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Abstract

Dynamic programming languages have become popular for scientific computing. They
are generally considered highly productive, but lacking in performance. This thesis
presents a new dynamic language for technical computing, designed for performance
from the beginning by adapting and extending modem programming language tech-
niques. A design based on generic functions and a rich type system simultaneously
enables an expressive programming model and successful type inference, leading to
good performance for a wide range of programs. In our system, more behavior can
be defined in libraries and user code, allowing our infrastructure to be shared across
disciplines.
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Chapter 1

Introduction

Convenience is winning. Despite continued advances in compiler technology and

execution frameworks for high-performance computing, programmers routinely use

high-level dynamic languages for algorithm development in applied math and the sci-

ences. These systems (prominent examples include Python [44], R [30], MATLAB@,

Octave [39], and SciLab [27]) have greatly increased productivity, but are known to

lack performance for many demanding applications. The result is a two-tiered soft-

ware world, where C and FORTRAN are used for key libraries and production code,

while high-level languages are used for interaction and scripting overall workflow. In

this thesis I argue that a new approach to dynamic language design can change this

situation, providing productivity and performance at once. We should embrace the

emerging preference for "scripting" style languages, and ask how these systems can

better provide for the future of technical computing.

The "two-tier" architecture, for example writing an application in Python with

performance-critical code written in C, seems like a good way to balance performance

and productivity, but there are many reasons to move away from it. Naturally, it

would be preferable to write compute-intensive code in a more productive language

as well, especially when developing parallel algorithms, where code complexity can

increase dramatically. Programming in two languages can also be more complex

than using either language by itself, due to interfacing issues such as converting

between type domains and handling memory reclamation. These interfacing issues
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may also add overhead when calling between layers. When such a system is used

for mathematical programming there is pressure to write "vectorized" code, which is

not natural for every problem. Lastly, from a compiler's point of view, these designs

make it difficult to perform whole-program optimization. It is difficult to perform

domain-specific optimizations of C code, and expressing algorithms at a higher level

makes certain optimizations easier.

Fortunately, there has been significant progress in improving the performance of

dynamic languages. Projects like the Python compiler framework PyPy [8] have

been fairly successful. Similar efforts exist for languages from LISP onward. The

common feature of all such projects is that they seek to add performance to an existing

language. This is obviously useful, but we are somewhat surprised to find it has not

led to the desired situation outlined above. Julia is designed for performance from

the beginning, and we feel this seemingly-subtle difference turns out to be crucial.

"Built-in" performance means that the compiler's type machinery is also available

within the language, adding expressiveness. This, in turn, allows more functional-

ity to be implemented in libraries. Many of the key differences between languages

used by different disciplines (e.g. R for statistics) could be expressed in libraries, but

are instead either part of the language core, or implemented in C where they are

more difficult to modify or extend. When optimizers for these languages are devel-

oped, knowledge of key library functions often must be encoded into the compiler.

Even Common LISP, for which there are several highly-optimizing compilers, specifies

arithmetic in the language, and yet users do not all agree on how arithmetic should

behave. Some users require specialized types such as fixed-point numbers or intervals,

or support for "missing data" values as in R.

Julia has the potential to solve this problem by providing infrastructure that can

be shared across domains, without sacrificing the ease and immediacy of current

popular systems. We take advantage of, and validate, this infrastructure by writing

Julia's standard library in the language itself, which (1) makes the code more generic

and increases our productivity, (2) allows inlining library code into user code and

vice-versa, and (3) enables direct type analysis of the library instead of requiring

7



knowledge of library functions to be built in to the compiler. New users are able to

read the standard library code, and modify it or imitate it for their own purposes.

Many of the ideas explored here are not exclusively applicable to technical com-

puting, but we have chosen to target that application area for several reasons. First,

technical computing has unique concerns that can be especially awkward or ineffi-

cient to handle in existing dynamic languages. Examples include the need for a wide

variety of numeric types, and the need for efficient arrays of those types. Second, the

performance of high-level technical computing languages has begun to seriously lag

behind that of more mainstream languages (notably JavaScript), creating a present

need for attempts to improve the situation. General-purpose languages like Java or

perhaps even JavaScript could be used for technical computing, but we feel the com-

munity will continue to prefer environments that cater to its syntactic needs, and are

able to prioritize issues of numerical accuracy and performance.

1.1 The Essence of Julia

Julia's primary means of abstraction is dynamic multiple dispatch. Much of a lan-

guage consists of mechanisms for selecting code to run in different situations - from

method selection to instruction selection. We use only dynamic multiple dispatch for

this purpose, which is possible through sufficiently expressive dispatch rules. To add

usability to this flexibility, types can generally be ignored when not used to specify

dispatch behavior.

Types may optionally be used to make declarations, which are considered by the

compiler and checked at run time when necessary. However, we do not require dec-

larations for performance. To achieve this, Julia's compiler automatically specializes

methods for types encountered at run time (or at compile time, to the extent types

are known then). Effectively, every method is a template (in the C++ sense) by de-

fault, with parameterization and instantiation directed by the compiler. We feel this

design is in line with a general trend towards automation in compiler and language

design.
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1.2 Contributions of this Thesis

This thesis describes and evaluates the design and implementation of a dynamically-

typed language intended to be more amenable to analysis and optimization, and

demonstrates its benefits for technical computing applications. Our design allows

more behavior to be specified in libraries than existing dynamic languages, and with

better performance in many cases. We present key algorithms used in our implemen-

tation.

1.3 Organization of this Thesis

Chapter 2 presents the design of Julia: the basic elements of the language, what it

looks like from the user's perspective, and the reasoning behind the design. Chap-

ter 3 provides details of the algorithms and implementation that make Julia work

effectively. Chapter 4 discusses some features of the standard library, focusing on use

cases that highlight Julia's strengths. Chapter 5 presents some points of evaluation.

Chapter 6 describes prior research in the area and how Julia relates to it. Chapter

7 concludes, and discusses the status of Julia as an open-source project beginning to

attract outside interest.

9



Chapter 2

Language Design

Static typing appears to have many advantages from an objective, theoretical stand-

point: earlier error detection, generally better performance, and support for more

accurate tools are often cited in this context. Nevertheless, developers are "voting

with their code" for languages that lack strong static typing disciplines. This is the

phenomenon that Julia's design addresses, and as such we must present our view of

the advantages of dynamic languages. In particular, we do not assume that every

feature of these languages is equally important. We hypothesize that the following

forms of "dynamism" are the most useful:

" The ability to run code at load time and compile time, eliminating some of the

distractions of build systems and configuration files.

" A universal Any type as the only true static type, allowing the issue of static

types to be ignored when desired.

" Never rejecting code that is syntactically well-formed.

" Behavior that depends only on run-time types (unlike, for example, C++, where

virtual methods are dispatched by run-time type and function overloads are

dispatched by static type).

We explicitly forgo the following features in the interest of preserving the possi-

bility of static typing in a reasonably broad category of situations:

10



e Types themselves are immutable.

" The type of a value cannot change over its lifetime.

" Local variable environments are not reified.

" Program code is immutable, but new code may be generated and executed at

any time.

" Not all bindings are mutable (const identifiers are allowed).

This set of restrictions allows the compiler to see all uses of local variables, and

perform dataflow analysis on local variables using only local information. This is

important, since it allows user code to call statically-unknown functions without in-

terfering with optimizations done around such call sites. Statically-unknown function

calls arise in many contexts, such as calling a function taken from an untyped data

structure, or dynamically dispatching a method call due to unknown argument types.

The core Julia language contains the following components:

1. A syntax layer, to translate surface syntax to a suitable intermediate represen-

tation (IR).

2. A symbolic language and corresponding data structures for representing certain

kinds of types, and implementations of lattice operators (meet, join, and <)

for those types.

3. An implementation of generic functions and dynamic multiple dispatch based

on those types.

4. Compiler intrinsic functions for accessing the object model (type definition,

method definition, object allocation, element access, testing object identity,

and accessing type tags).

5. Compiler intrinsic functions for native arithmetic, bit string operations, and

calling native (C or FORTRAN) functions.
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6. A mechanism for binding top-level names.

The IR describes a function body as a sequence of assignment operations, func-

tion calls, labels, and conditional branches. Julia's semantics are those of a standard

imperative language: statements are executed in order, with function arguments eval-

uated eagerly. All values are conceptually references, and are passed by reference as

in LISP.

Julia's core evaluation semantics are particularly bland, because all of the inter-

esting work has been moved to the generic function system. Every function definition

is actually a definition of a method for some generic function for some combination

of argument types. The "feel" of the language derives mostly from the fact that

every function call is dynamically dispatched to the most specific matching method

definition, based on the types of all arguments.

2.1 Types

Julia uses dynamic typing, which means that the universal type Any is the only static

type. Our design philosophy is that types should be quite powerful and expressive,

but nearly invisible to the user. Julia programmers must be able to ignore the type

system completely if they do not wish to make explicit use of its functionality.

Julia treats types as symbolic descriptions of sets of values. Every value has a

unique, immutable, run-time implementation type. Objects carry type tags, and

types themselves are Julia objects that can be manipulated at run time. Julia has

five kinds of types:

1. abstract types, which may have explicitly-declared subtypes and supertypes

2. composite types (similar to C structs), which have named fields and explicitly-

declared supertypes

3. bits types, whose values are represented as bit strings, and which may have

explicitly-declared supertypes
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4. tuples, immutable ordered collections of values. The type of a tuple is defined

recursively as a tuple of the types of the elements. Tuple types are covariant

in their element types. A tuple is used to represent the type of a method's

arguments.

5. union types, abstract types constructed from other types via set union

Abstract types, composite types, and bits types may have parameters, which

makes it possible to express variants of a given type (for example, array types with

different element types). These types are all invariant with respect to their parameters

(i.e. two versions of the same type with different parameters are simply different, and

have no subtype or supertype relationship). Type constructors are applied using curly

braces, as in Array{Float64, 1] (the Array type is parameterized by element type

and rank).

Bits types allow users to add new fixed-width number-like types and obtain the

same performance that primitive numeric types enjoy in other systems. Julia's "built

in" numeric types are defined as bits types. Julia method dispatch is based on types

rather than field lookup, so whether a value is of a bits type or composite type is a

representation detail that is generally invisible.

As an extra complexity, tuple types may end in a special ... type that indicates

any number of elements may be added. This is used to express the types of variadic

methods. For example the type (String, Int . . .) indicates a tuple where the first

element is a String and any number of trailing integers may be present.

Union types are used primarily to construct tight least upper bounds when the

inference algorithm needs to join unrelated types. For example, a method might

return an Int or a String in separate arms of a conditional. In this case its type

can be inferred as Union(Int,String). Union types are also useful for defining

ad-hoc type hierarchies different from those imagined when the types involved were

first defined. For example, we could use Union(Int,RangeInt) as the type of array

indexes, even though there is no Index type inherited by both constituents. Lastly,

union types can be used to declare methods applicable to multiple types.
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The key to the utility of Julia's type system is its implementation of two important

functions: the subtype predicate, which determines whether one type is a subset of

another, and type intersection, which computes a type that is a subtype of two given

types. These functions form the basis of method dispatch logic and type inference.

2.1.1 Notational Conveniences

An important goal is for users to be able to write Julia programs with virtually

no knowledge of type system details. Therefore we allow writing parametric types

without parameters, or omitting trailing parameters. Array refers to any kind of dense

array, Array{Float64} refers to a Float64 Array of any rank, and Array{Float64, 2}

refers to a 2-dimensional Float64 Array.

This design also makes it easy to add parameters to types later; existing code does

not need to be modified.

2.1.2 Standard Type Hierarchy

Here we present an excerpt from the standard library, showing how a few important

types are defined. The fields of composite types are redacted for the sake of brevity.

The <: syntax indicates a declared subtype relation.

abstract Type{T}
type AbstractKind <: Type; end
type BitsKind <: Type; end
type CompositeKind <: Type; end
type UnionKind <: Type; end

abstract Number

abstract Real <: Number

abstract Float <: Real
abstract Integer <: Real
abstract Signed <: Integer
abstract Unsigned <: Integer

bitstype 32 Float32 <: Float
bitstype 64 Float64 <: Float
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bitstype
bitstype

bitstype
bitstype
bitstype

bitstype
bitstype

bitstype
bitstype

bitstype

8 Bool <: Integer
32 Char <: Integer

8
8

16
16
32

32
64
64

Int8
Uint8
Int16
Uint16
Int32
Uint32
Int64
Uint64

Signed
Unsigned
Signed
Unsigned
Signed
Unsigned
Signed
Unsigned

abstract AbstractArray{T,N}
type Array{T,N} <: AbstractArray{T,N}; end

2.2 Syntax

Julia has a simple block-structured syntax, with notation for type and method defi-

nition, control flow, and special syntax for important operators.

2.2.1 Method Definition

Method definitions have a long (multi-line) form and a short form.

function iszero(x::Number)
return x==0

end

iszero(x) = (x==0)

A type declaration with :: on an argument is a dispatch specification. When

types are omitted, the default is Any. A : : expression may be added to any program

expression, in which case it acts as a run-time type assertion. As a special case, when

: : is applied to a variable name in statement position (a construct which otherwise

has no effect) it means the variable always has the specified type, and values will be

converted to that type (by calling convert) on assignment to the variable.
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Note that there is no distinct type context; types are computed by ordinary ex-

pressions evaluated at run time. For example, f (x): : Int is lowered to the function

call typeassert (f x) , Int).

Anonymous functions are written using the syntax x->x+1.

Local variables are introduced implicitly by assignment. Modifying a global vari-

able requires a global declaration.

Operators are simply functions with special calling syntax. Their definitions look

the same as those of ordinary functions, for example +(Ux,y) = . . ., or function +(x, y).

When the last argument in a method signature is followed by ... the method

accepts any number of arguments, and the last argument name is bound to a tuple

containing the tail of the argument list. The syntax f (t...) "splices" the contents

of an iterable object t as the arguments to f.

Parametric Methods

It is often useful to refer to parameters of argument types inside methods, and to

specify constraints on those parameters for dispatch purposes. Method parameters

address these needs. These parameters behave a bit like arguments, but they are

always derived automatically from the argument types and not specified explicitly by

the caller. The following signature presents a typical example:

function assign{T<:Integer}(a::Array{T,1}, i, n::T)

This signature is applicable to 1-dimensional arrays whose element type is some

kind of integer, any type of second argument, and a third argument that is the same

type as the array's element type. Inside the method, T will be bound to the array

element type.

The primary use of this construct is to write methods applicable to a family of

parametric types (e.g. all integer arrays, or all numeric arrays) despite invariance. The

other use is writing "diagonal" constraints as in the example above. Such diagonal

constraints significantly complicate the type lattice operators.
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2.2.2 Control Flow

if condition1 |1 (a && b)
# single line comment

elseif !condition2

else

# otherwise
end

while condition

# body
end

for i in range
# body

end

A f or loop is translated to a while loop with method calls according to the iter-

ation interface (start, done, and next):

state = start(range)
while !done(range, state)

(i, state) = next(range, state)
# body

end

This design for iteration was chosen because it is not tied to mutable heap-

allocated state, such as an iterator object that updates itself.

2.2.3 Special Operators

Special syntax is provided for certain functions.

surface syntax I lowered form

a[i, j] ref(a, i, j)
a[i, j] = x assign(a, x, i, j)
[a; b] vcat(a, b)

[a, b] vcat(a, b)

[a b] hcat(a, b)
[a b; c d] hvcat((2,2), a, b, c, d)
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2.2.4 Type Definition

# abstract type

abstract Complex{T<:Real} <: Number

# composite type

type ComplexPair{T<:Real} <: Complex{T}
re: :T

im: :T

end

# bits type

bitstype 128 Complex128 <: Complex{Float64}

# type alias

typealias Two0f{T} (T,T)

Constructors

Composite types are applied as functions to construct instances. The default con-

structor accepts values for each field as arguments. Users may override the default

constructor by writing method definitions with the same name as the type inside the

type block. Inside the type block the identifier new is bound to a pseudofunction

that actually constructs instances from field values. The constructor for the Rational

type is a good example:

type Rational{T<:Integer} <: Real
num: :T

den: :T

function Rational(num::T, den::T)

if num == 0 && den == 0
error("invalid rational: 0//0")

end
g = gcd(den, num)
new(div(num, g), div(den, g))

end
end

This allows Rational to enforce representation as a fraction in lowest terms.
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2.3 Generic Functions

The vast majority of Julia functions (in both the library and user programs) are

generic functions, meaning they contain multiple definitions or methods for various

combinations of argument types. When a generic function is applied, the most specific

definition that matches the run-time argument types is invoked. Generic functions

have appeared in several object systems in the past, notably CLOS [22] and Dylan

[41]. Julia is distinguished from these in that it uses generic functions as its pri-

mary abstraction mechanism, putting it in the company of research languages like

Diesel [13]. Aside from being practical for highly polymorphic mathematical styles

of programming, as we will discuss, this design is satisfying also because it permits

expression of most of the popular patterns of object-oriented programming, while

leaving the core language with fewer distinct features.

Generic functions are a natural fit for mathematical programming. For example,

consider implementing exponentiation (the ^ operator in Julia). This function lends

itself to multiple definitions, specializing on both arguments separately: there might

be one definition for two floating-point numbers that calls a standard math library

routine, one definition for the case where the second argument is an integer, and

separate definitions for the case where the first argument is a matrix. In Julia these

signatures would be written as follows:

function ^ (x::Float64, p::Float64)

function ^(x, p::Int)

function ^(x::Matrix, p)

2.3.1 Singleton Kinds

A generic function's method table is effectively a dictionary where the keys are types.

This suggests that it should be just as easy to define or look up methods with types

themselves as with the types of values. Defining methods on types directly is anal-

ogous to defining class methods in class-based object systems. With multi-methods,
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definitions can be associated with combinations of types, making it easy to represent

properties not naturally owned by one type.

To accomplish this, we introduce a special singleton kind Type{T}, which contains

the type T as its only value. The result is a feature similar to eql specializers in CLOS,

except only for types. An example use is defining type traits:

typemax(: : Type{Int64}) = 9223372036854775807

This definition will be invoked by the call typemax(Int64). Note that the name

of a method argument can be omitted if it is not referenced.

Types are useful as method arguments in several other cases. One example is file

I/O, where a type can be used to specify what to read. The call read (f ile, Int32)

reads a 4-byte integer and returns it as an Int32 (a fact that the type inference

process is able to discover). We find this more elegant and convenient than systems

where enums or special constants must be used for this purpose, or where the type

information is implicit (e.g. through return-type overloading).

2.3.2 Method Sorting and Ambiguity

Methods are stored sorted by specificity, so the first matching method (as determined

by the subtype predicate) is always the correct one to invoke. This means much of

the dispatch logic is contained in the sorting process. Comparing method signatures

for specificity is not trivial. As one might expect, the "more specific"1 predicate is

quite similar to the subtype predicate, since a type that is a subtype of another is

indeed more specific than it. However, a few additional rules are necessary to capture

the intuitive concept of "more specific". In fact until this point "more specific" has

had no formal meaning; its formal definition is summarized as the disjunction of the

following rules (A is more specific than B if):

'Actually, "not less specific", since specificity is a partial order.
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1. A is a subtype of B

2. A is of the form T{P} and B is of the form S{Q}, and T is a subtype of S for

some parameter values

3. The intersection of A and B is nonempty, more specific than B, and not equal

to B, and B is not more specific than A

4. A and B are tuple types, A ends in a vararg (...) type, and A would be more

specific than B if its vararg type were expanded to give it the same number of

elements as B

Rule 2 means that declared subtypes are always more specific than their declared

supertypes regardless of type parameters. Rule 3 is mostly useful for union types:

if A is Union(Int32,String) and B is Number, A should be more specific than B

because their intersection (Int32) is clearly more specific than B. Rule 4 means

that argument types are more important for specificity than argument count; if A is

(Int32.. .) and B is (Number, Number) then A is more specific.

Julia uses symmetric multiple dispatch, which means all argument types are

equally important. Therefore, ambiguous signatures are possible. For example,

given f oo(x: :Number, y: : Int) and f oo(x:: Int, y: :Number) it is not clear which

method to call when both arguments are integers. We detect ambiguities when a

method is added, by looking for a pair of signatures with a non-empty intersection

where neither one is more specific than the other. A warning message is displayed for

each ambiguity, showing the user the computed type intersection so it is clear what

definition is missing. For example:

Warning: New definition foo(Int,Number) is ambiguous with foo(Number,Int).

Make sure foo(Int,Int) is defined first.
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2.4 Intrinsic Functions

The run-time system contains a small number of primitive functions for tasks like

determining the type of a value, accessing fields of composite types, and constructing

values of each of the supported kinds of concrete types. There are also arithmetic

intrinsics corresponding to machine-level operations like fixed-width integer addition,

bit shifts, etc. These intrinsic functions are implemented only in the code generator

and do not have callable entry points. They operate on bit strings, which are not

first class values but can be converted to and from Julia bits types via boxing and

unboxing operations.

In our implementation, the core system also provides functions for constructing

arrays and accessing array elements. Although this is not strictly necessary, we did

not want to expose unsafe memory operations (e.g. load and store primitives) in the

language. In an earlier implementation, the core system provided a bounds-checked

Buf f er abstraction, but having both this type and the user-level Array type proved

inconvenient and confusing.

2.5 Design Limitations

In our design, type information always flows along with values, in the forward control

flow direction. This prevents us from doing certain tricks that static type systems are

capable of, such as return-type overloading. Return-type overloading requires a robust

notion of the type of a value context-the type expected or required of some term-in

order to select code on that basis. There are other cases where "backwards" type flow

might be desirable, such as determining the type of a container based on the type of

a value stored into it at a later program point. It may be possible to get around this

limitation in the future using inversion of control-passing a function argument whose

result type has already been inferred, and using that type to construct a container

before elements are computed.

Modularity is a perennial difficulty with multiple dispatch, as any function may
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apply to any type, and there is no point where functions or types are closed to future

definitions. Thus at the moment Julia is essentially a whole-program compiler. We

plan to implement a module system that will at least allow code to control which

name bindings and definitions it sees. Such modules could be separately compiled to

the extent that programmers are willing to ask for their definitions to be "closed".

Lastly, at this time Julia uses a bit more memory than we would prefer. Our

compiler data structures, type information, and generated native code take up more

space than the compact bytecode representations used by many dynamic languages.
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Chapter 3

Implementation

3.1 Method Dispatch

Much of the implementation is organized around method dispatch. The dispatch logic

is both a large portion of the behavior of Julia functions, and the entry point of the

compiler's type inference and specialization logic.

3.1.1 Method Caching and Specialization

The first step of method dispatch is to look for the argument types in a per-function

cache. The cache has an entry for (almost) every set of concrete types to which the

function has been applied. Concrete types are hash-consed, so they can be compared

by simple pointer comparison. This makes cache lookup faster than the subtype

predicate. As part of hash-consing, concrete types are assigned small integer IDs.

The ID of the first argument is used as a primary key into a method cache, so when

signatures differ only in the type of the first argument a simple indexed lookup suffices.

On a cache miss, a slower search for the matching definition is performed using

subtype. Then, type inference is invoked on the matching method using the types of

the actual arguments. The resulting type-annotated and optimized method is stored

in the cache. In this way, method dispatch is the primary source of type information

for the compiler.
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3.1.2 Method Specialization Heuristics

Our aggressive use of code specialization has the obvious pitfall that it might lead to

excessive code generation, consuming memory and compile time. We found that a few

mild heuristics suffice to give a usable system with reasonable resource requirements.

The first order of business is to ensure that the dispatch and specialization process

converges. The reason it might not is that our type inference algorithm is implemented

in Julia itself. Calling a method on a certain type A can cause the type inference

code to call the same method on type B, where types A and B follow an infinite

ascending chain in either of two partial orders (the typeof order or the subtype order).

Singleton kinds are the most prominent example, as type inference might attempt

to successively consider Int32, Type{Int32}, Type{Type{Int32}}, and so on. We

stop this process by replacing any nestings of Type with the unspecialized version of

Type during method specialization (unless the original method declaration actually

specified a type like Type{Type{Int32}}).

The next heuristic avoids specializing methods for tuple types of every length.

Tuple types are cached as the intersection of the declared type of the method slot

with the generic tuple type (Any.. .). This makes the resulting cache entry valid for

any tuple argument, again unless the method declaration contained a more specific

tuple type. Note that all of these heuristics require corresponding changes in the

method cache lookup procedure, since they yield cache entries that do not have to

exactly match candidate arguments.

A similar heuristic is applied to variadic methods, where we wish to avoid caching

argument lists of every length. This is done by capping argument lists at the length

of the longest signature of any method in the same generic function. The "capping"

involves replacing the last argument with a .. . type. Ideally, we want to form the

biggest type that's not a supertype of any other method signatures. However, this

is not always possible and the capped type might conflict with another signature.

To deal with this case, we find all non-empty intersections of the capped type with

other signatures, and add dummy cache entries for them. Hitting one of these entries
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alerts the system that the arguments under consideration are not really in the cache.

Without the dummy entries, some arguments might incorrectly match the capped

type, causing the wrong method to be invoked.

The next heuristic concerns singleton kinds again. Because of the singleton kind

feature, every distinct type object (Any, Number, Int, etc.) passed to a method might

trigger a new specialization. However, most methods are not "class methods" and

are not concerned with type objects. Therefore, if no method definition in a certain

function involves Type for a certain argument slot, then that slot is not specialized

for different type objects.

Finally, we introduce a special type ANY that can be used in a method signature

to hint that a slot should not be specialized. This is used in the standard library in a

small handful of places, and in practice is less important than the heuristics described

above.

3.2 Type Inference

Types of program expressions and variables are inferred by forward dataflow analy-

sis'. A key feature of this form of type inference is that variable types are inferred

at each use, since assignment is allowed to change the type of a variable. We deter-

mine a maximum fixed-point (MFP) solution using Algorithm 1, based on Mohnen's

graph-free dataflow analysis framework [381. The basic idea is to keep track of the

state (the types of all variables) at each program point, determine the effect of each

statement on the state, and ensure that type information from each statement even-

tually propagates to all other statements reachable by control flow. We augment the

basic algorithm with support for mutually-recursive functions (functions are treated

as program points that might need to be revisited).

The origin of the type information used by the MFP algorithm is evaluation of

known functions over the type domain [18]. This is done by the eval subroutine. The

'Adding a reverse dataflow pass could potentially improve type information, but we have not yet
done this.
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interpret subroutine calls eval, and also handles assignment statements by returning

the new types of affected variables. Each known function call is either to one of

the small number of built-in functions, in which case the result type is computed by

a (usually trivial) hand-written type transfer function, or to a generic function, in

which case the result type is computed by recursively invoking type inference. In the

generic function case, the inferred argument types are met (I) with the signatures of

each method definition. Matching methods are those where the meet (greatest lower

bound) is not equal to the bottom type (None in Julia). Type inference is invoked

on each matching method, and the results are joined (U) together. The following

equation summarizes this process:

T(f, targ) = [ T(g, tag r s)
(s,g)Ef

T is the type inference function. targ is the inferred argument tuple type. The

tuples (s, g) represent the signatures s and their associated definitions g within generic

function f.

Two optimizations are helpful here. First, it is rarely necessary to consider all

method definitions. Since methods are stored in sorted order, as soon as the union of

the signatures considered so far is a supertype of targ, no more definitions need to be

considered. Second, the join operator employs widening [19]: if a type becomes too

large it may simply return Any. In this case the recursive inference process may stop

immediately.

3.2.1 Interprocedural Type Inference

Type inference is invoked through "driver" Algorithm 2 which manages mutual re-

cursion and memoization of inference results. A stack of abstract activation records is

maintained and used to detect recursion. Each function has a property incomplete(F, A)

indicating that it needs to be revisited when new information is discovered about the

result types of functions it calls. The incomplete flags collectively represent a set

analogous to W in Algorithm 1.
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Algorithm 1 Infer function return type

Input: function F, argument type tuple A, abstract execution stack T
Output: result type T.R

V +- set of all locally-bound names
V. +- argument names
n +- length(F)
W +- {1} {set of program counters}
P, +- 0 {statements that recur}
Vi, S[1, V[i]] <- Undef

Vi, S[1, V[i]] +-A[i]
while W # 0 do

p +- choose(W)
repeat

W <- W - p
new <- interpret(F[p], S[p], T)
if T.rec then

P, <- PU {p}
T.rec <- false

end if
pi +- p+ 1
if F[p] =(goto 1) then

p/ +- 1
else if F[p] =(gotoif cond 1) then

if not new < S[l] then
W +-W u {l}
S[l] +- S[l] U new

end if
else if F[p] =(return e) then

pf +- n + 1
r <- eval (e, S [p], T)
if not r < T.R then

T.R +- T.R L r
W+-WUP,

end if
end if
if pi < n and not new < S[p] then

S[pl] <- S[p] Li new
p +- pI

end if
until p/ = n + 1

end while
T.rec +- P, # 0
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The outer loop in Algorithm 2 looks for an existing activation record for its input

function and argument types. If one is found, it marks all records from that point

to the top of the stack, identifying all functions involved in the call cycle. These

marks are discovered in Algorithm 1 when interpret returns, and all affected functions

are considered incomplete. Algorithm 2 continues to re-run inference on incomplete

functions, updating the inferred result type, until no recursion occurs or the result

type converges.

Algorithm 2 Interprocedural type inference

Input: function F, argument type tuple A, abstract execution stack S
Output: returned result type

R +- _L
if recall(F, A) exists then

R +- recall(F, A)
if not incomplete(F, A) then

return R
end if

end if
f -S
while not empty(f) do

if f.F is F and f.A = A then
r +- S
while not r = tail(f) do

r.rec +- true
r +- tail(r)

end while
return f.R

end if
f +- tail(f)

end while
T +- extend(S, Frame(F = F, A = A, R = R, rec = false))
invoke Algorithm 1 on F, A, T
recall(F, A) <- T.R
incomplete(F, A) <- (T.rec A -,(R = T.R))
return T.R

Because this algorithm approximates run-time behavior, we are free to change it

without affecting the behavior of user programs - except that they might run faster.

One valuable improvement is to attempt full evaluation of branch conditions, and

remove branches with constant conditions.
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3.3 Lattice Operations

Our type lattice is complicated by the presence of type parameters, unions, and

diagonal type constraints in method signatures. Fortunately, for our purposes only the

5 (subtype) relation needs to be computed accurately, as it bears final responsibility

for whether a method is applicable to given arguments. Type union and intersection,

used to estimate least upper bounds and greatest lower bounds, respectively, may

both be conservatively approximated. If their results are too coarse, the worst that

can happen is performing method dispatch or type checks at run time, since the

inference process will simply conclude that it does not know precise types.

A complication arises from the fact that our abstract domain is available in a first-

class fashion to user programs. When a program contains a type-valued expression,

we want to know which type it will evaluate to, but this is not possible in general.

Therefore in addition to the usual type imprecision (not knowing the type of a value),

we must also model type uncertainty, where a type itself is known imprecisely. A

common example is application of the typeof primitive to a value of imprecise type.

What is the abstract result of typeof (x::Number)? We handle this with a special

type kind that represents a range rather than a point within the type lattice. These

kinds are essentially the type variables used in bounded polymorphism [101. In this

example, the transfer function for typeof is allowed to return Type{T<:Number},

where T is a new type variable.

3.3.1 Subtype Predicate

See Algorithm 3. Note that extensional type equality can be computed as (A < BA B < A),

and this is used for types in invariant context (i.e. type parameters). The algorithm

uses subroutines p(A) which gives the parameters of type A, and super(A) which

gives the declared supertype of A.
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Algorithm 3 Subtype

Input: types A and B
Output: A < B

if A is a tuple type then
if B is not a tuple type then

return false
end if
for i = 1 to length(A) do

if A[i] is T... then
if last(B) exists and is not S... then

return false
end if
return subtype(T, B[j])), i < j length(B)

else if i > length(B) or not subtype(A[i], B[i]) then
return false

else if B[i] is T... then
return subtype(A[j], T)), i < j length(A)

end if
end for

else if A is a union type then
return Vt E A, subtype(t, B)

else if B is a union type then
return ]t E B, subtype(A, t)

end if
while A j4 Any do

if typename(A) = typename(B) then
return subtype(p(A), p(B)) A subtype(p(B), p(A))

end if
A +- super(A)

end while
if A is of the form Type{T} then

return subtype(typeof(p(A)[1]), B)
else if B is of the form Type{T} then

B <- p(B)[1]
return subtype(A, B) A subtype(B, A)

end if
return B = Any
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3.3.2 Type Union

Since our type system explicitly supports unions, the union of T and S can be com-

puted simply by constructing the type Union (T, S). An obvious simplification is per-

formed: if one of T or S is a subtype of the other, it can be removed from the union.

Nested union types are flattened, followed by pairwise simplification.

3.3.3 Type Intersection

This is the difficult one: given types T and S, we must try to compute the smallest

type R such that Vs, s E T A s E S => s E R. The conservative solution is to give up

on finding the smallest such type, and return some type with this property. Simply

returning T or S suffices for correctness, but in practice this algorithm makes the type

inference process nearly useless. A slightly better algorithm is to check whether one

argument is a subtype of the other, and return the smaller type. It is also possible

to determine quickly, in many cases, that two types are disjoint, and return I. With

these two enhancements we start to obtain some useful type information. However,

we need to do much better to take full advantage of the framework set up so far.

Our algorithm has two phases. First, the structures of the two input types are

analyzed in a manner similar to subtype, except a constraint environment is built,

with entries T < S for type variables T in covariant contexts (tuples) and entries

T = S for type variables T in invariant contexts (type parameters). In the second

phase the constraints are solved with an algorithm (Algorithm 5) similar to that used

by traditional polymorphic type systems [40].

The code for handling tuples and union types is similar to that in Algorithm 3, so

we focus instead on intersecting types in the nominative hierarchy (Algorithm 4). The

base case occurs when the input types are from the same family, i.e. have the same

typename. All we need to do is visit each parameter to collect any needed constraints,

and otherwise check that the parameters are equal. When a parameter is a type

variable, it is effectively covariant, and must be intersected with the corresponding

parameter of the other type to form the final result.
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Algorithm 4 Intersection of nominative types

Input: types A and B, current constraint environment
Output: return T such that A F B < T, updated environment

if typename(A) = typename(B) then
pa +- copy(p(A))
for i = 1 to length(p(A)) do

if p(A)[i] is a typevar then
add (p(A)[i] = p(B)[i]) to constraints

else if p(B)[i] is a typevar then
add (p(B) [i] = p(A)[i]) to constraints

end if
pa[i] +- intersect(p(A) [i], p(B) [i])

end for
return typename(A){pa...1

else
sup <- intersect(super(A), B)
if sup = I then

sup <- intersect(A, super(B))
if sup = I then

return I
else

sub +- B
end if

else
sub +- A

end if
E +- conform(sup, super-decl(sub))
if E contains parameters not in formals(sub) then

return I
end if
return intersect(sub, typename (sub) {E...

end if
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Algorithm 5 Solve type variable constraints

Input: environment X of pairs T < S and T = S
Output: environment Y of unique variable assignments T = S, or failure

Y <- 0
replace (T < S) c X with (T = S) when S is concrete
for all (T = S) E X do

if (T = R) E X and S / R then
return failure

end if
end for
for all (T < S) E X do

if (T = U) E X then
if not find(X, U) < S then

return failure
else

X <- X -(T < S)
end if

else if (T < U) E X and U not a variable then
replace U with U n* S
X <- X - (T < S)

end if
end for
for all variables T do

if (T = U) E X then
Y -Y u {T =U}

else
S <- fl* find(X, U), V(T < U) E X
if S = - then

return failure
end if
Y <-Y U {T = S}

end if
end for
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When the argument types are not from the same family, we recur up the type

hierarchy to see if any supertype of one of the arguments matches the other. If so, the

recursion gives us the intersected supertype sup, and we face the problem of mapping

it to the family of the original argument type. To do this, we first call subroutine

conform, which takes two types with the same structure and returns an environment

E mapping any type variables in one to their corresponding components in the other.

super.decl(t) returns the type template used by t to instantiate its supertype. If all

goes well, this tells us what parameters sub would have to be instantiated with to

have supertype sup. If, however, E contains type variables not controlled by sub, then

there is no way a type like sub could have the required supertype, and the overall

answer is -. Finally, we apply the base case to intersect sub with the type obtained

by instantiating its family with parameter values in E.

Constraints T < S where S is a concrete type are converted to T = S to help

sharpen the result type. If Algorithm 5 identifies any conflicting constraints, the

type intersection is empty. If each type variable has exactly one constraint T =

U, we can simply substitute find(X, U) for each occurrence of T in the computed

type intersection, and we have a final answer. find works in the union-find sense,

following chains of equalities until we hit a non-variable or an unconstrained variable.

Unconstrained type variables may be left in place.

The remaining case is type variables with multiple constraints. Finding a satis-

fying assignment requires intersecting all the upper bounds for a variable. It is here

that we choose to throw in the towel and switch to a coarser notion of intersection,

denoted by n*. Intersection is effectively the inner loop of type inference, so in the

interest of getting a reasonable answer quickly we might pick X F* Y = X. A few sim-

ple heuristics might as well be added; for example cases like two non-parameterized

types where one is an immediate subtype of the other can be supported easily.

In our implementation, type intersection handles most of the complexity sur-

rounding type variables and parametric methods. It is used to test applicability of

parametric methods; since all run-time argument lists are of concrete type, intersect-

ing their types with method signatures behaves like subtype, except static parameters
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are also properly matched. If intersection returns .L or does not find values for all

static parameters for a method, the method is not applicable. Therefore in practice

we do not really have the freedom to implement fn and n* any way that obeys our

correctness property. They must be at least as accurate as subtype in the case where

one argument is concrete.

3.3.4 Widening Operators

Lattices used in practical program analyses often fail to obey the finite chain condition

necessary for the MFP algorithm to converge (i.e. they are not of finite height) and

ours is no exception.

Widening is applied in two places: by the join operator, and on every recursive

invocation of type inference. When a union type becomes too large (as determined

by an arbitrarily-chosen cutoff), it is replaced with Any. Tuple types lend themselves

to two infinite chains: one in depth ((Any,), ((Any,),), (((Any,),),), etc.) and

one in length ((Any. . . ,), (Any, Any . .. ,), (Any, Any, Any. . . , ), etc.). These chains

are capped at arbitrary cutoffs each time the inference process needs to construct a

tuple type.

3.4 Code Generation and Optimization

After type inference is complete, we annotate each expression with its inferred type.

We then run two symbolic optimization passes. If the inferred argument types in a

method call indicate that a single method matches, we are free to inline that method.

For methods that return multiple values, inlining often yields expressions that con-

struct tuples and immediately take them apart. The next optimization pass identifies

these cases and removes the tuple allocations.

The next set of optimizations is applied during code generation. Our code gener-

ator targets the LLVM compiler framework [34]. First, we examine uses of variables

and assign local variables specific scalar types where possible (LLVM uses a typed

code representation). The box operations used to tag bit strings with types are done
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lazily; they add a compile-time tag that causes generation of the appropriate alloca-

tion code only when the value in question hits a context that requires it (for example,

assignment to an untyped data structure, or being passed to an unknown function).

The code generator recognizes calls to key built-in and intrinsic functions, and

replaces them with efficient in-line code where possible. For example, the is function

yields a pointer comparison, and typeof might yield a constant pointer value if the

type of its argument is known. Calls known to match single methods generate code

to call the correct method directly, skipping the dispatch process.

Finally, we run several of the optimization passes provided by LLVM. This gives

us all of the standard scalar optimizations, such as strength reduction, dead code

elimination, jump threading, and constant folding. When we are able to generate well-

typed but messy code, LLVM gets us the rest of the way to competitive performance.

We have found that care is needed in benchmarking: if the value computed by a loop

is not used, in some cases LLVM has been able to delete the whole thing.
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Chapter 4

Example Use Cases

4.1 Numeric Type Promotion

Numeric types and arithmetic are fundamental to all programming, but deserve extra

attention in the case of scientific computing. In traditional compiled languages such

as C, the arithmetic operators are the most polymorphic "functions", and hence

cannot be written in the language itself. Arithmetic must be defined in the compiler,

including contentious decisions such as how to handle operations with mixed argument

types.

In Julia, multiple dispatch is used to define arithmetic and type promotion behav-

iors at the library level rather than in the compiler. As a result, the system smoothly

incorporates new operators and numeric types with minimal work.

Four key utility functions comprise the type promotion system. For simplicity, we

consider only two-argument forms of promotion although multi-argument promotion

is also defined and used.

1. convert (T, value) converts its second argument to type T

2. promote-rule (T1, T2) defines which of two types is greater in the promotion

partial order

3. promote-type (T1,T2) uses promote-rule to determine which type should be

used for values of types Ti and T2
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4. promote (vi, v2) converts its arguments to an appropriate type and returns

the results

promote is implemented as follows:

function promote{T,S}(x::T, y::S)
(convert(promote-type(T,S),x), convert(promotetype(T,S),y))

end

promote-type simply tries promote-rule with its arguments in both orders, to

avoid the need for repeated definitions:

function promote.type{T,S}(: :Type{T}, : :Type{S})
if applicable(promoterule, T, S)

return promote-rule(T,S)
elseif applicable(promote-rule, S, T)

return promoterule (S, T)
else

errorC"no promotion exists for ",T," and ",S)

end

end

convert and promote.rule are implemented for each type. Two such definitions

for the Complex128 type are:

promote-rule(::Type{Complex128}, ::Type{Float64}) = Complex128

convert(::Type{Complex128}, x::Real) = complex128(x, 0)

With these definitions in place, a function may gain generic promotion behavior

by adding the following kind of definition:

+(x::Number, y::Number) = +(promote(x,y) ... )

This means that, given two numeric arguments where no more specific definition

matches, promote the arguments and retry the operation (the ... "splices" the two

values returned by promote into the argument list). The standard library contains

such definitions for all basic arithmetic operators. For this recursion to terminate, we

require only that each Number type implement + for two arguments of that type, e.g.
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+(x::Int64, y::Int64) = ...

+(x::Float64, y::Float64) = ...

+(x::Complex128, y::Complexl28) =

Therefore, each new type requires only one definition of each operator, and a

handful of convert and promote-rule definitions. If n is the number of types and

m is the number of operators, a new type requires O(n + m) rather than O(n - m)

definitions.

The reader will notice that uses of this mechanism involve multiple method calls, as

well as potentially expensive features such as tuple allocation and argument splicing.

Without a sufficient optimizing compiler, this implementation would be completely

impractical. Fortunately, through type analysis, inlining, elision of unnecessary tu-

ples, and lowering of the apply operation implied by . . ., Julia's compiler is able to

eliminate all of the overhead in most cases, ultimately yielding a sequence of machine

instructions comparable to that emitted by a traditional compiler.

The most troublesome function is promote-type. For good performance, we must

elide calls to it, but doing so may be incorrect since the function might throw an

error. By fortunate coincidence though, the logic in promote..type exactly mirrors

the analysis done by type inference: it only throws an error if no matching methods

exist for its calls to promote-rule, in which case type inference concludes that the

function throws an error regardless of which branch is taken. applicable is a built-

in function known to be free of effects. Therefore, whenever a sharp result type

for promote-type can be inferred, it is also valid to remove the unused arms of the

conditional.

4.2 Code Generation and Staged Functions

The presence of types and an inference pass creates a new, intermediate translation

stage which may be customized (macros essentially customize syntax processing, and

object systems customize run time behavior). This is the stage at which types are

known, and it exists in Julia via the compiler's method specialization machinery. Spe-
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cialization may occur at run time during dispatch, or at compile time when inference

is able to determine argument types accurately. Running custom code at this stage

has two tremendous effects: first, optimized code can be generated for special cases,

and second, the type inference system can effectively be extended to be able to make

new type deductions relevant to the user's application.

For example, we might want to write functions that apply to two arrays of different

dimensionality, where the result has the higher of the two argument dimensionalities.

One such function is a "broadcasting" binary elementwise operator, that performs

computations such as adding a column vector to every column of a matrix, or adding

a plane to every slice of a 3-dimensional dataset. We can determine the shape of the

result array with the following function:

function promote-shape(sl: :Tuple, s2: :Tuple)
if length(sl) > length(s2)

return si
else

return s2
end

end

The type system can easily express the types of array shapes, for example (nt, Int)

and (Int, Int, Int). However, inferring a sharp result type for this simple function

is still challenging. The inference algorithm would have to possess a theory of the

length and > functions, which is not easily done given that all Julia functions may

be redefined and overloaded with arbitrary methods.

One solution might be to allow the user to write some kind of compiler extension or

declaration. This approach is not ideal, since it might result in duplicated information,

or require the user to know more than they want to about the type system.

Instead, this function can be written as a staged function (or more accurately in

our case, a staged method). This is a function that runs at an earlier translation

"stage", i.e. compile time, and instead of returning a result value returns code that

will compute the result value when executed [31]. Here is the staged version of
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promote-shape:

Ostaged function promoteshape(sl::Tuple, s2::Tuple)
if length(sl) > length(s2)

quote return s1 end
else

quote return s2 end
end

end

The signature of this definition behaves exactly like any other method signature:

the type annotations denote run-time types for which the definition is applicable.

However, the body of the method will be invoked on the types of the arguments

rather than actual arguments, and the result of the body will be used to generate a

new, more specialized definition. For example, given arguments of types (Int, Int)

and (Int , Int , Int) the generated definition would be:

function promote-shape(s1: : (Int, Int), s2:: (IntInt, Int))
return s2

end

Observe that the type of this function is trivial to infer.

The staged function body runs as normal user code, so whatever definition of > is

visible will be used, and the compiler does not have to know how it behaves. Critically,

the staged version of the function looks similar to the normal version, requiring only

the insertion of quote to mark expressions deferred to the next stage.

In the case where a program is already statically-typeable, staged functions pre-

serve that property. The types of the arguments to the staged function will be known

at compile time, so the custom code generator can be invoked at compile time. Then

the compiler may inline the result or emit a direct call to the generated code, as usual.

Or, if the user does not require static compilation, the custom code generator can

be invoked at run time. Its results are cached for each new combination of argument

types, so compilation pauses are infrequent.

'The 0 denotes a macro invocation. At present, staged methods are implemented by a macro,
but full integration into the language is planned.
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Thus we have a language with the convenience of run-time-only semantics, which

can be compiled just-in-time or ahead-of-time 2 with minimal performance differences,

including custom code generation without the need for run-time eval. Most impor-

tantly, functions with complex type behavior can be implemented in libraries without

losing performance. Of course, ordinary Julia functions may also have complex type

behavior, and it is up to the library designer to decide which functions should be

staged.

4.3 Generic Programming

Support for generic programming is one of Julia's strengths. Code in dynamic lan-

guages is often thought of as generic by default, due to the absence of type restrictions,

but this has its limits. First, many systems, such as Common LISP, support optional

type declarations to improve performance. However, when this feature is used code

usually becomes monomorphic as a result. Second, some cases of generic program-

ming require the ability to specify behaviors that vary based on types, for example

initializing a variable with the right kind of container, or with an appropriate value

for different numeric types.

Julia has neither of these problems. The first is solved both by automatic special-

ization (which usually eliminates the need for performance-seeking declarations), and

static parameters, which allow declarations containing type variables. The second

is solved by the ability to define type traits. Multiple dispatch is also helpful, as it

provides many ways to extend functions in the future.

As an example, here is how max can be written for any array:

function max{T<: Real}(A:: AbstractArray{T})
v = typemin(T)
for x in A

if x > v
v = x

end

2The ahead-of-time compiler is not yet implemented.
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end
return v

end

At the same time, we could provide an alternate implementation that makes even

fewer assumptions:

function max(A)
v = typemin(eltype(A))

end

This allows any container to expose its element type by implementing eltype.

Here we do not have to know how the element type is determined. In fact, this

version would work for arrays equally well as the first implementation, but we skip

the opportunity to specify that it is only defined for arrays with Real elements.

We might also choose to call typemin only if the container is empty, and otherwise

initialize v with the first element. Then max would work on containers that do not

implement eltype, as long as they are never empty.

Flexible ad-hoc polymorphism plays a significant role in Julia's overall perfor-

mance. In scientific computing especially, important special cases exist among the

myriad datatypes that might appear in a program. Our dispatch model permits

writing-definitions for more specialized cases than most object-oriented languages.

For example, we have Array, the type of dense arrays, and SubArray, an abstract

array that references a contiguous section of another array. The BLAS and LAPACK

libraries allow the caller to specify dimension strides, and we would like to call them

for any arrays they can handle. To do this, we can define the following types:

typealias Matrix{T} Array{T,2}
typealias StridedMatrix{T,A<:Array} Union(Matrix{T}, SubArray{T,2,A})

Then we can write definitions such as *(StridedMatrix{T}, StridedMatrix{T})

for appropriate element types T. This replaces the custom dispatch schemes often

implemented in array programming systems.
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Chapter 5

Evaluation

5.1 Performance

We have compared the execution speed of Julia code to that of six other languages:

C++, Python, MATLAB@, Octave, R, and JavaScript. Figure 5-1 1 shows timings

for five scalar microbenchmarks, and two simple array benchmarks. All numbers

are ratios relative to the time taken by C++. The first five tests do not reflect

typical application performance in each environment; their only purpose is to compare

the code executed for basic language constructs manipulating scalar quantities and

referencing individual array elements.

We can see why the standard libraries of these environments are developed in C

and FORTRAN. MATLAB@has a JIT compiler that works quite well in some cases,

but is inconsistent, and performs especially poorly on user-level function calls. The

V8 JavaScript JIT compiler's performance is impressive. Anomalously, both Julia

and JavaScript seem to beat C++ on pi.sum, but we have not yet discovered why

this might be.

'These measurements were done by Stefan Karpinski on a MacBook Pro with a 2.53GHz Intel
Core 2 Duo CPU and 8GB of 1066MHz DDR3 RAM.

Python 2.7.1, MATLAB@R2011a, Octave 3.4, R 2.14.2, V8 3.6.6.11 C++ compiled by GCC 4.2.1,
taking best timing from all optimization levels (-00 through -03).

The Python implementations of rand..mat-stat and rand.mat..mul use NumPy (v1.5.1) functions;
the rest are pure Python implementations.
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Figure 5-1: Microbenchmark results (times relative to C++)

test Julia Python MATLAB@ Octave R JavaScript

fib 1.97 31.47 1336.37 2383.80 225.23 1.55
parse.int 1.44 16.50 815.19 6454.50 337.52 2.17
quicksort 1.49 55.84 132.71 3127.50 713.77 4.11
mandel 5.55 31.15 65.44 824.68 156.68 5.67
pi..sum 0.74 18.03 1.08 328.33 164.69 0.75
rand..matstat 3.37 39.34 11.64 54.54 22.07 8.12
randmat-mul 1.00 1.18 0.70 1.65 8.64 41.79

The rand..mat-stat code manipulates many 5-by-5 matrices. Here the performance

gaps close, but the arrays are not large enough for library time to dominate, so Julia's

ability to specialize call sites wins the day (despite the fact that most of the array

library functions involved are written in Julia itself).

The rand-mat-mul code demonstrates a case where time spent in BLAS [35] dom-

inates. MATLAB@gets its edge from using a multi-threaded BLAS (threading is

available in the BLAS Julia uses, but it was disabled when these numbers were taken).

R may not be using a well-tuned BLAS in this install; more efficient configurations

are probably possible. JavaScript as typically deployed is not able to call the native

BLAS code, but the V8 compiler's work is respectable here.

Figure 5-2 2 compares Julia and Python on some more realistic "task level" bench-

marks. The first test defines two data types (classes in Python), then forms (by ap-

pending) a heterogeneous array containing one million instances of each type. Then

a method is called on each object in the array. On the first run, Julia incurs some

compilation overhead and is about 8x faster. On future runs it is up to 16x faster. Al-

though the method calls cannot be optimized, Julia is still able to gain an advantage

likely due to use of native arithmetic for looping.

The second test reads each line of a 100000-line, 7MB CSV file, and identifies

and separates the comma-delinited fields. Python uses mature C libraries for these

2 Linux kernel 3.2.8 PC with 3.2GHz Intel Core i5 CPU, 4GB of RAM. Python 2.7.2.
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Figure 5-2: Task-level benchmark results (times in seconds)

test Python run 1 Python fastest Julia run 1 Julia fastest

list and dispatch 3.60 3.12 0.43 0.19
CSV parse 0.06 0.06 0.49 0.17

tasks, and so is 3x to 8x faster than Julia. All of the Julia library code is written in

Julia, but this of course is no help to an end user who only cares about application

performance.

Julia is not yet able to cache generated native code, and so incurs a startup time

of about two seconds to compile basic library functions. For some applications this

latency is a barrier to deployment, and we plan to address it in the future.

5.2 Effectiveness of Specialization Heuristics

Given our implementation strategy, excessive compilation and corresponding memory

use are potential performance concerns. In Figure 5-3 we present the number of

method compilations performed on startup, and after running a test suite. From

the second row of the table to the bottom, each of three specialization heuristics is

successively enabled to determine its effect on compiler workload. In the last table

row, each method is compiled just once.

The heuristics are able to elide about 12% of compilations. This is not a large

fraction, but it is satisfying given that the heuristics can be computed easily, and only

by manipulating types. On average, each method is compiled about 2.5 times.

Memory usage is not unreasonable for modern machines: on a 64-bit platform

Julia uses about 50MB of memory on startup, and after loading several libraries and

working for a while memory use tends to level off around 150-200MB. Pointer-heavy

data structures consume a lot of space on 64-bit platforms. To mitigate this problem,

we store ASTs and type information in a compact serialized format, and deserialize

structures when the compiler needs them.

47



Figure 5-3: Number of methods compiled

I at startup after test suite

no heuristics 396 2245
manual hints 379 2160
tuple widening 357 1996
vararg widening 355 1970
no specialization 267 766

5.3 Effectiveness of Type Inference

It is interesting to count compiled expressions for which a concrete type can be in-

ferred. In some sense, this tells us "how close" Julia is to being statically typed,

though in our case this is a property of both the language implementation and the

standard library. In a run of our test suite, code was generated for 135375 expressions.

Of those, 84127 (62%) had a type more specific than Any. Of those, 80874 (96%) had

a concrete static type.

This suggests that use of dynamic typing is fairly popular, even though we try

to avoid it to some extent in the standard library. Still, more than half of our code

is well-typed. The numbers also suggest that, despite careful use of a rich lattice,

typing tends to be an all-or-nothing affair. But, it is difficult to estimate the effect of

the 4% abstractly-typed expressions on the other 96%, not to mention the potential

utility of abstract inferred types in code that was not actually compiled.

These numbers are somewhat inaccurate, as they include dead code, and it may

be the case that better-typed methods tend to be recompiled either more or less often,

biasing the numbers.

5.4 Productivity

Our implementation of Julia consists of 11000 lines of C, 4000 lines of C++, and 3500

lines of Scheme (here we are not counting code in external libraries such as BLAS

and LAPACK). Thus we have significantly less low-level code to maintain than most
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scripting languages. Our standard library is roughly 25000 lines of Julia code. The

standard library provides around 300 numerical functions of the sort found in all

technical computing environments (arithmetic operators, reductions, sorting, etc.).

We suspect that our library is one of the most compact implementations of this body

of functionality.

At this time, every contributor except the core developers is a "new user" of

Julia, having known of the language for no more than three months. Despite this,

our function library has received several significant community contributions, and

numerous smaller ones. We take this as encouraging evidence that Julia is productive

and easy to learn.
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Chapter 6

Related Work

There is a rich history of efforts to improve the performance of high-level dynamic

languages. These can be broadly categorized into clever implementation tricks, which

attempt to do the same work faster, and compiler-based techniques, which try to

remove unnecessary operations from programs. This work is in the second category,

which promises the greatest gains-the fastest way to do something is to avoid doing

it altogether.

The operations we seek to remove are the run-time type manipulations that char-

acterize dynamic languages: checking, applying, and removing type tags [291, and

(typically) dispatching functions based on type tags. This can be seen as a special

case of partial evaluation [25], wherein potentially any part of a program might be re-

moved by reducing it to a constant before execution begins. There are some projects

to develop partial evaluation as a practical tool for dynamic language execution (PyPy

[81 is particularly relevant). The potential payoff there is quite high, as one may ob-

tain not just a compiler for a particular language, but a compiler generator. However,

this entails additional challenges that are not necessary if we are willing to focus on

a single language. And for any given subject language, obtaining type information is

the key goal for removing execution overhead.

Kaplan and Ullman produced an optimal algorithm for dynamic type inference

[32], where the compiler attempts to guess what the run-time types of values will be.

Inference is cast as a maximum-fixed-point dataflow problem. This is different from
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type inference in the ML family of languages [40], where the compiler must be able

to determine types, using an algorithm based on unification. Dynamic type inference

is typically applied to an existing language with the hope of improving performance

or safety. There are several examples in the Lisp world ([36], [6], [4], [29]), and in the

world of object-oriented languages such as Self [11] and JavaScript [3].

Dynamic type inference schemes obey a correctness property that inferred types

must subsume all possible run-time types. A trivial correct algorithm can be obtained

by always returning a largest Any type. Thus an advantage of dynamic type inference

is that the inference algorithm can be separate from the language specification. This

allows the compiler to evolve and improve without changing the set of valid programs

and without updating documentation.

On the other hand, dynamic type inference is easily defeated by systems with

excessive type complexity. In these cases the alternate method of tracing [26] might

work better. The idea of tracing is to record type information as a program actually

runs instead of trying to guess it in advance. Tracing is well known for its use in

modern JavaScript implementations [14]. Tracing is appealing as a "model-free"

approach that can work for essentially any language, no matter how uncooperative

its design. The corresponding disadvantages are that it cannot completely eliminate

type checks (or "guards"), and that code must be interpreted with tracing overhead.

When tracing fails to yield useful information, this overhead cannot be recovered and

code might run slower than in the original system.

Yet another category of techniques involves altering a dynamic language by im-

posing a static type system, as in Typed Scheme [43] or an extended version of Dylan

[37], or adding dynamic typing to a statically-typed language [28]. Gradual typing

[42] allows programs to contain both statically-checked and run-time-checked compo-

nents.

These techniques continue to be enhanced and applied to the current generation of

popular scripting languages. DRuby [24] adds static type inference to Ruby. PRuby

[23] extends this system to support highly dynamic constructs such as eval. Ruby-

Dust [2] uses a combination of constraint resolution and trace information to infer
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types.

In this body of work it is commonly observed that dynamic language programs

are not as dynamic as their authors might think: "We found that dynamic features

are pervasive throughout the benchmarks and the libraries they include, but that

most uses of these features are highly constrained..." [23]. In this sense, the de-

signs of existing dynamic languages do not present a good trade-off. Much code is

statically-typeable and could be executed more efficiently, but the language designs

and implementations do not anticipate this fact. As Henry Baker observes of Com-

mon Lisp, "...the polymorphic type complexity of the Common Lisp library functions

is mostly gratuitous, and both the efficiency of compiled code and the efficiency of

the programmer could be increased by rationalizing this complexity." [4] Others have

echoed these sentiments [9].

With type inference in mind from the beginning, unnecessary type complexity

could be removed and a better overall system may result. Most importantly, the goal

should not be just to make a dynamic language faster or safer, but to provide a more

powerful language at the same time. For example, in applying type inference to a

pre-existing language, it is typically useful to employ a finer type lattice than that

provided by the original language (e.g. splitting integers into positive and negative

subtypes). In some sense, this is unfortunate, as the extra expressiveness provided by

these types is not available to the programmer for use in declarations, typecase state-

ments, and the like. In light of the speedups possible with the techniques cited here,

many common features of these languages can be seen as premature optimizations-

for example employing only single dispatch and simple type systems (or, to be precise,

"tag systems"). When we go to great lengths to make dynamic languages perform

well, we should ask what else we can get for the same level of effort. Julia answers

this question by employing more sophisticated types and dispatch rules that would

make the language even slower without our compiler.

Julia uses generic functions and multiple dispatch as its primary abstraction mech-

anism. This feature famously appeared in the Common Lisp Object System (CLOS)

[22] [7], and has been the subject of research languages such as Cecil [12] and Diesel
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[13]. We find this style to be a good fit for mathematical programming, where op-

erators are typically defined for many different combinations of arguments. In our

context, an invaluable feature of generic functions is that they permit overloading for

a variety of reasons: not just specializing behavior for subclasses, but for special cases

that can be implemented more efficiently (e.g. dense double-precision arrays). We

also find it a great simplification to support only generic functions, and not the usual

mix including instance methods and class methods. Julia avoids some of the "overly

permissive" features of CLOS [5] that get in the way of compiler optimizations.

The Dylan language [41] is close in spirit to the present work. It is also a dy-

namic language with multiple dispatch, designed with high performance as a goal.

However, in Julia, automatic specialization is the primary source of type informa-

tion, rather than user-supplied type declarations. We also explore the potential of

automatic mechanisms for avoiding a combinatorial explosion of method specializa-

tions. Unlike Dylan, Julia does not make the distinction between generic functions

and methods visible to the user-functions with the same name are simply combined

into one generic function without restrictions. Julia method argument specializers

also have a few more features useful for defining the highly polymorphic operators

needed in technical computing. In Julia we also use our type machinery to introduce

an extensible type promotion system, which allows operators to support all relevant

combinations of arguments without requiring a large number of definitions for each

new type.

The telescoping languages (TL) project [33] shares many of our goals, espe-

cially with respect to the domain of scientific computing. TL optimizes programs

in MATLAB@and R by pre-processing those systems' standard libraries to gener-

ate a compiler that knows about commonly-used routines in order to optimize uses

of them in subject programs. This project dramatically underscores the need for

faster execution of these programs. The authors target library development as an

especially important use case. The TL approach is fairly effective, but requires user

annotations for peak performance. Julia's multimethods provide a way to collect type

"annotations" in a less tedious manner-argument types specify dispatch behavior,
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so they are part of the functionality of a program instead of being extraneous infor-

mation. The off-line library analysis step in TL is subsumed by the Julia compiler's

routine type analysis and its ability to cache type information to disk. Julia uses

a mostly run-time compilation model, contrasted with TL's static generation of C

or FORTRAN code. This enables an additional category of library implementation

techniques where needed code can be generated on demand.

Of course, working on existing MATLAB@code is TL's greatest asset and greatest

challenge. Other MATLAB@language compilers have been developed, such as FAL-

CON [21]. The MathWorks now includes a JIT compiler in their product, and other

JIT compilers such as MaJIC [1] have been described. Like Julia, the McVM [17]

implementation of MATLAB@uses function specialization based on run-time types.

However, their analysis by necessity includes details of MATLAB@'s data model

that we prefer to leave out of the compiler, and they do not consider techniques for

automatically reducing the amount of function specialization.

Some of these systems, including TL, have implemented advanced optimizations

for vectorization [15] and array size analysis [16] that we have yet to explore. However,

we feel Julia's open-source nature and powerful, "clean slate" base system would

provide an excellent platform for such future work.
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Chapter 7

Conclusion and Project Status

Julia was publicly announced in February 2012. Our goals and work so far seemed

to strike a chord, as we have seen a significant community start to grow in the short

time since then.

Julia is an open source project, with all code hosted on github [201. We have

over 450 mailing list subscribers, 1420 github followers, 170 forks, and more than 50

total contributors. Text editor support has been implemented for emacs, vim, and

textmate. Github recognizes Julia as the language of source files ending in . jl, and

can syntax highlight Julia code listings. We are currently #80 in github's language

popularity ranking, up from #89 a month ago.

Several community projects are underway: two plotting packages, interfaces to

arbitrary-precision arithmetic library GMP, bit arrays, linear programming, image

processing, polynomials, GPU code generation, a statistics library, and a web-based

interactive environment.

We hope Julia is part of a new generation of dynamic languages that not only run

faster, but foster more cooperation between the programmer and compiler, pushing

the standard of productivity ever higher.
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