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ABSTRACT

This thesis considers the problem of optimizing screening inspection ef-
fort in a general multistage sequential production process. Some of the factors
relevant to obtaining optimal inspection policies are first described. A mathe-
matical model is presented which possesses sufficient generality to produce in-
teresting results, yet admits to a relatively simple solution. Thus, the pot-
ential for handling moderately large problems is present in this model. The
mathematical model has been programmed on M.I.T.'s time-sharing system for the
rapid solution and analysis of specific problems, and typical computational re-
sults are discussed. Through the analysis of the structure of the model and
the resulting optimal soltuions, several significant insights into the deter-
minants of the optimal placement of inspection points in the process are obtained,
including the relative insensitivity of total quality cost to a suboptimal
placement of inspection points and the expected behavior of the optimal policy
as a result of changes in process parameters. The difficulties involved in
treating more complex cases are also discussed, as well as possible extensions

of the present model.
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CHAPTER I

INTRODUCTION TO THE PROBLEM

Organization

This thesis is organized into five chapters and one appendix. This in-
troductory chapter is an attempt to put the manufacturing inspection problem
in proper perspective to the totality of problems in the shop and to suggest
some of the considerations that one ought to be aware of in designing an in-
spection policy. In addition, a brief survey of relevant literature is pre-
sented.

Chapter Two is a description of the mathematical model which is the
basis of the experimental work done by the author. Chapter Three explains
the structure of the computational system and discusses computational limita-
tions. Chapter Four describes the results of several problem runs with dif-
ferent data sets. Chapter Five is a commentary on the limitations of the
model employed and suggests possibly significant related areas for future
investigations.

The Appendix contains program listings and a brief description of each

of the programs.

Some General Remarks Concerning Quality Assurance

Associated with virtually every production process are considerations
concerning the quality of the product(s) outputted from the system. Even in
those processes in which no apparent effort is expended in assuring a quality
product, non-systematic, casual (perhaps visual) inspection is often an implicit,

unavoidable part of the process. The present discussion will be limited to

-7 -
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those manufacturing processes in which a systematic inspection procedure or
policy can be devised in order to attain some goal (produce the product at
minimum total cost, produce zero defects, etc.). It is interesting to note
that under many problem formulations the quality aspects of the manufactur-
ing system are embodied in both a goal statement (i.e. minimize total costs
including the cost of assuring acceptable quality) and solution constraints
(i.e. no more than X% defective finished products will be acceptable) simul-
taneously.

At the outset, we will assume - inspection (of raw materials, partially
finished goods, component sub-assemblies, and finished goods) is the primary
instrument available for assuring acceptable quality in the finished product.
Therefore, it is assumed that the technical production process to be employed
is determined beforehand from - considerations which are unaffected by a
choice of inspection policy. Clearly, in the more general case, alternate
manufacturing methods would affect both the frequency of defective operations
occurring and the physical methods to be used in inspection.

The inspection policy chosen, as an integral part of the production pro-
cess, will greatly affect other aspects of the system, such as facility
scheduling, workforce requirements, etc. In particular, inspections which
take place between manufacturing stages occupy finite time intervals and may
thus be considered as operations in total facility scheduling. In this case
the inspection policy must be determined before scheduling can take place.

Although optimal inspection policies may exist for flow- or job-shop
situations in which items are manufactured in small or unit lots, it appears
that the systematic determination of optimal inspection policies will be

potentially most useful in those situations in which large lots of a product
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are produced at a time, due to the comsiderable collection of non-standard
data and computational effort required, as will be seen shortly. The re-
mainder of this thesis will be concerned with questions of 'pure" inspec—
tion, ignoring possible interrelationships of inspection policy with other
facets of production management, and taking the technological manufacturing
process as given and not subject to change while the inspection policy is

in effect.

Choice of an Inspection Policy

For the purposes of this paper the following definition of an inspec-—
tion policy will suffice:
An inspection policy is a statement of the defect
types to be inspected for, the point within the
production process at which inspection for each
defect type is to take place, and the sampling
processes to be employed.
We are not concerned here with the actual inspection or testing method
used, whether it be mechanical, electrical, or visual. It is assumed that
appropriate procedures can be devised by the engineering staff of the firm
and that there are no choices to be made among alternate inspection proced-
ures. What we seek is the allocation of inspection resources to each possible
defect type at various points in the manufacturing process which will attain
some predetermined goal. Sometimes an extreme solution, such as inspection
of every operation immediately after execution or no inspection at all, will
be optimal.
The factors affecting the choice of an inspection policy are of two
general kinds: those associated with the manufacturing process (exclusive

of inspection), and those associated primarily with inspection. Some

factors associated with the manufacturing process which will in part
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determine the selection of an inspection policy are the following:
1) The arrangement of stages. In the simplest case manufacturing
stages constitute a strictly-ordered sequence such that for
any stage y there exists at most one stage such that x directly
precedes y and there exists at most one stage z such that y
directly precedes z. In more complex manufacturing situations

assembly and partition operations may occur.

2) The defect-generating process. Defective operations may occur
at manufacturing stages, thus imparting physical defects to the
product. A defect generated at any one stage may be repairable
at different costs, depending on its severity, or be non-repair-
able. Additionally, defects generated at a stage may be either
dependent or independent of defects occurring at other (preceding)
stages. In order to define the problem fully, statements must
be made about the defect-generating process at each stage. These
statements are usually of a statistical nature, specifying a
probability distribution for each stage, or multivariate dis-
tributions for the case in which the defect-generating processes
of several stages are dependent. For example, it may be observed
that the defect-generating process at a particular stage can be
modeled as Bernoulli with fixed parameter p, the probability of
generating defect which is invariably non-repairable. The
quantity l-p would then be the probability of the operation

being successfully executed.

The concept of a defect-generating process at each manufacturing

stage can be broadened to include operations in which components



3)

4)

5)

6)
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are added to an assembly. It may be known, through incoming
sampling procedures or otherwise, that a component (ex. a re-
sistor) taken at random has a certain probability of being
defective (out of spec). Thus, adding a defective component
to an assembly can be considered to be a defect generated at
the stage. A stage consisting of an assembly operation might
then generate a component—-type defect, an operation defect, or

both.

Physical limitations on inspection imposed by the manufacturing
process. In some instances, inspection for a defect generated
at a manufacturing stage is impractical or impossible. For ex-
ample, it may be a simple matter to test for a defect type
within an assembly up until its outer casing is added, but

impossible afterwards.

Processing costs. If a defect is discovered within an item
which renders it unusable, any operations performed on the pro-
duct after the defect occurred may be considered to be wasted

and taken into account in determining an inspection policy.

Repair costs. Repairable defects may be repaired, usually

at some cost.

Costs associated with the removal of worthless items or revenues
gained from selling items no longer usable in the manufacturing

process.
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Some aspects of the inspection process relevant to the choice of inspection
policy are:

1) The accuracy of inspection. The inspector may not be perfect.
Defects of type i when inspected for may be overlooked with
probability a,. Also, there may be unavoidable ambiguities
associated with inspection. For example, an electrical test
of a partially completed assembly may indicate that one of
several sub-assemblies is not functioning properly, but addi-
tional effort may be required to locate the defective component

or wiring error within the correct sub-assembly.

2) Costs associated with inspection. Inspection costs may include
labor, equipment, and utility costs. Some components of inspec-

tion cost may be fixed, others variable.

3) The availability of inspection resources. These are resources
in limited supply, such as qualified manpower, special testing

equipment, etc.

The above variables associated with the total production process which
must be considered in selecting an inspection policy are meant only to be
suggestive. Many other factors could no doubt be added to the list.

In addition to the factors just discussed, the effects of outputting
defective goods must be considered in the selection of an optimal inspection
policy. Defective finished goods may be returned to the factory for repair
or exchange, usually at some cost to the firm. Customers may be lost

temporarily or permanently, thus reducing future sales levels and profits.

Certain legal restrictions on the quality of merchandise produced may apply.
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In many instances it is company policy to maintain certain standards of
quality although defects are unlikely to be observed by the consumer due

to the nature of the product.



CHAPTER II

THE MATHEMATICAL MODEL

A Brief Review of Relevant Literature

The foundation of the most recent model-oriented papers is a result
derived by Lindsay and Bishop (1964)1 and White (1966)2 regarding the in-
tensity of inspection effort to be applied at those points in a single-~line
production process where inspection is to take place for the cases of non-
repairable only and repairable only defect types, respectively. It has
been shown that, under a fairly general cost structure including linear
costs associated with outgoing defective material and per—unit inspection
costs, a function including the total of inspection-related costs will be
minimized by an extreme point solution at each stage, i.e. by zero or 100%
inspection at each potential inspection point. This result will doubtlessly
bring relief to many production managers, for 100% inspection at intermediate
production stages appears to be common in industry. For models employing
fixed costs associated with supporting an inspection station, one might ex-
pect this result to be further reinforced.

Pruzan and Jackson (1967)3 have employed the '"no partial sampling"
theorem in the development of a model of inspection in a simple sequence
of production stages, from which a least-expected-cost solution can be ob-
tained through use of dynamic programming. Immediately following each
manufacturing stage is a potential inspection point. From the set of
potential inspection points a sub-set is chosen at which 100% inspection
will take place. Each inspector then inspects for the defect types which

may have occurred since the previous inspection point.

- 14 -
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White (1967)4 has developed a more general model similar to that of
Pruzan and Jackson. Here, however, the defect-generating stages are parti-
tioned into two disjoint sets: those which generate repairable defects and
those which generate non-repairable defects. The optimization problem is
cast into a shortest-route form, which admits to a relatively simple solu-
tion, and a formulation is given for constrained inspection resources.

It appears that future investigations of the inspection effort alloca-
tion problem are most needed in the areas of:

1) more complex manufacturing processes including the
admissibility of assembly and partition stages, and
2) integration of optimal inspection policy search with
the interdependent problems of facility scheduling,
assembly-line balancing, work-force requirements, etc.
In addition, empirical evidence of the benefits to be gained through the use
of formal analysis of this problem in an actual industrial enviromnment would

be welcomed.

A Variation of White's Shortest-Route Model

This chapter will be a detailed description of a model similar to that
of White (1967), the major difference being that each manufacturing stage
is considered to be a generator of both repairable and non-repairable defects.
White's model considers each stage to be a generator of either repairable
or non-repairable defects, but not both. We will henceforth refer to the
property of being repairable or non-repairable as the '"class" of the defect,
while the stage of origin will identify the type of defect. The criterion

to be used in the evaluation of inspection policies is the same as that in
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White's original model - a minimal expected cost solution is sought.

In many manufacturing situations the most important division of defect
types is into the repairable and non-repairable categories. It is this dis-
tinction between defects incurred at the same stage which will have the
greatest influence on the manner in which the product is to be subsequently
treated. TFor example, after a machining stage, items can often be reworked
if too little material is removed during the operation, but may have to be
scrapped if too much material is removed. Numerous similar situations
easily come to mind. It is thus felt that a model which is to even ap-
proximately reflect reality should incorporate this feature in order to

be applicable to a significant class of actual industrial settings.

The Physical Problem

We consider a production process consisting of an L-2 stage production
line and stages 1 and L external to the line representing fictitious input
and output activities. Potential inspection points exist after each produc-
tion stage and will henceforth be identified with the manufacturing stage
immediately preceding (Figure 1). Each stage j in the production line can
generate type j repairable and type j non-repairable defects.

The following assumptions will be made:

1) A unit with at least one non-repairable defect will be considered

a non-repairable item.

2) A unit with any number of repairable defects and with no non-

repairable defects will be considered a repairable item.

3) After discovery of defects, repairable units are repaired and

returned to the line at the point of inspection, and non-repair-

able units are removed from the manufacturing system.
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4) Inspectors are perfect; defects are never overlooked.

5) 1Inspectors test for all defect types after the previous inspection
point. An inspector at stage n thus inspects for defect types in
the set (m+l, m+2, . .n), given that the previous inspection point

is at stage m.

Initially a lot size, Bl’ is assigned to the system, where Bj is taken
to be the expected number of items leaving manufacturing stage j that are
either perfect or repairable. Because of assumption (3), then, if there is
an inspector assigned to stage k, there would be Bk items eventually leaving
the stage to continue in the manufacturing process, and all units would be
defect-free.

We assume that each stage generates defects independently of every other
stage, and that the defect-generating process at each stage is multinomial
with stationary parameters pr and pn. Thus, the mass function for ej, the
event occurring as an operation is performed on an item passing through stage

j is:

pr., e, = a repairable type-j defect is imparted to
J the item
f(e.k) = qpn.,, e, =a non-repairable type-j defect is imparted
. J J to the item
l—pnj—prj, ej3 = the operation is successfully executed

An item leaving stage h which was last inspected at stage g may thus have any

combination of properties ejk for g < j <h, k=1,2,3.

Network Formulations

At this point we will look ahead to the shortest-route model formulation

in order to make clear the sort of information that will be needed in order to
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solve for an optimal inspection policy. We will compute the set of expected
costs, cij’ which represent the incremental cost incurred by having an in-
spection point at stage j of the manufacturing line given that the last in-
spection point is at stage i. Clearly, the cost of inspection at any stage
j is a function of i. We thus seek a value for all Cij’ j=2,3...L, i < j.
Let g =“ciju.

Once C is known an optimal inspection policy can be obtained with the
help of the Lindsay and Bishop theorem. Since any optimal inspection policy
will specify either zero or 1007 inspection at each potential inspection
point, we must select from the set of all potential inspection points, K,
the subset, k€K, at which items will be inspected 100%, and k€K at which
no inspection will take place, which will minimize the total expected cost.
Equivalently, an inspection policy in this model can be defined as an L-2

component Boolean vector (62, 63, e e GL—l) = §

. . 0 if no inspection occurs at stage j
in which 6, =47 .. . . . .
if inspection occurs at j

Model I

A shortest-route solution to the directed network shown in Figure 2
will give the minimal cost inspectién policy desired if there are no limita-
tions on the number of inspection points allowed. Here, cij represents the
arc length from node i to node j. Upon solution for the shortest (lowest
cost) route from node 1 to node L, 6j=1 if node j lies on the shortest path;
6j=0 otherwise. Nodes 1 and L serve a pedagogical purpose only; they provide

a common origin and end for the network route.



(o)

P and

J

v
A A

Figure 2 Model I General Network Fornm

Jod

_OZ_



-91 -

Model IT

If there is a limited number, n, of inspectors available for assignment
to the L-2 potential inspection points, a multi-level shortest-route network
of the form shown in Figures 32and 3b can be solved for the optimal inspec-
tion policy. In this network there are n node "levels" plus the origin and
end nodes, corresponding to the assignment of at most n inspectors to the
potential inspection points. For those nodes on each level which lie on the
shortest path from node (1,1) to node (n+2, L) 6? = 1, where j is the stage
and k is the inspector number assigned to the stage plus one. 6? = 0 for
all other nodes in the network and, necessarily 6? must be zero for all

j € k. 1If ﬁk is defined to be the L-2 component Boolean vector
k k k

(62, 63 ....SL_l) for all levels k, then the optimal inspection policy is
. * n+l (k . . ,
given by § = Zk=2 8". 1In this network each arc (x,y), (z,w) is assigned

cost c from C.
yW =

Cost Structure

We will now formulate the classes of costs which comprise each Con’

n=2..L, m=1l,.n-1.

A. Expected Cost of Scrappage:

n
e@smn = . X cp. (Bm—Bj_l) + Cdn(Bm—Bn) n=2..L-1, m=1..n-1.
j=m+2

This formulation is identical to White's. Bj has been defined previously

to be the expected number of good or repairable items leaving stage j from an
J

o (- pni) j=2...L-1. The second

L=
component of ecs above represents the salvage value from disposal of non-

initial batch size of Bl' Thus, Bj=B

repairable unfinished items, where cdn is the market value (or cost of dis-

posal) of a unit removed from the manufacturing process at stage n. Although
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the value of cd might also depend on m, as suggested by White, the data
collection difficulties would mitigate towards keeping this term as simple
as possible.

The first component of the expected cost of scrappage above represents
the wasted cost of processing items which already have acquired a non-repair-

able defect. With cpj representing the cost of processing an item at stage

n
j, the processing cost of units ruined at stage i is (Bi_l—Bi) L cp..
=i+l
Hence, the total expected processing loss between stages m and n is
n-1 n n-1 n
b} [(B. ,-B.) L cp.] or I z (B, .-B.) cp.. Upon reversing
fmmyl UL gogyr fem#l g=itr 00 F
the order of summation we obtain:
n j-1
z L cp,(B, ,-B,)
j=m+2 i=m+l =11
n j-1
= T cp L (B, .,-B.)
jem+2 R
n
= r cp, (B-B ,.+B .-B  +B _...+B, -B, )
jemt+2 j "m mtl mtl mt2 mt2 j=2 j-1
n
= X cp. (B -B. .)
j=m+2 im gl
B. Expected Repair Cost:
n n
erc_ =B [ L cr.pr.] 1T (1-pn,)
e e R P s | n=2...L-1, m=1..n-1,

where cr, is the unit cost of repairing type i repairable defects.
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The probability that there will be a repairable defect of type i and no

non-repairable defects of type j, m < j < n is:

n
pr, I (I-pn.).
t j=mt+l J
Hence, the expected cost of repairing type i defects for Bm units is:

n
B cr, pr. I (1-pn.)
n + 1 j=m+l J
Then the expected repair cost for all possible repairable defect types i

between m and n is:

n n
T (B cr, pr, I (1-pn.))
i=mt1 Y1 y=mhl J
n n
= B ( I cr, pr,) ( 1T (1-pmn,))
S A B e | J

Note that in general the cost of repair of a defect of type j is dependent
also on the stage n at which it is discovered. Substituting er. for er,
above does not affect the mechanics of calculation of erc in any way and is
thus entirely feasible. In the working model to follow, however, the simpler

form was chosen to make easier the task of data entry.

C. Expected Cost of Undetected Defects:

This is one of the most important categories of cost in the present
model, the undesirable consequences of outputting defective products being
the raison d'etre for quality assurance efforts. These costs may also be
the most difficult to ascertain in any actual situation. Included may be
the cost of handling and repairing returned items, the loss of company good-

will, and the deterioration of dealer loyalty.
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In this model two very simple formulations are given. The first assumes
that the cost of undetected defects of different types are additive. 1In this
case the expected cost of undetected defects is

L-1

ecul B b (pn, + pr,) cul, m=1...L-2
mL m jemtl i j j

where culj is the cost associated with a type j defect leaving the plant.
If we assume a fixed penalty cost for a unit with any defect type or
combination of defects leaving the plant, then
L-1

ecul B cu2 [1 - i (1 - (pr. + pn.))] m
mL m j=mt+l J J

1..L-2

=0 m = L-1

where cu2 is the penalty cost for outputting a defective item. Either of
these two expressions will give us the arc cost from any node, m, to the

dummy end node, L, signifying that inspection last takes place at stage m.

D. Expected Inspection Cost:

White's model contains expressions for the fixed cost of an inspection
station plus the per-unit inspection cost at the station. However, it is
not at all clear how these costs may be derived. One strategy is to assume
that the expected variable inspection cost from inspecting at stage n given
that inspection last took place at stage m is a function of both the set of

defect types to be tested or inspected for the efficiency of inspection as



determined by the order in which inspection takes place. Knowledge of m
and n alone uniquely determines the set, S, of defect types to be inspected
over at stage n. Thus, S= (j / m < j <n). We now seek a least-expected-
cost inspection sequence over S.
The assumptions about the inspection procedure to be used can be sum-
marized as follows:
1. There is a unit cost, Cj’ associated with each defect type
that is tested for.
2. The inspector inspects or tests for defects in the set S
according to some predetermined least-expected-cost sequence
Q* for all items.
3. As soon as the first non-repairable defect of any type is
discovered (if any), inspection ceases for that item, it
is put aside, and the inspection sequence begins anew for
the next item.
Thus, the unit expected inspection cost, uic, for any sequential ordering,

Q, of the elements in S is:

uic(Q) = C, + (l—pnl)C2 + (l—pnl)(l—pn2)03 + oiee. + (l—pnl)(l—pnz)..

1

(1-pn, .)C

k-1""k

Where there are k elements in S and
Ci = the unit inspection cost for the defect type inspected for in

sequential position i of Q.

*
We seek the permutation, Q , of the elements of S which, when used as a

sequential inspection order, will minimize uicmn.
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Price5 has identified this problem and offered the suggestion that an
optimal sequence can be obtained through complete combinatorial enumeration.
Thus, if there are k elements in S, k! orderings must be generated, and uic(Q)
computed for each in order to identify the optimal sequence. This is clearly

a computationally undesirable approach to solution of a problem which arises

L-2) (L-1)
2

gated this problem and discovered a simple rule which will give the optimal

. . . . . 6 . .
times in the inspection allocation model. Derman has investi-

inspection sequence for an inspection sequencing problem of which this is a
. 7 . . . . .

special case. Johnson' has considered an inspection situation under rather

different inspection and repair assumptions, but the logical arguments used

are equally applicable in this case.

Theorem:
C,
Number the k defect types in S according to increasing value of ;% .
J

This is the optimal order of inspection.

Proof:

Let Q' be the sequence Q after interchanging components i and i+l where

i+l < k. Then we have:

i-1
(J El (l_pnj ) ((ci+l+(]_—pni+l)Ci)- (Ci+(l-Pni)Ci+l))

uic(Q')-uic(Q)

Y(pn;Cyyy — Py yCy)

positive Ci < C.+l
which is 0 according as - = —%—— R
negative P, 5 PRy

a transitive relation. If we successively interchange consecutive components
wherever this difference is negative, we are thus led to the rule that inspec-

tion for defect type i precedes j if
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If the optimal inspection sequence is Q*, the total imspection cost
associated with inspection at n given that inspection last takes place at

m is:

*
e =B uic(Q ) + fic , n=2...L-1, m=1l..n-1
mn m mn n

where ficn is the cost of locating an inspection station at stage n inde-

pendent of the testing actually done (i.e. a fixed cost).

As an aside, it should be fairly evident that for potential inspection

points at any numbered stages a < b < ..z,

uic* < uic* + uic* +.....+uic* .
az - ab be yz

The cost matrix C can be derived from the above cost classes as follows:

c = eic + erc + ecs n=2...L-1, m=1l...n-1
mn mn mn mn
S eculmL
m=1l...L-1.
or ecu2mL

Network Solution

It is well-known that the directed shortest-route problem can be visualized

as a transhipment problem in which there is an excess of one unit at the source

node, a deficit of one unit at the sink node, and intermediate nodes have

neither deficit nor excess units. The object is thus to tramnsport the unit

from source to sink at minimum cost. The mathematical problem is:
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m-1
minimize x = I 2 ci. Xi'
i=1 jer, 9 H
i
s.t.
z Xij =1
JERl
% X ~ z X , =0 k=2,3...m1
ies, T je J
K Ry
X —Xim = -1
ieS
m
2 . .
Xij = Xij ¥ i,3

Since xij represents the 'quantity shipped" from node i to node j, Xij=l
indicates that path (i-j) lies on the lowest-cost route, while Xij=0 indicates
that path (i-j) is not a part of the lowest-cost route. Rk represents the set
of nodes immediately following node k, while Sk represents the set of nodes
immediately preceding node k. For example, in Model I Rk=(j / j>k),
Sk = (i / i<k), and m=L.

The dual to the transhipment problem above is:

maximize y_ = y; - ¥,

el - . < . i 1 .
s.t yj vi __clJ ¥is ¥ jevy

y unconstrained in sign
In Model T V. is thus ( / j>i). Y, is arbitrarily set to O.

Ford8 has devised an extremely fast algorithm for solving the dual problem

above, exploiting the fact that each row contains but two variables:
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..Assign initially y = 0 and y; = » for i # 0.

Scan the network for a pair i and j with the

property that y; - y; > c33. For this pair re-

place y4 by vy + Cji' Continue this process.

Eventually no such pairs can be found, and y_

is now minimal and represents the minimal dis-

tance from O to m...
A dynamic programming approach to the problem above is similar, requiring
only an ordering of the rows in Ford's algorithm so that only omne scan of
the inequality set is necessary.

From the Duality Theorem we know that x: = yz = —y;. Thus, a solution
to the maximization problem above will give the value of the minimum-cost
allocation of inspectors in the inspection model. From the complementary
slackness properties of the primal and dual problems (see Dantzigg) it
follows that for each row in the dual that is an equality, y? - y: = Cij’

the corresponding primal variable, X:j’ is > 0. xzj must equal 0 for all
other i,j pairs. If we set each of the xij's in the first group equal to
1, a spanning tree for the network will result, indicating the least-cost
route from the origin node to every node in the network. Note that this

is not a solution to the primal problem, since we will have included more
paths than are necessary to traverse the network from origin to terminal

nodes. However, the unbroken route from the initial to the terminal node

can now be easily identified, the associated variables of which comprise

a solution to the primal problem.

Flexibility of the Model

The model presented is quite flexible in its ability to cope with
multiple kinds of defects occurring at each stage. The partition of defects

into repairable and non-repairable classes has already been discussed. 1In an
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actual industrial situation, however, one stage of a manufacturing process
(one operation) may generate more than one kind of repairable or non-repair-
able defect. For example, adding a component to an assembly may result in
a faulty mechanical connection or a poor electrical connection or both. Dif-
ferent costs of repair may arise from these two defect kinds. In the case
in which variable inspection cost for defect type j is constant regardless
of the number of kinds (both repairable and non-repairable) of type j defects
which may occur, the analysis is straightforward. For k repairable type j

defects possible and 1 non-repairable type j defects possible let
1

pn, =1 -1 (1-pn..)

J i=1 Jj1

where pn, . is the probability of an item acquiring a type j repairable defect.

Similarly, let
k
pr, =1-1 (1-pr,.).
J i=1 Ji

Consequently, we may take as the repair cost of type j repairable defects
(which are now of several kinds) the expected cost of type j defects over the

k kinds: Kk

X cr_i Pr..

I

i k
L pr..

=1 It

cr

where crji is the cost of repairing type j repairable defects of kind or
severity i. Note that under the assumptions of the model multiple defect
kinds affect only pnj, prj, and crj. All cost functions are then based on

the values of these variables obtained as above.



List of Variables

Bj = the expected number of good or repairable items leaving stage j.
Cj = per—unit variable inspection cost for type j defects.

¢ = matrix of cost coefficients //cmn//.

cn = incremental cost of having inspection at stage n given that in-

spection last takes place at stage m = ﬂmn in programs.

cd, = disposal cost (or salvage value) of defective items removed at
J stage j.

cpj = unit processing cost at stage j.

crj = unit repair cost of type j repairable defect.

culj = cost of a type j defect outputted.

cu2 = cost of a defective unit outputted.

ec = expected cost rappage componen c_ .
S n pect of scrappag omp t of mn

eic = expected cost of inspection component of c_ .
mn mn

erc = expected repair cost component of c_ .
mn mn

eculmL = expected cost of undetected defects assuming additive costs compon-
end of Con’

ecu2mL = expected cost of undetected defects assuming constant costs compon-
ent of c_ .
mn
ficj = fixed cost of inspection at stage j.
L = # of stages in model = # of actual production stages plus two.
NSPECT = maximum # of inspection locations (in SHORT2).
pnj = probability of a unit acquiring a type j non-repairable defect.
pr = probability of a unit acquiring a type j repairable defect.

J



CHAPTER III

PROGRAMMED IMPLEMENTATION

Computational Requirements

A programmed computational system for obtaining an optimum solution to

the inspection problem modeled in Chapter Two is to be described here. A

set of ten free-standing computer programs perform the necessary calculations.

The basic requirements for this program set are as follows:

1)

2)

3)

Efficient computation of arc costs and evaluation of networks
for solutions to unconstrained, constrained, and arbitrary
policy cost problems. It is desired further to be able to
accomodate problems involving a large enough number of

stages to discern patterns in inspection station placement

in subsequent data runs.

Provision of problem solutions with a maximum of flexibility.
For example, a convenient method for entering data vectors
is desired. In addition, a minimum of recalculation should
be required for changes in the data set, within the limita-

tions of programming effort available.

Need for a minimum of human solution effort once data has been
put into machine readable form. Since the evaluation of the
unconstrained, constrained, and arbitrary policy problems

will usually be required of each data set, task initiation

should be as simple as possible.

-..34_
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Programs, Data Files

The ten calculation routines are free-standing programs written in the
Fortran IV language and are stored in the user's allotted filestorage area
on the main disc of the M.I.T. CTTS time-sharing computer facility (Computa-
tion Center). Time-sharing provides much of the flexibility and ease of
human intervention desired of this problem-solving system. The user, com-
municating on-line with the IBM 7094 computer via a typewriter-like comsole,
can enter, compile, and select programs for execution, as well as establish
data storage files. Cost and parameter data are initially entered on
pseudo-tapes (actually one or more disc records) via the console in the
form of strings of numbers. The file structure employed is illustrated
in Figure 4. CTTS allows the user to load and run object programs utiliz-
ing either pre-stored data or data entered from the console at execution
times. Each program in this set, as it proceeds, reads the data it re-
quires from the pseudo-tape files and assigns these values to the appropriate
variables. In some of the programs presented herein, requests for additional
information are printed on the console to elicit the user's reply. The pro-
grams are:

1) MASTER. This program will calculate Bm’ m=1l...L-1, the ex-
pected number of good or repairable units leaving stage m.
An assumed initial batch size of 1000 units provides good
scaling for all of the calculations.

2) EIC. Expected inspection cost, eicmn, is calculated for
all feasible arcs.

3) ERC. Expected repair cost, erc s is calculated for all

feasible arcs.



4)

5)

6)

7)

8)

9)
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ECS. Expected cost of scrappage, ecs s is calculated for
all feasible arcs.

ECUl. Expected cost of undetected defects under the addi-
tive cost assumption, eculmL, is calculated for m=l..L-1.
ECU2. Expected cost of undetected defects under the con-
stant cost assumption, ecuZmL, is calculated for m=1...L-1.
AGGREG. This program will aggregate the components of arc
costs, eic, erc, ecs, and either ecul or eo6W¥ to yield the
arc cost matrix C. A message is printed on the console ask-
ing the user whether he wants to employ additive or constant
costs of undetected defects. The user's response selects
either ecul or ecu2 to provide C e m=1..1-1.

SHORT. This program will evaluate the shortest-route net-
work corresponding to the unconstrained inspection problem,
using as input the values of C stored on an intermediate data
pseudo-tape. This program will print the minimum total cost
of the optimal policy obtained and the locations at which in-
spection stations should be placed. 1In addition, the minimum
arc costs from node 1 to all other nodes (the spanning tree)
are listed for further analysis.

SHORT2. This program will find the optimal inspection policy
for the constrained inspection problem. The user is asked to
enter on the console only the maximum number of inspection
stations to be allowed. All other work, including building
up the extended network of feasible arcs and assigning arc
costs, is done by the program. The console will print the
optimal location of inspection stations and the total quality

cost of the policy.



10) LONG. This program will evaluate the total quality cost
of any arbitrary inspection policy. The user is asked only
to enter on the console the numbers of the stages at which
inspection is to take place. The program will then print

on the console the total cost of the policy entered.

Each program above will read in the required data from the appropriate
pseudo-tapes and output data onto the appropriate intermediate files as shown
in Figure 4. More detailed descriptions of these programs and statement list-

ings may be found in the appendix.
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FIGURE 4

FILE STRUCTURE

Input and intermediate variables stored in pseudo-tapes (one or more disc
records)

.tape. variables (input)

2 L

4 Ph,...Py o

5 PTy. P 4

6 C2 'CL—l

7 CPye«+CPr 4

8 cd2. ch_l

9 Cryee.Cry 4

10 cu%t..culL_l

11 cu2

12 f1c2...f1cL_1
. tape. variables (intermediate)

20 Bl""BL—l

21 ¢mn..m=1..L—l..n=m+1...L (m is major index)
22 eic  m=1..I-2, n=mtl. L-1 (m is major index)

2

23 erc m=1l..L-2, n=m+l..L-1 (m is major index)
25 ecs m=1...L-2, n=mt+l...L-1(m is major index)
24 ecul m=1...L-1

mL

26 ecu2 _m=1...L-1
mL



Execution Sequence

Input data must be entered in the proper pseudo-tape files before any
calculation can take place. Each object program may be loaded and executed
under CTTS through the use of one or two simple commands communicated via
the console.

Starting with new data, the complete solution requires the execution
of several programs in sequence, as illustrated in the flow chart of
Figure 5. First, MASTER must be executed to provide the vector B which
is utilized as input to the arc cost component programs. Next, EIC, ERC,
and ECS are executed in any order to provide arc-cost components. ECUL or
ECU2 or both must also be executed at this time to provide CoL? m=1..L-1,
although only one of these data sets will be used in aggregation. AGGREG
is next executed to aggregate erc, eic, and ecs, providing arc costs, and
either ecul or ecu2 provides terminal arc costs. The program requests the
user to indicate on the console whether he desires the additive or constant
cost formulation of expected undetected defect costs.

Once the arc-length matric, C, has been outputted, one or more of the
network routines, SHORT, SHORT2, or LONG, may be executed to yield policies
and total quality costs. In additionm, if only some data entries on pseudo-
tapes are revised, only the programs to do the affected calculations need
be re-executed. Only if the pr or pn vectors are changed must the full
sequence of programs be rerun, as all arc cost components include elements

of the vector B.
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Choice of Solution Structure

Separate programs for arc-cost calculation were adopted to permit re-
execution of fewer than all of the programs if data elements of one or two
types only are altered. This has already been mentioned. The use of a con-
trol program which would execute several or all of the programs described
above as subroutines was considered, but this idea was discarded since it
would require at least as much user effort in task specification as is pre-
sently required in executing the free-standing programs in sequence. The
use of pseudo-tape files for storage of input data permits data entry via
the console prior to program execution at the user's convenience and rapid
read-in of data from files (disc records) to core as each program is executed.
As mentioned earlier, the input data sets are limited to vectors for ease of
manual data entry, although some data element types may be considered to be
matrices in the general mathematical model (unit repair costs, for example).

Storage of the elements of the arc-cost matrix C on intermediate pseudo-
tapes permits the evaluation of constrained optimal, unconstrained optimal,
and arbitrary policies utilizing the same set of final arc-cost data. Thus,
the effects of constrained inspection resources of various degrees and ex-
isting policies can be readily compared without additional arithmetic calcu-

lations.

Computational Experience

There appear to be no major computational difficulties associated with
the inspection model. Calculation of arc costs is straightforward as des-
cribed, although perhaps unsparing of computer time for problems of greater
size than those considered here. This remains to be seen. The following

total computation times are typical for lines of the length indicated.




L = # of stages (including initial and terminal) Total Time
5 47.93 sec
12 52.28
22 63.05
50 134.13

These data are plotted in Figure 6. We cannot, however, place much emphasis
on the reproductibility of these figures since (1) total time includes on
the average 207 swap time, which may vary from run to run with the same data
and program, and (2) total time includes program and data file retrival and
program load time of a setup nature.

Also, since the number of calculations required for the 5-stage (3 physi-
cal stages) problem is quite small we may assume that virtually all of the
47+ seconds required for solution to this problem is of a setup nature and
represents a fixed cost of using separate programs and the file search time
of the time-sharing system.

It is interesting to note, however, that the number of arcs for which
cost components must be calculated is approximately equal to %3 , where s
is the number of stages in the system, and that the average arc-cost compon-
ent calculation is roughly proportional to the number of stages that the arc
spans. We might then expect a priori that an approximately cubic relation-
ship exists between arc-cost calculation times and the number of production
stages. Moreover, approximately %3 calculations are required for the un-

constrained network solution, MASTER,and AGGREG. Therefore, total problem

solution times should increase initially somewhat less rapidly than the cube
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of the number of stages, but more rapidly than the square. This is sug-
gested also by the curve on Figure 6 which increases less rapidly than a
function of a cubic term only, but more rapidly than that of a square term
only. The total time function might then be of the form c+asz+bs3. For

lines of many stages we would expect the cubic term to dominate, rapidly
limiting the maximum problem size that can be economically handled. Further
empirical investigations with larger problems would be necessary in order to
validate the hypothesized computation time relation. These were not attempted
in the present investigation due primarily to the inability of SHORTZ to

build up feasible arc identification vectors for problems significantly larger
than the ones tested without approaching the 32k user available core capacity

of CISS.

Computational Limitations

The program set employed in this investigation is designed to allow
maximum flexibility for experimentation and evaluation of parameter structure
on inspection policies. No effort has been made either to minimize computa-
tion times or to solve problems of the largest size. It is likely that the
elimination of separate free-standing programs for different solution steps
would significantly reduce the program find-and-load time of 47+ seconds.
Batch processing with a more powerful machine than the 7094 and more effici-
ent programming might also significantly reduce solution time. However, the
cubic relationship between line length and total solution time must still be
reckoned with.

In an implementation designed specifically to handle large problems arc-—

cost components might be aggregated as calculated, to eliminate the loading



of three matrices and one vector into core to be aggregated into the matrix
of arc costs, C. Thus matrices with three times as many elements may be
handled with the same core capacity as with the present set-up. A machine
with a large fast core storage area available to the user (on the order of
150k data words) should, with proper programming, be able to provide at

least optimal unconstrained solutions for problems of about 300 stages if

the entire arc cost matrix is loaded into core prior to network calculations.
This is not at all a requirement, however, since the unconstrained and con-
strained network algorithms can utilize parts of this cost matrix at a time
to evaluate minimum—cost routes from the initial node to all other nodes work-
ing sequentially from lower-order nodes to higher—order omes, saving only the
minimum cost to each node already evaluated. Thus, in theory and with relat-
ively little change in the SHORT and SHORT2 programs the solution to problems
of much larger size than 300 stages is potentially feasible if, in additionm,
arc-length component costs are removed to supplementary storage periodically
as they are calculated by the arc-cost routine and accumulate.

Perhaps more significant than the feasibility and economics of calcula-
tion for large problems is the data-gathering effort required. It is, for
example, unlikely that the probabilities associated with the defect-generat-
ing processes at each stage will be immediately available, unless records
of defect repair have been kept in the past. A study may thus have to be
undertaken, in which there would in many instances be a high likelihood of
data contamination resulting from attention focused on the production line.
In addition, cost components such as repair costs and penalty costs for un-
detected defects may be non-standard orw%easurable. Thus, collection of
both the quantity and the types of data necessary in order to implement this

model may prove to be a most challenging task in an actual industrial environment.



CHAPTER IV

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter contains the results of several runs made with the computa-
tional system described in Chapter III. For the first input data set employed,
the behavior of total quality cost with various inspection policies is
analyzed. Next, the effects of parameter values on optimal solutions is dis-
cussed. The third section of this chapter is concerned with the change in
optimal inspection policies arising from a different processing cost structure
than in the first data set. 1In the last section the relationships between

fixed inspection costs, total quality cost, and optimal policies are examined.

Data Set I - Example

The first set of data to be employed in the model is the following:

L = 50 (48 physical stages)

pnj = .02, j = 2...49
prj = .05, j = 2...49
C; = .025, = 2...49
cpj = .20, j = 2...49
cd; ==.053,] = 2...49
crj = 2., j=2...49

cu? 20 (constant undetected defect cost formulation)

These figures have been chosen to be typical of what might be found in
an assembly-line process consisting of many small operations. The electronics
industry provides many good examples. To simplify the analysis which follows,
stages were assumed to be identical in associated costs and in defect-generat-

ing frequencies.

- 46 -
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COMPUTATIONAL RESULTS - DATA SET I

Number Of Inspection Points Stages TQC
0 19385.939
1 (optimal constrained) 49 4548.006
2 (optimal constrained) 23,49 3774.942
3 (optimal constrained) 15,31,49 3619.872
4 (optimal) 11,22,35,49 3580.167
5 9,18,28,38,49 3580.456
6 7,14,22,31,40,49 3599.244
6a 8,16,24,32,40,49 3599.415
6b 9,17,25,33,41,49 3601.113
6c 9,16,23,34,40,49 3601.996
7 6,12,19,26,33,41,49 3627.288
7a 7,14,21,28,35,42,49 3628.197
8 6,12,18,24,30,36,42,49 3661.669
9 6,11,16,21,26,32,38,42,49 3700.621
9a 5,10,15,20,26,32,38,42,49 3700.691
10 5,9,14,19,24,29,34,39,44,49 3740.068
DATA SET II
2 (optimal constrained) 26,49 12442,688
3 (optimal constrained) 19,34,49 8666.929
18 (optimal) 6,10,13,16,19,22,25,28,31, 4550.824

33,35,37,39,41,43,45,47,49
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Total Quality Cost
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The cost of disposal is negative, indicating a positive salvage value
of non-repairable units in various states of completion. The salvage value
rises linearly with the number of operations having been performed on the
unit (if each operation is the addition of a component to an assembly this
may be a fairly good approximation). Thus, a non-repairable unit removed
from the process at any point will have approximately one-fourth of its
cumulative processing cost recovered when scrapped.

The optimal unconstrained, constrained, and arbitrary policies are
tabulated on the next page with the total quality cost (TQC) for each case
considered. The optimal number of inspection stations was found to be four,
distributed very nearly evenly among the 48 stages, with slightly increasing
spacing near the end. Total quality cost for this policy is $3,580.17 for
a batch size of 1000. Even as the maximum number of inspection points is
constrained to various degrees, the inspection stations continue to be dis-
tributed more or less evenly for minimum TQC, as the total cost of course
rises. This suggests that an intelligent choice of policies for an arbit-
rary allocation of more than the unconstrained optimal number (four) of in-
spection points might be to distribute these stations approximately uniformly.
This was done for policies utilizing 5,6,7,8,9, and 10 stationms.

Two significant insights can be gleaned from the computational results.
The first of these is derived from the behavior of total quality costs as the
number of inspection stations is varied. Of course, a very high TQC results
from no inspection at all due to the imputed cost of outputting defective
units. This cost is equal to cu2 times the expected number of units with a

L-1 -
defect of at least one type, Bl(l -.Fz (1—pnj+prj)). The cost of $20 for
each defective unit outputted ensuris, given the other data, that an optimal

policy will require that inspection take place at the last stage.
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With the cost data for this example, assuming that there is one or
more inspection stations available, the expected cost of undetected defects
will rise by (an_l+prL_l)BL_2-ecu2 if the last inspection point is moved
from the last physical inspection stage to the one immediately preceding,
L-2. Thus, the cost savings in other cost classes must be of at least this
magnitude for terminal inspection at stage L-2 to be economically preferable
to terminal inspection at stage L-1. This argument can obviously be extended
to terminal inspection at stages L-3, L-4, etc. Although this situation is
feasible utilizing appropriate data, it would in most cases necessitate ex-
tremely low defect frequencies and low expected cost of undetected defects.
We might more generally expect that under a wide range of circumstances found
in the real world terminal inspection at stage L-1 will be part of an optimal
policy.

Note that for the data employed the total quality cost is a convex func-
tion of the number (integer) of inspection stations employed. More signifi-
cantly, the TQC of n inspection points more than the optimal number is con-
sistently below the cost of n fewer inspection stations, indicating that it
will generally be cheaper to err on the high side in assigning inspectors in
a shop situation with this data. However, this may not be the case with more
perverse parameter values. Here, however, even for a 100% overestimation of
the optimal number of inspection points, TQC is only 2% greater than its op-
timal wvalue.

The second point of interest to be observed from the tabulated results
is that, for identical stages, the precise placement of inspection stations
appears to be relatively inconsequential. The multiple arbitrary policy

solutions for different distributions of the same number of inspection stations



yielded approximately the same total quality cost (ex. 6,6a,6b,6c). These
alternative distributions were dictated only by the suggestion to "distribute

' In no case is

inspection stations approximately uniformly among the stages.'
the differential cost between alternative distributions greater than 1/10% of

the total cost.

Determinants Of The Solution Obtained

Certain general statements about the optimal solution to the unconstrained
inspection problem can be made in many instances. Of particular interest is the
behavior of the optimal policy resulting from various changes in the input data
set. Although proofs of the following propositions are not provided here, they
are in most cases quite obvious considering the structure of the model presented
in Chapter II.

1) Total quality cost is a non-decreasing function of each of the
cost elements in the model.
2) Ceteris parabis, for some (relatively high) values of the cost
of undetected defects (cul or cu2) terminal inspection at stage L-1 will be
optimal. For all other (relatively low) values terminal inspection at stage
n, n < L-1, will be optimal. It has previously been suggested that the former will
be the case in most actual industrial situations.
3) High probabilities of generating non-repairable defects and
high processing costs will both tend to increase the number of inspection
points in the optimal unconstrained solution. In particular, high (relative

to other stages) values of cpy for i > j and pn, for m < k < j will tend to

k

require in the least-cost policy inspection at stage j or soon after in order

to avoid high processing cost losses.
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4) If crjn for each j is an increasing function of n, the stage
at which the type j repairable defect is detected, there will be a tendency
for more inspection points in the optimal policy than otherwise, since to
defer the detection and repair of defects will increase the repair cost once
the defect is detected.

5) As the costs of disposal of defective units, cd, are made more
negative, the optimal policy will tend to require fewer inspection stations,
for the wasted processing effort expended on non-repairables will be to a
greater extent recovered when these items are removed from the process. It
is obvious that a sufficient condition for inspection at no more than the

final stage is

However, for positive inspection costs this condition is not at all a neces-
sary one, as will be seen presently.

Note that for the optimal solution to the problem with Data Set I, the
four inspection stations were not distributed perfectly uniformly, but that
the spacing increased somewhat for stations closer to the end of the line.

For identical stages, two primary forces are at work in creating a non-uniform
optimal spacing of inspection points. On the one hand, as we proceed down

the line, fewer units are to be inspected at each station since non-repairable
units have been removed by each preceding inspection. Thus, the variable cost
of inspection decreases toward the end of the process, tending to concentrate
inspection stations at this end of the line. A decrease in the wasted proces-—

sing cost also results from the "thinning out" of the batch at stages near the



end of the process. This produces a countervailing tendency to have inspec-
tion less frequently towards the end of the process. For the particular in-
put data of Data Set I, this effect is apparently the dominant one.
Also of interest are the conditions required for the least-cost policy
to require inspection at one stage only. For simplicity, assume for the mom-
ent that the cost of undetected defects and defect probabilities are such
that terminal inspection at stage L-1, the last stage in the physical process,
will be included in the optimal policy. Then a necessary and sufficient condi-
tion for inspection at stage L-1 only to be strictly cost-preferable to a
policy involving an additional inspection point at any intermediate stage, R, is that

the following relation hold for R=2,3...L-2:

R
0 -<f1cR + Blu1ClR + BRulcRL_l - BlulclL_l + (BR—BL_l)( jzz crjprj))
L-1
+ (B,-B,)(cd~cd . = z cp.).
R T j

This result may be derived as follows:

TQC for inspection at stage L-1 only is

(a) BlulclL_l + fchLI erclL_I ecle_I ecu(l or 2)L

Similarly, TQC for inspection at stage L-1 and some intermediate stage R is

. +B . . .
(b) BlulclR RulCerf flCR + fch_f ercip + ercRL_f ecs o + eCSRer ecu(l or Z)L.

If the difference, (b)-(a), is positive for all R, inspection at stage L-1 only
is of lesser total quality cost. Subtracting, we obtain the necessary and suf-

ficient condition:
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0 < (b)-(a)
or
* . . . - I3 -
(*) 0 < ficp + Bjuic i, + Bpuicy, o = Byuie,, | +erc;p +ercy, . - ercy )
+ ecis + ecsRL_l - ecle_l.
Let us define Aerc to be equal to erc o + ercpr 1 T ercy; g- Then Aerc =
R R L-1 L-1
Bl( I cr.pr,) I (l—pni) + BR ( Zz crj prj) I  (1-pni)
j=2 33 4= j=R+1 i=R+1
L-1 L-1
- B, ( Z er,pr,) I (1-pm.).
g 3737 40 t
Simplifying, we obtain:
R L-1 -1
Aerc = B_, L cr,pr, + B % cr,pr., B L cr,pr,
Rjmz 173 Tl =1y
R
= (BR—BL_l) .22 crjprj.
We may also define Aecs to be equal to ecsp + eCSpr 7 T €C8yp q- Then
Necs =
R L-1 L-1
£ (B,-B, .Jep, + I (B-B. Jcp. - I (B,-B, .,)cp, + cd_(B.-B_)
j=2 1 73-1"""3 j=R+1 R j-177%3 §=2 1 75-177%5 R71 R
+ ch_l (BR—BL_l) - CdL_l(Bl—BL_l).
Simplifying, we obtain:
R L-1 L-1
Aecs = B, L cp, + B L cpj - B £ cp, +cd,(B.-B,) + cd. . (B,-B.)
1 §=2 J §=R+1 1 j=2 i R*1 "R L-1"R 1
L-1
= - b - “B.).
(BR Bl) cpj + (cdR ch_l)(Bl BR)
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L-1
Aecs = (B.-B )(ed,-cd. . - 1 cp.).
1R R TL-1 j=R+1

Substituting Aerc and Aecs into (*) we obtain the necessary and sufficient condi-

tion in a more simplified form:

R
0 < f1cR + BlulclR + BRuJ_cRL_l - Blu1clL_1 + (BR—BL_l) jzz crjPrj
L-1
+ (B,~B_)(cd_-cd - I cp.).
LPRER -1 g

Notice that Aerc becomes simply the expected number of units which become non-
repairably defective between stages R and L-1 multiplied by the expected re-
pair cost expended on these units prior to stage R. The expression for Aecs
is the expected number of units to become non-repairably defective up to stage
R times the net disposal and processing costs incurred from not removing de-
fective units at stage R.

If we assume convexity of the total quality cost as a function of the
number of inspection points, optimally assigned, as suggested by computational
results (this has not been proven) or even the weaker condition of quasiconvex-
ity of this discrete function, then the relation above suffices for the one
inspection point policy to be strictly cost-preferable to any policy involving
two or more inspection points and thus globally optimal. This relation does
not constitute, however, a short-cut or computationally simple way for an ex-
isting production system employing outgoing inspection only to be tested for

optimality.



- 56 -

Data Set IT - Sensitivity of Solution to Processing Costs

Although the propositions presented in the preceding section can certainly
be verified by executing the computational system with appropriate data inputs,
such an effort was considered to be of little real practical value in providing
additional insights. However, a gross indication of the sensitivity of the
optimal solution to changes in processing costs may be of interest. Data Set
Il is identical to Data Set I but for one exception. Instead of taking the
processing cost to be .20 for each stage, processing cost was determined by the
relation cpj = .05 + .05j. One might expect from the previous discussions that
the optimal policy resulting would have inspection more frequently than before
in order to avoid wasting the more expensive processing effort and, additionally,
that inspection will tend to be more frequent towards the end of the process
than at the beginning, since unit processing costs rise linearly with the stage
number.

These expectations were indeed confirmed, as is evident from the informa-
tion on page . Two interesting results are the much greater number of inspec-
tion points required in the optimal solution, and the optimal constrained policies
for 2 and 3 inspection stations also requiring closer spacing of inspection
towards the end of the line than at the beginning. Unfortunately, a complete
cost curve for various degrees of constraint could not be obtained due to the
computer's inability to store the number of feasible arc vectors generated by

SHORT2 for more than three potential inspection points.



Data Set IIT - Analysis of Fixed Inspection Cost

The sensitivity of an optimal inspection policy to changes in the fixed
cost of inspection stations is investigated through use of the following set
of data:

L=12 (10 physical stages)

pnj = .02, j = 2..11
prj = .05, j=2..11
Cj = .025, j = 2..11
cpj = 1.0, j = 2..11
cd, = 0., j=2..11
J

crj = 1.0, j=2..11
cu2 = 20

Thid data set may represent a flow-shop production process consisting of stages
of aggregated elementary operations. The optimal inspection policies and TQC
resulting are presented on the next page for equal fixed inspection costs at
each stage ranging from $10 to $70 per batch.

Over any of the ranges for which the optimal inspection policy remains
the same, ATQC obviously must equal the number of inspection stations, n, times
the change in fixed inspection cost, Afic. It is observed that as fic increases
for all stages, the solution must at some point require a fewer number of in-
spection points for minimum total quality cost. It appears from the tabulated
results that unit decreases in number of inspection points at break-points may not
be the rule. Note that as fic is increased to $20 from $15 the optimal policy
requires a decrease of five inspection points. The exact break-point has ex-—

perimentally been found to be about $17.
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COMPUTATIONAL RESULTS - DATA SET III

Fixed Inspection Cost Optimal Policy TQC
10 2,3,4,5,6,7,8,9,10,11 776.830
15 2,3,4,5,6,7,8,9,10,11 826.830
20 3,5,7,9,11 864.690
30 3,5,7,9,11 914.690
40 3,5,7,9,11 964.690
50 3,5,7,9,11 1014.690
60 3,5,8,11 1055.636
70 3,5,8,11 1095.636
Since %%%%— n, we may postulate that TQC is a concave function of

fic since it is piecewise linear with non-increasing slope n. In addition, the
results suggest that the optimal policy is relatively insensitive to fic for

the data used. Thus, the exact cost figure for inspection is not at all a
crucial policy-determining variable. It is increasing to note that for suf-
ficiently large increases in fixed inspection costs, total quality cost will
rise by an amount less than the increase in total fixed inspection costs. More
significantly, sufficiently large reductions in fic will tend to reduce total
quality cost by an even greater amount, indicating a high payoff associated with

efforts to improve utilization of inspectors. Thus, a decision to increase the
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efficiency of inspection through a reduction of either the total time required

for maintaining the inspection station for processing one batch or the cost per
unit time of inspection should be based on the total savings possible including
that resulting from a reoptimized inspection policy. This extra cost reduction
may be of considerable magnitude if significant changes in the optimal distribution
of inspection points occur at break-points, such as the addition of five inspec-

tion points observed as fic is decreased from $20 to $15 in the example above.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

Reflections On The Model

The mathematical model and computational system described in this thesis
represent a feasible method of solving a rather limited class of inspection
policy problems under a set of 'reasonable" assumptions about the production
and inspection processes. The feasibility of the construction presented herein
has been demonstrated for problems of a large enough scale to be of some interest.
In addition, the possibilities for handling large-scale sequential process in-
spection problems has been discussed in Chapter III. The usefulness of time-
shared computation as a tool when sensitivity analyses and rapid solutions are

desired is quite apparent.

4Work, from

The underlying motivation for this thesis has been White's
which the simple network formulations first emerged. The extension to the case
of multiple defect classes (repairable and non-repairable) at each processing
stage, the possibility of multiple defect kinds of each class, and the presenta-
tion of an efficient way to include inspection costs are the primary innovations
of the present model. Although somewhat restrictive, White's model is a good
deal more general than that of Pruzan and Jackson. The latter model considers
single defect classes, a minimal cost structure, and essentially identical in-
spection set assumptions as in the present model, and the optimization problem
is cast into dynamic programming recursions which are equivalent to the shortest
route formulation of the model of Chapter II.

It should be noted that the network formulation of the present model can
be expressed in a dynamic programming format, just as there exist for all dis-
crete dynamic programming problems with linear objective functions equivalent

network formulations. The first optimization network will then be represented

- A1 —
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with an n-1 component unidimensional decision space at each stage n. The
decision consists of choosing the stage m at which inspection is to last
take place.

In general, a discrete dynamic programming problem of the generic form

fn(sn) =dmig o) '{c(sn,dn) + fn_l(T(sn,dn))}
n""n °n

. . . S n=l...N
with states s and decisions d sn € "n’

can be transformed into a shortest-route network problem by connecting nodes
representing all possible states at each stage with directed arcs with transi-
tion costs c(sn,sn_l) equal to c(sn,dn) above where S, = T(sn,dn). For the
network model presented herein for the unconstrained inspection problem the
state is merely the stage, n. The inspection assumption for any state-stage
combination (m,n) is that inspection is to take place for all defect types in
the set (m+l, m+2, ...n). Thus, the incremental cost value c(m,n) is uniquely
determined through specification of the present state n and the unidimensional
decision m.

A generalization of this model has been investigated by Lindsaylo(l968).
In his doctoral thesis, Lindsay removes the assumption that the stage n and
decision m uniquely determine the inspection set at stage n. Inspection at
stage n in the more general case can be over any subset of defect types in
the set (2,...n). The implications of this change for the dynamic programming
approach are obvious. The decision space is not multidimensional, taking account
of the inspection that has to take place preceding stage n and the state space
must also include the possible inspection set combinations for stage n. These
spaces may be further reduced by physical considerations, as suggested in
Lindsay's work, and by dominance and bounding observations. However, it still

appears that this approach has computational limitations for problems of large
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size. Not only is the dynamic programming algorithm in this case feasible
only for relatively small problems, but the calculation of the multitude of
transition costs required may, as in the present model, require much more

computational effort than the optimization algorithm itself.

Promising Areas for Further Investigation

There are several dimensions in which the present model might be extended.
The assumption that the defect type inspection set for any inspection point is
to consist of all those defect types between m and n is worthy of reconsidera-
tion. As previously discussed, however, Lindsay's dynamic programming formula-
tion of the completely general inspection set problem seems to be computationally
discouraging.

There may be a formulation of intermediate restrictiveness possible, how-
ever, which would be more promising. It appears that a primary advantage of
the more general inspection set formulation is to disallow an inspection policy
requiring inspection for a defect type at a point so far down the production
line that inspection is physically impossible. Such a solution, if obtained
using the model described in this thesis, would then be infeasible in the real
world.

The present model could be expanded to avoid infeasibilities of this sort
by considering the variable cost of inspection to be a function of the location
of the inspection point. Thus, the double subscripted variable Cjn would be
set equal to +infinity for any stage n at which inspection for type j defects
cannot be undertaken. However, this formulation would not in general yield the
true optimal inspection policy, since it would also preclude inspection for de-

fect types i#j at stage n.
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If there are relatively few defects types j which have the property
that they cannot be tested or inspected for beyond a certain point in the
production process, it is possible that a relatively simple dynamic program-
ming formulation can be devised in which inspection is assumed to occur at
stage n for all defect types i, m < i< n, except for those defect types
for which inspection at n is infeasible and inspection at an earlier stage
for these defect types only may require to take place. An investigation
along these lines might produce a more useful model, but one that is still
computationally feasible with limited decision and state spaces. One which
admits to solution with more powerful mathematical techniques would be es-
pecially useful.

Another possible area of interest not yet given significant attention
is the extension of the model to production processes involving partition
and assembly operations. It is not in general true, for example, that op-
timizing inspection policies in the primary- and sub-branches of a process
including assembly operations will yield a globally optimal policy. It is
instructive to note that the interaction of an operation consisting of one
or more subassemblies being added to the main assembly can be represented
through use of the concept of multiple defect kinds introduced in Chapter II.
The sub-assembly at the end of its production branch and at the point of
juncture with the main production line may possess repairable and non-repairable
defects of the various types possible from its production line branch. These
defect types then become the various defect kinds of the assembly stage on
the main production line. A possible approach to this problem might entail the
use of a decomposition principle involving the iterative soltuion of main and

sub-branch inspection problems independently and the transfer of new defect



probability and cost information through the assembly stage interface before
each new iteration.

As a final possible area for future study, consider the problem of in-
tegrating process monitoring and control with optimum inspection. It has been
assumed in each of the models thus far discussed that the defect-generating
process at each manufacturing stage is stationary multinomial. Therefore,
the objective has been simply to find that inspection policy which will min-
imize expected cost. Most actual quality assurance problems, however, are
concerned with dynamic defect-generating processes at each stage. Indeed, a
major industrial problem is the early detection and correction of the manu-
facturing process which from time to time produces excessive numbers of de-
fective goods. In the multistage static production model inspection at the
optimal stages provides potentially useful information about the present
state of the performance of each manufacturing stage. This information
can be used to correct out-of-tolerance performance at some cost, to provide
new optimal inspection policies as parameters change, or both. The objective
in this case is to minimize expected cost per unit, while maintaining reason-
able stability of the system and meeting demand requirements for non-defective
finished goods.

The foregoing suggests that a model for the dynamic process above might
be fundamentally of a feedback nature, with changes in system parameters pro-
ducing actions tending to return the system to some equilibrium state. The
Industrial Dynamics technique may be of use here in devising good rules for
reoptimization and process correction decisions. Future work on this more

realistic problem will probably be most useful of all.



In conclusion, a primary purpose of this thesis has been to obtain
some useful insights into the problem of inspection in a multistage production
process. The work here has necessarily been limited in both scope and depth
in order to achieve a computationally feasible, though admittedly simple,
model for obtaining solutions. It is hoped that future investigations will
significantly extend the present state of analysis of this problem in some

or all of the directions suggested.
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APPENDIX

COMPUTER PROGRAMS

This section contains the statement listings of the FORTRAN IV computer
program set used to obtain solutions to the inspection problem considered in
this thesis. Input and output is from the appropriate pseudo-tape files in

all cases. Brief program descriptions follow.

MASTER. This program calculates the expected number of good or repairable
units, Bm, to leave each production stage. An initial batch size of 1000 units
provides good scaling for all of the programs to follow. The computation uses

the simple recursive relation Bm = Bm_l(l—pnm).

ERC. This program will calculate expected cost of repair, erc for all
feasible m and n. For each value of n, m is first set to n—-1 and the sum and
product terms, each with one element, are multiplied together and with Bm to
become erc - The value of m is then decremented and new sum and product
elements are each time combined with the sum and product terms to produce new
sum and product terms. When m becomes its lowest value, 1, n is incremented

by one and the process repeats.

'ECSs This program will calculate the expected cost of scrappage, ecs s for
all feasible m and n. The wasted processing cost term is straightforward,
calculated exactly as per the formula in Chapter II, and this is added to the

cost of disposal for non-repairable units discovered at stage n.

- 68 -
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EIC. This program will calculate the expected inspection cost, eicmn, for all
feasible m and n. First all stage numbers are arranged into a vector INDX in
increasing order of the ratio Cj/pnj. For each m,n pair this list is scanned
for the first stage number, k, which lies between m and n. The cost Ck is then
assigned to uicmn. The next such stage number, p, that is found adds (l—pnk)Cp
to the present temporary value of uicmn. This process is continued for each
m,n pair according to the formula for uic until the whole list has been scanned.
The final value for uicmn is then multiplied by the expected number of units

to be inspected, Bm, and ficn is added to the result to yield eicmn. No attempt
is made to save the optimal ordering of inspection for each m,n pair, since
only the orderings for the arcs on the optimal path are of interest, and these
orderings can easily be calculated after the optimal solution is obtained using

the simple ratio inspection sequencing theorem.

ECUl. This program will calculate the expected cost of undetected defects,

eculmL, for all m less than L under the additive defect cost assumption. First,
L
; + . i
ECUIl,L is calculated to be jzl (pnj prj)culj Successive terms eculmL,

m=2..1L-1, simply require the subtraction of (pnm+prm_l)culm from the sum remain-

ing, so calculation is not redundant.

ECU2. This program will calculate the expected cost of undetected defects,

ecu? for all m less than L under the constant cost of outputting defects

mL’

assumption. First the probability of a unit not being defective with no in-
L-1

spection at all is calculated according to the formula Py = I (l—pnj—prj).
j=2

The expression Bl(l—pl)cuZ would then be the expected cost of undetected

defects for this policy. The probability of a unit last inspected at stage 2
not being defective would then be pll(l—pnz—prz). Thus the probabilities P

for each stage m are obtained by successively dividing P by (l—prm—pnm).
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The expected cost of undetected defects for terminal inspection at any stage

m is Bm(l—pm)cuZ.

AGGREG. This program will add the matrices of values of ecs, erc, eic, and
ecul or ecu2 to yield the matrix of arc-costs, C, for use by the optimization
algorithms. The user is asked through a console printout whether he desires
the constant or additive undetected defect cost formulation. The first char-
acter of the user's response (c or a) is read and tested in order to determine
whether the values of ecul or ecu2 are to be included in C. If an incorrect
character is typed on the console the user is asked to retype his response. A

typical console printout is presented following the program listing.

SHORT. This program contains the Ford Algorithm for the unconstrained inspec-
tion problem. The matrix of arc-costs, C, is first read into storage. 1In
Phase I of this program the distance to all nodes but the first is set equal
to a very large number (99999999.). In Phase II, the "forward pass", the dis-
tance to each node j is set equal to yg, where ?# = ?if (c.. + yi). The value
of y? is thus the shortest distance from node 1 to nodi j. Phase III, the
"backward pass', identifies the nodes which lie on the shortest path from
node 1 to node L. The numbers of these nodes are the optimal inspection point
stage numbers.

Starting from node L, the next lowest numbered node j on the shortest
path is identified by the expression yf - y? - ch being equal to zero. The
process is then repeated at stage j and all other nodes which satisfy the re-

lation above. Due to machine truncation errors, the relation above is required

to be satisfied only within a tolerance of + ,001 for the next lowest optimal
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stage number to be identified. The optimal inspection points, total quality
cost, and shortest distance to each node is printed on the console. Sample

console output follows the program listing.

SHORT2. This program will calculate the optimal placement of inspection
points for the constrained inspection problem. In addition to the matrix
of arc costs, the program requires as input from the console the maximum
number of inspection points, NSPEC. Phase I of this program generates feasible
path identifiers (4~tuples) of the form ((L1,Kl),(L2,K2)) where L1 and L2 re-
present adjacent''levels" of the network form presented in Chapter II and Kl
and K2 represent stage numbers for each potential inspection station. These
4-tuples are stored into their order of generation in the form of separate
vectors.

Phase II sets the distance from origin to each node (the yj) to a very
large value. Next the distance to each node j is reset to min (c.. + y*) where

ies(3) "

yi is the minimum distance to node i and S(j) is the set of nodes connected by
directed arcs to node j. This can be done by a simple simultaneous scan down
the vectors containing L1, K1, L2, and K2 since the feasible arc generator
routine (Phase I) produces feasible path identifiers in increasing order first
of level, and in increasing order of stage number within levels. The arc cost

assigned to any arc is simply c regardless of the level identifiers. This

K1,K2
algorithm segment is denoted as Phase TII.

Phase IV identifies the nodes lying on the optimal (shortest) path through
the difference technique used in SHORT. The optimal node level identifiers are
suppressed in the console output, so the optimal stage numbers only are printed

along with total quality cost, as may be seen in the sample console output

following the program listing.
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LONG. This program will calculate the total quality cost for any arbitrary
inspection policy. The user is asked to type on the console the stages at
which inspection points are to be located, and the program will add the costs
of the arcs connecting each of these node numbers. Although the entire cost
matrix, C, is available to the user to perform this simple operation manually,
if desired, the time to output and difficulty of manually identifying the
desired arc costs for each arbitrary policy make apparent the value of this
program. For the 50-node problem there will exist over 1,000 such arc costs.

Sample console output follows the program listing.
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06100 READ (7,31 CCPL{I), I=2,L8}
G110 READ {8,31) (CDC1), 1=2;L%)
00120 31 FORMAT (F12.3)
60130 REWIND 2
00140 REWIND 20
Uol1s5¢ REWIND 7
GO01€ED REWIND §
00170 DO 25 MN=2,LS
06180 NA=N=-1
C0l19¢C DO 25 M=1,MA
06200 X=0,
00210 MBR=t+1
00220 DO 23 J=MR, N
00230 C CALCULATION COF UASTED PRCCESSING COST
00240 23 X=X+CP(J)*(R(M)=-B(J~ 1))
00250 C CALCULATIOM OF ECS(M, WASTED PROCESSING COST AND COST
00260 C OF DISPCSAL TIMES T“r FYPEPTF“ NL\PER OF DEFECTIVF ITFMS
0u270 C CCRURRINC RETUEEM STAGE M AND STARFE M,
00280 25 ECS(M,N)=X+CD(M)=(B(M)=-B{N))
u0290 Du €7 M=1,LA
C0300 K=M+1
00310 ¢ OUTPUTTINGC OF LCS ONTO TAPE 25
00320 G7 WRITE (25 310 (ECSCM,»),; N=K;L5]
00330 REWIND 25
00340 END

R 1.485+.55¢

I>



print eic madtrn
W 2012.4

EIC HADTRM

Uuulu C THIS PROGRAM CALCULATES THE EXPFCTED INSPECTION CCST EIC(M,N)
CUQQC C OF YAVING INSPECTION AT ZT/.00 U "!'rﬁ PR [ o ol S e
Co03 C TAKFS PLACF AT STACE !, THESE CCSTS ARE CALCULATED USIRG THE
OUDHO C LEAST COST IMNSPECTION SEQUENCE FOR C.CH SET (“+1,...,N)GF DEFEC
uoosu C INSPECTED FOR AT M.

gouel DIMENSION FIC(5u,50), B(5C),INDX(50),FIC(5G), €(50),PN(50)
Goo7cC DIMENSION R(50)

Quose READ (2,1¢) L

Gousy REWIND 2

cLlod 1G FORMAT (1L)

JGl1g LS=L-1

00120 READ (6,15) (£(1), 1=2,LS)

0ul3c REWIND

O0LLO READ (4,15) (PNCI), 1=2,LS

0015¢ REWIND 4

00160 READ (du, 15) (3(]), |=1,LS}

usl7o REVIND 20

60150 READ (12,15) (FIc(1), 1=2, LS)

00130 REWIND 12

CC200 15 FORMAT (F12,3)

Uuz21o C CALCULATICHN OF RATIOS r‘(!)/F’i‘(l)FuF‘ ALL STAGES |, CREATION
gu22u C OF VECTOL IHDX CF STAGE MU2'RI

00230 WO 50 1=2,LS

GL2LO DX(1)=1

00250 54U R(I)= CHy/pnCn)

20U | =0

0oz27( LA=L-2

G028¢C 41 I=1+1

G6C23¢C T=69¢886489¢0,

0o3Co0 C ARRANCEMEMT OF STAGE MUMBFRS, INDX(1), IM INCRFASING ORDER OF R4
ousll DU 46 J=2,LS

06320 IFCRCJI-TY L7,47, UE

UC330 L7 T=R(J)

CO340 INDXCI)=J

00350 L8 CONTINUE

Ue3c0 KT“IHDV(I)

G0370 R{KT)= 9992599999,

66380 IF(1 .LE. (L-2)) GO TO L1

00410 C FOR EACH M, N PAIKR SCAN VECTCR INDX FOR

00420 C OR EQUAL TO N AND AEEATER THAN M, THE FIRST

0UL30 C ASSIGMS INITIAL €OST €6J) TO ELEIM,H),

QULLC ¢ (WHICY MUST HAVE THE NEXT LARCGEST VALUF OF R FOK STAGES
GOLSQ C M) ADDS COST (1-PN(J))=C{(K) TO CIC(H, M), ET

aoLGo NO 52 K=2,LS

Lo MA=MN-1

0043 DO 52 p=1,NA

GCLO0 KOLD=1

CLEUG P=1.

INDX(1) LESS THAN

SUCH STAGE J FOUND

THE NEXT SUCH STAGE K

BETWEEN

CETFP/.




.|

\;

=
3

[
o

\

|

o J e

o
Sy O

v~~~ oMUyt u
= o
L)

[ QR4 I~y

T OO Do

L
£ O =
C
4

- €2 C

L e B = K =
o e
i

O O & ¢

(i
ARE cop Bl s Al o T o I
S 3 &2

O oo oo
< C

(e}
o Il e Y o0 Y o

HC‘.
CHROOLOMOSSOU WS

-+

=3

OO0

N

)} «GTs
K=1HDX

P=P*(1_—hr(VPgh\‘

EIC(M,N)=EIC(M,N)+P*C(K)

KOLD=K
CONTINUE

T INSPECTION £OSTS /°F
TS PASSINR THROUCH STAGF
T OF INSPECTION AT STARE
14
\

0 T
EICC, M) =B (YT 100,
CORTINUE

DU 61 =1, LA
F =M+ 1

WRITE (22,152 (EICC,

REWIND 22
FORMAT (F12.3)
END

J.LELM)IGN TGO

MUMBFR OF
THF FIXED

FULY 1 PLEEDR THE EXFETTER

HY+F1C(N)



print scul madirn ECUL

W 2018,8
ECUL MADTRM th/u2 201C8.0
ccul C THIS PRCGGRAM VWILL CALCULATE THE FXPECTEDR ~C57T OF UMDETECTED

\.tuu.;.u..
bouzd C DEFECTS ECU1(M,L) FOR ALL M LESS THAN L WHEN I1MSPECTION
UCC30 C LAST TAKFS PLACF AT STAGF ™M FOR LDDITIVE DEFFCT COSTS,
RN Y DIMENSION PN(5C), PR(5C),B(50),Ccul(EC),FrUL(50,1)
GCL50 READ (2,17) L
deb{:( L;I_L—l
oucvyd 17 FORMAT (IL)
goose READ (10,18) (cuicl), 1=2,1%)
00GZ0 READ (20,183 (BLKM), |21,LC)
UGlCU READ (L, 18)(PNCT),1=2,L8)
BUL110 READ (5,18 (PEC]),1=2,L8)
00120 1§ FORMAT (F12,3)
C0130 X=0
00140 n r"!‘L‘"L,L TIP” OF FCul(1, L)
Culbi DO 43 1=2,LS
Uulud I3 V‘"+(PN(|}+P (1)y=CcUl(1)
Gul7¢ LA=LS-
Lol G CALCULKTIUN OF EcL1(M, L)Y=ECULl(M+1,L)=-(PN(M+1)+PR(M+1))* CUL{(M+1
Y (17 61 3 1. C P | A
(VR VNS RV U 42 1=4, LA
GU2ud ECUL(M,L)=B{M)=
' L5 Ea=(PNL %134 #1 ) y#CULCN+1)

iUh&C ECULI(LS,L)=C.
£U°’C C QUTPUTTINCE OF ECL1 ONTC TAPE 21
0024 VRITE (2:,18) (EculCl,L), 1=1,L3)
QULSL REWIND 2L
-LL{T REWIND 20

REWIND 2

REWIND N

REWIND &

I\F |r|r‘ ]'

[




print 2cu? madtrn ECU2

Al o :
W ULl

r>

ECUZ MADTRN aL/e2 2021,

H1S PROGRAM WILL CALCULATE THE EXPECTEP COST OF UMDETECTED
DEFECTS fCU2(M,L) FCR ALL 1 LESS THAN L WHEN INSPECTIOM

=
f

<

o

(s
O oo
(oo o

4 B e Rev Mo

“
0003 LAST TAKES PLACE AT STﬁFf V FOR £ CONSTANT COST, CU2, FOR EACH
VEVIOR Y DEFECTIVE ITEM SENT OUT CARDLESE OF THE NUMBER OR TYPES CF DE
CUU5C 1T 445,
00040 DIMENSION PN(S5G), PR(SG),B(5C),FECU2(5G,1) |
gelo9 READ (2,17) L 5
Gullu 17 FORMATOIL)
Uulzi READ €I11,18) CUZ
L0130 LS=L-1
00140 READ (20,18) (R(), t=1,L5) _
00150 NEAD (4,138) (PN{DY, 1=2,LS)
Juldy READ (5,18) (PRC1), 1=2,LS3)
UGl170 nEVIIND L
gLtl8c REVIND T
w120 nEVIND 11
ULZLU KEWIND 2
CU210 REVIND 20
GUZ20 1 FORMAT (F12.3)
O3 n=1,
Guzho LA=LS-1
usdbu C CALRULATICON OF =cu200,L)
ec2C0 o0 L2 J=2,LS
gc270 L2 X=X+*(1.-PR(J)=-PN(J))
uitz2so DC 43 ii=1,LA
gea2au ECU2CH, L)=BCM)*CU2+(]1.-3)
UU30y i3 K=Xf(1.—Pl(u+1}-““(f+]:)
ud3lu ECUZ(LS,L)=C.
L3320 G CLTPUTTLHHE CF ECU2 ONHTO TARPE Z{
JiL330 whITE (20,18) (ECUZ(L,L), [=1,L5)
Uudhd KEWTHD T
ul350 ERD

, 9 cq - o=
K a5 ek ™ D0 B



print

309
U ._U.../. P

AGGREG

o oo
s
W
o o O e W

s &
3 L

ubuLo
oLus0
gococo
Cul7¢
Qdudu
30090
0gliao
00118

;G2
= ED

(35 1 oot
e ] i Tl e

CJ,JE
GC37¢
U330
003550
uLLGou
Gon2c
QCL30
UOLLC
0o45¢0
0ULGC
OuL7u
00LGo
CcoLgc
Ges500
GuU510
R 2

3 ror
U‘() =]

200+,

reg madtrn

MADTKN Ch/C2

C THIS PRCEGR
C TO YIELD D
READ (
FORMA

REVWIND
A=L-2

LS=L=~1

12

MM
Full

AGGREG

208 7l

WILL AGBREGATE ECS, ERC,
(M) =1, .0-1, H=
2,12) L

1)

| SN

DIMENSION D(506,50),01(50,50),D11(50,
DO 977 M=1,LA
K=t+1
C READ=I}Y OF ErS, ERC,AND TIC
READ (22, ”xS) GO, =k LG
READ (23,G50) (DI, MY, MN=K,LS)
are READ er,'T”) (DErer, )y, 1t=K,LS)
REWIMD 22
RERTHER 25
REVIND ZB
SoU FORMAT (F12.3)
RINT 25
C CLERY OF USFR NESIRED TYPP OF COST QF
25 FOPWfT (534 DO YCU 'IENT ADDITIVE CR
1iH DEFECTS )
5 LJ

Lu l'f\a

ok
A

GO TO

C READ-IN OF

‘ READ
REWIND
REWIND

DC

ong
R

C AGGREEGATION

K=i+1
DO 2485
DM, M)
DG a2g
K=t+1
C QUTPUTTIMA
ag¢ WRITE
REY
PRINT
FORMAT
END

nor

994

7CC

IND

i
Z =
~w

TN S TTIC S ED W 1] == b (D —
i 5 .
~J
E

RETYPE RESPONSE )
:
el OR ECUZ
M1, 25G) (DCI,L), 1=1,LS)
I
.
M=1, LA
OF €OST TYPES T0O YISLD //n//

N=K,LS
=DM, P 4D, M) 4D L
4=1,L8

)

"
Lo

,L)

)VTC
(N(1,

TAPE
N, M=K

OF f/D}{
(21,950)
21
(-' "'! ('

(hEH

~

END CF AGCGTNECD

. READY FOPR

~

PRV

AND ECU1 OR

hY
/

UNDLTERTEN

COMSTANT

TIOM GF USFR RESPONSE
10G717CLL1C LEQ. L) Mi=2%
21212163664, E0,0) Mh=2C

NIZARLE DRESPONSF RETYPE EEQUESTED

ME. 21210153660 JAND. J.NE.1057170C0

e
COST

DEFECTS |
£0STS OF UND

ECu2

CALAULATION




CONSOLE PRINTOUT-AGGREG

loadgo agsreg

W 2039.3

EXECUTION.

DO YOU WANT ADDITIVE OR CONSTANT €0OSTS OF UMDETECTED
DEFECTS

c
END OF AGGREG. READY FOR TOTL COST CALCULATIOCON

EXIT CALLED. PM MAY BE TAKEN.
R 9.100+1.,333



srint short madtrn
W 2037.8

SHORT MADTRHN
COUl1C

Jr"a’\’)r-

GCL3L
Jutil
Uulh0
wloCo
Cee7a
duuul,‘
SV VRIRY)
Célub
Gullc
w120
00130
001L4LGC

~

g
:\-‘}4.1.5{_‘-

THIS
FURD

INPU

[0 o Man Baw Ban B =l V.

%]

'Qlﬁﬁ PHASE

.|.7J

DS,
J.\.J-!

-

r'r

r

uC..._J‘..-' 5
U200 C PHAZ
[’L‘-_lu

oo22¢

U[..Ju
m (,
Ui Ll

sl s
Uu LU

~

cu2id
CG270
CUZEC Cao
cu29d¢
G300
gu3lc
\)LJZ
OU334
CO3LG
gu3so
GC3GC

gc370

19
¢ PHAS

G380
G390 3
COLCO 70

ogL1c
COL2G
nnyLzTn
SRV IV RV

00LALU

SHORT

203

oA
Dlf G2

7 8
DIMENSIGN Y(58),
READ(2,( 5)L

1)

D(5 0),IHNSP(5L)

‘J’.—

FURMST
LS =L-1
puo & [=1,LS
K=1+1
READ (Z21,33(D(1,Jd),d=%,L)
FDRT&T (Flﬁ 3)

CUMTI
R E'HT
fLPﬂPI”

ARC (1, |

T - L= NUVBER

FadlR MOmE] o
LESS THAN
OF NMODES

J

FEASTELE ARCE INCLURE ALL

LENGTH FROM

MATRIX D, N(!1,Jd) =ARe MOPFE I TO MODE Y
LS=L-1
E L = HTIALLZATION
Y{l)=C.
DO B |I=2,L
Y1 3=0080005580,
C Il = FORWART PASE, DLETE! TIGH CF PGOE YALUES
Do co I1=1,L¢S
FM=1+1
DO €0 J=M,L
IFCY(L)- Y(J)+P(l,u )} Eslst
Y(LY=Y(1)+n () ,J)

CUNTIMHUE

PRINT £& |
FORIAT (28! SHOGRTEST NISTANCE T MONDFES /1C0H NODE DlSTANC:
PRINT 09, (I, v(1), 1=1,L)
FORMAT (I14,2%,F12,2)
no 7 1=1,LS
INSPC1)=0
INSP(L)=1

M=J=-1

E 111 BACKVARD PASS,
DO § 1=1,M
IF(ABS(Y(I)-Y(d)+9(l,d)).L[
CONTINUE

[NSP(I1)=1

J=1
IF

CPTINAL ROPE IDENTIFICATION AND OUY

.001) GO TO 78

(d=E) 3,.8,132
PRINT 27,

FORLATC//,

Y(L)
15H TOTAL €OST 1

o

5 JEL2.30¢4 )

’




UGLEDD
dubol
dou79
0CL3o
ouba

CG50G
00510
UC520

00530

00540
GGL50

G
e g

o

i
(S TN l g

ft b

r

PRINT 30
FORMAT(
DO 1C

I F(
PR

INSP(
NT 17,
4

FORMAT (
CONTINUE
REWIND 2

REWIND 21

END
EMD OF

SHORT

NS PEGTORS

AT STACES



SAMPLE PRINTOUT-SHORT

loadgo short
W 2035.5

EXECUTION,
SHORTEST DISTANCF TN NCDES

NCDE DISTANCE

1 0.
2 sy, CcO0
3 235,540
b 344,289
5 L6y ,525
6 568.967
7 672,447
8 787.520
9 886,903
10 985,423
11 1095,CG3F
12 1095.636
TOTAL €0OST IS 1095,636

PUT INSPECTORS AT STAGES
3

5

8
11
EXIT CALLED. PM MAY RF TAKEM,
R 5.733+,766



print short2 madtrn SHORTZ2

W 2043,6

SHORT2 MADTRM

00e13s
LCu20
oco3e
0U0LO
O0uS50
000GO
uoc70
0CU80
00090
006100
0011¢C
00120
00130
co14ce
G0150
001GC
0c170
00180
05190
60200
00210
00220
00230
0u240
G250
c0260
00270
05260
0029cC
CC3C0
00310
00320
CC330
00340
06035¢C
CG36GC
00370
00380
GU390
0CLOC
00410
00L2G
COL30
ouLne
CCL50

L

ut i

w

Qk/02  2043.,06

PRINT 789
FORMAT (524 FGRD ALGORITHM FOR CCNSTRAINED INSPECTION PR
1  5¢H  ENTER THE MAXIMUM NUMPRER OF INSPECTORS, RETURN CA
READ &, MNSPEC

DIMENSION D(50,50),Y(50,56), N(2,2500), L1(2500), L2(2500
DIMENSION K1(250C),K2(250C)

READ (2,5) L

FORMAT(14)

LS=L-1

DO 5 | =1,LS

K=1+1

READ(21,3) (DC1,d),Jd=K,L

FORMAT (F12.3)

CONTINUE

REVIND 2

REWIND 21

THIS IS SHORT2

REWIND 3

FORD ALGORITHM FUR MODEL Il - EXTEMDED SHCOPTEST KOUTE
INPUT = L=NUMBER OF STAGES

MATRIX D, D(I,d)= ARC L[FNET!H FRGM NCDE | TO J

NSPEC = NUMBER CF LEVELS IN NETUORK EXCLUSIVE OF INI%
TERMINAL MODES

LP=L-2

IF (NSPEC.GT.L-2) NSPEC=L-2

IF (NSPEC .LE. 0) TAP=D(1,L)

IF (NSPEC +LE, 0) G0 TO 500

C PHASE | - GENERATION OF FEASITLE PATH VECTCRS LI, K1,L2,K2

96

11
ik
30

DU SC J=1,LP
N(1,d)=10C1
N(2,d)=20G01+J

JX=2

| XO=NSPEC

IF(I1X0-1) 1¢,12,1y
K=1

Do 15 I1=1,K
N(2,J)=(JdX+1)*1C0C + JX+K
N(1,d)=JdX*1000+JdX+1 =1
J=J+1

IF(L-K=JX=-1) 16,1C,17
K=K+1

GO TO 30

JX=dX+1

| X0=]X0=-1

GO TO 11



WHERE L

o
O

()

/

2
PNLUE

(1),K2
HODE
i o

P
9
70

nr

b

~ I
7--‘( 7 ’

[ON

T

toes d

1(1))=-=-TC=-=(L

STACGE

1”

PR
:'(\r\r
[ ) .\
NETERMIMNA

02 4
PSS p00
(L1dln)
THF

~
'

!

’
X

C+2)*1000+1

(1)
!

’
[N
, MUl

\

PEC-2) 71
PL,IRYEDCIR,ID)=Y(IC,ID))

A
PR

AT

W
N

| L N

PATH

(2,Jd)=IND}

NC1,d) =10+
J=J+1
LEVEL

ID=1T+1
Huki=J=-1

[F{NS=Nh

[l

C FEASIBLE
MODE

71
C

)

In

[BI+D{ IR,

[

w
=

ol o |
oA
e v

. Y ]

i

2 U

a0
[P )
Gu73C
Uo744
L7

I

sibod

U
eCcc7d

1N

00618
60620
063G
GUCLC
0071C

00760
CC77¢

G0500
’./'\.Jul].(..

(¥}

¢

00420

~
w

s I i
S B



SAVMPLE PRINTOUT-SHORTZ2

loadeo short?2
W 203G6.3

EXECUTION,
FORD ALGORITHM FOR CONSTRAINED INSPECTIOMN PRORLEM

ENTER THE MAXIMUM MUMBEP OF INSPECTOFS, RETURN CARRIAGF

=
5]

TOTAL €COST 1S 1096.7153

PUT INSPECTORS AT STAGES

11

7

Iy

EXIT CALLED, PM MAY RE TAKFM,
R 6.850+1.€66



W 2037.3
EXECUTION.
THIS PROGRAM WILL CALCULATE TOTAL COST FOR ANY
ARBITRARY SET OF STAGES WHERF INSPFCTIOMN 1S TC TAKE PLACF,.
ENTER STAGE MUMBERS IN ASCENDING ORPER, RETURMING THF
CARRIAGE AFTER FACH ENTRY, AND END THFE LIST WITH
A LERO.,

3

¥

12

0

TOTAL COST IS 515%,.548
EXIT CALLED., PM MAY BFE TAKEM,

R €,86€6+1,500



LONC MADTRN A 206157
ChLld £ THIS PROGCRAM LIHLL CALCULATE TOTAL COST F
g2 ¢ POLIECY, VITH STAGE MIMBCIRS BE MG FLPPLIE
COCL3C DIKERSIEOR B(5U,50); HUSGZ
Guulo READ (2,5) L
Cugso REVIND 2
0G0 5 FOIMAT (1&)
O S=L-1
o og 25 I1=1,LS
90 K=1+1
6o READ (21, 345) (DC1,0), J=K,L)
10 25 CUNTINUE

20 REVIMD 21
30 FORMAT(F12.3)

N(1)=1
=2

X P

InT 2

8 3 bl
Y 11 ~ORMAT A 48N THI!S PRFOREZL WILL AU
0 LU0 ARBYTRARY SET @F STARES WHERE
U 2544 ENTEE STAGE RUMRERS I ASCEMBING
i 35CH CARRIACE AFTER EACH ENTRY, AND F
0 C REAM=LIN QF STAGFE PUMBFRZ Bed™ oRPSOLE
¢ 2 READ 289 , (1)
U 1LY FORNMAT (12)
C IF {HC13) 3,353,100
G 160 I = 1+]
U GO 70 2
0280 : KOLD =
0GZS0 TC = .
0C30¢ MOLY=L
UUS1C C CALCLLATION OF TOTAL rCST=D(1,1)+D(1,J)+
CC32C Do L J=2,1
30330 =)
0030LY TC = D(XCLD, M)+ TCr
CU358 ! KGLD = N(J) -
uL3ed PRINT 120G, TC
LG37¢ 128 FORIMAT (154 TCTAL C€OST 18 , EFlZ.2)

RN
0% L

o3 ~d

=)

b

.

~
|
+

.

=

o

ATE

OR ANY

I FROM

I[VSPECTIAN

- "
QRER

M TR
(R A 00
nfa 1”3
Y R

ATPITRA

THE CONSCLE

Y

(]

TPTZL COST FOR AN

|2 TN TAKE P
PETURYINE THE

LEST WITH ¢
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e+, L)




