule (FAK) which has multiple binding domains. The

binding of VEGF to VEGFR-2 triggers the recruitment of HSP90 to VEGFR-2, which initiates

the activation of RhoA-ROCK and then the phosphorylation of FAK on its Ser732 domain [1].

This changes the configuration of FAK, allowing subsequent the phosphorylation of its

Tyr407 domain by Pyk, a molecule in the integrin pathway. This specific binding order leads to

focal adhesion turnover response by the cell and ultimately endothelial cell migration.

As can be seen, the binding order of VEGFR-2 pathway protein (RhoA-ROCK) and the

integrin pathway protein (Pyk) is essential to the function of FAK since the phosphorylation of

its Ser732 domain by RhoA-ROCK triggers a conformational change that allows

phosphorylation of its Tyr407 domain by Pyk. If Pyk attempts to bind before FAK has been

phosphorylated by RhoA-ROCK the cell will not exhibit the same phenotypic behavior.

Dependence of the node molecule on the order of signaling events is ubiquitous occurrence

in the cell and thereby the cell exhibits diverse responses.

16
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Le Boeuf, F., & Huot, J. (2007). Endothelial cell migration during angiogenesis. Circulation

Research, 100(6), 782-794.

1.5 Review of Intracellular Signaling Pathway Modeling
Detailed computational models have been developed for various signal transductions. These

include modeling of the Mitogen-activated protein kinase (MAPK) cascade in response to

growth factor stimuli [9],[ 10], [11 ],[ 12]. These computational models simulate dynamic

responses of signaling activities for known signaling pathways. However, in many cases,

quantitative information about the kinetic properties in the system is unknown. Therefore,

experimental data is used along with the model to obtain more accurate representations.

One way to model the transient response for each signaling pathway is to create a continuous

system model. For this modeling framework the state of the system at any particular instant is

regarded as a vector containing the concentration of each molecule. Continuous state changes

are defined by a sum of rates describing the increase and/or decrease of the molecular

17
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concentrations. The changes in concentration are assumed to occur by a continuous and

deterministic process. Numerical integration algorithms are used to generate simulated data

from the derived equations [13].

Due to the heterogeneity of cells, the response of the cell will vary given the same

environmental conditions. Furthermore, events involved in signal transduction including,

receptor activation, protein modification reactions, and protein inter-compartmental transports

are intrinsically stochastic and occur at random times. The deterministic approach to modeling

fails to capture heterogeneity and variability among cells. The multiple sources of stochasticity

and heterogeneity in biological systems have important consequences to understanding system

behavior [14]. In order to account for these uncertainties we turn to modeling based on

probability theory. Stochastic modeling uses probability theory to account for the inherent

uncertainty in biochemical network.

Signaling dynamics may be modeled stochastically using the Markov jump process. This is a

well-understood model from the theory of stochastic processes. In this modeling framework, the

change in the system occurs discretely after random time period, with the change and the time

both depending on the previous state.

As the complexity of signaling pathways increases, both deterministic and stochastic

computational models are too complex to use for control design. In order to obtain a compact

model usable for control design, we take a different approach, focusing on signal transduction

time delays.

18
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Transduction Time
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2.1 Introduction

The approach described in this chapter regulates the chronological order of signaling events

by controlling the extracellular cues in microfluidic in-vitro environment. Transient response

curves are generated using deterministic reaction rate equations. To account for variability and

heterogeneity of cells, initial conditions and parameter values are varied to create a family of

response for each pathway, given a specific input. An optimal value of input cue is then

determined for use in feedback control of the process. Future work will incorporate the proposed

method into the development of a feedback control strategy for endothelial cell migration during

angiogenesis.

2.2 Model Definition

We model each pathway as a simple linear signaling cascade in which receptor stimulation

initiates successive activation of several downstream protein kinases (see figure 2-1). As

described in the previous section, each pathway protein undergoes a modification cycle the

reactions of which are summarized in table 2-1.

Growth Factor
ul RTK UECM

uIntegrin

R, R,

Y21 t Pathway 2
Pathway 1

Figure 2-1: Activation mechanisms for each pathway characterized by a simple linear signal

transduction cascade.

20
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Ligand-receptor activation mechanisms differ depending on receptor type. For receptor

tyrosine kinases (RTK), ligand-receptor binding causes dimerization of the receptor. The

dimerized receptor then undergoes trans-phosphorylation, a process in which each receptor in the

dimer complex activates the other. The activated dimer may then activate signaling molecules

localized near the membrane such as Src, which plays an important role in cell migration such as

cytoskeletal organization [15].

For integrins (ITG), the binding of extracellular matrix proteins causes activation [16]. In its

active state the integrin the cytoplasmic "tails" may interact with other cytosolic molecules and

induce activation of proteins such as FAK which is involved in focal adhesion assembly and

disassembly [17].

The reactions can be modeled by a set of differential equations where the rate of

concentration of each state is written as the sum of the reaction rates that produce the given state

minus the sum of the consuming rates. The signaling cascade reactions and equations are

summarized in the table 2-1.

In summary the entire dynamic signaling model for a given pathway may be represented as

follows:

i(t)= f(s) + b(3i)u(t) (2.1)
p(t) h(i)

where the state variable i(t) represents a vector of state variables that describe the concentration

of individual species at a given time t, u represents input concentration which may be varied

independently and y(t) represents the desired state to be monitored.

21
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Table 2-1: Enzymatic reactions describing the covalent modification cycle. Here are activation reaction

constants and are inactivation reaction constants

Reaction Chemical Equation Ordinary Differential Equation

RTK Activation R, +u " RI: u, dR,"- -b C =dt b, -(RI : ul)- a,, Ru - d, -D,
R, :uu, + R , D1  >D D * dD -

DI *+x, ", ' DI* :xI dt
dD

Dl*: xl ">D, *+x~l * k, -D, -all -(D,* : x,)+(pflg +41,)-(D, : xI)

dxI * -a=) -(D*: xi)+I -(zII : x*)- I z-x *dt'

ITG Activation R2 +u 2 :u dR 2 2 AR 2
2 2 2 = b2 - (R2 : u2)- a2 2-u

dt
R2 :U2 +x R,2 : U2 : X12 d(R 2 : u2 )

, A12 > := (p 2 + A12 )-(R2 : U2  X12 )- a 2  : u(2 - X1
R2 2: 2 u 2 ) R2 :U2 +x*12 dt

Ax12  *q2 (R2 : U2 : X12 ) +Ai2 12 2 X1 2 *) -'d12 *Z12 *x 2
dx

Activation .+Xp pk pkl : Xpk dxpk X + x*

X* pk- Xpk pk X *k +X *k- *
pkp pk * -____ j (Yk :X pk) apk Ypk X pk + Apk (x*pk-1 :XPk)

Spk +Yk -- A pk : Ypk dt-
2
pk

X*pk :YpkX pk + Ypk-1

p(pathway number)

k(pathway protein number) # 1

Auxiliary Equations Mass conservation:

R,,lo =R +R,:u +D +D *I+D,*:x,

'2tot = 2 +R 2 :2 +R 2  x 1 2

Xpktot X*pk- :pk +X*pk +Xpk

Ypktot Ypk + X*pk Ypk

22
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2.3 Problem Statement and Methods

2.3.1. Problem Statement

Computationally, we wish to accomplish the following:

1. Generate multiple response curves based on different initial condition for each

pathway given the input intensity.

2. Use the simulated data to create a time delay distributions of signal transduction

times.

3. Use distributions to determine the optimal input intensity that leads to maximum

probability of a specified signal transduction order.

2.3.2. Methods

Transient response data for each pathway may be simulated by creating a continuous system

model defined by a set of state variables. The continuous state changes are modeled by a sum of

rates describing the increase and decrease of the molecular concentrations as discussed in the

previous section. Numerical integration algorithms are used to generate simulated data from the

derived equations.

To account for the heterogeneity among cells, the simulation should be repeated for

perturbed parameter values and initial conditions in a realistic range. The time delay can be

determined from simulated data as the time from zero to fifty percent of the steady state value of

the time response. The distribution of the activation time delay can be created by plotting a

histogram (see Fig. 2-2).

Consider pathway 1 in the representative network shown in Fig. 2-2. Let r, be the time delay

from the onset of input cue at the receptor to the activation and subsequent binding of signaling

molecule and ul be the input cue concentration. The probability of r, when input cue u, is

applied is expressed as:

f(r l u,)dr = Pr(r, X, r +dr I ul) (2.2)

23
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Transient noveforms for various

Representative network initial conditions/parameter values

Histogram

Pr(X, = r, lu,)

Figure 2-2: Diagram illustrating the approach to calculating time delay distribution from a representative

pathway. Transient responses for the activated form of the last molecule in each pathway (xm* (t) where m

is the number of molecules in a given pathway) are simulated from chemical kinetic differential equations

under various initial conditions and parameter values (x0', xO", x0"',...). Time delay is calculated from

the response curve as the time from zero to fifty percent of the steady state value (0.1 -xss). The time delay

distribution can be created by plotting a histogram. By varying the input cue concentration (ul), a family

of distributions may be found for a given pathway.

By varying the input cue concentration (u,), a family of distributions may be found for a

given pathway. In general, for multiple pathways (i=1,...,n) the probability for r, given input cue

u, is expressed:

(2.3)

Once probability densities for individual pathways are identified, the probability of a specific

chronological order of signaling events T, T2 ... ' Tn for pathways (1,..,n) can be computed as:

(2.4)

g(rf f Z 2 2 rn l uP,...,Iu)d=

fff fx1('ri|u,)x2(-2|u2 )'''.fxn (rnUnu)d-, ... d-rn

24
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Assuming that r1,...,rz are statistically independent. Using Bayes' theorem, the

concentrations of input cues for generating a desired chronological order of signaling events can

be obtained from:

g(U1,- -. -,u l rI Z- !r2 > '' Arn)(25
(2.5)= 7g9(ri ! -r2 ''' I Un ln u,--,u )P(u, --. -,un)

where r/ is a scaling factor.

2.4 Numerical Example

2.4.1. Data Simulation

We would like to test our approach for multiple pathways with varying input cue intensities.

Consider the simple network consisting of two pathways as discussed previously (see Fig. 2-1).

Pathway 1 is activated through GF-RTK stimulation and consists of a two stage linear signaling

cascade. We have modified pathway 1 slightly to incorporate negative feedback (i.e. the

activated form of the last kinase initiates activation of the first kinase by binding to it). This type

of negative feedback mechanism is common in signaling pathways. Pathway 2 is activated

through ECM-ITG stimulation and consists of 1 stage linear signaling cascade.

Response curves for each pathway were generated by numerical integration ODE model

described by (2.1). Integrations were repeated for uniformly random parameter values and initial

conditions for a given input concentration to simulate heterogeneity of the pathway. Using this

simulated data, a family of time delay distributions given various inputs could be created. Fig. 2-

5A, shows a histogram of r, (delay associated with pathway 1) given u, =1pM .

By examining the distributions as a function of the given input (f, (r, I u,)), we detect that the

delay decreases with increased input concentration (see Fig. 2-5B). Similar relationships have

been observed in other more complex computational models. In particular, it was observed that

with increased ligand concentration, the speed of activation increases, decreasing the delay

before activation.
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2.4.2. Analysis

Based on trends observed through simulation our goal is to find the optimal input values

(upu 2 ) that will ensure the sequence of molecular activations (r1 < r2). In other words we wish

to find the optimal value of u,,u2 that maximizes the conditional probability: Pr(r, < r 2 1 uI,u 2 )-

Let r, be the random variable associated with the time delay of the last kinase in pathway 1

(x21 ) in response to growth factor stimuli ul (see Fig. 2-1). Let r, be the random variable

associated with the time delay of the last kinase in pathway 2 (x*1 ) in response to a different

external stimuliu, .

Re-writing (2.4):

g(r1 < r 2 1 u 1, u2 )= nf ('rl Iu)- fX2 (r 2 1 u2 )drldr2  (2.6)
T1 <T2

Using the distributions generated for each pathway we can find the desired conditional

distribution for ft (-r I u,) as shown in Fig. 7. As is expected, the highest probability of Z, < r 2

occurs when input u, is the greatest and input u2 is the least and the lowest probability occurs

when u2 is the greatest and u, is the least.
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2.5 Control Applications

Based on the stochastic time delay model presented in the previous section we can construct

various control systems. Consider a population of agents, each of which is an independent unit

that can receive extracellular cues, transduce signaling molecules, and produce a certain

response. Agents include not only individual cells but also compartments of a single cell, such as

focal adhesions, lamellipodia, and fillipodia.

The control objective is to guide the population towards a desired state, such as a desired

proportion of multiple phenotypic states. For example, consider two distinct phenotypic states, 1

and 2, created with two signaling pathways and two extracellular cues, as in the case of the

Growth Factor - Integrin Induced Signaling discussed in the previous section. State 1 emerges

when r > 1r2 , and vice versa.

Suppose that we want to drive the entire population towards State 1. The optimal input cues

are given by:

u0 = argmaxg(vr > r2 |u,u 2) (2.7)
nU

If the desired goal is to drive 70 % of the population towards State 1 and 30% to State 2, the

optimal input cues are given by:

u0 = arg min [{g(r > r2 l ui,u 2 ) 0.7}] (2.8)

If the solution is not unique, one can take the one having the minimum squared input

magnitude:

u0 = arg min [(u2 +u )|g (>r 2 1 ,u 2 )=o.7] (2.9)
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2.6 Conclusion
In this chapter, a dynamic model of a signaling network was developed based on time delays

associated with individual pathways in relation to the extracellular cue. As an example, the time

delay associated with 2 signaling pathways was examined in relation to the extracellular cue.

Time delays of multiple pathways were compared, and the probability that the multiple signaling

events occur in a desired chronological order was evaluated in relation to input cues. From this

analysis we conclude that the model developed allows for optimal input intensity to be predicted

for feedback control of the process. However there are several caveats. Firstly, although we

account for heterogeneity of cells, inherent stochasticity of protein interactions remain un-

modeled. In addition, the simulated waveforms approximate discrete state changes occurring

randomly in continuous time. The next chapter attempts develop a model that this "pseudo-

discrete" aspect of the system using standard probability theory to calculate signal transductions.
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3. Stochastic Modeling of Signal Transduction Time
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3.1 Introduction

This chapter presents a modeling framework for an intracellular signaling network based on

formalisms derived from the fundamental concepts in probability theory. The probability of a

particular binding order is evaluated using state dependent transduction time probabilities

associated with each pathway. In this way, the probability of the cell to be in a given internal

state is tracked and used to gain insight into the cell's phenotypic behavior. A numerical example

illustrates the approach.

3.2 Model Definition

We model the cell as a well-mixed biochemical reactor with uniformly distributed molecules.

In reality species are segregated into different spatial domains and are not well-mixed. Even

though extensions to modeling spatial inhomogeneity or variations in temperature are possible,

[18], for simplicity we will consider a well-mixed uniformly distributed assumption.

Consider the network shown in Fig. 3-1. Pathways A and B are linear cascades that intersect

at a common node molecule. We assume that molecules from pathway A do not interact with

molecules from pathway B except at the node molecule (i.e the pathways are independent). The

time dependent number of each molecular species in all pathways is given by vector:

Y(t) = [XA(t),XB(t)].

XA(t)= [n ,n ,,nAn .,...]
P1 P1 2 P2*(3.1)

XB~t __[ B nB B nB
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Pathway A Pathway B

4f inputB
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Figure 3-1: Simple network showing linear covalent modification cycles for each given pathway
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Figure 3-1: Representative Diagram of parallel reaction occurrences in pathways
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Each reaction (R) will occur with probability:

a,(T(t)) -dt =hc, -dt (3.2)

where a, (T(t)) is the propensity function for the v - th reaction, cv is a constant which depends

only on the temperature and physical properties of the system, and h is the number of distinct

R, molecular reactant combinations available in state XA (t), XB(t).

Consider the diagram shown in fig. 3-1. The specific reaction time in each pathway (termed

occurrence times) are notated as t1 ...,tn. The time intervals between reactions (when no reaction

is occurring) are notated as r,...,r,, which we have termed delay times.

delay times may be related in the following manner (see fig. 3-1):

Occurrence times and

", = ti -to

-2 . 2-t ; tn =4to+ r,1+12 +- -f4

n n ~ n- .

MA MB

ao (T(t)) = a, (XA (t)) + aB (XB (t))
v =1 V B=

(3.3)

(3.4)

be the total propensity over all pathways and reactions in state T(t) = XA(t),XB(t). It has been

shown under well-mixed conditions the delay times follow an exponential distribution with

varying rate parameter ao(T(t)) that is independent of reaction type given state T(t) [19, 20].

The densities to describe the delay times rj,- --,r:

fT, (r1)= ao(T(t)) exp(-ao(T(to)) -rl)

IA2 (-r2) a, a(7(t))exp(-a (7f(4) -r2) 'Il..I1n>

[T2 ("n a0 (T(tn1 )) exp(-a010 ( 2(t))

(3.5)
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Assuming the non-overlapping delay intervals are independent, we may use delay time

distribution functions to derive occurrence time distributions fA (t,).

fr(t)= (fT * f )(tn)= f fn(tn -t_) -f, -(tn_)dt_, (3.6)
0

Here we have used induction and the fact that the distribution describing the sum of two

independent random variables is the convolution between the distribution functions of the two

random variables. We may re-write (6) using the Laplace transform: L{f(t)}= F(s)= Je-sf(t)dt

n-1

n 17 ao (T(ti))
Fs s (s)s =FT_ aFT( sTFt,=) (3.7)

1=1 fJ7 [s + ao (T(t,))]
i=o

The convolution have reduces to a multiplication in the Laplace domain. Using partial

fractions:

n-1 n-1

FE (s) = ao((ti))j (3.8)
( i=O ito[s +ao (T(t))]

1
where, A, =

F ao (T(tj)) - ao (T(t,)
jwi

Taking the inverse Laplace:

f (tn) =L- i {F, (s)} = ao(T(t)) exp[-a o(T(t,))- t] (3.9)171 ao(T(tj)) - ao(T(t,))

The equation (3.9) above is valid for the calculation of distribution reaction occurrence times

when the total propensity ao(T(t)) parameter is distinct and does not repeat over time. In many

cases the total propensity of a reaction may repeat over time.
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We would like to find a more general expression if possible. Let us group delay-time

distributions with same rate parameters:

tn tO+Z_ +..Zi .. +I*i .+ Tk+ +.+ + +Tm + .+Tp +***+Zn

(3.10)tn T +..+T' 'r +...+ ~ .. 'k+ . '
V V
1

same a0=A same a0 = same a = Ar

We rename the equal propensity parameters (A1 ,...,Ar) where r(1<r<n) is the number of distinct

rate parameters.

Next we define a new set of random variables V, (i =1,...,r) which is the sum of the delay

times with equal rate parameters (A1) : V, = r + r,, +... + TN. Where N, is the number of delay

times with same parameter A,.

The distribution of V, is the convolution of exponential delay time distributions with constant

rate parameter. This distribution is the well-known Erlang distribution:

N, 1 -1

fv(V,)= 'K1 exp(-A,V,); V=TI+Tm+...+TN (3.11)

We now have a set of r random variables each with Erlang distributions described by the

above equation:

A NVN,-l
t,=V+-+V,; f(V,)= A ' exp(-AV,)

(N, -1)!
(3.12)

To obtain the closed form solution, we now have to propagate the uncertainty of the sum of

Erlang distributed independent random variables V, . Finally we obtain:

n

fT (tn)=(L
i=1

NI Nj N,
AN, exp[-tnA, I ( ) n Ii

>=1 ( N - j)!' ml+...+m,=Ni-j 1=1
m =0 1 i

N,

i _A - A()
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3.3 Problem Statement and Methods

3.2.1. Problem Statement

Computationally, we wish to accomplish the following:

1. Calculate the distributions of signal transduction times of multiple pathways.

2. Use these distributions to determine the probability of a specific transduction order.

3.2.2. Methods

To calculate the distribution of signal transduction time, we enumerate all valid possible

reaction sequences between the initial state TO = [XOA(t),XB(t)] and the first occurrence of the

activation reaction of the last cascade protein in time span (to - tf ) (see fig. 3-2). By valid we

mean reactions that are chemically feasible given the cellular state. Given the complexity of a

network, enumeration of these sequences may be computationally difficult. But under specific

assumptions and initial conditions and for lower order networks the problem is computationally

tractable.

If the possible reaction sequences are enumerated, the corresponding states

(ti,) (i = 1,..., n -1) may also be predetermined. Using this knowledge and given that the

propensity ao(T(t)) is distinct in the set timespan, we may calculate occurrence time distributions

for each possible reaction sequence using (3.9):

ff (t = tISi = R1., R) (3.14)

Where Rn is the first activation reaction of the last cascade protein in time span (t. - tf).

To find the marginal distribution we a combination of Bayes rule and the Total Probability

Theorem:

f, (tn) f7t, |nIS, )fA(S,) (3.15)
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Where fs (S) is the probability that the reactions will occur in order S, = R ..., Rn. We may find

the propensity of each reaction given the predetermined states to calculate this probability:

n

s (S,)= ai (T(t,) (3.16)

Here we have used the fact that reactions are independent given the state and therefore the

joint probability of a reaction sequence is the product of the separate reactions' propensities.

Given signal transduction probabilities of multiple pathways: f.f(tt), ft B n . ) we

may calculate the distribution of a specific transduction order:

fA(t <tB <...<tZ )=

<t f~ t l .f~ t l... f T d f d .dtn (3.17)f f (tn )-f n(tnB n ZtI)dtndtnB Z

tn, <nB < . nZ

3.4 Numerical Example

Let us examine a simplified model of the VEGFR-2 and a, 3 integrin pathways described in

Fig. 1-8. Each pathway contains a one stage cascade made up of the RhoA-ROCK activation

cycle (for VEGFR-2 pathway) or the Pyk activation cycle (for the a/ 3 integrin pathway). Each

cascade is capable of 3 reactions involved in protein activation. Let R1 be the forward binding

activation between protein and receptor, R2 is the reverse binding reaction and R3 is the catalysis

reaction in which the activated form of the protein is produced:

Protien + Activated-Receptor :RI % Complex

Complex R3 > Activated-Receptor + Activated-Protien

Sequences leading to activation of the RhoA-ROCK or Pyk protein are those that end in R3

for each pathway. Therefore we enumerate all sequences in which the only occurrence of R 3 is

the last reaction in the sequence. We assume binary initial conditions were the activated form of
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the protein is initially 0. All forward and catalysis reaction constants are (c,c 3 =1) and reverse

reactions (c2 = -1)

Figure 3.4B illustrates the distribution of the signal transduction (or the first occurrence time

of R3 = f, = |,)) for several sequences. The red curve represents the sequence is S = (RI,R?3 )

which is the most probable and direct sequence to occur. As the number of reactions in the

sequence increase we see a decrease in the probability that activation will occur and shift in the

distribution curve. Figure 3.5 represents the marginal distribution fj, (t = t) . Given 2 reaction

cascades occurring independently, we may compute the probability that the signaling

transduction of the first cascade is faster that the second. Calculating, we obtain

Pr(thA-ROCK < Pyk) ~.49 which is expected since the parameters are the same for both pathways.
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Integrin pathway VEGF pathway
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Figure 3-2:A. Diagram of simplified VEGFR-and a, 3 integrin pathway. B. Occurrence time probability for

variyning sequnces Si. f,(t = t, I S,)
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3.5 Conclusion

A dynamic model of a signaling network was developed based on distributions associated

with individual and independent pathways. These distributions where calculated exactly and in

addition the probability of a particular order was discussed and defined. The approach was

demonstrated with a simple numeric example.
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4. Conclusion
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4.1 Contribution of this Work

This thesis has developed a several modeling frameworks for regulating intracellular

signaling dynamics for the purpose of controlling endothelial cell migration in angiogenesis. We

began by developing an input-output time-delay model derived from simulated data that was

used to predict the optimal extracellular input intensity for a desired response. We concluded

that the simulated waveforms approximated discrete state changes occurring randomly in

continuous time. Therefore we developed a "pseudo discrete "modeling framework based on

standard probability theory. Using this approach an exact solution could be found for the signal

transduction time.

Unlike previous works, the models developed in this thesis exploit the effect of signaling

order on extracellular response. Future work should include comparing models with actual data

as well as developing a control law to fit the model. The following sections summarize several

control strategies that may be explored.

4.2 Future Directions in Control

A main setback of microfluidic device technology is the delay associated with development

of the correct concentration gradient in the device. This delay is dependent on the diffusion

characteristics of the growth factor medium, the properties of the gel matrix as well as the

geometric constraints of the device. To increase performance, a more immediate feedback

mechanism may be required to manipulate protein activity at precise time and places. Recent

advances in genetic engineering allow protein activity to be controlled reversibly and repeatedly

using light [21]. In particular, it has been shown that photo-activatable Racl could be activated

using light to cell motility and control the direction of cell movement [21].
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4.2.1 System Definition

Consider a protein kinase signal transduction cascade as shown in figure 4-1 Each kinase

may transition to its activated state with a probability (p,) proportional to the amount of

inactivated kinase present (P,) as well as the amount of previous activated kinase (P*,_,). The

probability is also governed by the forward/backward and catalytic reaction constants associated

with activation (ca,, A,,f, ) (See table 1-1). The probability (q, ) for the kinase to transition into

its inactivated state is governed by the amount of activated kinase (P*, ) and in-activator enzyme

(E, ) present as well as the backward/forward rates and catalytic rates associated with

deactivation (d,,, ).

4.2.2 Problem Statement

We wish to alter intracellular environment in such a way that the state transition probabilities

of the last protein in the cascaded pathway (p,,q,) may be controlled. Using photo-activatable

proteins, we may locally change the reaction rates (d 3, A3 ,83,a 3 , A3,63) related to these

probabilities. In this way, the molecular concentration of the activated protein P3* may be driven

to a desired amount. We assume that the light source used to control activity of P* has no effect

on the activity of the upstream proteins. We examine the convergence of activated protein P*

with and without micro-fluidic device feedback.

Extracellular Matrix Cytoplasm

p, =f(aa,4,R',P,) p =f(a2,p,,A,PP=) p,=fa ,,,,P,)

u e~'e : R*

I

U

Figure 4-1: Protein cascade state transition diagram

43



Conclusion

4.2.3 Feedback Control of Single Cell

Let us consider nf as a discrete random variable capable of 3 distinct states. nf takes the

value +1 when the protein transitions from its inactive to active state, -1 when the protein

transitions from active to inactive state, and zeros when the protein remains in its current state.

Figure 4-2 shows the probability mass function of the random variable n[

+1. inactive -+ active P
P ~Pr(nf) )nf = 0 remain in current state 1-p-q

-I active to inactive

-1 0 1
P

n,

Figure 4-2: Probability Mass function of random variable np

Then we may define the number of activated protein at time t as:

X[*= Xt* +n, (4.1)

Using the transition activation/inactivation transition probabilities, the expected amount of

activated protein in the next time step can be written as:

E[XK |X, ] XX + E[n] =p-q+X, (4.2)

The variance can be written as:

Var[X,K* |Xf] = X + E[n ]= p+q-(p-q) 2  (4.3)

The goal is to bring the number of molecules P3*(X,'f) to reach the desired value:

y = XI - yd . We define the error between the desired output and the desire values as:

e, = Yd - Yt (4.4)
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We consider unilateral control such that q is approximately zero while e, > 0 and p is

approximately zero while e, < 0.

0, e, <0
P (e,), e, >0(45

e{>O(4.5)q(e,), e, <0
q 0, e, >0

This may be a valid assumption if the a reaction rates associated with activation will be

increased to several orders of magnitude higher than the deactivation rates while e, > 0 which

actively decreases the probability of a deactivation reaction occurring. The reverse scenario is

true for e, < 0 .

To ensure a stable control law, we use Lyapunov-like stability theory[22]. Let us define

V'(e,) as the stochastic Lyapunov function. Vs is a nonnegative , super-martingale function

satisfying Vs(et = 0)= 0 and Vs(e,)>0, e, # 0. Define Qm = [e, :Vs (e,) < m], m < oo. If a

nonnegative, real, scalar valued function k (e,) exists such that the difference between V' (e,) and

the conditional mean E [Vs (et+, I e,)] at time t +1 is bounded as:

E [V' (e,+ e ,)] - V' (e,) A -k (e,) 0 (4.6)

in Qmthen e, converges to

e, -+ Pm = Qm r {e: k (e)= 0} (4.7)

with probability no less than-V' (eO) /m. If m is sufficiently large, then the probability of

convergence is 1.

Let us choose the Lyaponov function as:
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V =e 2  (4.8)

For asymptotic stability we require that AV,'= E[V (e, l e,)] - Vs(e,) 0. Substituting

expressions and simplifying:

AV = Var(et+1 |e)+ E[e,, | e, ]2 - e 2 0

= p(1- 2e)+ q (1 +2e,) < 0(49

As discussed previously we assume unilateral control. Therefore for e, > 0 (q = 0 ) reverts to:

p(1- 2e,) 0 (4.10)

Therefore the control law that will guarantee stability:

(0<p<1 e, >0.5
p= 0.5(4.11)

As can be seen, for e, >0.5 any probability will ensure stability regardless of error. The

value that maximizes A Vs is therefore p = 1.

4.2.4 Feedback Control of Homogeneous Cell Populations

Up till now we have only considered the response of a single cell to various inputs. In reality

the angiogenic process consists of a vast number of cells responding to the given stimuli. It is

currently infeasible to measure multiple cells at a time using FRET techniques. However, other

florescent methods to determine protein expression may be an useful alternative. Assuming that a

method to measure protein levels is available we may redefine the output as an aggregate output

given.

46



Yd Controller U1

Figure 4-3: Population: Diagram Depicting Proposed Protein Feedback of Cell Population

Using similar techniques in the previous section it has been shown in [23,

aggregate output (i.e. the average output protein concentration over multiple cells

) can be controlled using the following stability criterion.

NR ~ NR~
'A V| 'pp+ e, ' p] - e2tI N II N

24] that the

iN

NI

(4.12)

Where N is the number of cells N, et d - *

4.2.5 Feedback Control of Heterogeneous Cell Populations

In many cases we cannot assume homogeneity of the cell because each cell has different

initial condition and parameters. In this case the analytical expression for of the variance is not

available. However if we use the central limit theorem to approximate the aggregate output as a

normal distribution:

ZN [N )~ N(0,Q), for N -+ oo
-\1 1 (4.13)
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A. MATLAB Codes
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A.1 MATLAB SymBiology Code: Numerical Integration of Reaction
Rate Equations + histogram generation
%%10/10/2011
% Created by Michaelle N Mayalu
% Toy Model for the intracellular signalling pathway: 2 stages with
feedback:using matlab SimBiology toolbox
%% Create Model
clear all
Toy2 = sbmlimport('Toymodel');
NA = 6.022e23; %%avagadro's number(molecules/mole)
CellVolume = 10e-12; %Liters
MatrixVolume = 10e-6; %Liters
mconU =le-12;
n_U = mconU*NA*MatrixVolume;
tf = 15000 ;
t% Simulate for varied initial conditions p10,p20 and y1O,y20 following a
u_variants = addvariant(Toy2, 'u_variants');
variants = addvariant(Toy2, 'variants');
addcontent(uvariants, {'species', 'U', 'InitialAmount', nU});
u v = [1.1,3,10];
inputl =
input2 =
for p = 1:length(u-v)

rmcontent(u variants,1);
conU = u_v(p)*le-12;
nconU = conU*NA*MatrixVolume;
addcontent(u variants, {'species', 'U', 'InitialAmount', nconU});
%%uniform distribution
n = 100; %% number of runs
csl = getconfigset(Toy2);
set(csl, 'StopTime', tf); %set stop time
set(csl, 'SolverType', 'sundials')
addcontent(variants, {{'species', 'p1', 'InitialAmount', le6},{'species',

'p2', 'InitialAmount', le6}...
,{'species', 'yl', 'InitialAmount', le4},{'species', 'y2',

'InitialAmount', le4}});
ensemblel = [;
ensemble2 = [];
rp1 = []; rp2 =
ryl = []; ry2 =
for a = [1:n]

rmcontent(variants,1);
rmcontent(variants,1);
rmcontent(variants,1);
rmcontent(variants,1);
rp1(a) = randi([1e3,1e8]); rp2(a) = randi([1e3,1e8]);
ry1(a) = randi([1e3,1e5]); ry2(a) = randi([1e3,1e5]);
addcontent(variants, {{'species', 'p1', 'InitialAmount',

rp1(a)},{'species', 'p2', 'InitialAmount', rp2(a)}...
,{'species', 'yl', 'InitialAmount', ry1(a)},{'species', 'y2',

'InitialAmount', ry2(a)}});
[tode, xode, names] = sbiosimulate(Toy2,csl, [variants,uvariants]);
time = [0:100:tf];
pli = interpl(t_ode,xode(:,16),time);
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p2i = interp1(t_ode,xode(
ensemblel = [ensemblel,pli
ensemble2 = [ensemble2,p2i

,19) ,time);

'];

'];
end
input1{p} = {input1,ensemblel};
input2{p}= {input2,ensemble2};

end

% Find the delay ascociated with responses
%delay pl

taulu
tau2_u
for p=1

for

=[];
:[];
length(uv)
a = [1:n]
pl = inputl{p}{2}(:,a);
p1_lim = .5*pl(length(time));
aM = 1;
while abs(p1(aM)) <= p1_lim

a M = a M+1;
end
deltatau = time(aM) -
i_delaypl = aM;
tau_pl(a) = time(aM);

end
taulu =[taulu;tau_pl];

time (1);

end

%delay p2
for p = 1:length(u v)

for a = [1:n]
p2 = input2{p}{2}(:,a);
p2_lim = .5*p2(length(time));
a_M = 1;
while abs(p2(a_M)) <= p2_lim

aM = aM+1;
end
deltatau = time(aM)
i_delayp2 = aM;
taup2(a) = time(aM);

end
tau2_u =[tau2_u;taup2];

- time(1);

p = 1:length(uIv)
tauul{p} = [-1000:mean(taul_u(p,:))+1000];
tauu2{p} = [-1000:mean(tau2_u(p,:))+1000];
fl{p} = ksdensity(taul_u(p,:),tau_ul{p},'width',200);
hl = max(fl{p});
bl = max(hist(taul_u(p,:)));
f2{p} = ksdensity(tau2_u(p,:), tau_u2{p},'width',250);
h2 = max(f2{p});
b2 = max(hist(tau2_u(p,:)));

figure (3)
plot(tau-ul{l},fll},'r-',tau-ul{2},fl{2},'m-',tau-ul{3},fl{3},'c-')
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end
for

end
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title('Distribution of taul for pl given ul = 1pM')
xlabel('taul seconds')
legend('1','3','5','10')

figure(4)
plot(tauu2{1},f2{1},'r-',tau u2{2},f2{2},'m-',tau u2{3},f2{3},'c-')
title('Distribution of taul for p2 given ul = 1pM')
xlabel('taul seconds')
legend('1','3','5','10')

A.2 MATLAB Code: Calculation of signal transduction time
probabilities
W%4/20/2012
%%Created by Michaelle Mayalu

W% Calculation of signal transdution time probabilites
%%assumptions:
%%2) intial activated states zero
%%3) initial inactivated states nonzero
clear all
%% 1. compute valid sequences of leading to R--> X(state where X1* = 1)
% %% define parameters
c = 1; %% number of cascades
n = 3*c; %%number of reations and states
Rtype = [1:n]; %% vector containg reaction types
tf = 100; %sec
% S = perms(Rtype); %%matrix of all possible reaction sequences
%% sequence generation
X = [1;
X0 = [10 1 0 0 1 0]'; %%initial state
X(:,l) = XO;

c = [1 .1 1 1 .1 .01];
a = ;
% a(1,1) = c(1)*X(1,1)*X(2,1);
% a(2,1) = c(2)*X(3,1);
% a(3,1) = c(3)*X(3,1);
% a(4,1) = c(4)*X(4,1)*X(5,1);

% a(5,1) = c(5)*X(6,1);
% a(6,1) = c(6)*X(6,1);
% tmax = 1/max(a); %sec
n_total= 20; %ceil(tf/tmax)

v12 = ones(l,ntotal);
if mod(ntotal,2) == 0

last = [2:2:ntotal];
v12(2:2:ntotal-2) = ones(size([2:2:n total-2]))*2;

else
last = [2:2:ntotal-1];

v12(2:2:ntotal-3) = ones(size([2:2:n total-3]))*2;
end
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for 1 = last
v = zeros(l, length(l));
v(1-1:1)= [1, 3] ;
v(1:1-2) = v12(1:1-2);
S{l}= V;

end

S{last};

% if tf/tmax < 1;
display('final time(tf) is too small')
break

% end
% Rp = 0;
% ntotal= 1; %ceil(tf/tmax)
% for i = [1:ntotal] ; %%time i
% for j = [1:6] %%reaction j
% if a(j,i) > 0 && Rp -= j,
% Rp = [Rp,j] %%save this reaction
% end
W end
I end

I for k = 1:length(Rp)
% a(find(S(:,l) == Rp(i))
% end

%% State Space Matrix
%X(l) - activated receptor, X(2) - inactivated protien, X(3)-activated
receptor:inactivated protien ,
%X(4)- activated protien, X(5)- phosphotase, X(6) - a
%% enumerate states;
A = zeros(6,6);
A(1,:) = [-1 -1 1 0 0 0];
A(2,:) = [1 1 -1 0 0 0 ];
A(3,:) = [1 0 -1 1 0 0];
A(4,:) = [0 0 0 -1 -1 1];
A(5,:) = [ 0 0 0 1 1 -1];
A(6,:) = [ 0 1 0 0 1 -1];
u = zeros(size(XO));
for i = last

X(:,l) = X0;

x =Si};

w = 1;

for R = x;
u = zeros(size(XO));
u(R) = 1;
X(:,w+l) = X(:,w) + AI*u;
w = w +1;

end
XX{i} =X;

end

t% propenities for each state:
for i = last
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h = XX{i};
for t = 1:length(h(1,:))

if X(1,t)>= 0 && X(2,t) >= 0
a(1,t) = c(1)*X(1,t)*X(2,t);

end
if X(3,t)>= 0

a(2,t) = c(2)*X(3,t);

a(3,t) = c(3)*X(3,t);

end
if X(4,t)>= 0 && X(5,t) >= 0
a(4,t) = c(4)*X(4,t)*X(5,t);

end
if X(6,t)>= 0

a(5,t) = c(5)*X(6,t);

a(6,t) = (6)*X(6,t)
end

end
alphas{i} = a;

end

% sym to
% for i = last
% C{i} = prod(sum(alphas{i}))
% end
% a_0 = []
% res = []
% for i = last

a o = sum(alphas{i})
for t = 1:length(ao)

% % res(t) = 1/ ao(

I end

for i = last
aO{i} = sum(alphas{i});
Q{i} = zeros(length(a_0{i}),length(aO{i}));
for y = 1:length(aO{i})-1

Q{i}(y,y) = -ao{i}(y);
Q{i}(y+l,y) = ao{i}(y);

end
time = 0:.01:80;

end
% l{2} = string(g);
% l{4} = 'b';
% l{6} =
W l{8} =
w 1{10} = 'c';

for i = last
w = 1;

for t = time
E{i} = expm(Q{i}*t);
p(w) = E{i}(length(aO{i})-1,1);
w = w+1;
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end
figure(1)

P{i} = P;
plot(time, p/sum(p))
hold on

end
% xlim([0,500])
% ylim([O,.51)
% legend(num2str(S{2}),num2str(S{4})
num2str(S{10}))
% xlabel('time', 'FontSize', 12)
% ylabel('\fontsize{12} fT(t|S_i)',
% % text(pi,O,' \leftarrow sin(\pi)'

, num2str(S{6}),num2str(S{8}),

'Interpreter','tex')

,'FontSize',18)

% for i = last
tk =O:length(P{i})-1;

% plot(tk, P{i})
% end

alphas{i};

joint = 0;

for i = last
prosalphas =

prod([alphas{i}(1,1:2:length(S{i})),alphas{i}(2,2:2:length(S{i})-1)]);
joint = joint + P{i}*prosalphas;

end

taul = time;
tau2 = time;
ytl = P{2};
yt2 = P{2};
i k = [];
ptlgt2 = [];

p =[];
a = 1;
while a <length(taul)

k = tau2(a);
i k = find(taul>k);
joint(i-k);
ptl = (joint(a))*joint(ik);
pt2(a) = sum(pt1);
a = a+1;

end
p=sum(pt2)/(sum(joint))A2;

joint30 = joint/sum(joint);
figure(2)
plot(time, joint/sum(joint))
xlim([0,30])
% ylim([O,.35])
xlabel('time', 'FontSize', 16)
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ylabel('Marginal occurance time Probability: \itfT(tn)', 'FontSize', 16)
hold on

save('JointP30', 'joint3O')
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