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ABSTRACT

The flow of messages in a message-switched data communication net-

work is modeled in a continuous dynamical state space. The state vari-

ables represent message storage at the nodes and the control variables

represent message flow rates along the links. A deterministic linear

cost functional is defined which is the weighted total message delay

in the network when we stipulate that all the message backlogs are

emptied at the final time and the inputs are known. The desired mini-

mization of the cost functional results in a linear optimal control

problem with linear state and control variable inequality constraints.

The remainder of the thesis is devoted to finding the feedback

solution to the optimal control problem when all the inputs are con-

stant in time. First, the necessary conditions of optimality are

derived and shown to be sufficient. The pointwise minimization in time

is a linear program and the optimal control is seen to be of the bang-

bang variety. Utilizing the necessary conditions it is shown that the

feedback regions of interest are convex polyhedral cones in the state

space. A method is then described for constructing these regions from

a comprehensive set of optimal trajectories constructed backward in

time from the final time. Techniques in linear programming are em-

ployed freely throughout the development, particularly the geometrical

interpretation of linear programs and parametric linear programming.

There are several properties of the method which complicate its

formulation as a compact algorithm for general network problems. How-

ever, in the case of problems involving networks with single destina-

tions and all unity weightings in the cost functional it is shown that

these properties do not apply. A computer implementable algorithm is

then detailed for the construction of the feedback solution.
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Chapter 1

INTRODUCT ION

1.1 Introduction to Data Communication Networks

A data communication network is a facility which interconnects a

number of data devices (such as computers and terminals) by communica-

tion channels for the purpose of transmission of data between them.

Each device can use the network to access some or all of the resources

available throughout the network. These resources consist primarily

of computational power (CPU time), memory capacity, data bases and

specialized hardware and software. With the rapidly expanding role

being played by data processing in today's society (from calculating

interplanetary trajectories to issuing electric bills) it is clear

that the sharing of computer resources is a desirability. In fact, the

distinguished futurist Herman Kahn of the Hudson Institute has forecast

that the "marriage of the telephone and the computer" will be one of

the most socially significant technological achievements of the next

two hundred years.

Research in areas related to data communication networks began in

the early 1960's and has blossomed into a sizable effort in the 1970's.

The ARPANET (Advanced Research Projects Agency NETwork) was implemented

in 1970 as an experimental network linking a variety of university,

-9-
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industrial and government research centers in the United States. Cur-

rently, the network connects about one hundred computers throughout

the continental United States, Hawaii and Europe. The network has

enjoyed considerable success and as a result several other major net-

works are presently being planned.

Following Kleinrock [1976), we now describe the basic components

of a data communication network and their functions. Fundamentally,

what is known as the communication subnetwork consists of a collection

of nodes which exchange data with each other through a set of links.

Each node essentially consists of a minicomputer which may have data

storage capability and which serves the function of directing data

which passes through the node. The links are data transmission chan-

nels of a given data rate capacity. The data devices which utilize

the communication subnetwork, known as users, insert data into and

receive data from the subnetwork through the nodes. See Figure 1.1.

A more detailed description of the network in the context of the

analysis of this thesis is presented in Chapter 2.

The data travelling along the links of the network is organized

into messages, which are groups of bits which convey some information.

One categorization of networks differentiates those which have message

storage at the nodes from those which do not. Those with storage are

known as store-and-forward networks. Another classification is made

according to the manner in which the messages are sent through the

network. In a circuit-switching network, one or more connected chains
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of links is set up from the node of origin to the destination node of

of the message, and certain proportions of data traffic between the

origin and destination are then transmitted along these chains. The

other category includes both message switching and packet switching

networks. In message-switching, only one link at a time is used for

the transmission of a given message. Starting at the source node the

message is stored in the node until its time comes to be transmitted

on an outgoing link to a neighboring node. Having arrived at that node

it is once again stored until being transmitted to the next node. The

message continues to traverse links and wait at nodes until it finally

reaches its destination. Packet-switching is fundamentally the same

as message switching, except that a message is decomposed into smaller

pieces of maximum length called packets. These packets are properly

identified and work their way through the network in the fashion of

message switching. Once all packets belonging to a given message arrive

at the destination node, the message is reassembled and delivered to

the user. In this thesis we shall be concerned with store-and-forward

networks which employ message(packet)-switching.

1.2 Discussion of the Message Routing Problem

There is a myriad of challenging problems which must be confronted

in the design and operation of data communication networks. Just to

name a few, there are the problems of topological design (cost effective

allocation of links and their rate capacities), detection of equipment
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failures and reconfiguration, and the routing of messages through the

network from their nodes of origin to their nodes of destination. The

latter problem is one of the fundamental issues involved in the opera-

tion of networks and as such has received considerable attention in the

data-communication network literature. It is clear that the efficiency

with which messages are sent to their destinations determines to a great

extent the desirability of networking data devices. The subjective term

"efficient" may be interpreted mathematically in many ways, depending on

the specific goals of the network for which the routing procedure is

being designed. For example, one may wish to minimize total message

delay, maximize message throughput, cost. etc. In general, this issue

is referred to as the routing problem. We shall be concerned with the

minimum delay message routing problem in this thesis.

Routing procedures can be classified according to how dynamic

they are. At one end of the scale we have purely static strategies in

which fractions of the message traffic at a given node with a given

destination are directed on each of the outgoing links, where the frac-

tions do not change with time. On the other end of the scale we have

completely dynamic strategies, which allow for continual changing of

the routes as a function of time, and also as a function of message

congestion and traffic requirements in the network. Static procedures

are easier to implement than dynamic ones, but lack the important

ability to cope with changing congestion and traffic requirements in

the network possessed by dynamic strategies.
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Although a large variety of routing procedures have been developed

and implemented in existing networks (such as ARPANET) the lack of a

basic model and theory able to accommodate various important aspects of

the routing problem has made it necessary to base the procedures almost

solely on intuition and heuristics. Of concern here is the fact that

previous techniques have been addressed primarily to static routing

strategies, which lack the previously discussed advantages of dynamic

strategies. The best known approach to static message routing in

store-and-forward data communications networks is due to Kleinrock

[1964]. This approach is based upon queueing theory and we describe

the principal elements here briefly for comparison with the dynamic

method which we shall discuss subsequently:

(a) The messages arrive from users to the network according to

independent constant rate Poisson processes and their lengths are

assumed to be independent exponentially distributed and independent of

their arrival times.

(b) At subsequent nodes along the paths of the messages, the

lengths of the messages and their interarrival times become dependent,

a fact which makes the analysis extremely difficult. To cope with this

problem, the famous independence assumption is introduced, requiring the

messages to "lose their identities" at each node and to be assigned

new independent lengths.

(c) once a message arrives at a node, it is first assigned to one

of the outgoing links and waits in queue at that link until it is
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transmitted.

(d) Based on queueing analysis, the average delay in steady state

experienced by messages in each link is calculated explicitly in terms

of the various arrival rates, average message length and the capacity

of the link.

(e) A routing procedure is then found to minimize the average

delay over the entire network. See Cantor and Gerla [1974].

The routing procedure thus obtained is static, namely constant in

time and a function only of the various average parameters of the sys-

tem. In the parlance of control theory, which is the language which we

shall be using for much of this thesis, such a strategy is referred to

as open-loop.

Since Kleinrock's model was proposed in 1962, researchers in the

area have repeatedly expressed the desire to find approaches to other

aspects of the routing problem. In particular, the goal is to find

an approach

(i) in which the independence assumption is not required,

(ii) that will be able to handle transients and dynamical situa-

tions and not only steady state, and

(iii) that can lead to optimal closed-loop control strategies,

namely strategies that change according to the congestion

in the network.

Requirement (i) is desirable since the independence assumption may

be quite inappropriate in various situations. Furthermore, it is not



-16-

easy to assess the validity of this assumption for a given network.

The desirability of requirement (ii) has been discussed previously.

Finally, perhaps the most important requirement is (iii), for it is a

fundamental fact of optimal control theory that closed-loop strategies

are much less sensitive than open-loop ones to perturbations.in the

parameters of the system. Hence, occurrences such as link and node

failures or unexpected bursts of user input to the network are accom-

modated much better by closed-loop strategies.

It is pointed out in Segall [1976] that the traditional queueing

theory approach can in principle be adapted to closed loop strategies,

but that the number of states required would be immense. This approach

looks at each message or packet as an entity, and therefore the state

of the network is described by the number and destination of messages

(packets) in each of the buffers. Therefore, in a network with N nodes,

S outgoing links per node in the average and buffers of maximum capacity

of M messages (packets), the number of states is approximately ( NM)N-1

which is an extremely large number even for the smallest of networks.

Segall [1976] has introduced a model for message routing which

is capable of achieving requirements (i)-(iii) above. His approach is

to model the flow of messages in a message (packet)-switched store-and-

forward data communication network in a continuous dynamical state

space setting. The continuous nature of the state is justified by

recognizing that any individual message contributes very little to the

overall behavior of the network, so that it is not necessary to look
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individually at each of the messages and their lengths. In this vein,

it makes more sense to regard the network in the more macroscopic

fashion of Segall's model.

Having established the model, Segall expresses the minimum delay

dynamic routing problem as a linear optimal control problem with linear

state and control variable inequality constraints for which a feedback

solution is sought. Should such a solution to this problem be obtained,

the resulting strategy would be dynamic and closed-loop. The model and

associated optimal control problem are discussed briefly in the next

section and are presented in detail in Chapter 2.

1.3 Thesis Overview

1.3.1 Objective of Thesis

The goal of this research is to obtain feedback solutions to the

linear optimal control problem with linear state and control variable

inequality constraints suggested by Segall for the message routing

problem. Undoubtedly, the principal difficulty presented by this prob-

lem is the presence of state variable inequality constraints. This

contention is supported by the observation that very few feedback solu-

tions have been found for optimal control problems with this type of

constraint. We clearly shall have to exploit the special properties

of our problem (such as linearity and the structure of the dynamics and

constraints) to develop new theory and techniques capable of producing

feedback solutions.
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1.3.2 Approach

We begin our discussion of approach by briefly describing Segall's

state space model. In the model the state variables represent the quan-

tity of messages stored at the nodes, distinguished according to node

of current residence and node of ultimate destination. In reality, the

measure of message storage at the nodes is a discrete variable (such as

number of messages, packets, bits, etc.). However, in the spirit of

viewing the network from a macroscopic point of view, we assume that

the units of data traffic are such that after appropriate normalization

the states may be approximated closely by continuous variables. The

control variables represent the flow rate of traffic in the links, where

each control represents that portion of a given link's rate capacity

devoted to transmitting messages of a given destination. Finally, the

inputs are the flow rates of messages entering the network from the

users. In this thesis, we consider the inputs to be deterministic

functions of time. The dynamical equation which represents the flow of

messages in the network is

x(t) = B u(t) + a(t) (1.1)

where x(t), u(t) and a(t) are the vectors of state variables, control

variables and inputs respectively. In the static flow literature the

matrix B is known as the "incidence matrix", and it is composed solely

of +1's, -l's and O's which capture the node-link configuration of the

network. We also have several essential constraints. The state varia-
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ble inequality constraints are x(t) > 0 for all t, since the message

storage must always be non-negative. The control variable inequality

constraints are u(t) C U for all t, where U = {u:u > 0 and D u < C.

Here D is a matrix of O's and +1's and C is a vector of link rate

capacities. These constraints represent flow non-negativity and link

rate capacity constraints respectively.

We now associate with the dynamical state space model the linear

cost functional

= tfa Tx(t)dt (1.2)

0

where x(t0) =SO is given, tf is given implicitly by x(tf) = 0 and a

is a column vector of constant weighting factors. The implications of

the stipulation that x(t f) = 0 are discussed in Section 2.4. We note

for now that when a is all l's, then J is exactly the total delay ex-

perienced by all of the messages traveling through the network on

[t0 , tf ]. By adjusting the values of the elements of a, J may be made

to represent a desired form of weighted total delay. The optimal

control problem which represents the dynamic feedback message routing

problem is:

Find the control u(t) as a function of time and state,

u(t) E u(t, x), that will bring the state from x(t 0 ) = x

(given) to x(t f) = 0 while minimizing J subject to the dynam-

ics and state and control variable inequality constraints.
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Our approach to solving the above problem shall now be described

briefly. We begin by deriving the necessary conditions of optimality

associated with the optimal control problem and prove that they are

also sufficient. Realizing that there is extremely little hope of ob-

taining at this time a feedback solution for the general deterministic

input problem, we restrict the inputs to be constant in time. The

necessary conditions indicate that with this assumption the optimal

feedback control is regionwise constant over the state space. We then

develop a procedure which utilizes the necessary conditions to construct

all of these regions and identify their associated optimal controls.

Although the procedure is not readily implementable on the computer for

problems involving general multi-destination networks, we are able to

utilize special structural properties of the problem to devise a com-

puter algorithm for problems involving single destination networks with

all unity weightings in the cost functional.

1.3.3 Preview of Results

In this section we elaborate on the discussion of approach of the

previous section and simultaneously describe the highlights of the

results which are obtained.

According to the necessary conditions which are derived for the

problem, any optimal control must satisfy

u*(t) = ARG MIN (X (t)B u(t)) (1.3)
u(t) CU

pointwise in time. Here, X(t) is the vector of costate variables cor-
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responding to the state x(t) and is given by a linear differential

equation with free terminal conditions. Of particular interest is the

fact that a costate may exhibit discontinuities at times when its

associated state is traveling on a boundary arc x = 0. We are also

able to prove the significant result that the necessary conditions of

optimality are also sufficient.

For given values of the costate vector, the pointwise minimization

is a linear program. Owing to fundamental properties of linear pro-

gramming we are able to deduce the following: (i) the optimal control

always lies at boundary points of U, and therefore is of the bang-bang

variety; (ii) non-uniqueness of the optimal control is a possibility;

(iii) the minimization need not be performed at every time, but may be

solved parametrically in time to find the optimal bang-bang controls and

switch times.

Note that all of the above results apply for general deterministic

inputs. Henceforth we restrict ourselves to the special case in which

the inputs are constant in time. In this case, the bang-bang nature of

the optimal control implies that the slope of the optimal state trajec-

tory is piecewise constant in time. We are now able to state and prove

sufficiency conditions under which any initial state x(t0 ) = O is

controllable to x(t ) = 0 for a given network with given set of constant

inputs.

Using the necessary conditions, we are able to show that the

optimal control is regionwise constant and that the regions are convex

polyhedral cones in the state space. A procedure is then developed



-22-

which employs the spirit of dynamic programming to construct these cones

and their associated optimal controls by a sequence of backward optimal

trajectories propagating from the final time t f When a sufficiently

large variety of these trajectories is utilized to construct regions,

the union of these regions fills up the state space with optimal con-

trols, thus constituting the feedback solution.

In order to solve for the backward optimal trajectory, we must

propagate the costates backward in time according to their differential

equation and solve the minimization problem (1.3) for all solutions.

However, there is a question regarding the appropriate values of the

costates which realize a particular backward optimal trajectory through

(1.1) and (1.3). The resolution to this problem is geometrical in

nature in that it considers the Hamiltonian function associated with

the necessary conditions to be a hyperplane which is continuously rota-

ting about the constrained region of message flow while remaining

tangent to it. As the costates are the coefficients of the hyperplane,

their appropriate values are determined by orienting the hyperplane in

a prescribed fashion with respect to the constraint region. This argu-

ment freely employs geometrical concepts in linear programming.

We are unable to devise a computer algorithm to implement the

above procedure for general multi-destination network problems due to

several complicating properties. However, we are able to show that for

problems involving single destination networks with all unity weightings

in the cost functional these complicating properties do not apply. A
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computational implementation of the procedure is then readily formu-

lated and a computer example is performed. It turns out that one of

the computational tasks of the algorithm is extremely inefficient.

This task is involved with the problem of finding all of the non-unique

extremal solutions to a linear program. As a consequence, the computa-

tional feasibility of the algorithm is contingent upon the development

of a more efficient technique for solving this problem.

In evaluating the ultimate desirability of the feedback

approach, we must take into account the fact that considerable computer

storage may be required to implement the feedback solution on line.

This results from the necessity of storing all of the linear inequali-

ties which specify the convex polyhedral cones in the state space,

and there may be many such cones. A tradeoff is therefore in order

between the storage involved to implement closed-loop solutions and

the computation involved in the implementation of open loop solutions.

1.4 Synopsis of Thesis

The purpose of this section is to provide a brief summary of

the remaining chapters.

Chapter 2

The state space model and optimal control problem of Segall are

described in detail. A brief discussion is devoted to two possible

open-loop solutions: The first employs linear programming through dis-

cretization in time and the second is an adjoined penalty function
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technique. Note that although they are open-loop, these techniques

are dynamic.

Chapter 3

In this chapter we present the procedure for the synthesis of a

feedback solution to the optimal control problem with constant inputs.

We begin by deriving the necessary conditions of optimality and prove

that they are sufficient. Based upon these conditions we characterize

the feedback regions of interest as convex polyhedral cones. After

providing a few motivating examples, we present the algorithm for the

backward construction of the feedback control. Finally, we isolate

and describe in detail those properties of the algorithm which compli-

cate its computational implementation.

Chapter 4

The geometrical linear programming interpretation is utilized to

construct proofs that the complicating properties of the algorithm of

Chapter 3 do not apply for problems involving single destination net-

works with all unity weightings in the cost functional. This fortuitous

situation enables us to construct an algorithm which is implementable

on the computer. An example is run for a five node network. We then

present thoughts on how the techniques of this chapter may be applied

to general multi-destination network problems with non-unity weightings

in the cost functional.
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Chapter 5

In this chapter we comment on various aspects of the approach

in general and of the feedback control algorithm in particular. Some

insight is provided into related topics not specifically discussed in

preceding chapters. We then summarize our results, present the spe-

cific contributions and make suggestions for further work in this

area.



Chapter 2

NEW DATA COMMUNICATION NETWORK MODEL AND OPTIMAL

CONTROL PROBLEM FOR DYNAMIC ROUTING

2.1 Introduction

In this chapter, the flow and storage of messages in a message-

(packet)-switched store-and-forward data communication network are ex-

pressed in a dynamical state space setting. This model for routing was

introduced by Segall [1976). The principal elements of the model - state

variables, control variables, and inputs - are defined to represent

mathematically the fundamentals of network operation: storage, traffic

flow and message input respectively. Emerging from this characteriza-

tion is an ordinary linear vector differential equation which dynami-

cally describes the storage state of the network at every time. State

variable positivity constraints and control variable capacity con-

straints, both linear, are imposed as an essential part of the model.

Presently, we assume that the inputs are deterministic functions of

time, representing a scheduled rate of demand.

Arising naturally out of the model as defined is a linear inte-

gral cost functional which is equal to the total delay experienced by

all of the messages travelling in the network. Owing to the generality

of our expression, we are also able to formulate a linear cost function-

al which corresponds to a measure of weighted message delay in the net-

-26-
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work. Combining the minimization of the cost functional with the dy-

namics and associated constraints, we obtain a linear optimal control

problem with linear state and control variable inequality constraints for

which we seek a feedback solution. We then discuss in some detail how

the assumptions inherent in the optimal control problem formulation re-

late to the real world situation of data communication network message

routing operation.

The advantages of this approach were discussed in Section 1.2.

The principal disadvantage is associated with the difficulty of solving

state variable inequality constrained optimal control problems. This

is particularly true when a feedback solution is sought. The problem

is placed in perspective by providing a summary of the previous work

which has been performed in this area and pointing out the need for the

development of additional theory for our particular formulation. This

discussion sets the stage for the contributions to this problem area

which are achieved in subsequent chapters.

Although the principal goal of the thesis is to obtain closed-

loop solutions to the optimal control problem, there are several ap-

proaches to obtaining open-loop solutions which are conceptually

straightforward and are therefore of some interest. Two such approaches

are reported on briefly at the end of this chapter: linear programming

through discretization and a penalty function method.
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2.2 Basic Elements of the State Space Model

2.2.1 Topological Representation

We visualize data networks graphically to consist of a collection

of nodes connected by a set of links between various pairs of the nodes.

In Section 1.1 we presented a discussion of the general function of

nodes and links in the network. In our model, we shall assume that the

links are simplex, that is, carry messages in one direction only from

the node at the input end to the node at the output end.

In a network consisting of N nodes we associate with each node

an integer in the set {l, 2, ... , N} and denote this collection of nodes

by N. The link connecting node i to node k is denoted by (i,k), and

the collection of all links in the network is

A
Notation 2.1 L = {(i,k), such that i,k c N and there is a direct

link connecting i to k}.

We now denote

Notation 2.2 C. = capacity of link (i,k) in units of traffic/unit

time, (i,k) E L

and for every i e N denote

ANotation 2.3 E(i) = collection of nodes k such that (i,k) E L,

I(i) = collection of nodes 2 such that (Mi) E L.

In Figure 2.1 we depict a graphical representation of such a data com-

munication network.



-29-

USERS

\2/

Th ~Cl S21

r4N 4r4
- C2 3  C3 2

Cl13

USERS

Figure 2.1 Data Communication Network Topology

2.2.2 Message Flow and Storage Representation

In accordance with the operational philosophy of the network,

the users at each node in the network may input messages whose ultimate

destinations are any of the other nodes in the network. We characterize

this message traffic flow input to the network by:

Notation 2.4 a (t) = rate of traffic with destination j arriving
1
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at node i (from associated users) at time t.

The message traffic from each user is first fed into the associated node

and either immediately transmitted on an outgoing link or stored for

eventual transmission. Also, each node may serve as an intermediate

storage area for messages entering on incoming links enroute to their

destinations. Once a message reaches its destination node, it is im-

mediately forwarded to the appropriate user without further storage.

Hence, at each node i e N of the network at any point in time we

may have messages in residence whose destinations are all nodes other

than i. Let us now imagine that at each node i e N we have N-1 "boxes";

and that in each of these boxes we place all the traffic (messages,

packets, bits, etc.) whose destination is a particular node, regardless

of its origin. We do this for all possible destinations 1, 2, ... (i-l),

(i+l), ...N. We now define the state variables of our model as

Notation 2.5 x0(t) = amount of traffic at node i at time t whose

final destination is node j, where

iij e N, i 5o j.

The amount of traffic residing in each box at any time t is mea-

sured in some arbitrary unit (messages, packets, bits, etc.). Strictly

speaking, the states are therefore discrete variables with quantization

level determined by the particular unit of traffic selected. However,

we shall assume that the units are such that after appropriate normali-

zation the states x. can be approximated by continuous variables. The

rationale underlying this approximation is presented in Section 1.2.
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We simply repeat here that this macroscopic point of view regarding

messages is justifiable in relation to the overall goals of desirable

network operation. Note that in a network consisting of N nodes, the

maximum number of state variables as defined above is N(N-l), which most

certainly is reasonable when compared to the huge number of states

associated with finite-state models (see Section 1.2).

There is a fundamental difference between the states xi described

here and the message queues of the traditional approach. In our model,

when a message with destination j arrives at node i from either outside

the network (i.e., from users) or from some adjacent node, it is classi-

fied as belonging in the "box" x , and as such is associated with the

node i. When its time comes to be sent, the routing strategy to be

developed in subsequent chapters assigns the message to be sent along

some outgoing link (i,k),k E E(i). In previous models (e.g., Cantor and

and Gerla (1974]) messages arriving at node i are immediately assigned

to some outgoing link (i,k),k E E(i), by the routing strategy, there to

await transmission. Hence, at least in an intuitive sense, the decision

as to what direction to send a message is made in our model at a later

time, thus enabling the strategy in force to make a more up-to-date

decision. The ultimate performance of our strategy should benefit from

this characteristic.

The final element of our message flow representation is the de-

scription of the allocation of link flow capacity. Each link emanating

from a particular node i is shared by some or all of the up to (N-l)
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types of messages stored at time t at node i. This now gives rise to

the definition of the control variables of our state space model:

Notation 2.6: uk (t) = portion of the rate capacity of the link (i,k)
ik

used at time t for traffic with final destina-

tion j.

So defined, the controls are the decision elements of the model available

to be adjusted at the command of the routing strategy. The designation

of the states corresponding to a particular node and controls correspond-

ing to a particular link are illustrated in Figure 2.2.

Node i

H C4-

Illustration of State and Control VariablesFigure 2.2
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2.3 Dynamic Equations and Constraints

We are now ready to state the dynamic relationship between the

elements of our state space model. Assuming the inputs are determin-

istic functions of time, the time rate of change of the number of mes-

sages contained in each box is given by

x. (t) = a! (t) - , u (t) + u. (t) (2.1)

kEE(i) ik kl

ijj e N, j 3o i.

That is, the box corresponding to the state x. is increased by the rate
1

of messages arriving from users (al(t)) and messages arriving on in-

j1
coming links (u3 (t), E I(i), / j) and depleted by the rate of

messages departing on outgoing links (u , k E E(i)). A pictorial
ik'

depiction of the message flow situation corresponding to equation (2.1)

is given in Figure 2.3.

The ordinary differential equation formulation of equation (2.1)

is valid for deterministic inputs. When the inputs are stochastic, we

must express the relationship in the incremental fashion of stochastic

differential equations and properly define the nature of the input pro-

cess. However, the important point here is that the state space de-

scription of message flow and storage presented in Section 2.2 is suffi-

ciently general to accommodate a wide variety of input processes.

An essential feature of the model is the set of constraints we

must impose on the state and control variables. In order for the
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mathematical statement of our problem to make physical sense, we must

insist on non-negativity of the message storage state variables and of

the flow control variables:

x1(t) > 0 'V t (2.2)

and

ui (t) > 0 I t. (2.3)
ik

The rate capacity constraints on each transmission link is expressed by

u (t) < C. IV t
' " k - iksN k1 -i V-(ik) E L, j / i (2.4)

Constraints (2.2)-(2.4) are the only ones which shall be dealt with

explicitly in this thesis. The assumption is therefore made that the

storage areas containing the messages corresponding to the state vari-

ables are infinite in capacity. In practice, of course, these areas

will be limited in size, so that we may wish to insist on upper bounding

state variable constraints. Possible forms of these constraints are

x < Si or xj < S. depending on the actual assignment of message
1 - i ji i

storage in a node.

2.4 Performance Index and Optimal Control Problem Statement

As indicated in Section 1.2, one of the major problems associated

with routing strategies predicated upon queueing models is the require-

ment of the independence assumption in order to derive the closed-form

expression for the total message delay in the network. This assumption
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may be at great variance with the physical realities of the situation.

On the other hand, optimal control oriented formulations such as ours

require only a functional expression for the quantity of interest in

terms of the state and control variables of the model. By design, the

method in which we have defined the state variables gives rise to possi-

ble performance indices which are most appropriate in this application.

For example, observe that if x(t) is the amount of message traffic

residing in some box at time t, then the quantity

ftf x(t)dt (2.5)

0

gives the total time spent in this box by the traffic passing through

it during the time period of interest (t0, t ], when tf is such that

x(t f) = 0. Consequently, expression (2.5) is exactly the total delay

in the box experienced by the class of messages represented by x(t).

Hence, the total delay experienced by all the messages as they travel

through the network during [t0, t ] is given by

tf

D = x (t) dt (2.6)

t0

irj N, j i

where tf is defined as the time at which all the message storage state

variables x. go to zero. Priorities can be accommodated in the cost

functional (2.6) by associating non-equal weightings ao to the appro-
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priate state variables, so that we have

tf - . .
J = fa:x [(t) dt (2.7)

i , j EN , j i

with tf defined as above. A logical fashion in which to assign priori-

ties is by destination, in which case a = a I k,P, j. Cost func-

tional (2.7) is then a measure of total delay weighted by destination.

We now have all the elements needed to state our optimal control prob-

lem. In words, the data communication network dynamic message routing

problem is:

At every time t, given the knowledge of the traffic

congestion in the network (x (t), i,j E N, j / i), dynami-

cally decide what portion of each link capacity to use for

each type of traffic (i.e., assign u (t), (ik) E L, j E N),
ik

so as to minimize the specified cost functional (i.e., total

delay if a! = 1 I i,j, i y j) while bringing the traffic

from a specified initial level to zero at the final time.

To facilitate the expression of this problem in compact mathemati-

cal form, we define the five column vectors - a, x, u, C and a - which

are respectively concatenations of the inputs, state variables, control

variables, link capacities and cost functional weightings. Denote
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n = dimension (a) = dimension (x) = dimension () , m = dimension (u) and

r = dimension (C) = card (L). For a given network topology we define

j
the n X m matrix B as follows: associated with every state variable x.

is a row b of B such that

T
b u =- u + U (2.8)

-- ik L Pi
kEE(i) k EI(i)

The matrix B is analogous to the incidence matrix which describes

flow in a static network. However, a fundamental distinction from the

static flow situation is that we do not require conservation of flow at

nodes as we have the capability of message storage in nodes. Note that

B is composed entirely of +1's, -l's and O's and that every column of

B has at most two non-zero elements. If a particular column has exactly

one non-zero entry then it is -1.

Similarly, we define the r x m matrix D: associated with every

T
link (i,k) is a row d of D such that

T
d u < Cik (2.9)

represents the constraint (2.4). The elements of D are O's and +1's

only, and each column has precisely one +1.

We may now compactly express the linear optimal control problem

with linear state and control variable inequality constraints which

represents the data communication network dynamic message routing
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problem previously stated:

Find the set of controls u as a function of time and

state

u(t) u(t, x) t E , t ] (2.10)

that will bring the state from a given initial condition

x(t0  = to x(tf) = 0 and minimizes the cost functional

ftf
J [a T x(t)]dt (2.11)

t0

subject to the state dynamics

x(t) = B u(t) + a(t) (2.12)

and constraints on the state and control variables

x(t) > 0 4v t E [t 0 , t ] (2.13)

D u < C
(2.14)

u > 0.

Note that a(t) must be such that the state is controllable to zero

with the available controls. Conditions under which this is true are

given for a special case in Section 3.2.2.

2.5 Discussion of the Optimal Control Problem

Before engaging in the details of the solution to (2.10)-(2.14),

some discussion regarding the validity of the problem statement is
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appropriate. To begin, we have stipulated inputs which are known expli-

citly as a function of time, whereas computers certainly operate in a

stochastic user demand environment. Secondly, the requirement that all

the storage states go to zero at some final time is not consistent with

a network continually receiving input and storing messages in a steady

fashion. Also, as pointed out in Section 2.3, we have ignored upper

bounds on message storage capacity. Finally, by specifying a feedback

function of the type (2.10) we are assuming that total information re-

garding storage is available throughout the entire network for controller

decisions. In practice, one may wish to consider schemes which allow

for the control decision to be made on the basis of local information

only, so called distributed control schemes.

With the above drawbacks in mind, we now provide justification for

our approach. We begin by pointing out that none of the assumptions

made thus far are inherent in a basic state space model. These have

simply been invoked to provide a problem formulation for which there

exists some hope of obtaining a reasonable solution at this early stage

of experience with the model. Also, they may not be as limiting as

they first appear. For instance, one possible approximation for the

situation with stochastic inputs is to take into account only the en-

semble average rates of the inputs. We then design the routing strategy

by solving (2.10)-(2.14) with these averages serving as the determinis-

tic inputs a(t), and employ the controls thus obtained in the operation

of the network. Such a strategy may prove to be reasonably successful
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if the variances and higher moments of the distributions of the inputs

are small compared to the means.

Next, the requirement that all states go to zero at the final time

may correspond to a situation in which one wishes to dispose of message

backlogs at the nodes for the purpose of temporarily relieving conges-

tion in the network locally in time. This procedure may represent that

portion of an overall scheme during which inputs are appropriately regu-

lated or no longer forthcoming. In the latter case we may refer to the

resulting operation as a "minimum delay close down procedure".

Elimination of the state variable upper bounds is not always

limiting, as we shall discover for a class of single destination network

problems studied in Chapter 4. In this case, the optimal routing strat-

egy never requires any state to exceed its initially specified value,

which certainly must be within the available storage capacity.

Finally, the assumption of a centralized controller may well be

valid in the case of a small network. An example of this is the IBM/440

network. See Rustin [1972]. At any rate, obtaining the routing strat-

egy under this assumption could prove extremely useful in the determina-

tion of the suboptimality of certain decentralized schemes.

2.6 Previous Work on Optimal Control Problems with State Variable

Inequality Constraints

Pioneering research into the problem of the optimal control of

dynamical systems involving inequality constraints on the control vari-

ables was performed by Valentine [1937] and McShane (1939]. Problems
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also involving inequality constraints on functions of the state varia-

bles alone were not treated until the early 1960's, probably motivated

by the emerging aerospace problems of that time. Pontryagin [19591

provided the setting for the new approaches with the introduction of

his famous maximum principle, a landmark work in the field of optimal

control. Gamkrelidze [1960] studied the situation in which the first

time derivative of the state constraint function is an explicit function

of the control variable, or so called "first order state variable in-

equality constraints." Note from equations (2.12) and (2.13) that this

is our situation. This work was devoted to finding necessary conditions

in the form of multiplier rules which must be satisfied by extremal

trajectories. Berkovitz [1962] and Dreyfus [1962] derive similar re-

sults from the points of view of the calculus of variations and dynamic

programming respectively.

Subsequent works involved with necessary conditions have been

devoted primarily to unravelling the technical difficulties which arise

when a time derivative higher than the first is required to involve the

control variable explicitly (e.g. Bryson, Denham and Dreyfus [1963],

Speyer [1968] and Jacobson, Lele and Speyer [1971]). The literature is

quite often at variance with regard to the necessary conditions asso-

ciated with this problem, although the later work cited appears to pre-

sent a satisfactory resolution. At any rate, we shall not be concerned

with these differences as our problem involves only first order state

constraints.
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Computational aspects of the problem are dealt with in Ho and

Bretani [1963] and Denham and Bryson [1964]. Both works present itera-

tive numerical algorithms for the solution of the open loop problem,

the procedure discussed in the latter being essentially an extension

of the steepest-ascent method commonly used in control problems uncon-

strained in the state. As such, it appears doubtful that this algorithm

would exhibit acceptable convergence properties for our linear cost

problem, particularly in the vicinity of the optimum. Ho and Bretani

[1963] report that this is also true of their algorithm.

Little theoretical and computationally oriented attention has been

paid to the class of control problems with state variable inequality

constraints and control appearing linearly in the dynamics and perfor-

mance index. In this case, the control is of the bang-bang type and

the costates may be characterized by a high degree of nonuniqueness.

Maurer [1975] examines the necessary conditions associated with this

problem when the control and state constraint are both scalars, and

presents an interesting analogy between the junction conditions asso-

ciated with state boundary arcs and singular control arcs. However,

no computational algorithm is reported.

Perhaps the most interesting computational approach presented for

the all linear problem is the mathematical programming oriented cutting

plane algorithm of Kapur and Van Slyke [1970]. The basic algorithm con-

sists of solving a sequence of succeedingly higher dimensional optimal

control problems without state space constraints. Under certain hypo-
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theses they are able to prove strong convergence of the control to the

optimum. The drawbacks to this approach are that the state of the

augmented problem may grow unreasonably large, and that even uncon-

strained state linear optimal control problems may be difficult to solve

efficiently. In the same paper Kapur and Van Slyke [1970] suggest for-

mulating the problem as a large linear program through discretization

of all constraints, a more or less brute force approach which is dis-

cussed briefly in Section 2.7.1.

Common to all of the approaches described above is that none

broach the difficult problem of obtaining feedback solutions to the

state constrained optimal control problem. In fact, the application of

necessary conditions to arrive at feedback solutions is not a common

occurrence even for unconstrained state problems. Notable exceptions

are the linear time-optimal and linear quadratic problem, for which the

feedback solutions are well known.

In light of these facts, in order to solve problem (2.10)-(2.14),

we must first develop and understand the necessary conditions associated

with optimal solutions and creatively apply them to obtain a feedback

solution. Certainly, we must fully exploit the total linearity of our

problem, which has not been done heretofore. As is usually the case,

we shall be forced into making even further assumptions about the prob-

lem in order to achieve our goal. This overall effort constitutes the

primary mathematical contribution of this work, and is the subject of

Chapters 3-5.



-45-

2.7 Open Loop Solutions

Although our foremost goal is the development of feedback solu-

tions to the optimal control problem of Section 2.4., several open loop

solutions have received consideration. The principal advantage of

these approaches is that they apply to inputs represented by determin-

istic functions of time of arbitrary form. Also, at least in principle,

open-loop solutions may be implemented as feedback schemes by continu-

ally recalculating them in time with the current state taken as the

initial condition for each problem. As such, open-loop solutions are

worthy of brief mention at this time, but we shall not pursue these

particular approaches further in this thesis.

2.7.1 Linear Programming Through Discretization

This technique is a rather standard approach for linear optimal

control problems. See, for example, Kapur and Van Slyke [1970). We

first begin with the assumption that the inputs are such that the state

can be driven to zero with the available controls. Next, we select a

time T which is sufficiently large to insure that T > tf, where t is

such that x(t f) = 0. To discretize, we divide the time interval [0, T]

into P parts, each of length At = tP-tp-i, p 6 [l, 2, ... , P]. We then

make the Cauchy-Euler approximation to the dynamics

x(t ) = [x(t ) - x(t )]/At. (2.15)
- p - p+1 - p

With this approximation, equation (2.12) may be written
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x(t ) = x(t ) + At[a(t ) + B u(t )], (2.16)
- p+1  -p -p p

VL p E :0, 1, ... , P-l]

and the performance index may be approximated to first order by the

discrete expression

P

S= E a Tx(t). (2.17)
d - p

p=0

In this format we have the following constraints:

D u(t ) < C (2.18a)
-_ p - -

u(t ) > 0 (2.18b)
- p - -

x(t ) > 0 (2.18c)
- p--

VP p [0, l, *.. P].

We now consider the x(t ) and u(t ) IV p e [0, 1, ... , P] to be
- p - p

the decision variables of a linear programming problem. The total

number of such variables is (n+m)P. The non-negativity constraints

(2.18b) and (2.18c) are consistent with standard linear programming

format.

Since (2.17) is a linear function of the decision variables, we

have a linear programming problem with nP equality constraints (2.16)

and rP inequality constraints (2.18a). The general format of the

program is known as the "staircase structure", a form which has re-

ceived considerable attention in the programming literature. Such

works are devoted to exploiting the special structure of the problem in
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order to reduce computation through application of decomposition tech-

niques. See, for example, Manne and Ho [1974]. Cullum [1969] proves

that as the number of discretization points P goes to infinity, the

solution to the discrete problem approaches the optimal solution of the

original problem. However, for a reasonable size network and for P

sufficiently large to insure good quality of the approximation, the size

of the linear program (both in terms of the number of variables and the

number of constraints) becomes prohibitively large for practical appli-

cation. For this reason, this technique has been applied only for the

purpose of obtaining sample solutions to provide insight into the pro-

perties of optimal solutions.

2.7.2 Penalty Function Method

Optimal control problems with inequality constraints on the state

(and/or) control have frequently been solved in an open-loop fashion by

converting them to a sequence of problems without inequality constraints

by means of penalty functions. One such technique is presented by Las-

don, Warren and Rice [1967]. The penalty function detailed in that

paper works from inside the constraint, the penalty increasing as the

boundary is approached. Applying this technique to our situation, the

state variable inequality constrained problem (2.10)-(2.14) is converted

to a problem without state constraints by augmenting the performance

index with a penalty function as follows:
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T

J =(x (t) + E3/x (t)) dt (2.19)
a . . 1i

j> 0
1

irj c N, i j4 j.

The modified problem is then to minimize (2.19) subject to the

dynamics (2.12) and the control constraints (2.14).

Since the penalty function term

f (E /x (t)).dt] ij c N, i 0 j (2.20)

0o i,) i

approaches infinity as any x approaches its boundary x = 0, we would

speculate that the minimizing solution remains within the constrained

region x > 0. In Lasdon, Warren and Rice [1967] it is shown that this

conjecture is true, and further that the minimizing control as a func-

tion of time and the minimizing cost approach those for the constrained

problem as max (s) + 0 i,j e N i y j. Also, since we are approach-
i,j 1

ing the constraint boundary from the interior, any solution for the

unconstrained problem is also feasible for the constrained problem.

In order to implement this technique, we need to solve the uncon-

strained problem by any appropriate numerical technique for successively

decreasing values of E . Gershwin [1976] has created a program for the

solution of the penalty function approach to this problem in which he

utilizes a modified form of differential dynamic programming for each
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unconstrained minimization. The computational efficiency of the al-

gorithm is greatly enhanced by the exploitation of parametric linear

programming techniques. Whether or not this scheme encounters numerical

difficulties as E. grows very small remains to be determined.
1



Chapter 3

FEEDBACK SOLUTION TO THE OPTIMAL

CONTROL PROBLEM WITH CONSTANT INPUTS

3.1 Introduction

We have formulated the data communication network dynamic message

routing problem as the linear optimal control problem of Section 2.4.

In this chapter we develop the fundamental theory underlying a novel

approach to the synthesis of a feedback solution to that problem. The

technique is predicated upon the assumption that all inputs to the net-

work are constant in time. In this section we present a brief review

of the development.

We begin by presenting the necessary conditions for the general

deterministic problem (inputs not constrained to be constant) and dis-

cuss these conditions in some detail. We then show that these condi-

tions are also sufficient, a most fortuitous situation since it guaran-

tees the optimality of trajectories which we eventually shall construct

using these conditions.

The subsequent discussion is restricted to the constant inputs

case. Based exclusively on the necessary and sufficiency conditions,

a geometrical characterization of the feedback space for constant inputs

is presented: the regions of x-space over which the same controls and

-50-
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sequence of states on and off boundary arcs are optimal are convex poly-

hedral cones in the state space. It is this special property (a result

of the total linearity of the problem) which embodies the adaptability

of the constant input formulation to the synthesis of a feedback solu-

tion. What one needs is an algorithm to specify these regions and the

appropriate controls.

Next, we present several simple examples to illustrate how these

regions may be constructed. This is accomplished by producing a certain

set of optimal trajectories backward in time from the final state x = 0.

Each portion of these trajectories generates one of these convex poly-

hedral conical regions, thereby providing the optimal control in that

region. If a sufficiently complete set of trajectories is calculated,

we manage to find enough regions to fill out the entire space.

The remainder of the chapter is devoted to the extension of this

concept to the general network optimal control problem with constant

inputs. Taking the lead from the examples performed, an algor-

ithm is presented for the construction of the conical regions from a

comprehensive set of backward optimal trajectories. This algorithm is

in general form, and several specific issues are raised regarding its

execution. An issue of central importance is the determination of the

appropriate set of costates required by the algorithm. The resolution

of this question is essentially geometrical in nature, relying upon the

interpretation of the Hamiltonian as a continuously rotating hyperplane.

In fact, many of the arguments are geometrical, so that we frequently
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use two and three dimensional examples for illustration of the ideas.

Unfortunately, there are several characteristics associated with

the backward construction method which complicate its formulation as a

compact computational algorithm for the general network model. These

properties are introduced by way of examples in the Section 3.3.4.

Looking ahead, however, we are able to show in Chapter 4 that these

bothersome properties are non-existent in the case of problems involving

single destination networks with all unity weightings in the cost func-

tional.

3.2 Feedback Solution Fundamentals

3.2.1 Necessary and Sufficiency Conditions

The necessary and sufficiency conditions to be presented are valid

for arbitrary deterministic inputs. For ease of reference, we restate

our problem here.

Minimization min J(x(t)) (3.1)

u(t)CU

ftPerformance Index J(x(t)) = Jft0f [Ttx(t)0dt (3.2)

Dynamics x(t) = B u (t) + a (t) (3.3)

Boundary Conditions x(t0 ) x(t ) = 0 (3.4)

State Constraints x(t) > 0 V t 6 [t0 , tf] (3.5)
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Control Constraints
D u(t) < C

ut) > 0
V- t e (t0 , tf]

Theorem 3.1 (Necessary Conditions)

Let the scalar functional h be defined as follows

A T =T
h(u(t), X(t)) = A_ (t)x(t) = _(t)[B u(t) + a(t)]. (3.7)

A necessary condition for the control law u*(-) 6 U to be optimal

for problem (3.1)-(3.6) is that it minimize h pointwise in time, namely

x (t)B u*(t) < XT (t)B u(t)

v u(t) U

(3.8)

V t E [t0, t].

The costate X(t) is possibly a discontinuous function which satisfies

the following differential equation

-dX(t) = adt + dn(t), t E [t0 , tf] (3.9)

where componentwise dl(T) satisfies the following complementary slack-

ness condition

x!(t)dnj(t) = 0 JV t E [to, t ]
i f

dn(t) < 0 ij E N, j /i.

(3.10)

(3.11)

The terminal boundary condition for the costate differential equation

is

X(t ) = V free (3.12)

and the transversality condition is

(3.6)
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f (t )x(t ) = 0. (3.13)
- f - f-

Finally, the function h is everywhere continuous, i.e.

h(u(t-), X(t)) = h(u(t ), X(t )) (3.14)

V t 6 (t0 , tf].

Proof:

Jacobson, Lele and Speyer [1971] present a generalized Kuhn-Tucker

theorem in a Banach space for the minimization of a differentiable func-

tion subject to inequality constraints. For our problem, it calls for

the formation of the Lagrangian

J = t ax(T)dT + ftf x(T) [B u(T) + a(T) - x (T)]dT

t0 t0

ftf dn(T) Tx(T) + vTx(t ) (3.15)

t0

where n is an n X 1 vector adjoining the state constraints which satis-

fies the complementary slackness condition

ff dn (T)x(T) = 0 (3.16)

0

dgl(T) < 0 (3.17)

9 T E [t 0 , tf].

The vector V which adjoins the final condition is an n x 1 vector of

arbitrary constants.
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For u* (.) to be optimal, J must be minimized at u* (-) where x(),

x(t ) and tf are unconstrained and u is constrained by u U. Taking

the differential of J with respect to arbitrary variations of x(-),

x(t ) and tf we obtain

dJ = t 6x(T) dT + a Tx(t )dt

0

- X (T)6x(T)dT + J dTl (T)6x(T)

t0 t0

T
+ V dx(t ) (3.18)

where Sx is the variation in x for time held fixed and

dx(t ) = 6x(t ) + :(t )dt (3.19)

is the total differential of x(t ). We next integrate the third term

of (3.18) by parts and rearrange to obtain

dJ = tf 6xT (T) [OdT + d_(T) + dX (T)]

t0

-X (tf )6x(tf) + X(t)6x(t 0

T T
+ aT X(tf) dtf + v dx(t ). (3.20)

Since the initial conditions are fixed we have 6x(t0) = 0. Substituting

for dx(t ) from (3.19):

-- f

dJ = 6x T(T) [adT + dr)(T) + dX (T) ] +

0
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+ [V - _ (t )]x(tf -f

+ [a x(t ) + V X(t f)]dt . (3.21)

Now, in order for J to be stationary with respect to the free variations

6x(T) , 6x(t f) and dtf we must have

adT + dfl(T) + dX_(T) = 0 (3.22)

X(t f) = V v free (3.23)

T- T T
v x(t) = _ (t )x(t) = -a x(t ). (3.24)

Equations (3.16) and (3.17) together with the constraint x > 0 imply

dr (t)x (t) = 0 'T o [t , tf] (3.25)

i,j e N, j 3 i.

If we integrate the term f XT (T)x(T)dT by parts in equation

t0

(3.15) and substitute equations (3.16) and (3.22)-(3.24) into (3.15)

we obtain

= t T-) [B u(T) + a(T)]dT. (3.26)

t0

In order for J to be minimized with respect to u(-)SU, the term

T (T) B u(T) must clearly be minimized pointwise in time, that is

x (T)B u*(T) < X (T)B u(T) (3.27)

lv_(T) Cu, tE [t0' tf ]
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Thus, we have accounted for equation (3.8), leaving only (3.14) to be

proven.

To this end, let us assume that we have an optimal state trajec-

tory x*(t) and associated costate trajectory X(t), t E [t0 , t ]. Then

by the principle of optimality, for any fixed T < tf , the functions

x*(t) and X(t), t £ [to, T], are optimal state and costate trajectories

which carry the state from O to x(tf) = x(T). Hence, all of our pre-

vious conditions apply on [t 0 , T] with x(t ) = x(T). Applying the

transversality condition (3.24) at tf = T, we obtain

T T
X ()(T) = - x . (3.28)

Since equation (3.28) holds for all T C [t0, tf] and x(T) is everywhere

T
continuous, then X (T)x(T) must be everywhere continuous. This proves

equation (3.14). U Theorem 3.1

All of the necessary conditions which refer to the functional h

defined in (3.7) also apply to the more general (and familiar) func-

tional called the Hamiltonian defined as

T T T
H(x(t), u(t), X(t), Q(t)) = a x(t) + X (t) x(t) 4 g (t)x(t). (3.29)

The vector of multiplier functions 11(t) is defined componentwise as

, dn7(t)

pi (t) = (3.30)
i dt

and therefore y? is defined only at points for which n is absolutely
1 W

continuous. We need not be concerned with this technicality when we
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use h, which still embodies the important properties of H for our

problem.

For emphasis, we shall discuss next the nature of the costates as

functions of the corresponding states as determined by equations (3.9)-

(3.10). At points of absolute continuity of n , the associated costate

differential equation may be expressed in the familiar form

- T) = -- = a + y(T) (3.31)

1

When the state xj > 0 (xj is said to be on an interior arc) then equa-
1 1

tion (3.10) implies dnf = 0, and equation (3.30) gives y9 = 0. There-
1

fore, equation (3.31) reduces to

-X7(T) =0a. when x.(T) > 0. (3.32)

When the state x! = 0 (xj is said to be on a boundary arc), its costate
I 1

is possibly discontinuous, depending on the nature of n1. At points

for which n is absolutely continuous, we have from equations (3.10)

and (3.11) that dnf < 0 (since x = 0), and therefore equation (3.30)
1 - I

implies yP(t) < 0. Hence,

-X$(T) = + V1( (3.33)
when x.(T) = 0.

y (T) < 0 (3.34)

On the other hand at times T when rj. experiences jumps of magni-
p 1

tude Afl(T), equation (3.11) indicates
I p
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Figure 3.1 Example of State-Costate Trajectory Pair
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Afl(T ) < 0 (3.35)
ip-

and from equation (3.9) we have

AX(T ) - 0(T+) - X1c-) = -AQ(T ) > 0. (3.36)
i p i p i p 1 p -

That is, jumps in the costate are always positive. The above situations

are depicted in Figure 3.1 for a possible state-costate trajectory pair.

The times at which the state enters or exits from a boundary arc

are called boundary junctions. Note that the minimum value which the

slope of the costate may attain on or off a boundary arc is -0a . Aside

from jumps, a characteristic of the costate which distinguishes the

state constrained problem is the possible non-uniqueness of the costate

for a given optimal trajectory. As such, it is clear that the costates

may not be interpreted as the partial derivative of the optimal cost

with respect to the state, commonly known as the influence function.

Furthermore, the non-uniqueness of the costate presents special impli-

cations for the feedback scheme to be developed. An example of this

behavior and a discussion of its significance is presented in Section

3.3.4.2.

In general, any trajectory obtained from a set of necessary condi-

tions is an extremal, and as such is merely a candidate for an optimal

trajectory. Fortunately, in our problem it turns out that any such

extremal trajectory is actually optimal, as is shown in the following

theorem.
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Theorem 3.2

The necessary conditions of Theorem 3.1 are sufficient.

Proof:

Let x* (t) , u* (t), _(t) , T(t) satisfy the equations (3.2) - (3.6)

and the necessary conditions (3.7)-(3.14) of Theorem 3.1. Also, let

x(t), u(t) be any state and costate trajectory satisfying (3.2)-(3.6).

Then

6 J = J(x) - J(x*)

= t a (T) (x(T) - x*(T)) dT

0

= 
t

t0
(- dX Tft) - dn T (T) )(x (T) - X* (T))

f tf

0

From equation

by substituting from (3.9) and expanding obtain

(-XT (T)dX(T) - x T(r) dn (T) + x* (T)dX(T) + X* (T) d-n(T)).

(3.16), ftf * (T) dT)T = 0. We now integrate the first

0

and third term in 6J by parts:

t x (T)d( = X t )x(t ) - (t0 )x(t0
0

f t f XTfx(T)dT

0
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x (T)dX(T) = _ (t )x (tf) - X (t0 )x (t0)

T **X(T) x (T) dT.

Now, by (3.4)

x(t 0) = x*(t0

x.(t ) = x* (t f)

and

= 0.

Substituting these expressions we obtain

= t f
0

f t f
to

( (T)x(T) - ()*(T))dT

x (T)dfl(T)

S(T))B(u(T)

Tx (T) dn (T).

- u*(T))dT

But by (3.8)

ft tf XT -)B(t (T)B(u(T)

to
- u*(T))dT > 0

and since x(T) > 0 and dr(T) < 0 we have

< 0.
t x ( )d g(T)d

0

ft f

t0

S t f

0

f t f
0
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Therefore 6J > 0 4kF u( E U, x(-) > 0. N Theorem 3.2

Although it is not immediately apparent how one may utilize the

necessary conditions to obtain optimal solutions (this if most often

the case), certain fundamental characteristics of optimal solutions may

be deduced immediately from the form of these conditions. We begin this

discussion by noting that finding the optimal control function u*(-)

reduces from (3.8) to solving at every time T E [t0 , tf] the linear

program with decision vector u(t):

T
u*(T) = ARG MIN [A (T) x(T)]

u(T)EU

= ARG MIN [X (T) B u(T) (3.37)

U (T) EU

D u < C

u > 0

This is a fortuitous situation, since much is known about characterizing

and finding solutions of linear programs. We know, for instance, that

optimal solutions always lie on the boundary of the convex polyhedral

constraint region U.

We now proceed to represent the solution to .the linear program

(3.37) for the specific form of the matrices B and D which correspond

to our network problem. The minimization can actually be performed on

one link at a time. Consider the link (i,k) and a possible set of
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associated controls

1 2 i-l i+l N
uik, Uik, . u , ui , ... , uik'

A given control may appear in one of the two following ways:

1) u enters into exactly two state equations:
ik

x.(t) = -u (t) + ... + a.
ik

j (3.38)
(t) = +u (t) + .. + a

k ik k

2) u.k enters into exactly one state equation:
ik

k k k
x. (t) = -u. + ... + a. (3.39)

Hence, all controls on link (i,k) contribute the following terms to

X B u:

1 1 1
(X (t) - .(t))u.1 (t)
k i ik

2 2 2
+ (2 (t) -2 (t) )U.2 (t)

k i ik

i-l i-l i-l
+ ... + (X (t)-X. ~(t))u (t) (3.40)

k i1i

i+l i+1 i+l
+ (k (t)-X.i (t) ) U. (t)k i1i

N N N
+ .. + (k (t) - .(t))u.i (t)

k k ik

k
where XkCt) = 0. Equations (2.4) , (3.37) and (3.40) determine
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The optimal control law at time t on (i,k):

u,
*u ik(t) = Cik and u ik(t) = 0

if (x (t) - x (t)) <k

VL j / z,

(Ak(t)

and (X (t)k - A (t)) < 0.

£ £+1 m
Suk(t)+u (t)+ ... + uit)

uik ik

UjkCt

= Cik

= 0

if (x (t) - x (t)) = (X (t) - x (t)) = ...
k 1 k 1

= (XmC() -A (t)) < (X (t) - x (t))
k k i

and (X (t)k
- A.(t))1 = (X (t)-x. Ct))

k

m < 0.Ctk .t)<0

, ) +1
*Uik (t) +u (t + ... + u (t) < c

ik -ik

uk kCt) = 0

if (X (t)-x (t)) = (X C+ t)k 1 k

= (X (t) - x (t)) = 0

and (X9(t) - A (t)) > 0k 1

2,+J.
- X. Ct))

1

(3.41)

(3.42)

(3.43)

kz j ge [,+...,m]

-V j it [ r , +1, . .. , m].
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The actual computation of the optimal control at time t requires

knowledge of X(t), which in turn requires knowledge of the optimal state

for time greater than or equal to t. This is the central difficulty in

the application of necessary conditions in the determination of a feed-

back solution. The remainder of this thesis is essentially devoted to

demonstrating how this difficulty may be surmounted for our problem.

However, we may immediately deduce several properties of the opti-

mal control from examining the general form of (3.41)-(3.43). It is

evident that the quantities which determine the optimal controls are the

coefficients of the form (.(t) - X (t)) which multiply the control
k 1

ui (t). The only situation under which it is ever optimal to have uk (t)
ik 1

strictly positive is if (X3(t) - XJ(t)) < 0. In words, this condition

says that it is optimal to send messages with destination j from node i

to node k at time t only if the costate associated with x (t) is greater1

than or equal to that associated with x (t) . This fact gives rise to a
k

very interesting analogy: The flow of messages in a data communications

network can be roughly visualized as the frictionless flow of fluids in

a network of pipes with storage at tanks in the nodes. We may then

relate the costates X, (t) and X1 (t) to the pressures at the storage
k l

areas x and x respectively, and the difference (X (t) - X?(t)) to the
ki 1 k 1

associated pressure difference. In this vein, we shall refer to

(X (t) - X (t)) as the costate difference which exists at time t between

node i and node k and is associated with the traffic going to destina-

tion j. It is therefore optimal to send messages of a given destination
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from one node to an adjacent node only if the costate difference is nega-

tive or zero.

According to equation (3.41), if the costate difference associated

with destination j on link (i,k) is strictly negative and less than the

remaining costate differences on this link, then the optimal control is

u (t) = C and all other controls are zero. However, equations (3.42)
ik ik

and (3.43) reveal that when two or more costate differences on the same

link are non-positive and equal, the associated optimal control will not

be uniquely determined. In these situations, the optimal solution set is

in fact infinitely large. Such non-uniqueness is a fundamental property

of linear programs.

3.2.2 Controllability to Zero for Constant Inputs

Henceforth we shall be considering only the situation in which all

the inputs are constant functions of time over the interval of interest

t E [t0, tf]. The utility of this assumption for the representation of

data network operation is discussed in Section 5.1. In this section,

we present a simple theorem which characterizes all those inputs which

allow the state to be driven to zero under given link capacity cons-

straints. We begin with a definition:

Definition 3.1: We denote by

={x-x = B u and u E U1 C Rn (3.44)

the set of feasible flows attainable through the available controls.
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The reason for the negative sign in the definition of X is basically

one of notational convenience. We shall also refer to ' as the x-con-

straint figure. Note that since U is a bounded convex polyhedron in

n
Rm and B is a linear mapping from Rm to R , then, 'is a bounded con-

n
vex polyhderon in R

Theorem 3.3 (Controllability to zero, constant inputs)

All initial conditions of the system (3.3)-(3.6) are controllable

to zero under constant inputs if and only if

a E -Int () (a R n n

where Int (42 denotes the interior of the x-constraint figure.

Proof: Suppose a E Int(4).

Figure 3.2 x-Constraint Figure
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We shall proceed by showing that it is possible to pick a control

corresponding to a feasible flow which simultaneously brings all compon-

ents of any initial state x(Q) to zero.

There is a neighborhood N (a, E) which lies entirely in Int () for

S > 0 sufficiently small. See Figure 3.2. Consequently, we may pick

a constant control u' such that for all x.

Xj(.x. (0)
-b u' = ai + E 1

I- I1x(O)II

where b! is the row of B corresponding to xi, and x7 (0) is the corres-
I 1

ponding component of x(0). The norm is in the Euclidean sense. Apply-

ing the control u' we obtain

X7(O)

x (t) =bl + a?=- 1

Since E > 0, all components of x(0) are brought to zero in the time

T = = .
0

x.

On the other hand, suppose that a % Int(X). Then a falls either

on a boundary of 'kror in the complement of 52 with respect to R n. It

now must be shown that in either case there exists some initial condi-

tion which is not controllable to zero.

We begin with the case in which a falls at a boundary point of i;

that is, a falls on a face of the convex polyhedron j~. As a prelimin-

ary, we recognize the fact that since all of the components of a are
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non-negative, then the face of O V on which it falls lies at least par-

n
tially in the non-negative orthant of R . It is not difficult to see

that any face of, Ewhich lies in the non-negative orthant of Rn has

the following properties:

(i) Consider the hyperplane which contains the face. Then the

coefficients of the equation of the hyperplane are all non-negative;

that is, the unit normal vector to the face has all non-negative com-

ponents.

(ii) At least one of the components of the unit normal vector

is strictly positive.

Let n denote the unit normal vector to the particular face of ie

on which a lies. See Figure 3.3.

feasible flow

n

Figure 3.3 Attainable Flows in the Presence
of Constant Inputs
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Now, since -x = -B u - a it is evident from Figure 3.3 that a

given flow -x can be realized by a feasible flow -B u with inputs a

if and only if

-x - n < 0. (3.45)

We now proceed to show that if a lies at a boundary point of 4?r,

then we can always find some initial condition which cannot be brought

to zero with the available controls. To this end, consider the follow-

ing subset of Rn

S={x Rnjxj = 0 if n > 01

where n is the component of n corresponding to x1. Now, choose any

initial condition such that x(t0) $. Clearly such a point always

exists. We now shall show by contradiction that any such initial condi-

tion can never be brought to the final state x(t ) = 0. Suppose that

the state can be brought to zero at some time t f Then the state must

hit $ at some time T' < t . Therefore, at some time T" < T' we must
- f

have x k(T") < 0 for at least one component xk of the state vector such

that nk > 0. The existence of such a component is guaranteed by

property (ii) above. Also, all of the other components of x associated

with positive components of n must be such that they have non-positive

time derivatives at T". Hence, since by (i) above all components of n

are non-negative we have

-x(T") - n = -x7(T")n > 0.
ijE i 1

ji
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The above inequality contradicts (3.45) and therefore any x(t0)

cannot be brought to zero.

n
Finally, consider the case in which a E R /IX. Then it is easily

seen that there is at least one component of the state which increases

without bound for any u C U. Therefore, no initial condition is con-

trollable to zero in this case and the theorem is proved.

U Theorem 3.3.

Controllability to zero is certainly a necessary condition for

the existence of an optimal solution to (3.1)-(3.6), although not in

itself sufficient. However, as our feedback synthesis technique will

be based upon trajectories which satisfy the necessary conditions, we

are guaranteed of their optimality by the sufficiency Theorem 3.2.

We shall therefore have no need of an explicit proof of the existence

of an optimizing control.

3.2.3 Geometrical Characterization of the Feedback Space for

Constant Inputs

In what follows, we shall assume that the controllability to zero

condition of Theorem 3.3 is satisfied. The following is a consequence

of the optimal control characterization (3.41)-(3.43), and as such is

a corollary to Theorem 3.1.

Corollary 3.1 If a = constant, then there always exists a solution to

(3.1)-(3.6) with controls piecewise constant in time and trajectory
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with piecewise constant slopes.

Proof:

For a given costate trajectory L(t) , t E [to, t ] , the optimal

control is given by (3.41)-(3.43). For those controls with unique

optimal values, the determining factor is the sign and relative magni-

tude of the associated costate difference. Over periods of time for

which these factors remain the same, the optimal control is constant

and is given by u. = C or u. = 0. Those controls not uniquely
ik ik ik

determined over certain periods of time (as in situations (3.42) and

(3.43)) may achieve any values which satisfy certain constraints, such

m m
as uk? =C. or u$k < C ik. The only additional requirement on

j= k ik . i-1

these controls may be that they maintain certain states on boundary arcs

over certain periods of time. Since the inputs are constant, any such

requirement may always be satisfied by constant valued controls over

the appropriate time period. As the controls have been shown to be

piecewise constant and the inputs are constant, it follows immediately

from equation (3.3) that the associated optimal trajectories have piece-

wise constant slopes. N Corollary 3.1

We note in passing that the above corollary also holds for piece-

wise constant inputs.

The solution to the constant input problem is of the bang-bang

variety in that the optimal control switches intermittently among
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boundary points of U. Also, in situations when one or more costate

differences are zero or several are negative and equal, the control is

termed singular. Under such circumstances, the optimal control is not

determined uniquely from the laws (3.41)-(3.43). In the solution tech-

nique to be presented, this non-uniqueness will play a major role.

Owing to the bang-bang nature of the control, every optimal tra-

jectory may be characterized by a finite number of parameters. We now

present a compact set of notation for specifying these parameters.

Definition 3.2

U(x) A {0 ul' --2' '''' f-l} (3.46)

and T(x) = {t0' t, ... tf}

are a sequence of optimal controls and associated control switch time

sequence which bring the state x optimally to 0 on t E [t0 , tf], where

u is the optimal control on t [t , tp+l ) p C [0, 1, ... , f-l].

-pp p+

When dealing with the necessary conditions, an additional pro-

perty of a given trajectory which shall be of interest is which states

travel on boundary arcs and over what periods of time. This informa-

tion is summarized in the following definitions:

Definition 3.3

B = {xI|xm(T) = 0 V T E [t , t )} (3.47)
p i i p p+1

is the set of state variables travelling on boundary arcs during the

application of u.
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Definition 3.4

8(x) = {B, 8 ,..., 8 } (3.48)
- 0' 1l f-l

is the sequence of sets B corresponding to the application of U(x) on

T(x). B(x) is referred to as the boundary sequence.

In the forthcoming development, we shall be interested in regions

of the state space which have the following property: when we consider

every point of the region to be an initial condition of the optimal con-

trol problem, a common optimal control sequence and a common associated

boundary sequence apply to all points. Formally, we define the follow-

ing subset of R

Definition 3.5

?(U, 8) Ax E RnIU(x) = U and B(x) = B1. (3.49)

Note that since any two distinct members of W(U, B) have associated with

them the same sequence of optimal controls, the number of switch times

in their respective sequences is the same. However, the values of the

particular switch times will in general be different. Suppose

1 6 W(U, 8) and 2 W(U, 8). Then the switching time sequences are

distinguished with the following notation:

Notation 3.1

T(x1 ) = {ti ti (350)

T(x2) = {t" t"t, ... , t"}
-2 0 1 f
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The above definitions are illustrated pictorially in Figure 3.4.

It may appear at first that the regions 97(U, B) defined above are

too special to be of any utility. However, we shall soon demonstrate

that such regions are related to the basic building blocks of the feed-

back space. With this as motivation, we begin by providing a fundamen-

tal geometric property of these regions.

Theorem 3.4 (Geometrical characterization)

Let the inputs a = constant. Let U and 8 be control and boundary

sequences respectively as defined in (3.46)-(3.48). Also, let 9(U, B)

be the subset of Rn as defined in (3.49). Then W(U, B) is a convex

n
polyhedral cone in R

Proof: The basic elements are embodied in the following lemmas:

Lemma 3.1. Let the inputs a = constant. Suppose x1  Rn and x e Rn

If x = Yx , where Y is a scalar Y > 0, then

U(x2 ) = U(x)

and (x2) =(x)

Proof of Lemma 3.1:

For the purpose of this proof, we shall consider time to be pro-

pagating backward from t f
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t

t0 tf

Figure 3.5 Time Convention for Proof

of Lemma 3.1

Let the optimal solution which brings the state x(t 0 1Ex to

x(t ) = 0 be characterized by the control and switch time sequences:
-f f

U(x 1 ) = {E, u1, ... , u-

(3.51)

T(2i) = {t; t , ti}

Associated with this optimal solution is the costate vector evolving

in backward time according to

dX1 (T) = adT + dfl (T)

X (tf) = (3.52)

T E [ti, t;].

The proof shall consist of producing a switching time set T(x2 ) and

a costate history X (T) for which U(x ) is an optimal control sequence
-22 -
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which brings 2 2 = Yx1 to 0. These sets are

T(x-) = (t", t", ... , ti}l
-2 0' 1' f

where t" = Yt'
p p

p E [0, 1, . ..f]

To

show the

(i)

(ii

(ii

(iv

(3.53)

(3.54)

dX 2 (T) = dT + d2 (T) (3.55)

where X (t") = YX (to) (3.56)
-2 f -1 f

and dn2(T) = ydn1 (T/y) . (3.57)

show that indeed this set optimally brings 2 2 to 0 we have to

following assertions:

The application of U(x1) on T (x2 ) drives the state

from 0 to 2 1 backward in time.

) 8(2 1 *

i) 2 and 2 satisfy all of the necessary conditions.

) U (x ) is optimal on T( 2

Step (i) .

Since our system is time invariant, for convenience we set

ti = t"t = t = 0 as the initial time in the backward sense. Then if
f f

we denote by x1 (-) and xC2() the state trajectories resulting from the

application of U(2l) on T(x1 ) and TC x 2) respectively, integration of

the state dynamics backward in time yields
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2 (Yt) = - 2 (T)dT

fYt

0

= Y ( t s s [t , t /3 . 8

E2(t") =2E2 =Yxl l -1(t). (3.59)

Step (ii).

From (3.58) we see that if any component of 2E is zero on

[t', tp+), then the corresponding component of x 2 is zero on
p p+l =

[t", t" ). Likewise, if any component of x1 is greater than zero on
p p+l

[t', t'), then the corresponding component of x2 is greater than zero
p p+l =

on [t", t"
p p+l

Step (iii).

By virtue of the fact that 8(x 2 (xl), it is easily verified

that dg2 as defined in (3.57) satisfies the complementary slackness

condition (3.10). Since X2 is defined to satisfy a differential equa-

tion of the required form, and da2 satisfies complementary slackness,

then L 2 (T) , T E [tf, t], is a legitimate costate trajectory.
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Step (iv).

The relationship between X and X backward in time is
-1 -2

ryt(-Yt
2 (Yt) =

t f

a dT + d 2 (T) + Y
tf

by (3.55) and (3.56)

fYt Yt= a dT + Y f
t ft

dfl (T/Y) + Y%1

by (3.57)

/t t= f a ds + y d 1 (s) + Yv7
ft ft

where s = T/Y

= yX1 (t)

Definitions (3.51) imply

u* =ARG MIN (X (T) B u)

P uEU

T E: [t' t' + ) p E: [0, 1, ... , f-1]
p p+1

= ARG MIN (yX (T)B u)
uU

since y positive scalar

= ARG MIN (X T(yT)B U).
uU

The above is equivalent to

(3.60)

(3.61)

IV t 6 [tf , ty].
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u* = ARG MIN (X T(T)B u) (3.62)
p uEsu -2

T E: [t", t" ), p E: [0, 1, ... , f-l].
p p+L

Therefore, our supposition regarding the optimality of U(x1 ) on T(x 2 )

is verified. Hence, the application of U(x1 ) on T(x2 ) = {t", t", ... ,

t" forward in time brings the state from x (t = to x(t) = 0.
f -2 (t 'Y3 1 t E2 t

U Lemma 3.1

Lemma 3.2. Let the inputs a = constant. Suppose for some El

2 E: R n,1 - 0, x2 > 0, that

U(x ) = U(x) = U

and

B (xy) = g(x2) = B

If -3 y- 1 + (l-y)x 2 , O < y < l

then

U(x 3 ) = U

and

6(2x3) = .

Proof of Lemma 3.2:

As in the proof of Lemma 3.1, we assume that time propagates back-

ward from the final time. Let the optimal solution which brings the

state from xi to 0 be characterized by the control sequence and switch

time set
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U(xi) = U-{u30 ui, .. g
(3.63)

T(x1 ) = {t), t{, ... , t 1

respectively and similarly for E2'

U( 2) = U = {u0, u.

(3.64)

T (x2) (" " .,t)

Associated with each of the above optimal solutions are costate

vectors ?i and 2 which evolve backward in time according to

dX (T) = cdT+ d (t) = (T (3.65)
- 1 L-4 f -

T E [ti, t ]

dX (T) =t+d2 2(t") =v 2 (3.66)
-214 2 () -L2 (tf -2 (.6

T E [t", t"].

The proof proceeds along similar lines to the proof of the pre-

vious lemma. We shall produce a switching time set T (x3) and a costate

history X (T) for which U is an optimal control sequence which brings

-2 y2l + (1-Y)2 to 0. These sets are

T(x3) = {t*,t', ... , t"' } (3.67)

where t"' = yt' + (1-y)t" (3.68)
p p p

p E [0, 1, ..., f]

dX 3(t) = gxdT + da 3 (') (3.69)

where X (t"' ) = yLX(ti) + (1-y)x 2 (t ) (3.70)
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and

At'
d3(t"' + T) = y dn(t' + A T)-p p At"'l

p

At"
+ (1-y) dn (t + At"' T) (3.71)

p

T E [0, At"' ), p E [0, 1, ... , f)
p

where we denote

Notation 3.2

At' = t' - t'
p p p-l

At" = t" - t" p E [0,l,...,fI.
p p p-1

At"' = ti' - t"' (3.72)
p p p-1

From equations (3.72) and (3.68) we obtain

At "' = yAt' + (lg)At (3.73)
p pp

To show that indeed the above set optimally brings x to 0 we have

to show the following assertions:

(i) The application of U on T(x ) drives the state from 0-3

to x= yx1 + (1-y)x 2 backward in time.

(ii) B(2 3 ) .

(iii) a3 and 2 3 satisfy all of the nececessary conditions.

(iv) U is optimal on T(x 3 ).
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Step (i).

Since our system is time invariant, we set t' = t" = t"' = t as

the initial time in the backward sense. We now denote by El(-) , 2

and E3(-) the state trajectories resulting from the application of U

on T (x ) , T(x2 ) and T (x 3 ) respectively and designate x = B u + a.
Zil =2~ -- q -

Integration of the state dynamics backward in time yields

p+l

x (t'"i +t) = - :-1 At"'l - x _1t
p qf- -1 q -p-

p+l
= - Z c (YAt'+(l-Y)At") -x t

q=f-l

by substituting (3.73)

= yx(t') + (1-Y) 2(t") -x t

t e [0, At"' ).
p

Also from (3.73) we have

At' At"

Y Ati, + (1-Y) Ati 1
p p

so that the above expression now becomes

E 3 (t"' + t) = Y 1 (t') + (l-Y) 2 (t")

At' At"

(Y + (1-Y) ,) t

p p

At' At"

= Y(t' + At t) + (1-Y)42(t" + A t)
p p
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t E [0, At"' ). (3.74)
p

In particular, we obtain the desired value at t"':0

3 (') = 3 Y1 + (1-Y) 2 = yx1 (to) + (1-Y) 12 (t"). (3.75)

Step (ii).

Since B(x ) = S(x2) = 1, if any component of x is zero on

[t', t+), then the corresponding component of x2 is zero on [t",t+ ),'

and vice versa; also, from (3.74) we see that under this circumstance

the corresponding component of x is zero on [t"' , t"' +). Likewise for

components strictly greater than zero. Hence, 1 (x ) = B.-3

Step (iii).

By virtue of the fact that S(x ) = B it is easily verified that d-3 -3

as defined in (3.71) satisfies the complementary slackness condition

(3.10). Since L is defined to satisfy a differential equation of the

required form and d 3 satisfies complementary slackness, then X(),

T s [tf, t0'], is a legitimate costate trajectory.

Step (iv).

Integrating the costate equation (3.69) backward in time on

t C [0, At"' ) we obtain
p

3(t"' + t) = (ti" ) + f a dT+ ftt dl (t + T)
-3 p -3 p JII - JtI"f -3 p

p p
t t At'

(t"') + a dT +Y dJ (t' + - T) +

t" t" p
p p
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t At"
+ (1-Y) d2 pt + At )

t"' p
p

Now perform the change of variables

At'
s1  At"'

p

At"

s 2  
Ati'
p

and note that T = Ys1 + (1-Y) s 2 by (3.73). Then

T=t

3(t"' + t) = X3(t"' ) +

pt"'
a d(ys1 + (1-y)s2)

p At"

t s 2~At' t
p

d (t' + sy) + (1-Y) J"' df 2(t" + s
Z - tiug4 p 2

A
sI-

= X3 (t"') + y

+(- p f

- At"i

p
+21 Y ) t " '

p

p
t'

P
p

(ax ds1 + dpyi(t'; + s1))J

t

(ax ds2 + d-n2(t"1 + s2) (3.76)

t E [0, At"' ]
p

From (3.65) and (3.66) we obtain by backward integration

At'

l(t', + ti, t) = (t') +
p st

-p

t

(a ds + dn (t' + S1))

(3.77)
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and At"

p
At"p

2(t"i + , t)=1(t"t) +I t (ox ds2 + dg2 (t" +o s2P2 -2 p 2

(3.78)
T E [0, At"').

p

Substituting (3.77) and (3.78) into (3.76) obtain

At'
3(t"' + t) = X3 (t"') + Yx (t' + -' t) - YX (t')3 p p 1 p At"ll Y 1

p

At"
+ (-)2(t"' + Atp t) - (1--Y)2 (t "1)- p Atilt- p

p

T E [0, At", ). (3.79)
p

Upon substitution of the end condition (3.70) at tf = ti = t" =t'

the costate propagates in the following fashion backward in time:

At' At"
X3(t"' + t) = Y (t' + ft , t) + (1-Y) x(t" + t) (3.80)

3 4 p At" -2 p At"'
p p

3F pE [0, 1, ... , f], t E [0, At"' ).
p

We now verify that for X given by the differential equation (3.69)
-3

with end condition (3.70), U is an optimal control sequence on T(x3).

By the definitions of U, T(x 1 ) and T( 2) we have

T
u* = ARG MIN A (t' + t)B u, t E [0, At') (3.81)

uU 1 pp

and

u* = ARG MIN X (t" + t)B u, t E [0, At"). (3.82)
uEU -2 p p
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Equations (3.81) and (3.82) imply

YA (t' + t)B U+ t)B U (3.83)

-p p

and

(1-Y) X (t " + t)B u* < (l-Y)X (t" + t)B u (3.84)
-2 p - -p - -2 p -- p

V; u e U, t E [0, At").
-p p

Equations (3.80), (3.83) and (3.84) give

A T (t"' + t)B u* < X (t"' + t)B u (3.85)
p -p - - 3 p ---p

V u E U, t E [0, At"' ),
-p p

that is

u* = ARG MIN X (t"' + t), t E [0, At"') (3.86)
uU -3 p p

V p E (0, 1, ... , f3.

Therefore, with as defined, U is an optimal control sequence

which when applied forward in time on T(x3) = {t"' ,t"' ,..., t"' I bringsf

the state from 03 (t"' ) = to 3(t"' ) = 0. U Lemma 3.2
2E3(to K3 o-3 (f" -

Lemma 3.1 implies that the regions 2'(U, B) are cones and Lemma 3.2

implies that these cones are convex. As each region is convex, the

interface between any two adjacent regions must be a portion of a hyper-

plane through the origin which belongs to one region or the other (we

assume for technical reasons that the number of regions is finite) .
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Therefore, we have established the convex polyhedral conical nature of

the regions. U Theorem 3.4

In preparation for development of the feedback technique, we pre-

sent the following corollary to Theorem 3.1 which narrows down the

freedom of the costates at the final time.

k
Corollary 3.2 If any state, say x , is strictly positive on the final

k
time interval [t , t) of an optimal trajectory, then k (t ) = 0.

f-r tf i f

Proof:

k
Consider a specific state x satisfying the hypothesis. Then

-k
since x. (T), T E [t f 1 I t f], is constant by Corollary 3.1, we must

have

-k
x.(t ) < 0.
i f

k
x.

1

Figure 3.6

t t

Typical State Variable Approaching

Boundary at tf

Then there must exist a directed chain of links from node i to

node k (arbitrarily denote them by {(i, i+l), (i+l, i+2), ... , (k-l,k)})
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carrying some messages with destination k, that is

k k k
U ii(t ) > 01 ui + t) > 0, .,k(tf) > 0.

In order for the above control to be optimal, we must have (by (3.41)-

(3.43))

k (t ) - X.(t ) < 0
i+l f i. f -

x+ 2 (tf) - X +1(tf) < 0

k (t )< 0.
k-1 f

From the above we conclude

X (t ) > Ak t) > 0.
i f - k-1 f

We now proceed to show by contradiction that X. (t ) = 0. Suppose
i f

x k(t ) > 0. Then the transversality condition A X(tf)xc(t) = 0

1,)

implies that there must be at least one x (t ) < 0 such that X (t ) < 0.

But the above reasoning applied to x implies that X (t ) > 0. Hence,
1 if -

a contradiction. U Corollary 3.2

3.3 Backward Construction of the Feedback Space for Constant Inputs

3.3.1 Introductory Examples of Backward Boundary Sequence

Technique

The construction of regions of the type W(U, B) will play an impor-

tant role in the synthesis of the feedback space. A basic observation
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with regard to these regions is that they are functions of the entire

future sequence of controls which carry any member state optimally to

zero. This general dependence of the current policy upon the future

is the basic dilemma in computing optimal controls. This problem is

often accommodated by the application of the principle of dynamic pro-

gramming, which seeks to determine the optimal control as a function

of the state by working backward from the final time. The algorithm to

be developed employs the spirit of dynamic programming to enable con-

struction of regions of the type W(U, B) from the appropriate set of

optimal trajectories run backward in time. These trajectories are

fashioned to satisfy the necessary and sufficient conditions of

Theorem 3.1, as well as the costate boundary condition at tf given in

Corollary 3.2.

We motivate the backward construction technique with several two

dimensional examples which introduce the basic principles involved.

In fact, throughout the thesis important concepts will be illustrated

with the simplest possible examples whenever the interests of clarity

can be served. The reader is encouraged to study these examples care-

fully, as they comprise an essential part of the exposition. Also,

one is able to grasp the general geometrical notions more readily with

a simple two or three dimensional picture in mind.
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Example 3.1

3
xl1

Figure 3.7

3
x

2
3u3 < 0.5
21 -

Simple Single Destination Network

The network as pictured in Figure 3.7 has a single destination,

node 3; hence, we can omit the destination superscript "3" from the

state and control variables without confusion. For simplicity, we

assume that the inputs to the network are zero, so that the dynamics are:

x1 (t) = -u 3(t) - u2 (t) + u21(t)

x2(t) = -u23 (t) + u 1 2 (t) - u2 1 (t)

(3.87)
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with control constraints as indicated in Figure 3.7. The cost function

is defined as

(rtf
D = t x1(t) + x 2(t)}dt. (3.88)

Jto

Let the vector notation be

u 1 2

- 1 - U2 1

x = u = .1

U23

We wish to find the optimal control which drives any state

_x(t 0 - 0 to x(t ) = 0 while minimizing D.

As our intent is to work backward from the final time, we list all

possible situations which may occur over the final time interval

[t , t ] with respect to the states x and x2. Recall from Corollary

3.1 that the state rates x and x2 are constant on all intervals.

(i) x < 0

x2 2 = 0

(ii) x2 < 0

x1 = x= 0

(iii) x < 0

2 < 0.

These are certainly the only situations which may occur on the
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final time interval, although we have no way of knowing a priori which

are consistent with the optimality conditions. We do know by virtue of

sufficiency that any trajectory which is optimal has associated with

it costates which satisfy the necessary conditions; and that any tra-

jectory which satisfies the necessary conditions is indeed optimal.

Hence, our first task in the analysis of each of these cases shall be

to attempt to produce a set of costates for which the control which

solves the appropriate form of (3.37) gives rise to the specified tra-

jectory on some non-zero interval of time preceding the final time.

We now consider these situations one at a time:

(i) X1(T) < 0, x 2 (T) = x2 (T) = 0, T E [tf_1 , t f].

This situation is depicted as part of Figure 3.8 . We begin by

considering the time period [tf 1 , t f in a general sense without

actually fixing the switching time t f_1  This is simply the time period

corresponding to the final bang-bang optimal control which brings the

state to zero with x1 < 0 and x2 = k2 = 0. We now set out to find if

there is a costate satisfying the necessary conditions for which this

situation is optimal; and if so, to find the value of the optimal con-

trol. The linear program to be solved on T E [t f_, tf] is

u*(T) = ARG MIN [X1 (T) 1 (T) + X2 (T)x2 (T)

= ARG MIN 2 1 T))ul2 (T) + (X1 (T)-X 2 (T))u 2 1(T)uE C(

-l (T) ul3 (TX2 (T) U2 3 ()]. (3.89)
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xi-

-1.5

II 

I- 

5 Jl

x 2
- -0.5 I It

t

t f-2 t f tf

Figure 3.8 State-Costate Trajectory Pair
for Example 3.1, Case (i)
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Now, the stipulation x1 < 0 tells us from Corollary 3.2 that

X1 (t f) = 0 (3.90)

and since x1 is on an interior arc, equation (3.32) gives

1 (T) = -l T E [t , t f]. (3.91)

This is shown in Figure 3.8 . Now, since we specify x 2  0 on this

interval, its costate equation is

-dX 2(T) = 1 dT + dfn2 (T) (3.92)

dl 2 (T) < 0

X2 (t ) = V2 free T E [t f_1  t ]

where nl2 is a possibly discontinuous function. We now submit that the

costate value X2 ( 2) = (T) = 0, T E [t f, tf is such that there

exists a solution to (3.89) for which x1 < 0 and k2 = 0. The reader

in fact may verify that X2 (T) = 0, T 6 [t f_1  tf , is the only possible

value since X 2(T) > 0 or X 2(T) < 0 imply by (3.89) and (3.87) that

x < 0 and k > 0 respectively. Before presenting the specific solution
2 2

we verify that X2T) = 2 (T) = 0, T E [t f 1  tf], is a costate value

which is consistent with equation (3.92). First, the required final

condition X2 (t f) = 0 is acceptable since the necessary conditions leave

it entirely free. Also, the differential equation 2 (T) = 0 may be

realized with dn 2 (T) = -dT, which is consistent with (3.92). This

costate trajectory is pictured as part of Figure 3.8 . Now, with the

costates so determined, one solution to (3.89) is
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u(T) = (0.5, 0.0, 1.0, 0 . 5 )T (3.93)

x1 (T) = -1.5 Sc2 (T) = 0 (3.94)

T E [t _ 1  t f.

We emphasize that the above solution is only one among an infinite set

of solutions to (3.89). However, it is the solution which we are

seeking. We now make an important observation regarding this solution.

Since X (T) = -l and X2 (T) = 0 for T E [t f 1  tf ) , the control (3.93)

remains optimal on T 6 (-O, tf ]. But as t f 1  _ x 1( f) +- Co.

Thinking now in forward time, this implies that any initial condition

on the x -axis can be brought to zero optimally with the control spe-

cified in (3.94). We have therefore determined the optimal feedback

control for all points on the xl-axis! This is indicated in Figure 3.9.

Suppose now that we wish to consider a more general class of tra-

jectories associated with the end condition under discussion. What we

may do is to temporarily fix t f 1 and stipulate that the control on

tf-2, tt ) has x2 negative; that is, insist that x"2 leave the

boundary" backward in time. As before, the initial time tf-2 of the

segment [tf-2, tf 1 ) is left free. The program to be solved is (3.89)

with T e [tf-2, t ). Now, since x1 is on an interior arc across

tf 1 , by (3.32) its costate must be continuous across tf_1I that is

X(t~ ) = X (t = t - tf. (3.95)
l -1 1 f-1 f f-1*

Since (3.92) allows for only positive jumps of X2 forward in time, we
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have

X (t ) = 2 (t+ )= 0. (3.96)
2 f-l 2 f-l

Also, since both x and x2 are on interior arcs on [tf-2, tf ), equa-

tion (3.32) gives

T E [t f 2  tf 1 ). (3.97)
f-= -f

The resultant costate trajectory is depicted in Figure 3.8. We now

perform the minimization (3.89) for T E [t f-2, t ). Since

X1 (T) > X2 (r) > 0, T E [tf-2, tf ), the solution to (3.89) is

u(T) = (0.5, 0.0, 1.0, 1 . 0 )T (3.98)

so that

c (T) = -1.5 2(T) = -0.5. (3.99)

Therefore, the optimal control gives x C2T) < 0, which is the

situation which we desire. Once again, we see that the control is

optimal for T E (-00, tfJ. Since X/ 2 = 3.0, upon leaving the x

axis backward in time the state travels parallel to the line x1 - 3x 2

0 forever. Now, recall that tf 1 is essentially free. Therefore, from

anywhere on the x axis the state leaves parallel to x1 - 3x2 = 0 with

underlying optimal control (3.98). Thinking now in forward time, this

implies that any initial condition lying in the region between the

line x 1 - 3x2 = 0 and the x -axis (not including the x1-axis) may be

brought optimally to the x1 -axis with the control (3.98). See
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Figure 3.9. Once the state reaches the x -axis, the optimal control

which subsequently takes the state to zero is given by (3.93). There-

fore, we have now managed to fill up the space between the line

x1 - 3x2 = 0 and the x 1 -axis with optimal controls!

The reader may now see that the feedback control regions just

derived are the convex polyhedral cone of Theorem 3.4. For instance,

the shaded region of Figure 3.9 is the half open cone

W(U, B) = {x10 < x < -l } (3.100)
-2 -3

where U=(f 2 ' uf-

u = (0.5, 0.0, 1.0, 1.0)

T
uf = (0.5, 0.0, 1.0, 0.5)

and B = Bf-2 FBf-l

f_ ={p}Bf-2

B ={(x2*

Note that Rf-2 is the control which is actually applicable for

x c W(u, B). The entire sequence U = (f-2' f-1} was needed to con-

struct if(U, B).

(ii) x2 (T) < 0, x CT = (T) = 0, T E [t f_, t f).

This situation is the same as Ci) with the roles of x 1 and x2

simply reversed. If we let x 2 leave the boundary first backward in
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o 0

L. 0u
0 LO 0 LA LA

LO LA I I

o i 0 NI u .0u.
O O~OH~)~ 1 3  ]~ 2 3  1

0 < u < 0.5 0 < u < 0.5

x = -1-u 1 2+u21 2

x 2 = -1+u 2-u21

u= (0.5,0,l.0,l.0)T

f-1 T

U = (0.5,0,1.0,0.5)

x = -1.5

Feedback Solution for Example 3.1Figure 3.9
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time, we may then determine the optimal control anywhere on the x2

axis. If subsequently we allow x1 to leave the boundary backward in

time, we may then determine the optimal control on the conical region

x 2
{x|0 < x < -- }. These regions and associated optimal controls are1 -3

illustrated in Figure 3.9.

(iii) x (T) < 0, x 2(T) < 0, T E [t f_, tf].

This situation is depicted in Figure 3.10

We are considering the situation where both states contact the

boundary at the final time. It will be shown shortly that this case

is not as special as it may initially appear.

The linear program to be solved pointwise on T 6 [t f_1  tf] is

(3.89) with X (T) and X2 (T) appropriately determined. Now, since both

x and x2 are on an interior arc over this time interval, Corollary 3.2

gives

1t) = 2(t) = 0 (3.101)

and from equation (3.32)

()= 2 (T) = -l T [t f, tf]. (3.102)

Hence, the costates are always equal over this time interval as indi-

cated in Figure 3.10 . As a result of this, the solution to the linear

program (3.89) is

u13 T) = 1.0 u2 3 (T) = 1.0

(3.103)
0 < u12 T) <0.5 0 < u21 T <0.5



-103-

x 1
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Figure 3.10 State-Costate Trajectory Pair

for Example 3.1, Case (iii)

x
2
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so that

1 (T) = -1.0 - u1 2(T) + u 21

(3.104)

2 (T) =-1..0 + Ul2(T) -u21 ()

Hence, we have encountered the non-uniqueness in the optimal con-

trol discussed in a general sense at the end of Section 3.2.1. The

values of u 1 2 and u 2 1 are completely arbitrary as long as they remain

within their constraints. Moreover, for any T E (-=, t ] the entire

set of optimal controls (3.103) remains optimal. In this case, the

optimal directions by which the state leaves the origin lie between

N /2 = 3.0 and x2 1 = 3.0, that is, between the lines x - 3x2 0
122 11 2

and x2 - 3xi = 0. As before, we now switch our consciousness to for-

ward time and realize that for any point lying between the lines

x1 - 3x2 = 0 and x2 - 3xi = 0 (not including these lines) the complete

set of controls (3.103) is optimal. For any point on the line

x1 - 3x2 = 0 only the control which has u12 = 0.5 and u21 = 0.0 is

optimal. Likewise, for any point on x2 - 3xi = 0 only the control

which has u1 2 = 0.0 and u21 = 0.5 is optimal. See Figure 3.9.

Having filled up the entire space with optimal controls region

by region, the specification of the feedback control is now complete.

Example 3.1

Example 3.2

The network is the same as for Example 3.1, but the cost func-

tional is taken as
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D = f
to

12x (t) + x2 (t)Idt. (3.105)

As in Example 3.1, we take the approach of working backward from the

final time, beginning with the three possible situations which may

occur at that time.

(i) x (T) < 0, x2 (T 2 (T) = 0, T 6 [t fi, tf]

The linear program to be solved over the final time interval

T E [tf 1 , tf] is (3.89) with M(T) and X2 (T) appropriately determined.

The final condition (3.90) applies, but since the weighting on X, is

a, = 2, the appropriate differential equation for X is

X 1 (T) = -2 T S [tfr t f . (3.10

Now, X1 (T) is determined in the same fashion as X 2(T) in case (i) of

Example 3.1. That is, the value

6)

X (T) = 0 T E [t f 1  tf] (3.107)

allows the solution to (3.89) to be such that c (T) = 0, T E [tfi, tf].

Consequently, the optimal control (3.93) applies here. The feedback

control on the x1-axis is therefore assigned in the same fashion as

in Example 3.1. See Figure 3.12.

Let us now allow x2 to leave the boundary backward in time at

t . This situation (as well as the previous one) is illustrated in

Figure 3.11. The linear program to be solved is as always (3.89). In

this case we have
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x

2 -0.5

7 1

-2

-2

t

tf-2 t t

Figure 3.11 State-Costate Trajectory Pair

for Example 3.2, Case (i)
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U = (0 ,0.5, 1 .0,1. 0 )T

x 1 = -0.5

x2 = -1.5

'f-2

U = ( 0 .5, 0 ,1 .0 1 .0)T

1= -1.5
x = -0.5

U = ( 0 .5, 0 ,1 .0,1. 0 )T

= -1. 5

2= -0.5

u = (0 .5,0,1.0,0. 5 ) T

x = -1.5

Example 3.12 Feedback Solution for Example 3.2

0

n

* LC

0 4o'-11

Lf .xI

o||
o i '

t f_

x 1
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X(t ) = X (t~ ) = 2(t -t
1 f-i 1 f-i f f-i

(3.108)

x2(t ) = A2(t) = 0.
X2 (tf-i 2(f -i 0

Since both xi and x2 are on interior arcs over this interval, their dif-

ferential equations are

1 (T) = -2

T E [t f 2  tf). (3.109)

2 (T) = -l

Also, as before, all that matters in the solution of the linear program

is that X 1 (T) > X2 (T) > 0, T E [tf-2, tf_ ). Therefore, the solution is

given by (3.98) and this solution applies on the conical region

{x.O < X< } as argued in Example 3.1. See Figure 3.12.

(ii) x2 (T) < 0, x1(T) = x (T) = 0, T S [t f_1  tf].

The details of this situation are depicted in Figure 3.13.

We know from Corollary 3.2 that

2 (t ) = 0 (3.110)

and from (3.32) that

2 (T) = -i T E [tf 1 , t ]. (3.111)

We now may find by the process of elimination that the only value of

i(T) , T e [t f 1  tf] for which x, = 0 is optimal is:

(T) = X 1 (T) = 0 T [tf _ tf]. (3.112)

Therefore, the solution to (3.89) is the same as in Example 3.1,
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-0.5

2

-1.5

x -1.5

-0.5

t

X 1

-2

-l

t

tf- 3 tf- 2 tf 1 tf

Figure 3.13 State-Costate Trajectory Pair

for Example 3.2, Case (ii)
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case (ii) and the control on the x2-axis is assigned in identical

fashion. See Figure 3.12.

As the next step, we now stipulate that x1 leaves the boundary

backward in time at t _ .9Since x 2(t ) > 0, we have from (3.32) that

X (t~ ) =X(t+ ) =t - t .(31)
2 f-l 2 f-l f f-l (3.113)

Since costate jumps can only be positive in forward time, we must have

X(t ) = 0. (3.114)
1 f-1

Also, since x (T) > 0, x2 (T) > 0, T E [tf-2 t f),

1 (T) = -2

T E [t , t ). (3.115)

X2 ([)f-2 f-l

See Figure 3.13. We now notice a fundamental difference between

this and the previous situations. At some time before t _ the sign of

(X 1 (T) - X2 (-)) changes, which implies that the solution to the linear

program (3.89) changes at that time. Therefore, tf- 2 is not allowed to

run to -co, but is actually the time at which the costates cross and the

control switches. The optimal controls and state velocities on either

side of the switch are:

1 E [tf-2, tf-l

u = (0.0, 0.5, 1.0, 1 . 0 )T (3.116)

x = -0.5 x 2 = -1.5 (3.117)
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T E [tf-3, tf-2):

u = (0.5, 0.0, 1.0, 1.0)

x = -1.5

(3.118)

x2 -0.5. (3.119)

The relationship between the states x and x2 at tf-2 may be calculated

as follows:

1 (tf-2 1(t ) + 2(tf-2 - t )
(3.120)

12(tf-2 2(t ) + (tf-2
- t )

but

x(t f ) = 0

(3.121)
X2 (t f) = (tf 1 - t f).

The crossing condition X (tf-2 ) = X 1(t ) implies from (3.120)-(3.121)

(3.122)tf- 2  t f tf 1 -t

x1 (tf- 2 = x1 (t f) + 0.5(tf-2 - t f_)

x 2 (tf - 2 = X 2 (t f) + 1.5(tf- 2 - t f)
(3.123)

x1 (t f) = 0.0

(3.124)

x 2 (t f) = 1.5(t f_ - tf ) .

Finally, (3.122)-(3.124) give

that

Now

but
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x2 (tf-2) - 6x1 (tf-2) = 0. (3.125)

That is, the switch of control corresponding to the time tf-2 always

occurs when the state reaches the line (3.125). Therefore, backward

in time the state leaves from anywhere on the x2 axis with control

(3.116) and associated rate (3.117). The direction of travel is

actually parallel to the line x2 - 3xi = 0. Upon reaching the line

x2 - 6x = 0, the control switches to (3.118) and the state travels

parallel to the line x1 - 3x2 = 0 forever. This sequence is illustrated

for a sampled trajectory whose portions are labeled Q,©, in

Figure 3.12 and Figure 3.13.

From these observations, the following may be inferred about the

feedback solution: The control (3.116) is optimal anywhere within the

region bounded by the x2-axis and the line x2 - 6x1 = 0, not including

the x -axis. The control (3.118) is optimal anywhere within the region

bounded by the lines x2 - 6xi = 0 and x - 3x2 = 0 not including the

former line. These regions are indicated in Figure 3.12.

Since the entire space has now been filled up with optimal con-

trols, the feedback specification is now complete. The reader may

verify by a simple exercise that case (iii) merely provides the optimal

control on the line x1 - 3x2 = 0, which we already have.

0 Example 3.2

We now summarize the content of the preceding examples. By

starting at the final time, we have allowed states to leave the boundary
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backward in time and have computed the corresponding optimal trajec-

tories as time runs from zero to minus infinity. In the instances

when the control did not switch over this interval, we were able to

construct one conical region of common optimal control (as well as

common control and boundary sequences which take any member state to

zero). When the control did switch, as in case (ii) of Example 3.2,

two such regions were constructed. By considering enough cases, we

were able to fill up the entire space with regions of common optimal

control, thereby providing the feedback solutions. The primary diffi-

culty in calculating the optimal controls by the necessary conditions

was in the determination of the proper value of the costates correspon-

ding to states specified to be on boundary arcs.

3.3.2 Technique for the Backward Construction of the Feedback

Space

The examples of the previous section suggest an approach by which

the feedback solution to (3.1)-(3.6) may be synthesized. In this sec-

tion, we take our lead from these examples to suggest a general method

for the synthesis of a feedback solution. We then present the basic

structure of an algorithm which may realize the method. Several ques-

tions are identified which must be answered in order to implement the

algorithm.

3.3.2.1 Preliminaries

We begin with a definition which describes a class of subsets of
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Rn which shall comprise the building blocks of the feedback space:

Definition 3.6: A set , C Rn, is said to be a feedback control

region with control set G, 2 C U, if the following properties hold:

(i) Consider any two points x1 , x2 e Int(,W) . Suppose U(E) = U

with associated switch time set T(x1 ). Then U(x2) = U for

some switch time set T(x ). Here U(x) and T(x) are as defined

in (3.46).

(ii) l(2x ) = B(2S

where B(x) is defined in (3.48).

(iii) Any control u E Q that keeps the state inside the region 6W for

a non-zero interval of time is an optimal control. Formally, if

x(t) s -W then any u E 0 is. an optimal control if there is an

6 > 0 such that under the application of u , x(t+E) E M.

The reader may verify that all of the regions constructed in

Examples 3.1 and 3.2 are feedback control regions in the sense of

Definition 3.6. Our goal now is to specify an algorithm which will

construct feedback control regions for the general problem. As a

corollary to Theorem 3.4 we obtain quite readily the following geometri-

cal characterization of feedback control regions.

Corollary 3.3 Let the inputs a = constant. Then the feedback control

n
regions of Definition 3.6 are convex polyhedral cones in R

Proof: From properties (i) and (ii) of Definition 3.6 we see that any
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feedback control region R? is the intersection of a set of regions of

the type i'(U, B). From Theorem 3.4 we know that all regions of this

type are convex polyhedral cones in the state space; therefore, the

non-empty intersection of any set must also be a convex polyhedral

cone. U Corollary 3.3

Definition 3.7: A segment of an optimal trajectory is that portion

which occurs on the time interval between two successive switch times

T and T +, not including the time instant T +.

The basic concept underlying the construction of the feedback

solution is now presented:

Constructive Dynamic Programming Concept

Construct a set of backward optimal trajectories, each

starting at the final time t , among which all possible

sequences of states leaving the boundary backward in time,

both singly and in combination, are represented. Each seg-

ment of every optimal trajectory is utilized to construct a

feedback control region with associated optimal control set.

These feedback regions are convex polyhedral cones, and the

union of all such cones is the entire space.

3.3.2.2 Description of the Algorithm

The algorithm by which the above method may be realized is now

presented. We emphasize that several of the procedures which the
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algorithm calls for are not included in this presentation, but shall

be singled out for future consideration as the discussion proceeds.

For clarity, the discussion in this section is divided into three parts,

which we now list:

(i) General description of a step of the algorithm.

(ii) Detailed description of a step of the algorithm.

(iii) Rule governing the frequency of execution of the step, and

proof that the algorithm realizes the constructive dynamic

programming concept.

(i) General description of a step of the algorithm

Each step consists of two basic operations. They are:

* Operation 1

Allow a certain set of state variables to leave the

boundary x = 0 backward in time and determine the subsequent

optimal trajectory (trajectories) backward in time assuming

that no other state variables leave the boundary as time runs

to minus infinity.

*Operation 2

Utilize the relevant information associat6d with the optimal

trajectory (trajectories) of Operation 1 to construct one or

more feedback control regions with associated control sets re-

ferred to in the constructive dynamic programming concept.
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(ii) Detailed description of a step of the algorithm

We first establish some shorthand notation which facilitates

the discussion.

Notation 3.3

I {x!Ix? (T) > 0, T E [T , T )} (3.126)
p 1 1 p p+1

is the set of state variables which travel on interior arcs during the

segment corresponding to [T P, Tp '

Notation 3.4

L {xl|x leaves the boundary at time t } (3.127)
p Ii p

is the set of state variables designated to leave the boundary at tp

With B as defined in (3.47) we take note of the following rela-
p

tionships:

IP1 =1 U Lp (3.128)

L c B (3.129)
p p

B = B /L . (3.130)
p-1 p p

Notation 3.5

a P cardinality of I . (3.131)
p p

p = cardinality of L . (3.132)
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Notation 3.6

Q is the set of optimal control vectors:

A T
= {u*Iu* = ARG MIN X (T) B u(T) , T E [T , T )}. (3.133)

p - UE p p+

Notation 3.7

R is the feedback region determined in Operation 2 by the para-
p

meters of the trajectory segment on [T , T p+) with associated control

set 0 .
p

a

From notations 3.3 and 3.7 we see that ? C R P, where the basis
p

vectors of R are the elements of I . This situation is illustrated
p

in Figure 3.14. Due to the pictorial limitation of three dimensions,

R P is represented in two dimensions in Figure 3.14. The remainder

n n-a n-ap
of Rn is R nP, where the basis vectors of R are the elements

n-a
of B . The third orthogonal axis represents R P. Basis sets are

p

in parentheses.

In order to describe a single step (that is a sequence of Opera-

tions 1 and 2) we pick up the algorithm at a point at which the con-

struction of a feedback control region W has just been completed in
p

the previous step. We further stipulate that on the current optimal

trajectory (trajectories) the state variables of Ip are on interior

arcs and those of Bp are on the boundary. Refer again to Figure 3.14.

In detail, the two operations are:



Rn(I U B):
p p

I u L =I1
p p p-1

Ip+l

elp ,p

;R'P(I )
- -

Figure 3.14 Illustration of Feedback

Control Region W.

-119-

n-a
R P(B)

p
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* Operation 1

Suppose that we choose a specific set of state variables

L C B to leave the boundary backward in time. From Figure 3.14 we
p p

visualize that the statement "allow Lp to leave the boundary backward

in time" is equivalent to "allow the state variables in L to leave
p

the region R backward in time". That is, the state vector leaves

the subset R of R a to travel into R C p. Looking ahead, in
p

Definition 3.8 we shall describe a division of R p into subregions
p

with respect to L This definition is deferred until after the

description of Operation 2 since several notions developed in that

operation are required. The question of determining subregions is

confronted in Sections 3.3.2.2 and 3.3.3.2.

For the purpose of the present discussion, let us assume that we

have divided J into s subregions with respect to L . Denote these
p p

subregions by W (L ), M (L ), ..., M (L ), where the dependence of
pp p Pp p p

the division on the particular set L is indicated in the parentheses.

Looking ahead once again, the rule governing the frequency of execution

of the step (part (iii) of this discussion) shall call for L to leave

from each of these subregions. To describe a single step, we shall

now stipulate that L leaves from a specific subregion, say W r U
p p p

This rule shall also call for L to leave from one or more points in
p

W (L ). In the current discussion we shall stipulate that L is
p p p

leaving from the specific point x R Mr(L ) - Also, we assign the
-p p p

reference time t to the time at which L leaves RMrLU
p p p p
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We assume that we have arrived at x at time t through a back-
-p p

ward trajectory which has been fashioned to satisfy the necessary condi-

tions. Then associated with x is some possibly infinite set of co-
-p

state vectors, which we shall designate A . Fortunately, in principle
p

at least, we shall be required to deal with only a finite subset of

any infinite costate set. The question of the determination of this

subset, which remains partially unresolved when it contains more than

a single member, is discussed in Sections 3.3.2.3 and 3.3.3.2. We

assume for the purpose of this discussion that this subset is known

and that we are dealing with a specific costate vector X P A .
-p p

We now make the following assumption regarding all optimal trajec-

tories propagating backward in time.

Assumption: No state variable which is off the boundary (that is,

travelling on an interior arc) must subsequently return to the boundary

backward in time.

The above assumption is certainly not always true, as we demon-

strate with a simple example in Section 3.3.4.4. However, in Section

4.3 we show that it is valid for problems involving single destination

networks with all unity weightings in the cost functional.

Returning to our current situation, the set of state variables

which are travelling on interior arcs subsequent to the departure of

L from the boundary backward in time is I = I U L as indicated in
p p-1  p p

Equation (3.128). Also, the set of state variables travelling on
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boundary arcs is Bp_ = p IL P by (3.130). According to the assumption,

all state variables in IP- remain off the boundary for the entire

time interval T E (-0o, t ). We now state the problem which comprises
p

the central task of Operation 1:

Given the state x and costate A at time t , find
-p -p p

all optimal trajectories backward in time on T E (-, t )

for which

x.(t) < 0 V- x L (3.134)
ip- 1 p

X(T) = 0 x EB P (3.135)
1 1 p-1

x (T) > 0 I x! E (3.136)
1 p-1

3v T -P I a t )
p

or determine that no such optimal trajectory exists.

Note that in the above problem statement the stipulation of equa-

tion (3.134) guarantees that the state variables in L do in fact leave
p

(or stay on) the boundary backward in time at t . Also, equation
p

(3.135) expresses the desire to maintain on boundary arcs all of those

state variables which are on the boundary at tp and are not members of

L . Finally, equation (3.136) is a formal statement of the assumption
p

stated above. Now, by the necessary and sufficient conditions (Theorems

3.1 and 3.2 respectively) we know that any (and all) optimal trajec-

tories must have a control which satisfies the following:
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T T
u*(T) = ARG MIN X (T)x(T) = ARG MIN X (T)B u(T)

U(T)U U(T)eL

where

X(t ) = X
- P -p

(T) =-a
i i

IV x E I
I p-1

-dXj (T) = aidT + dn7(T)
i i i IVxiEB

dQ9 (T) < 0 i S
i -

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)

V T E (--w , t p) .

Our task is therefore to find all of the solutions to (3.137)-

(3.141) which satisfy the constraints (3.134)-(3.136). The greatest

difficulty is finding those values of fl for xi E B for which the
1 i p- 1

solution to (3.137)-(3.141) satisfies the constraint (3.135). The

following simple proposition is helpful in resolving this dilemma.

Proposition 3.1: Any solution to (3.137)-(3.141) which satisfies

constraints (3.134)-(3.135) is also a solution to

u*(T) =ARG MIN .
u(T) EU x16I

1 p- 1

?9 (T)x 7 (T)

subject to

x (t ) < 0

xc(T) = 0

X? E: Lp

xP E B
1 p- 1

(3.142)

(3.143)

(3.144)
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where

x (t ) = appropriate component of X
i p -p

IV x E i

X2 (T) = -aj 
P-

i i

V T E (-o, t ).
p

Proof: We may rewrite (3.137) as

u*(T) = ARG MINA X(T)x (T)+

u(T) EU xi E1 x EB
SI P-1 p-1

But by (3.135) we have

x1(T)x(T) = 0

xi (T)x7 (T)
:1 1

x T S (-Do, t
p

and therefore any solution to (3.147) which satisfies (3.135) is also

a solution to (3.142). E Proposition 3.1

We use the following notation in discussing the optimization

problems presented above:

Notation 3.8: The optimization problem of (3.137)-(3.141) is referred

to as the global optimization problem. The minimand associated with the

global optimization problem,

(T)(T) = X, (T) c(T) +

1 p-1
(3.149)

. E x1 (T) ()

i p-1

(3.145)

(3.146)

(3.147)

(3.148)
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is called the global Hamiltonian.

We point out that the Hamiltonian of Notation 3.8 differs from

T T
that defined in (3.29) by the additive term (aT + y (T))x(T). How-

ever, since x(T) is not an explicit function of u, both are identical

with respect to the pointwise miminimization.

Notation 3.9: The optimization problem (3.142)-(3.146) of Proposition

3.1 is referred to as the constrained optimization problem. The mini-

mand associated with the constrained optimization problem,

3 A(T)x T), (3.150)
xi E1p-11 1

is called the restricted Hamiltonian.

We repeat for emphasis that according to the necessary and suffi-

cient conditions any (and all) optimal trajectories must have a control

which is a solution to the global optimization problem, that is, which

minimizes the global Hamiltonian. We are looking for the class of

optimal trajectories which also satisfies the constraint (3.144). Pro-

position 3.1 tells us that any (and all) optimal trajectories in this

class must also be solutions to the constrained optimization problem.

However, we must take care to note that solutions to the constrained

optimization problem may not be solutions to the global optimization

problem. See Section 3.3.4.1 for an example of this behavior. In order

for a constrained solution to be a global solution there must exist
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values of X(T) for all x e B such that the constrained solution
. 1 p-1

satisfies (3.137) when (3.144) is released. These costates must

satisfy (3.138)-(3.141).

Now, note that we are able to solve the constrained optimization

problem immediately since we know all of the coefficients of (3.142).

The values of XA(T) for x E B are not required. The above obser-
I i p-1

vations suggest the following two part approach to finding all of the

solutions to the global optimization problem which satisfy the con-

straint equation (3.135):

(a) Find all solutions to the constrained optimization

problem (3.142)-(3.146).

(b) Produce values of A (T) for all x. E B such that
I 2I p-1

the necessary conditions (3.139)-(3.141) are satisfied

and for which all solutions to part (a) are also solu-

tions to the global optimization problem (3.137) or

show that no such values exist.

The above tasks were actually performed in a simple fashion for

the examples of the previous section. Due to the small dimensionality

of the problems we were actually able to determine the globally opti-

mizing values of the costates by inspection (such as the determination

of X2 in Example 3.1, case (i)). Of course, this is not true in

general.

In Section 3.3.3.1 we present a method by which the constrained
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optimization problem of part (a) may be solved parametrically in time

using linear programming techniques. A geometrical approach to the

solution of part (b) is presented in Section 3.3.3.2. However, in

Section 4.3 we are able to show that for problems involving single

destination networks with all unity weightings in the cost functional

we are always able to produce the set of costates X7 (T) for all

x E B which is required in part (b) for global optimality. In
i p-1

this case part (b) is therefore unnecessary.

Suppose now that we have managed to solve parts (a) and (b) for

the case at hand and have arrived at a sequence of switching times and

optimal control sets on (-", t ). If the control encounters q switches
p

over the interval (-m, t ) we then denote the switching time set as
p

T = {T , ... , T , t }. (3.151)
p-q p-1 p

In this notation the control remains unchanged from T _ to minus

infinity. In accordance with (3.133) the collection of optimal control

sets is denoted

Q = {QW, ... , p-2' p-1}. (3.152)

Here the control set - is optimal from T to minus infinity.
-- p-q

Note that we have used t to denote the time at which L leaves
p p

the boundary and T p_, Tp-2' '..' p-q to denote subsequent switch

times which occur as T runs to minus infinity. Although all of the

above are switch times in the general sense, we give t the special
p
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label of boundary junction time since it is forced on by insisting

that L leave the boundary at that time.

0 Operation 2

The purpose of this operation is to utilize the sets T and Q

produced as output from Operation 1 to construct feedback regions in

a +
R P +', where the bases vectors are the elements of I = I U L

p-1 p p.

Recall that the trajectory is leaving backward in time from a point

x in a subregion Wr(L ) of
-p p p p

Suppose that proceeding backward in time the optimal control

encounters a switch at time T and that the control on [T 1 , t )
p-1 p-1 p

is Q P1 . Then by a procedure to be specified in Section 3.3.3.4 a

feedback control region is to be constructed in R p P which has

r (L ) as a wall in R P. We call this region M and associate
p p p-1

with it the optimal control set QP21. The construction to be specified

will assure us that WR is the largest such region with associated
p-1

control set Q .

Notation 3.10: The time TP- is called a break time of the optimal

trajectory. If x is the state of the optimal trajectory at T ,

then x is called a break point. Finally, the feedback region
-p-1

gp-l so constructed is called a break feedback control region.

Proceeding backward in time, if the control switches at time Tp-2, then

the break feedback control region Mp-2 with associated optimal control
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set 2 is constructed adjacent to M . We continue in this fashion
p-2 p-l

to construct adjacent break regions. If the control switches q times,

then q break regions are constructed culminating in the final break

region M with associated optimal control set Q
p-q p-q

From time T to minus infinity the optimal control set does not
p-q

experience a break and is Q- . In terms of the construction of a

feedback control region, this situation is to be distinguished from

that of break regions, and the construction technique is presented in

Section 3.3.3.3. Applying this technique, we obtain a final feedback

control region W adjacent to R for which the associated optimal
p-q

control set is Q.

Notation 3.11: The region 6?R. is referred to as a non-break feedback

control region.

In summary, the sets T and Q are to be utilized to construct a
CT +p

total of q+l adjacent feedback control regions in R : q break

regions and one non-break region. This construction is illustrated

in Figure 3.15.

At this point, the reader may be curious to know what the various

regions described may look like. We need only refer back to Example 3.2

to find very simple examples of both types of feedback regions. In

Figure 3.12, the portion of the optimal trajectory labelled -

corresponds to allowing x1 leave from anywhere on the x2 axis backward

in time. Since the control switches at tf-2, it was found that for the
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cone bounded by the x 2-axis and the line x 2-6x = 0, not including the

x 2-axis, the optimal control is (3.116). Hence, this cone is a break

feedback control region. Once the control switches at tf-2, it con-

tinues on to time equals minus infinity without a switch. We then

conclude that this control is optimal anywhere on the cone bounded by

the lines x2-6x1 = 0 and x1-3x2 = 0, not including the former line.

Therefore, this cone is a non-break feedback control region. For this

simple example, we were able to show that for any trajectory of the

type mentioned above, the control always switches on the line

x2-6x1 = 0. Looking ahead, we shall generalize this notion by defining

a class of trajectories for which the control always switches on a

portion of a given hyperplane. These surfaces are the a P+p -l dimen-

sional walls which separate the adjacent feedback control regions

created in Operation 2, and shall be referred to as breakwalls.

In Sections 3.3.3.3 and 3.3.3.4, we shall show that the set

of break walls and the collection of optimal control sets Q are the

parameters which enter into the construction of the feedback control

regions for a given backward optimal trajectory. It is clear that

these parameters are dependent upon the value of the costates at the

point at which L leaves R , and therefore dependent upon the point.
p p

In order to accommodate the constructions we now define a subregion as

follows:

Definition 3.8: Suppose the set of state variables in L is designated
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to leave the feedback control region W backward in time. Then a
p

subregion V, (L ) of M is the set of all those points in Wp which
lp p P p

when taken as the point of departure of Lp result in a common 0 and

common set of breakwalls.

The problem of determining subregions is confronted in Section

3.3.3.2. However, once again the special case of single destination

networks with all unity weightings in the cost functional provides us

with a simplifying situation. In section 4.3 we are able to prove that

for this class of problems there is exactly one subregion per region

with respect to any given L , thus eliminating the need to determine

subregions.

(iii) Rule governing the frequency of execution of the step and proof

that the algorithm realizes the constructive dynamic programming

concept

Suppose that some feedback control region R (break or non-break)
pa

has been constructed as in Operation 2. Let W p be a subset of R Y,
p

where the coordinate axes of R are the elements of the interior

state variable set I . Furthermore, assume that a < n, that is, W?
p p p

is a feedback region whose dimension is strictly less than the dimen-

sion of the entire state space. Therefore, the set of state variables

Bp remaining on the boundary is non-empty. We now consider all subsets

of B which are combinations of its elements taken 1, 2, ... , n-a at

n-a
a time. The total number of such subsets is 2 P-1. We then let L

p
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range over all of the subsets so determined. For each subset we first

divide W? into subregions with respect to that set as specified in
p

Definition 3.8. We then perform the basic two operation step of the

algorithm with the set L leaving from each of its subregions in R .*
p p

Every step performed results in a set of feedback control regions

constructed as part of Operation 2. However, the feedback regions con-

structed at each step may not be new in that they may have been con-

structed in some previous step. We may therefore be "writing over"

regions. In essence, we are being conservative in insisting that L
p

be set equal successively to all possible subsets of Bp, but no method

is currently known for the a priori elimination of those subsets which

will produce previously constructed regions.

Let us now view in general terms what the algorithm is doing.

The algorithm is initiated at t with the first feedback control region

M being the origin (which is essentially a degenerate region). The

set B is then composed of all the state variables of the problem. We

n
then allow L to range over all possible 2 -1 combinations of state

f
variables in Sf; that is, we allow all possible combinations of state

variables to leave the boundary backward in time at t f By Corollary

3.2 we know that the values of the costates at t corresponding to

those state variables leaving the boundary at tf are zero. We are then

able to solve the constrained optimization problem of this section.

(Operation 1, part (a)) on (-o, t ) since all we require are those

costates which correspond to state variables off of the boundary. For
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those sets of state variables leaving the boundary which are found to

have globally optimal trajectories (Operation 1, part (b)), feedback

control regions are constructed which range all the way from one

dimensional (that is, axes of Rn) to n-dimensional (that is, n-dimen-

sional subsets of Rn). We then use each region of this set as the

starting point for the sequence of steps which builds new higher dimen-

sional regions. This process is continued until all feedback control

regions constructed are n-dimensional.

Let us now pick a point x in a feedback region EW and follow the
p

optimal trajectory which takes the state from x to 0. Since JPp is a

feedback control region, there exists some control in Q2 which is opti-p

mal when applied at x. By applying any control in Q which keeps the

state in W , we will eventually intersect the wall which separates
p

OR- from some adjacent feedback control region R p+1. The trajectory

will then travel in W +1 with appropriate control in %p+1, until it
pl

strikes the wall separating W p+1 from some feedback control region

ggp+2. We continue in this fashion until the state works its way

through a sequence of adjacent feedback control regions until it finally

reaches 0.

Proposition 3.2: Execution of the constructive dynamic programming

algorithm will result in the complete specification of the optimal

feedback control.

Proof: The rule governing the execution of the step of the algorithm
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insures that feedback control regions are constructed for every con-

ceivable type of optimal trajectory in terms of sequences of state

variables on and off boundary arcs. Moreover, we are finding the

largest such regions since we are solving for all optimal controls

corresponding to each sequence. Therefore, the complete execution of

the algorithm will result in the entire space being filled up with

feedback control regions. U Proposition 3.2

3.3.2.3 Discussion of the Algorithm

We have spoken in general terms of constructing feedback control

regions and allowing all possible sets of state variables remaining

on the boundary to leave from these regions backward in time. However,

the reader should not lose sight of the fact that we are employing a

specific set of optimal trajectories constructed backward in time to

satisfy the necessary conditions. In this section we take a look at

a typical backward optimal trajectory and enumerate some of the basic

problems involved in the execution of the algorithm. Specifically,

we establish the notational setting in which these problems are to be

attacked in subsequent sections.

Global Optimality

Consider the situation in which we allow the state variables in

Lp+1 to leave the boundary at some boundary junction time t p+. This

situation is illustrated in Figure 3.16. We defer the question of how



-136-

p

B
p

p-q

I

-1

Bp+1

177~///f7777777777'1117"- t

0SO
p

tp+l

Figure 3.16 Globally Optimizing Costate Trajectories
for Given State Trajectory

I

x #



-137-

boundary junction times are determined until the discussion under the

heading of "subregions" below. Also, we assume that we are given a

particular value of X at t from among a potentially non-unique
-p+1 p+1

set A +1 of appropriate costates at that time. See Figure 3.16. We

shall specify what we mean by "appropriate" in the discussion under

the heading of "leave-the-boundary costates" below.

We do not know a priori if the situation described above is

optimal. We begin by calculating all optimal solutions on (-=, t p+

via the constrained optimization technique of Operation 1, part (a).

This is illustrated for a particular trajectory in Figure 3.16 . Once

this is accomplished, we must satisfy part (b) of Operation 1 by pro-

ducing a legitimate set of costates on (-o, t p+1) for which the solution

on this interval is globally optimal. To be more specific, since A (T)

for x s I are determined exactly by (3.139) for the given the

task is actually to produce a set of costates X(T) for x7 e 1 which:
1 p

(i) satisfy the necessary conditions and (ii) together with XA(T) for

x E I result in a globally optimal solution on (-<x>, t ).
i p p+l

We shall now specify all of those values of X.(T) for x. e B
1 1 p

which satisfy the necessary conditions. At time tp+l we have assumed

that we are given a specific costate value + from among a potentially

non-unique costate set A 1 ; that is, the values of X1(t ) for all
jI p+1

x. s B are given. If we designate T to be time running backward from
1 p

tp+1, then equations (3.140)-(3.141) indicate that the maximum value

any (T) may achieve is when we take dn! (T) = 0. In this case we have
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< X(t ) + Tot
i p+1 1

V x E B
1 p

(3.153)

i

xj(t )
i p+l

T t
p

Figure 3.17 Possible values of when x

is on boundary arc (xi = 0).
1

Therefore, as a function of time the value of XA(T) for xs E B which
i i p

satisfy the necessary conditions are those which fall below Xi(tp+1

+ Ta j. This is depicted in Figure 3.17. We are free to pick any of

these values in our attempt to satisfy global optimality on (-co,t p+1

Finally, we note that part (b) of Operation 1 requires only that

we produce a single set of costates for which the solution is globally

optimal. However, there may be a non-unique class of such costates

which are legitimate, as indicated in Figure 3.16.
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Leave-the-boundary costates

If the solutions obtained in Operation 1 are globally optimal,

then we proceed to construct from these solutions a set of feedback

control regions in Operation 2. The details of the constructions are

presented in Sections 3.3.3.3 and 3.3.3.4. Suppose now that we have

completed Operation 2 and that the feedback control regions which have

been constructed are 5 ,W I? ... , M , M . Here we have
p-q p p

assumed that the control-switches q times on (-co, t ) and that the
p+1

switch time set and control set are as in (3.151) and (3.152) respec-

tively. Therefore R is constructed from the solution parameters on

[T , t +), l is constructed from the solution parameters on

[T 1 , T ), ... , R is constructed from the solution parameters on

(-<x>, T ). Recall that M is a non-break feedback control region and
p-q -Co

all of the rest (s , ... , 'W R ) are break feedback control
p-q p-1 p

regions.

Now, the rule governing the frequency of execution of the step

of the algorithm calls for us to let all possible combinations of

state variables in B to leave backward in time from each of these
p

regions. As an example, let us restrict attention to the particular

feedback control region 8R and a particular set of state variables
p

L c . Allowing the state variables in L to leave backward in time

from some point in W is equivalent to allowing them to leave at
p

some boundary junction time t , where t falls on the interval
p p

[T , t ). In order to allow the state variables in L to leave R
p p+l p p
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at t we must perform the following task:

Determine the values of Ai(t ) for x! e B which
I p 1 p

allow L to leave the boundary backward in time optimally

for all potential boundary junction times t E [T , t )
p p p+1

or show that no such values exist which satisfy the

necessary conditions.

These values may be nonunique and will be a subset of the glo-

bally optimizing values as illustrated in Figure 3.18. Now, the

costates so determined constitute A and will serve as initial condi-
p

tions for the determination of the backward optimal trajectory which

must be solved for the state variables in L leaving from the feedback
p

control region R . We refer to the above task as the determination
p

of leave-the-boundary costates at t, where the implication is that

the costates are such that they allow the states in L to leave the
p

boundary optimally at t
p

Subregions

The required division of W into subregions with respect to L
p p

is equivalent to dividing [T , t p+) into a set of time subintervals.

Over each subinterval, the subsequent optimal control sets and break-

walls on (-o, t ) corresponding to the state variables in L leaving
p p

the boundary are the same for any point on the subinterval, by Defini-

tion 3.8. The values of XI(t ) for x7 E B are drawn from the leave-
1 p I p
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the-boundary set A discussed above. Since A may be infinite, we must
p p

somehow reduce to a finite number those values which must be considered

in this fashion. This problem is discussed in Section 3.3.4.2. In

Section 3.3.4.3 we discuss the issues involved in performing the sub-

division for a particular A e A . The time subdivision which we seek
-p p

is illustrated conceptually in Figure 3.18, which is an enlarged pic-

ture of the interval [T , t ). In this case there are s subintervals
p p+l

corresponding to s subregions with respect to L P. We use the symbols

T', T', ... , T' to designate the extremities of the subintervals on

[T , t ) , with the exception of T and t . The subinterval
p p+1 p p+l

[T', t+) corresponds to the subregion W (L )the subinterval
p+1 p p

[T',T') to the subregion M 2 (L ), ... , until finally the subinterval
pp

T' ) corresponds to the subregion OR 5 (Ls
p s-1 P P

We clearly have many questions to answer in order to be in a posi-

tion to perform the algorithm. The basic procedures are confronted in

Section 3.3.3 and complicating features are discussed in Section 3.3.4.

3.3.3 Basic Procedures of the Algorithm

3.3.3.1 Solution of Constrained Optimization Problem

The first task of Operation 1 is the solution of the constrained

optimization problem (3.142)-(3.146) pointwise in time on the interval

T s (-co, t ). We begin by expressing the program in terms of the
p

underlying decision variables, which are the controls, and also by

integrating (3.146) backward in time:
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(3.154)u*(T) = ARG MIN Z J (T) [b3 u(T) + alj

u(T)EU xE I
i p-1

subject to

b. u(t~) < -a L -V x! E L
1-i - p - 1 p

b! u(T) = -a7  V x! E B
1- 1 p-1

Xj (T) = i(t ) + TL Vx xE I
1 p i 1 p-1

T E (-co, t )
p

(3.155)

(3.156)

(3.157)

where T is time measured backward from t and b. represents the row of
p

B corresponding to x.. We re-write (3.154)-(3.157) by first recog-
1

nizing that a. in (3.154) is a constant additive term which does not

affect the minimization and also be substituting (3.157) into (3.154)

to obtain

u*(T) = ARG MIN

u (T)EU'

D u(T) < C

u(T) > 0

U' =

b u(0~) < -
-- -

blu(T) = -a
-i-

(3.158)(c + Tc )B u(T)

a! x] E L
i p

-0 x E B
i i p-1

(3.159a)

(3.159b)

(3.159c)

(3.159d)

and

X7 (O)bi
0 ip-1

where

(3.160)



-144-

= aZbi (3.161)
XJEl

i p-1

T C ( 0, 00).

Here we have simply set t = 0. Equations (3.158)-(3.161) represent

the final form of the program with which we shall be dealing. This

program differs from the global minimization in that we have the addi-

tional constraints (3.159c) and (3.159d). Hence, the solution set

specified by the control law (3.41)-(3.43) is too large for our purpose.

Unfortunately, the additional constraints preclude the solution of the

program directly as a function of the costates as in (3.41)-(3.43).

However, since for fixed T (3.158)-(3.161) is a linear program,

the Simplex technique may be applied to find a solution. Moreover, the

cost function of (3.158) is a linear function of the single independent

parameter T, while the constraints are not a function of T since a is

constant. This is precisely the form which can be accommodated by

parametric linear programming with respect to the cost coefficients.

The solution proceeds as follows:

Set T = 6, where 6 is some small positive number which serves to

perturb all costate values by ac6. We wish to start our solution at

time t -6 since we may have X2(t ) = 0 for some x! 6 8 , so that the
p 1 p 1 p-l

solution exactly at t may not correspond to x! leaving the boundary.
p 1

Also, constraint (3.159c) is active at this point to insure that the

state boundaries x7 > 0, x7 E L , are not violated just after t (in
1- p p
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backward time). The number 6 must be such that 0 < 6 < TP-1 , where

T P- is the first break time to be encountered backward in time.

We now use the Simplex technique to solve the program at T = 6.

There are many linear programming computer packages which may be en-

listed for this task which utilize efficient algorithmic forms of the

Simplex technique to arrive at a single optimal extremum solution.

Given this starting solution which we call u , most packages are

also equipped to employ parametric linear programming to find the value

of T for which the current solution ceases to be optimal as well as a

new optimal solution. These are the break time TP- and the optimal

control u respectively. We continue in this fashion to find con-
-p-2

trols and break times until the solution remains the same for T arbi-

trarily large. This final solution is the control u_.

The linearity of the pointwise minimization associated with the

necessary conditions has enabled us to find a sequence of optimal

controls on the time interval (-o, t ) by the efficient technique of
p

parametric linear programming. However, in the description of Opera-

tion 1 in Section 3.3.2.2 we call for all optimal solutions on every

time segment. Since we are dealing with a linear program, the speci-

fication of all optimal solutions is equivalent to the specification

of all optimal extremum of the solution set. Unfortunately, it turns

out that the problem of finding all the optimal extremum solutions to

a linear program is an extremely difficult one. In Appendix A we show

that given an initial optimal extremum solution this problem is equiva-
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lent to finding all the vertices of a convex polyhedral set defined by

a system of linear equality and inequality constraints. Discussion of

this problem has appeared intermittently in the linear programming

literature since the early 1950's, where several algorithms based upon

different approaches have been presented. See for example Balinski

[1961] and Mattheiss [1973). However, none of these methods has proven

computationally efficient for a reasonably large variety of problems.

The fundamental difficulty which appears to foil many algorithms, no

matter what their underlying approach, is degeneracy in the original

linear program. As our problem is characterized by a high degree of

degeneracy, one would expect poor performance from any of these

algorithms.

In Appendix A we describe an algorithm developed by Bloom [1976)

in conjunction with this research for the solution of the problem of

finding all of the extremum solutions of a linear program. It is

based upon an algorithm of Chernikova [1965] which finds the extreme

rays of a convex cone defined by linear equality and inequality con-

straints. By a simple transformation, this algorithm can be adapted

to find the vertices of a convex polyhedral set, which is the problem

to be solved. Limited experience with the application of the algorithm

indicates that the amount of computation and storage involved may be

excessive. These problems are magnified by the extreme numerical sen-

sitivity of the algorithm.

It appears at this time that the development of an efficient
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algorithm for the solution of this problem is contingent upon the dis-

covery of methods for resolving degeneracy in linear programs. As

degeneracy is a fundamental nuisance in most linear programming pro-

cedures, this problem is the subject of much ongoing research.

At any rate, assuming that all optimal extremum may be found for

every time segment, the output of this procedure consists of the break

time set (3.151) and the collection of optimal control sets (3.152).

Note that 02 is now considered to be the set of all optimal extremum
p

solutions to the constrained linear program on T E [t , t ). In
p p+l

Sections 3.3.3.3 and 3.3.3.4 the requirement that we find all optimal

extremum is justified.

3.3.3.2 Determination of Leave-the-Boundary Costates,

Subregions and Global Optimality

In this section we introduce a geometrical notion which serves

as a setting for understanding and evaluating various issues of the

algorithm which were identified in Sections 3.3.2.2 and 3.3.2.3.

Preliminaries

We begin by considering the basic linear program (3.37) of the

necessary conditions to be solved pointwise in time. The elements of

the m-dimensional control vector u(T) comprise the underlying set of

decision variables in Rm. However, since the cost functional

X (T)x(T) is explicitly linear in x, it is quite natural to view the

activity of the linear program in the space Rn with the decision
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vector x. We begin by denoting

y(T) = -'(T) = -B u(T) - a (3.162)

where the negative sign has been introduced solely for the convenience

of discussion.

Definition 3.9: We denote by

A e R |y = -B u - a and u e U1 C Rn (3.163)

the set of negative .feasible flows attainable through the admissible

controls in the presence of constant inputs a. We shall refer to W

as the r-constraint figure.

Note that the only difference between N as defined above and .

as defined in (3.44) is that the former accounts for the inputs a;

therefore, I& is obtained from N'through simple translation by the

vector a. As such, N is also a bounded convex polyhedron in Rn. We

may now state the representation of the pointwise linear program (3.37)

as it appears in Rn

= ARG MAX [X (T)(T) (3.164)

T E t0, t]

Note that the maximum has been taken in (3.164) as opposed to

the minimum in (3.37) due to the introduction of the negative sign in

(3.162). The solution J*(T) to (3.164) represents the negative of the
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optimal state rate x*(T) = B u*(T) + a at every point in time. How-

ever, we shall not be interested in solving (3.164) directly since in

general we do not have an explicit set of linear constraints which

comprise N. Instead, we shall be interested in the underlying pro-

perties of the linear program as it is expressed in (3.164).

T
If we consider time to be fixed and express z = X y as the objec-

tive function of (3.164), then the geometrical characterization of

T
linear programs calls for the equation z = A y to be visualized as an

n-l dimensional hyperplane in Rn. For a fixed value of X, varying

T
the value of z causes the hyperplane z = y y to translate parallel

T
to the hyperplane X y = 0. The optimal solution (solutions) is

T
achieved for z* = X y tangent to the constant set 2?. The solution

set consists of all the points of tangency, and may range from a single

vertex of &/ to an n-l dimensional face of WY.

The geometrical interpretation is depicted in Figure 3.19.

The linear program (3.164) is the i-space version of the global

optimization (3.37). However, in part (a) of Operation 1 of the

algorithm we are dealing with the constrained optimization problem.

We now proceed to express this problem as it appears in i-space. First

the notation:

Notation 3.12

z(T) = sj A(T)y (3.165)

xelI
'p
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increasing z

yT = z

= z2T

= =

Figure 3.19 Geometrical Interpretation of Pointwise

Linear Program in i-space

is the restricted Hamiltonian at time T. Geometrically, it is the

a -l dimensional restricted Hamiltonian hyperplane at time T. We denote
p

this hyperplane as H (T) .

Notation 3.13

y E{ys R PIy e oN and y 0
p i

IF- x E } C R P
I p

is the a dimensional restricted y-constraint figure.
p

(3.166)
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The constrained optimization problem in i-space is

y*(T) = ARG MAX

y (T) )
p

z(T) (3.167)

T E (-M, t ) .

The solution to (3.167) is piecewise constant on time segments identical

to those for the underlying u-space problem. We therefore use similar

notation for specifying the solutions.

Notation 3.14

v = a solution to (3.167) on [T , T ), referred to
p p+1

as a a -dimensional operating point
pf

Y = the set of all solutions to (3.167) on [T , T ). (3.168)

Y = {Y _, ... , Y 2 , Yf } is the sequence of the

solution sets to (3.167) on (-co, t ).
p

We now demonstrate the above concepts with the aid of a familiar

example.

Example 3.3

Take the network and cost functional of Example 3.1. Then the

global constraint figure is

= {yy 2 ly = u1 3+u 1 2 -u 21 ' y2 =u -ul2 21,

O<u <0.5, O<u <0.5, O<u < <1.0}.
-12 21 13:SO O23-

(3.169)
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This is illustrated in Figure 3.20.

We now follow on Figure 3.20 the steps of the algorithm associated

with situation (i) of Example 3.2. First, we let L = {x 1, that is,

x 1 leaves the boundary at t f* The sought after solution must have x1

negative and x 2 = 0. This corresponds to the constrained maximization

*(T) = ARG MAX A1  Y 1 (T)

f- 1(3.170)

T E [t f 1  tf]

where

Qif- = Y 2 0, y = ul3+ul2-u21

O<u 5, O<u <0.5, <u <1.0) (3.171)
12 21 - ' -13-

The one dimensional restricted constraint figure W is illustrated

by the heavy line in Figure 3.20, along with the restricted Hamiltonian

H (T): z(T) = ( . Clearly, the maximum of H over W is

achieved at the one dimensional operating point Yl = (1.5, 0)T. This

point is globally maximizing if and only if A 2 (T) = 0. The solution

point Xfj corresponds to the control (3.93) and allows us to specify

the feedback control on the x1 -axis as in Figure 3.9.

Next, we set L fi = (x2}, that is, allow x2 to leave the boundary

backward in time at t _-. Since all states are now in the interior,

the maximization is global:

(T) = ARG MAX [A(T) y 1 (T) +X 2 (T)y2 (T)] (3.172)

y (T) E S(f-2 =
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N _1 Yf-l

Figure 3.20 Geometrical Interpretation Applied

to Problem of Example 3.3

& f-2
4f-2
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T E: [t f-2, tf-_1).

The two dimensional global constraint figure Wf-2 = q/ is illustrated

in Figure 3.20, along with the global Hamiltonian H f-2(T):z(T) =

X1 (T)y 1 + X2 My 2. Since the costate behavior as specified in (3.96)

and (3.97) implies X 1(T) > X 2(T), the two dimensional operating point

is f -2 = (1.5, 0.5) . This point corresponds to the control (3.98).

This is easily seen from Figure 3.20. As time proceeds backward, the

relative values of the costates cause the Hamiltonian H f-2 to rotate

in the direction indicated by the arrow. As time approaches minus

infinity, Hf-2 approaches the face of N, which lies on the line

yl+y2 = 2.0. Therefore, there is no break point in the control 
as time

approaches minus infinity. Finally, If-2 is used to construct the

shaded non-break feedback region of Figure 3.9. 0 Example 3.3

Geometrical Interpretation

The observations of the preceding examples suggest the following

geometrical interpretation of the backward constructive algorithm pre-

sented in Section 3.3: Suppose the set of state variables in Lp+1

leaves the boundary backward in time at tp+ resulting in the set of

state variables I on interior arcs. Then the constrained optimization

problem of Operation 1, part (a), takes place in R P, where the basis

vectors of R ~'are the elements of I . The constraint set is
p

na R (3.173)
p
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where &' is the global constraint set in Rn defined by (3.163). The

objective function is represented by the a -1 dimensional restricted
p

Hamiltonian hyperplane in R P:

H (T):z(T) = E X (T)y7 (3.174)
p X6

i p

T E (-0, t ).p+1

The initial solution set Y of the linear program consists of all points
p

of tangency between W' and H (T) on T E [T , T ). This solution set
p p p p+

consists of one or more extreme points of '3/ and all the points whichp

are convex combinations of the extreme points. Each such point is a

a -dimensional operating point. Note, however, that an extreme point
p

of 4Y is not necessarily an extreme point of 4& (e.g., yf_1 in
p

Figure 3.20 is an extreme point of &f-l but only a boundary point of

W/ ). Now, as time runs backward toward minus infinity, the costates

evolve according to (3.157) in general causing the orientation of the

hyperplane H (T) to change with respect to W . If H (T) moves a
p p p

sufficient amount, then the surface of tangency with ' may change.
p

This occurrence defines the break time T and the solution set will
p

change to the new points of tangency. This will continue until some

solution set persists to time equals minus infinity. This version of

the constrained optimization problem, which represents part (a) of

Operation 1 of the algorithm, is illustrated in Figure 3.21. For

the purpose of this discussion, let us now assume that the solutions
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p

Y
p

P /

H (T) , T E (-, tp p+1

Figure 3.21 Geometrical Interpretation in y-space
of Operation 1, part (a).
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obtained satisfy part (b) of Operation 1, that is, they are globally

optimal.

Suppose that we now let the set of state variables L leave the
p

boundary some time on the interval (T , t ) at boundary junction
p +l

time tp. Then the constrained optimization problem takes place in

R + P, where the basis vectors are the coordinates of I = I U L .
p-1 p p

The constraint set is now

W = 3(n R PP P (3.175)
p-1

The objective function is represented by the G +p -1 dimensional re-
p p

stricted Hamiltonian hyperplane in R P P:

H (T) :z (T) = A (T)y (3.176)
p-1 1 1J

i p-1

T E (-00 , t p).

Once again, solutions to the linear program consist of all points

of tangency of H (T) with N . See Figure 3.22. These solutions
p-1 p-l

consist of one or more extreme points of W' and all the points which
p-l

are convex combinations of these extreme points. These points are

a +p dimension operating points of Ny . We repeat for emphasis that
p p p-1

they are not necessarily extreme points of N. As we let time run to

minus infinity, H 1 (T) rotates and picks up new solution sets until

finally one persists to minus infinity. For the moment we continue to

assume that all constrained solutions obtained are also globally

optimal.
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a
R P

R P(L)
p

+PP (I 
):1p-1

- p-1

H (T),T E

F 3

p-1

F 1

F
2

Y

f loor is Cy
NPP

R P(I /

Figure 3.22 Geometrical Interpretation of Minimization

in y-space when state variables in Lp leave
the boundary at t .

(-o,t 
)
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We have now described in geometrical terms the nature of suc-

ceeding constrained optimization steps of the algorithm. In summary,

as we allow state variables to leave the boundary backward in time, we

continually enlarge the space of free decision variables by releasing

constraints of the form yJ = 0. As the constraint figure grows in

dimension, so also does the associated Hamiltonian hyperplane. When

all the state variables have finally left the houndary backward in

time, the constraint figure is the n-dimensional figure / and the

Hamiltonian is represented by an n-l dimensional hyperplane.

The geometrical interpretation introduced above shall now be

applied to discuss in detail the basic issues presented in Section

3.3.2.3 (global optimality, leave-the-boundary costates, subregions).

We begin by establishing some definitions and a theorem which charac-

terize an important geometrical relationship between successive con-

strained optimization problems.

Geometrical Relationship between Successive Constrained

Optimization Problems

Suppose we have a set of state variables I on interior arcs and

that the set of a -dimensional operating points is Y . At some
p p

boundary junction time t E [Tp, p+1 ) we wish to allow the set of

state variables in the set L to leave the boundary backward in time,
p

where L C B . Consider now the relationship between the a dimensional
p p p

constrained optimization problem at t and the a +p dimensional con-
p p p
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strained optimization problem at t . We begin by noting that equations
p

(3.173) and (3.175) together imply

= ) ( R (3.177)
p p-1

Therefore, all boundary points ofW are also boundary points of '1
p pl

In particular, extreme points of W are boundary points of W_
p p-1 *

Definition 3.9: Consider the set of operating points Y C & . Let
p p

p
R P be the p dimensional space whose basis vectof's are the elements

of L . Then we call any face of 3( which contains the set Y and
p p1 p p

contains at least one point in the positive orthant of R P an

L n-positive face.

Most central to this definition is that by (3.162) any point in

the positive orthant of RP has x. strictly negative for all x. E L
i p

(recall that this is in the presence of inputs a). Since we intend for

the state variables x. E L to leave the boundary backward in time, then
i P

we require xc strictly negative (in forward time). To illustrate the

notion of Definition 3.9, we refer to Figure 3.22 as an example. In

this case, the L -positive faces of N with respect to Y are those
p p-1  p

labelled F1 , F2 and F3 in the figure.

The major result of this section is contained in the following

theorem. Here we provide the link between the a -l dimensional Hamil-
p

tonian hyperplane H (t ) and the a p+p P-1 dimensional hyperplane

H_ 1 (tp) which has the state variables in Lp leaving the boundary back-



-161-

ward in time at t
p

Theorem 3.5

Suppose at time t the current set of operating points is Y C NWI
p p p

for the restricted Hamiltonian H (t ). Let L be the set of state
p p p

variables to leave the boundary at t . Then any (possibly restricted)

Hamiltonian H (t ) which allows L to leave the boundary at t is
p-l p p p

such that:
p

(a) H (t )= H (t ) R
p p p-1 p

(b) H (t ) contains a L -positive face of W
p-1 p p p-l

where R P is as defined in Definition 3.9.

Proof:

(a) The restricted Hamiltonian hyperplane H at the time just

prior to the departure of Lp is

H (t+):z(t ) = E o(t+)y . (3.178)
p p p X E 1 p i

ip

The (possibly restricted) Hamiltonian hyperplane HP- at the time just

following the departure of Lp has the form:

H (t ):z(t) = X(t)y + . X (t~)y. (3.179)
p-1 p p i. p 1 XW 1 p 1

ip ip

Now, H (t ) contains all points in Y . Also, since we are assuming
p p p

Y is such that the state variables in Lp leave the boundary, there
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must be at least one point _ EY for which y > 0 for all
aTp..l 'p-l 1

x e L . That is, the slope in forward time associated with x E L
i p i p

must be strictly negative in order that x leave the boundary backward
1

in time. If we now evaluate H (t+) at any point E Y and Hp (t )
p p p-p

at the point El Yp-, necessary condition (3.14), which stipulates

continuity of the Hamiltonian everywhere, gives

z(t+) = z(t) = z(t ). (3.180)
p p p

Furthermore, we have that

1x (t+)=Xt)=1 () V- x E I (3.181)
i p ip ip 1 p

by equation (3.32). By virtue of (3.180) and (3.181) we may write the

Hamiltonians as

H (t ):z(t) = X (t )y (3.182)
p p p i pi

p

H (t ):z(t ) = X(t )y. + X (t y.. (3.183)
p-1 p p x Sl p 1 x L p 1

i p i p

We conclude immediately from (3.182) and (3.183) that H (t ) =
p p

H (y ) n R P.
p-1 p.

(b) From part (a) we see that H (t ) contains H (t ) and
p-l p p p

therefore contains Y . Also, H (t ) contains at least one point
p p-1  p

Y P1in the positive orthant of R Therefore, H 1 (t ) must contain

the L -positive face which contains both Y and _ . U Theorem 3.5
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We are now prepared to discuss the issues of the algorithm pre-

sented in Section 3.3.2.3.

Global Optimality

The determination of global optimality is the basic task of

part (b) of Operation 1 of the algorithm. For this discussion let us

assume that is a a -dimensional operating point which maximizes the

restricted Hamiltonian H over the restricted constraint figure c .
p p

We have fixed time here. The relevant question is:

Do there exist legimate values of for x E B
i i p

such that H is maximized over N'at , where H is the

n-l dimensional global Hamiltonian?

By the basic geometrical property of linear programs, maximizes H

over (N if and only if H is tangent to N at . Therefore, the values

of 1j for xj e B which we seek are those which rotate H about H until
i i p p

H becomes tangent to & at y. This is illustrated for a simple situa-

tion in Figure 3.23.

In Section 3.3.4. 1 we present a simple example of a constrained

optimum that is not globally optimal.

Leave-the-boundary costates

The problem here is to

Determine the values of X1(t ) for all x7 E L such
1 p I p
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H :z = X2 y2

increase A until

A1 = x2

yl

H:z = Ay 1 + A2 22

Figure 3.23 Test for Global Optimality in

y-space (Operation 1, part (b))

N
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that when maximizing H_ 1 (tp) the solution results in

the set of state variables in L leaving the boundary
p

backward in time.

Now, statement (a) of Theorem 3.5 says that we essentially want

to rotate H (t ) around H (t ) by varying X(t) for xj E L until
p-1 p p p p i p

H (t ) touches W on an L -positive face. Note that this rotation
p-l p p-1  p

is performed while holding time at t , and is to be distinguished from

the rotation of the Hamiltonian which results from the costates

evolving backward in time. See Figure 3.24.

If there are no legitimate values of the leave-the-boundary

costates which allow H (t ) to reach an L -positive face, then
p-l p p

clearly it is non-optimal for the state variables in L to leave the
p

boundary at t . Furthermore, if there is more than one L -positive
p p

face to which HP-1 (t ) may be rotated, then the set of all values of

the leave-the-boundary costates will be infinitely non-unique. See

Section 3.3.4.2 for an example of this behavior.

Subregions

The problem of determining subregions is a very difficult one.

In order to divide the feedback control region 4R into subregions with

respect to Lp, it is necessary to answer the following question:

What are the collection of optimal control sets

Q= _00, ... Qp-2' 2p-l} and set of breakwalls asso-
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p

R~RPP(L))

R a p p ( P1 ) :-
p-p-1

H P1(t ) P-1
p

/Y

R (I

/P

H (t )

Figure 3.24 Determination of Leave-the-Boundary

Costates via Rotation of the Hamiltonian

Hyperplane
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ciated with the state variables in L leaving the boundary
p

backward in time at the potential boundary junction time t
p

for all t E [T , t )?
p p p+l

Note that the determination of 0 is equivalent to the determina-

tion Y = {Y_, ... , Yp-2 p-l }. To get some idea of what is involved

here, let us consider the simple case in which we assume that the

control does not break as time runs to minus infinity. In this case

Q = {2_1, Y = {Y_,) and there are no breakwalls with which to be

concerned. The problem then is to determine the solution set Y_

associated with the state variables in L leaving the boundary backward
p

in time at the potential boundary junction time t for all
p

t E [T , t ). Let us presently fix t . Clearly, Y , will then con-
p p' p+1 p-

sist of points which lie on L -positive faces to which H (t ) may
p p-1 p

be rotated (around H (t )). In order to determine exactly which points
p p

of these L P-positive faces are in Y_,, H must be rotated slightly

further by perturbing time backward and solving the constrained opti-

mization problem. In the circumstance that there exists more than a

single L -positive face to which H (t ) may be rotated, this pro-
p p-1 p

cedure must be performed for all such faces in order to determine the

total composition of Y_0. We therefore must "probe ahead" backward

in time in order to examine the ensuing optimal solution Y0. Further-

more, this must be done for all t e [T , t ).
pip p+l

This is undoubtedly a difficult problem, and does not even take
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into consideration the general situation in which the control encounters

breaks. In that case, we must probe ahead to look at the entire subse-

quent trajectory on (-o, t ) for every t S [T , t +1)! Although no
p p p' pl

technique is known for solving this problem in general, it is solved

for a simple three dimensional problem in Section 3.3.4.3.

We have now provided a geometrical interpretation of the three

basic problems associated with the algorithm. Unfortunately, we do not

know any way in which to apply the suggested techniques in general.

However, in Section 4.3 we utilize the geometrical approach to prove

several simplifications which permit a straightforward computational

scheme. The special case involves single destination networks with

all unity weightings in the cost functional. The simplifications are:

(i) Every constrained solution is also globally optimal.

(ii) The set of leave-the-boundary costates is unique;

that is, there is a unique L -positive face which can

be reached by H 1 (t ). In this case, it is possible to

devise a computational technique for the determination

of the values of the leave-the-boundary costates.

(iii) There is only one subregion per region.

3.3.3.3 Construction of Non-Break Feedback Control Regions

In this section we specify the construction of feedback control

regions of the type sg_, with associated control set Q_0. In specific,

we assume that the set of state variables in L are leaving either a
p
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subregion gr U ) of some region W or the breakwall of a final break
p p p

feedback control region 8? . The set of optimal controls with which
p-q

the state variables in L leave persists without a switch until time
p

equals minus infinity, and is therefore denoted Q_0.

In Corollary 3.3 we showed that all feedback control regions are

convex polyhedral cones. It can be shown without much difficulty that

this characterization also applies to both subregions and breakwalls.

Also, by Definition 3.8 we are assured that the state variables in L
p

leave backward in time from any point in a given subregion or break-

wall with the same set of optimal controls 0-0. There is consequently

no need to differentiate between the situation where the state variables

in L leave backward in time from either a subregion or a breakwall.
p

We therefore introduce the following simplifying notation:

Notation 3.15: Both subregions and breakwalls of R p are referred

to as previous regions, denoted , when the intent is to allow the

state variables in L to leave from them backward in time.
p

Recall that Y__ is the y-space solution set corresponding to Q_.

Since Y_0 is the solution set to a linear program, it is completely

described by its extreme points.

Definition 3.10: For every extreme point of Y_,, form the ray in

a +p
R Y+ P which originates at the origin and passes through that extreme

point. If there are W extreme points, the set of rays is denoted
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V == {v1, V2, ... , v }.

This definition is illustrated in Figure 3.25.

v
2

1 VI

co +p,
R ()

Figure 3.25

The rays of Definition 3.10

the ray v which corresponds

corresponds to some optimal

The set of rays V

have a very special significance. Consider

to the extreme point y E Y . In turn, y

control u c Q_ via

= -B u- a. (3.184)

Therefore, for any interval of time At between switch times we have

V
3

VW

v4

_ _V= -
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Ax

y_ At (3.185)

where Ax represents the direction of travel in forward time of the state

under the influence of the optimal control u in the presence of inputs

a. Therefore, (3.185) tells us that y represents the corresponding

optimal direction in x-space in which to leave the previous region 3.
p

By definition 3.10, v is colinear with y. Therefore, if we consider v

to reside in x-space, it is parallel to the optimal direction of travel

of the state. See Figure 3.26.

v

a(t -At)

Interpretation of the ray vFigure 3.26
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Note that any optimal direction for leaving J? is expressible
p

as a convex combination of members of V, and any convex combination

of members of V_, is an optimal direction for leaving .
p

We now denote by Co(4%) the convex hull of all the points in the

set IV. The following is the basic constructive theorem for non-break

feedback control regions.

Theorem 3.6 (Construction of non-break feedback control regions)

Suppose Q_0 is the set of controls with which the state variables

in L leave R . Then
p p

S =Co ( R U V_00) /? (3.186)

is the non-break feedback control region with associated control set

Q_0 in the vein of Definition 3.6.

Proof: We must show that items (i), (ii) and (iii) of Definition 3.6

apply to. M_, and Q,. The situation is depicted in Figure 3.27.

Items (i) and (ii) follow from the fact that i? is itself a feedback
p

control region.

To prove item (iii) consider any point x 6 . Translate each
p

ray in V by placing its origin at x and call the translated set

V' ={v' v, ... , v' }. Next form the conical region A(x) =

Co(x U V' )/x. See Figure 3.27. If x E (x), then there exists a

direction which is some convex combination of the members of V' which

takes x1 optimally to x. Hence, for any 2i E t(x) there exists a
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V

Figure 3.27 Geometry for Proof of Theorem 3.6

a +p
R P '

't Wx

xi

v'
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u E G_, which takes x1 optimally to x. Now, M = Co ({t(x) Ix E })

since the smallest convex set containing {J(x) Ix E R } is clearly
- p

_.* Therefore, for any x : M_ there exists some direction which~00 -l -00

is a convex combination of members of V. which carries to some

point x E R . This is equivalent to saying that for any 2E E .

there exists a u E Q-, such that x = B u + a carries _x to some point

- p

Now, let us select some E W_. and apply any control u E Q_

for any period of time At which keeps the resulting state 22 in

Then by the above argument there exists some control u2 - which

takes E2 to some point 2 3  W p. See Figure 3.27. Now, the control u 2

is clearly optimal since by hypothesis any u E Q_ is optimal to move

the state off of R . Finally, u is optimal since the trajectory seg-

ment 2 x is part of the trajectory x 3 + - - which leaves from

* We have therefore showed that item (iii) of Definition 3.6 is
p

satisfied. U Theorem 3.6

As i is a convex polyhedral cone, the convex hull construction
p

of Theorem 3.6 results in the convex polyhedral cone E.,. This is in

agreement with Corollary 3.3. In brief, the construction of non-break

feedback regions proceeds as follows:

(1) Begin with non-break control solution set Q, corresponding to
-CoY

the state variables in L leaving the previous region X? C R
p p

backward in time.
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(2) Find the image Y. of 2 under the mapping (3.162).

(3) Form the set of rays V_ from the extreme points of Y_.
ax +p

(4) Form the conical region in R +:

.?_0 = Co (W2 U V,)/ .

The reader may verify that all of the constructions performed in

Example 3.1 are elementary applications of Theorem 3.6. In Appendix B,

non-break feedback regions are constructed for a three dimensional

example.

3.3.3.4 Construction of Break Feedback Control Regions

In this section we specify the construction of a feedback control

region associated with a control set which applies on the interval

[Tp-l, TP). To be more specific, we assume that the state variables in

L are leaving backward in time from either a subregion Rr (L ) of some
p p p

feedback control region R or the breakwall of a previously constructed

break feedback region. In either case, we invoke the convention of

Section 3.3.3.3 and say that the state variables in L are leaving back-
p

ward in time from the previous region Wi . Our goal is to construct the
p

break feedback region R P- associated with the control set QP-l.

The approach differs from that for non-break feedback regions

principally in the definition of the set of rays. We now wish each ray

to represent an edge of the breakwall of M P_1. To find such rays, we

reason that each edge of the breakwall serves as the break surface of
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a trajectory emanating from some edge of W . Additionally, this tra-

jectory will correspond to an extreme point of Y 1P-, although there is

no way of determining a priori the appropriate one. We therefore define

the set of rays for this case as follows:

Definition 3.11: Consider all edges of the previous region J . Allow
p

the state variables in L to leave backward in time from some point on
p

each edge (where the point may not be the origin) once for each extreme

point direction of YP- (these correspond to extreme points of Q P-).

Let x(T ) represent the point of departure on a given edge. Then for
-p

each trajectory find the break point

x(T ) = x(T ) + (T - T ) (B u + a) (3.187)
-p-1 - p p p-l -- p-l -

where u is the appropriate extreme point of Q . For every such
-p-l p-

break point, form the ray in R CY p which originates at the origin and

and passes through the break point. If the total number of break points

is W, the set of rays is denoted

VP-1 = {v1' v2 , ., v }.

See Figure 3.28.

Theorem 3.7 (Construction of break feedback regions)

Suppose QP-1 is the set of controls with which the state variables

in L leave O backward in time. Then

Wp- = Co(wR U V )/W (3.188)
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V

x (TCP-

lwp

x(T )
- p
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is the break feedback control region with associated control set QP_

in the vein of Definition 3.6.

Proof: We must show that items (i), (ii) and (iii) of Definition 3.6

apply to Wl and Q 1 . The situation is depicted in Figure 3.28.

Items (i) and (ii) follow from the fact that R is itself a
p

feedback control region.

To prove item (iii) consider any point x E W . Form the set of
p

rays from Y as specified in Definition 3.10 and call them V. As

discussed previously, these rays represent the directions of the optimal

trajectories which result from the application of the extreme point

controls of OP_ . Moreover, the direction of the trajectory correspond-

ing to any control in QP_ can be expressed as a convex combination of

of the rays in V. Next, translate each ray in V by placing its origin

at the point x and call the translated set V'. Denote by S the closed
ax +p

halfspace of R which lies on the same side of the hyperplane

which contains the break wall as does x. Consider the region !L(x) =

(Co( ? U V')/x) n S. See Figure 3.29. If E A(x), then there exists

a direction which is some convex combination of the members of V' which

takes optimally to x. Hence, for any E 6 (x) there exists a

u E Q which takes x optimally to x. Now, R = Co ({X (x) Ix E 1)
- p-l -l p-1 - p

since the smallest convex set containing {((x) x S p } is Wi? . We

have therefore shown that for any K1 E lp_ , there exists a u e P_

such that x=B u + a carries x to some point x E W .
- - - - -1 - p
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The reasoning from this point on follows precisely the same lines

as that presented at this point in the proof of Theorem 3.6.

U Theorem 3.7

As before, we obtain the fact that W p-1 as constructed in

Theorem 3.7 is a convex polyhedral cone. In brief, the construction

of break feedback regions proceeds as follows:

(1) Begin with the break control solution set QP_ corresponding to

the state variables in L leaving the previous region ~ R P
p p

backward in time.

(2) Let the state variables in L leave backward in time from each
p

edge of R with every extreme point control in 0 and calculate
p p-1

the resulting break points from (3.187).

(3) Form the set of rays V from the break points determined in (2).
p-l

a +p
(4) Form the conical region in R p

W P- = Co (R U V
p p p

The reader may verify that the construction of the break feedback

region labeled in Figure 3.12 is a simple application of

Theorem 3.7. In Appendix B, a break feedback region is constructed for

a three dimensional example.

3.3.4 Discussion of Fundamental Properties of the Algorithm

In this section, we discuss several of the properties of the
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algorithm presented in Section 3.3.2.2. We are particularly interested

in those properties which are troublesome from the point of view of

constructing a computational scheme to implement the algorithm. The

discussion is focused on a simple example presented for each property,

which serves not only to illustrate the particular problem at hand but

also to give the reader an opportunity to fix the essential notion more

firmly in his mind. In these examples we utilize the geometrical point

of view presented in Section 3.3.3.2, so that it is possible to study

the properties by examining the activity of the pointwise linear pro-

gram in y-space.

3.3.4.1 Non-Global Optimality of Certain Sequences

Part (a) of Operation 1 of the algorithm consists of solving the

constrained optimization problem with a restricted Hamiltonian. In

part (b) we assert the necessity to determine if the solution to part

(a) can be made globally optimal with the appropriate choice of costates

which satisfy the necessary conditions. In this section, we present

a simple example in which a constrained optimum is not a global optimum,

thus justifying our concern for investigating global optimality.

Example 3.4

The general network topology to be considered in this and several

other examples is depicted in Figure 3.30. The link capacities are

indicated in brackets and for simplicity the inputs are all taken to be
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zero. The equations of motion are

-2 2 2
x (t) =-u2 (t) -u (t)
1 12 13

-1 1 1
x2 (t) =-u 21(t) -u23 (t)

'3 3 3
x 1(t)= -ul 3 (t) - ul2 (t)

-11 1
x3 (t) = -u31 (t) - u32 (t)

.3 3 3
x 2(t) =-u 23(t) -u 21(t)

-2 2 21
x3 (t) = -u3 2 (t) - u 31(t)

2
+ u3 1 (t)

1
+ u t)

32

+ u2t)

21
+ u23(t

3
+ u1 2(t)

+ 2
+ ul t)2

(3.189)

For the purpose of this example, we limit attention to the state

1 1
variables x3 and x2 and consider the cost function

= ft
J = f

t 0

11
[2x (t) + x3(t)]dt.2 3(t]t

(3.190)

We are therefore considering a single destination network with non-

unity weightings in the cost functional. The y-space constraint figure

is presented in Figure 3.31.

We begin by letting x2 leave the boundary backward in time at tf.

Then the constrained optimization problem in z-space calls for the

maximization of the zero dimensional restricted Hamiltonian

1 1
H (T) :z(T) = 2 y2 over the constraint region f depicted in

Figure 3.31. The costate trajectory for X is shown in Figure 3.32.
2

The solution to the constrained optimization problem is

Y :y = 1.5, y1 = 0 as illustrated in Figure 3.31. Now, at arbitrary
f-l 2 3
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Which is Not Globally Optimal
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t

t tf

Figure 3.32 Costate Trajectories for Example 3.4

time t < tf let us attempt to see if there exists some legitimate value

of X (t) such that for X (t) = 2(t - t) the Hamiltonian H(t) :z(t)
3 2f

1 y + X (ty maximizes N at Yf_. From Figure 3.31 we see thatX2(t 2  3 33(t-y3
l 1

the only possible globally maximizing Hamiltonian has X (t) = X (t).3 2

However, from (3.153) we find that the maximum value of X3 (t) is
13

(t - t), that is, one half the value of X (t). Therefore, the candi-
f2

date operating point Yf 1 obtained from the constrained optimization

cannot be globally optimal. We then conclude that it is never optimal

for x to strike the boundary last forward in time.

0 Example 3.4
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3.3.4.2 Non-Uniqueness of Leave-the-Boundary Costates

Refer to Definition 3.9 for the definition of L -positive face.

The significance of this notion is established in Theorem 3.5, where

we show that the values of the leave-the-boundary costates at t are

actually those of the appropriate coefficients of H P-(t p) rotated

about H (t ) until it touches W_ on an L -positive face. Here we
p p p-l p

establish the fact that there may be more than one L -positive face

which may be reached in this fashion. As we shall see, this situation

implies that there may be an infinitely non-unique set of costates

corresponding to state variables which leave the boundary and enter

onto interior arcs. Therefore, state variables which are travelling

on interior arcs may have associated with them costates whose values

are non-unique. This is a most interesting property which characterizes

the linear state constrained optimal control problem. Although non-

uniqueness of costates may occur in non-linear state constrained prob-

lems, it is usually limited to costates corresponding to state variables

travelling on boundary arcs. See Bryson, Denham and Dreyfus [1963].

Example 3.5

Once again consider the network topology of Figure 3.30.

1 2 1
Let us now limit attention to the states x3 ' x 3 and x and take

the cost functional to be

J = [x3(t) + x2(t) + x1(t)]dt. (3.191)

0



-187-

The y-space constraint figure Wy is pictured in Figure 3.33.

This figure can be obtained by finding the extreme points of U and

transforming them to y-space via equation (3.162).

Suppose we let x3 leave the boundary backward in time at tf

1 1
Then H (T):z(T) = X Y3 is maximized at the point Y :y 3 = 1.5,

y = y = 0 for all T E (-0o, tf). This solution is easily shown to be

1 1
globally optimal with 2) 3(T) = 0. The zero dimensional

2 3

restricted Hamiltonian H _ (T) is actually the point Yf 1 in Figure

3.33. This solution does not break as time runs to minus infinity. By

a trivial application of Theorem 3.6 the underlying controls (u = 0.5,
31

1 1
u = 1.0, u = 1.0, all other controls zero) apply everywhere on the
32 21
1.

x3 axis.

Suppose we know specify that x2 and x2 leave the boundary simul-

taneously at some arbitrary boundary junction time t f 1 E (-0, t f).

Now, since X (T) = -l, T E [t , t], then X (t ) = t - t The
3 f1 f 3 f-i f f-1*

L -positive faces of W/f-2 (in this case, the L _1-positive faces) are

Fl, F2 and F3 of Figure 3.33. Furthermore, the two dimensional Hamil-

tonian H (t ):z(t ) = X 3 (t )y 3 3+ X(t )y (t )y anHf- 1(f- 1  ztf-1  3 - -1 3,y X tf-1y2

be rotated about the zero dimensional Hamiltonian Hf 1 (t f 1 ) to touch

3/ in all faces F1 , F 2 and F3. In fact, it may lie on F 2 anywhere

2
between F and F Therefore, the leave-the-boundary costates X and

1 at t
2t f- may achieve values anywhere between
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X2 (t ) = A(t )=t -t
3 f1 3 f-l f f-l

1 (t )=0
2 f-1

and

A2 (t )=0
3 f-1

1 (t ) = (t t - t .
2 f-1 3 f-1 f f-l*

Hence, we have an infinitely non-unique set of leave-the-boundary co-

2 1
states at tf. This non-uniqueness persists even after x and x2

leave the boundary and enter onto interior arcs, thus verifying our

contention in the introduction to this section. ND Example 3.5

In general, the backward constructive algorithm calls for the

entire set of costate values if they are indeed non-unique. However,

it is clear that Hamiltonian hyperplanes which lie between faces of 3/

will provide us with no more information in terms of new operating

points than will those which actually lie on the faces. If the state

variables in L leave some region 6? , we therefore must find all of
p p

the highest dimensional L -positive faces of y upon which H (t )
p p-1  p-1  p

may be made to lie. We then utilize the finite costate set correspond-

ing to the coefficients of H (t ) which bring it to lie on these
p-1 p

L -positive faces. In Example 3.5, this costate set corresponds to the

faces F1 and F3'

The reduction of the required costates to a finite set is a

welcome result but we still have the problem of finding the appropriate



-190-

L -positive faces of N1 . Although this is a simple problem for
p p-1

three dimensions or less, we have no method for performing this task

for a general dimensional multi-destination network. The solution to

this problem is contingent upon discovering a method for explicitly

determining the constraints which determine N in the vicinity of
p-1

the operating point Y . In Section 4.4 we show how this may be
p

achieved when the L -positive face is unique as in the case of problems

involving single destination networks.

3.3.4.3 Subregions

Recall that a subregion ? (L ) of a region R is that set of
p p p

points in M @ which when taken as the point of departure of the state
p

variables in L result in a common control set and common set of break-
p

walls (Definition 3.8). We now present an example in which there are

two subregions in a particular feedback control region.

Example 3.6

The network is picture in Figure 3.34. Once again, for simpli-

city we are considering the no inputs case. This is a single destina-

tion network with all messages intended for node 4; therefore, we may

eliminate the destination superscript on the state and control vari-

ables. The dynamical equations are

c (t) = u2 1 (t) + u 31 (t) - u1 4 (t)

c2 (t) = -u2 1 (t) 
(3.192)

x 3 (t) = -u 31 (t)
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Figure 3.34 Network Topology for Example 3.6

and we consider the cost functional

t

J= f [2x 1 (t) + x2 (t) + 2x3 (t)]dt. (3.193)

t0

The y-constraint figure is depicted in Figure 3.35(a) .

We begin by letting x2 leave the boundary backward in time at

t . The constrained optimization problem calls for the maximization of

the zero dimensional Hamiltonian H 1 (T) :z(T) = X2 (T)y 2 over the con-

straint figure Sf-1 depicted in Figure 3.35(a). The costate trajectory

for X2 is shown in Figure 3.35(b). The solution to the constrained

optimization problem is Y 1 :y1 = 0, y2 = 1.0, y3 = 0. Moreover, it is

easy to see by examining Figure 3.35(a) that this solution is globally

optimal for the costate values X1 (T) = X2 (T) = 0. Also, Yf 1 persists
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as time runs to minus infinity. The trajectory is illustrated in

Figure 3.36. Utilizing the controls underlying this solution, we

are able to assign the feedback control on the x 2 -axis as specified in

Figure 3.37. We denote this region fUlR

Next we stipulate that x 3 leave the boundary at some arbitrary

boundary junction time t _. The one dimensional Hamiltonian that

touches the constraint figure Yf-2 in the positive orthant of y 3 is

simply H (t ):z(t ) = X2(t 2. Therefore, A3(t ) = 0. As

we proceed backward in time from tf 1 , the one dimensional constrained

Hamiltonian Hf-2 (T) :z(T) = (T) y 2 + X3 My 3 is maximized over Nf-2

at the point Yf- 2 l:y = 0, y 2 = 1.0, y3 = 1.0. This solution is glo-

bally optimal for X (T) = 0 and does not experience a break as time

runs to minus infinity. We may then apply Theorem 3.6 to construct

the two dimensional non-break feedback control region labeled M f-2 in

Figure 3.37.

We now want to allow x1 to leave the boundary backward in time

at some time tf-2 < t f 1 ; that is, allow the state to leave from R f-2'

This is achieved by rotating the two dimensional Hamiltonian H (t f :

z(tf-2 ) = X t )x + X2(tf-2 )x2 + 3(tf-2 )x3 about H (t f-2) until

it touches N on a face in the positive orthant of y . By examining

Figure 3.35(b) and (c) we distinguish the following cases:

(i) If X 3 (tf-2 ) 2 (t f-2), then H f-3 (t f-2) is rotated to touch

the edge labeled e' in Figure 3.35(b). This edge becomes the
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new set of operating points Yf-3'

(ii) If X3 (tf-2) = X2 (tf-2 ), then H f 3 (tf-2 ) is rotated to touch

the face labeled F1 in Figure 3.35(c). Subsequent rotation

of Hf-3 causes the edge e" of Figure 3.35(c) to become the

new set of operating points Yf-3'

(iii) If X 3 (t f-2 >2 (t f-2), then H f (t f) is rotated to touch

the edge labeled e" in Figure 3.35(b). This edge becomes

the new set of operating points Yf-3'

If we denote the time at which X2 equals X3 by T, then from Figure

3.36 we easily determine that x 2 l) 2x3 (T ). Therefore, we divide

the region a into two subregions: -2 (xl) is that portion of

M- beneath the line x2=2x3, not including x2=2x3 -2 (xl) is that

portion of Wf-2 above and including the line x 2=2x 3. When the state

leaves W ?2 (xl) the new set of operating points is Yf-3 = e'. On the

other hand, when the state leaves _2 (x 1 ) the new set of operating

points is Yf-3 =e". Example 3.6

3.3.4.4 Return of States to Boundary Backward in Time

In Operation 1 of the algorithm we work under the assumption

that no state variable which is of f the boundary must subsequently

return to the boundary backward in time. This is equivalent to assuming

that in forward time optimality will never require that a state variable

increase its current value. In Section 4.3 we show that this assumption

is in fact true for the case of single destination networks with all
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unity weightings in the cost functional. However, in general this

assumption is not true as illustrated by the following example.

Example 3.7

We once again refer to the network topology of Example 3.4 and

1 1
concern ourselves with the state variables x2 and x 3 and the cost

functional (3.190) of Example 3.4. As in that case, the i-constraint

figure appears as in Figure 3.31, which we present again in Figure 3.38

for illustration on the current discussion.

In Example 3.4, we attempted to allow x to leave the boundary

backward in time at tf and discovered that this trajectory cannot be

globally optimal. We now try letting x 3 leave the boundary backward in

time at t f Then the constrained optimization problem calls for the

maximization of the zero dimensional restricted Hamiltonian H CT):

z(t) = 1 (T)y over the constraint figure 6 1 depicted in Figure

3.38. The costate trajectory is shown in Figure 3.39. The solution

1 1
to the constrained optimization problem is Y 1 :y3 = 1.5, y2 = 0. This

solution can be shown to be globally optimal for the costate values

X1(C) = X (T), T E [tf , t ]. See Figure 3.38. Also, Y persists

as time runs to minus infinity. Over this interval x3 travels forward

in time with a slope of -1.5 as illustrated in Figure 3.39.

Now, suppose at an arbitrary boundary junction time t we

choose to allow x to leave the boundary backward in time. Then the

costate X(t ) = X 1(t ) = t - t causes the enlarged Hamiltonian
3 f-l 2 f-l f f-l
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H (t f 1 ) to lie against the L f-positive face of f-2 as depicted

in Figure 3.38. Once x2 leaves the boundary backward in time its

costate travels with a forward slope of -2 as indicated in Figure

3.39. The Hamiltonian Hf -2 (T):z(T) = A2(T) y + A 3 therefore

1 1
achieves its maximum over Q/f 2 at Yf2 y3 = -0.5, y2 = 2.0. Hence,

the optimal slope of x3 forward in time is now +0.5. The trajectory
31

is pictured in Figure 3.39 where we see that x 3 returns to the boundary

at the time Tf-2 which is 3(t - t _ ) time units before t _ . The

return of x 3 to the boundary marks a "dead end" of the backward trajec-

31

tory since it is not possible to allow x 3 to re-enter the interior

backward in time. This is because in order to do so it is necessary

to have 3 f- ) ~ 2 f-2) in order to have H -2 lie on the3 f-~2  = 2  f-2  Hf-2(f- 2

appropriate face of N/f-2

However, nothing is lost since the trajectory of Figure 3.39 may

be used to construct the feedback solution for all initial conditions

1 1
on x 3 and x2 . We simply treat Tf 2 as a break point and find that the

entire space is filled up upon the construction of the break feedback

region. See Figure 3.40. 0 Example 3.7

We have presented a simple example for which a state variable

returns to the boundary backward in time and demonstrated how the

feedback space may be filled up. In this particular case, the point

at which the state variable returns to the boundary represents a "dead

end". However, it is not clear that this is true in general. In order



-201-

1
x 2

break feedback control region:

everything except x3 -axis

1 1 1
u 2 1  1.0, u2 3 = 1.0, u31 0.5

3= +0.5

sample optimal = -2.0

trajectories 2

x 3
3

non-break feedback control region: x3 axis

1 1 1
u31 = 0.5, u 3 2 =1.0, u 2 1 = 1.0

x - -1.5

x = 0
2

Feedback Solution for Example 3.7Figure 3.40



-202-

to fill up the space, it may be necessary (and therefore optimal) to

allow state variables which have returned to the boundary backward in

time to re-enter the interior. Once again, we require explicit know-

ledge of the Z-constraint figure in order to accommodate this problem

as part of a computational algorithm.

Before leaving the discussion of this property, we point out

that there exists some connection between the problem of non-global

optimality and that of state variables returning to the boundary back-

ward in time. We can infer this by examining the conclusions of

Examples 3.4 and 3.7, which were performed for the same network topology

and cost functional. In Example 3.4, we showed that it is not globally

optimal for x2 to strike the boundary last. This is consistent with
21

the feedback solution of Example 3.7, which calls for x3 to leave the
13

boundary forward in time whenever x2 has a positive value. It is not

clear how this notion may be expanded to characterize general network

problems.

3.4 Summary

In this chapter we have developed an algorithm which constructs

the feedback solution to the dynamic routing problem when the inputs

to the network are constant in time. The building blocks of the feed-

back space are convex polyhedral cones and we have proposed constructing

these cones by a sequence of optimal trajectories run backward in time.

These trajectories are fashioned to satisfy the necessary conditions,
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which are also sufficient.

Through the process of developing a rigorous algorithm we have

discovered the fundamental characteristics of the feedback solution.

Aside from its deceivingly neat organization into convex polyhedral

conical regions, the feedback space is a complex and oftentimes con-

fusing creature. This confirms the viewpoint commonly shared among

optimal control theorists that feedback solutions are very difficult

to find, especially for problems involving constraints on the state

variables.

The complex algorithm for the construction of the feedback space

developed in this chapter for the general network problem is difficult

to implement in a computational scheme. However, it serves as a con-

ceptual setting for proving the simplifications which result for

problems involving single destination networks with unity weightings

in the cost functional.



Chapter 4

FEEDBACK ROUTING WITH CONSTANT INPUTS

AND UNITY WEIGHTINGS

4.1 Introduction

In Chapter 3 we presented an algorithm for the construction of

the feedback solution to the general network dynamic routing problem

with constant inputs. However, we found that four basic properties

associated with the algorithm complicate the formulation of a computa-

tional scheme to implement the algorithm. In brief, these are:

1) Non-global optimality of certain sequences of state variables

leaving the boundary backward in time

2) Non-uniqueness of leave-the-boundary costates

3) Subregions

4) Return of state variables to boundary backward in time.

In this chapter, we investigate these properties as they apply

to problems involving single destination networks with inputs constant

in time and all unity weightings in the cost functional. Throughout

Chapter 3 we have promised that for this class of problems various

simplifications result. Here we state and prove these simplifications

using the geometrical point of view presented in Section 3.3.3.2.

-204-
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The primary results are (in the order they are proved in Section 4.3):

Theorem 4.1 The leave-the-boundary costate values are

unique.

Theorem 4.2 There is one subregion per region.

Theorem 4.3 All solutions to the constrained optimization

problem are also globally optimal.

Theorem 4.4 There always exists an optimal control which

does not call for the return of state variables

to the boundary backward in time.

One additional result which even further simplifies the situation is:

Lemma 4.6 No breaks in the optimal control between

boundary junction times.

As a consequence of this last property, we need only solve the point-

wise constrained linear program once between appointed boundary junction

times. Moreover, the only kind of feedback regions to be constructed

are those of the non-break type detailed in Section 3.3.3.3.

With these simplifications in hand, we proceed to construct the

details of a computational scheme which realizes the backward construc-

tive algorithm for this class of problems. Of particular interest is

the use of parametric linear programming techniques to determine the

L P-positive face which provides the values of the leave-the-boundary

costates. A computer program is developed to implement the scheme for

a five-node network. However, the portion of the program which employs

Chernikova's algorithm to calculate the entire set of solutions to the
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pointwise linear program is highly inefficient. This problem causes

the calculation of the entire feedback solution to be impractical.

Finally, we discuss some of the issues involved in extending the geo-

metrical approach to general network problems.

4.2 Preliminaries

As we shall presently become involved in detailed geometrical

analysis in the y-space, we briefly review a few of the essential

notions. First recall that the definition of the y-constraint figure

is:

A R n1y = -B u - a and u e U}

A 
(4.1)

where U = {u:D u < c and u > 0.

Next recall that the constrained optimization problem of Section

3.3.2.2 (Operation 1, part (a)) calls for the maximization of the

Hamiltonian H (T) over the restricted constraint figure 3 , where we

define 0& as follows:

P = {E R Ply c and y = 0 I x e 8}. (4.2)

We remind the reader that B is the set of state variables on
P

the boundary for T c [T , T ) . Also, I is the set of state vari-
p p+1 p

ables off the boundary for T e [T , T ), where card (I ) = a . Now,
p p+1 p p

the solution set to the constrained optimization problem on

T c [T , T ) is denoted by Y . A member of Y is denoted by v , and
p p+1 p pP

is referred to as a a -dimensional operating point.
p
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The following proposition regarding N/ and W/ are easy to prove,
p

so that the details are eliminated here.

Proposition 4.1: Q/ is a closed and bounded convex polyhedron. The

same is true of /.
p

The notions of extreme point and edge of a convex polyhedron are

central in linear programming. Rigorous geometrical definitions of

these notions may be found in Dantzig [1963]. Briefly, they are:

Definition 4.1: A point of a convex set is an extreme point of that

set if no straight line segment of finite length completely in the set

contains the point.

Definition 4.2: The edge of a convex polyhedron is the straight line

segment joining two adjacent extreme points.

Now, from linear programming considerations and the details of

our algorithm we know that Y is the convex polyhedron which is the

face of tangency between the restricted Hamiltonian hyperplane H (T)

and the restricted constraint figure Wr on T E [T , T ). Therefore,
p p p+1

extreme points of the solution set Y are also extreme points of N .
p p

The following proposition is easy to prove.

Proposition 4.2: The solution set to the constrained optimization

problem, Y , lies on the boundary of S/. However, extreme points of
p

yare not necessarily extreme points of 24'.
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Now, we present a proposition which provides the fundamental

geometrical relationship between the constraint figures 3( and U. Once

again, the proof is simple and is eliminated for the purpose of brevity.

Proposition 4.3: Each extreme point of ?& is the image (through the

mapping Z = -B u - a) of exactly one extreme point of U. However,

extreme points of U may map into points that are not extremum of 3/

(such as boundary and interior points). Likewise, each edge of 3( is

the image of exactly one edge of U. However, edges of U may map into

points which are not edges of W4.

Now, in order to describe the convex polyhedron 3 we need only

concern ourselves with its extreme points, or equivalently, with its

edges. However, we do not have an explicit representation of N/ in

terms of linear inequalities, so that we must approach this problem

somewhat indirectly. 'The approach shall be to talk about edges of U,

for which we do have a representation, and then to investigate the

manner in which the mapping y = -B u - a acts upon these edges. In

particular, we shall be exploiting the special structure of the

matrices B, C and D (where B, D and C appear as in (4.1)). We present

here the argument as far as it applies to single destination networks.

This argument is extended to cover multi-destination network models in

Section 4.5, where the subsequent application of the argument is not

quite as clear as it is here.

We begin by examining the nature of the edges of U. The point
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of view that we take to achieve this task is the algebraic interpreta-

tion of linear programs. This interpretation is basic in the formula-

tion of algorithms to solve linear programs, and as such can be found

in any good text on the subject (such as Dantzig (1963]). The basic

notions are:

(i) the canonical form of a system of linear equations,

(ii) a corresponding basic feasible solution,

and (iii) a pivot from one basic feasible solution to another,

performed by exchanging a basic variable for a non-basic

variable while maintaining canonical form.

Now, extreme points of a linear constraint set are characterized

algebraically as corresponding to basic feasible solutions of the

representative system of linear equations in canonical form. Also, a

pivot from one basic feasible solution to another corresponds geometri-

cally to moving along an edge from the extreme point represented by the

first basic feasible solution to the extreme point represented by the

second basic feasible solution. This is the important property which

we shall exploit in our attempt to describe edges.

We now examine the set of equations which describes U for single

destination networks. The capacity constraint over a link (i,k) has

now the simple form

0 < u. < C (4.3)
- ik - ik

since for a single destination there is exactly one control variable
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per link. We notice immediately from (4.3) that U is a rectangular

hyper-parallelepiped so that the algebraic description of the edges is

simple to obtain. However, we shall now characterize an edge alge-

braically in a rigorous fashion in order to establish the basic

approach for the more complicated multi-destination situation discussed

in Section 4.5.

We begin by introducing the non-negative slack variable zik so

that the inequality u. < C becomes
ik - ik

uik + Zik ik
(4.4)

z. > 0.

The complete set of equations of type (4.4) corresponding to D u < c

therefore has the form:

U +z C

u +z C

r ik ik ik (4.5)

u +z C

U +z C

r r

where we have eliminated all subscripts except for ik to avoid nota-

tional havoc. Recall that r is the dimension of the control vector and

therefore is the dimension of the link collection L. Now, (4.5) is
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immediately in canonical form with respect to any set of r variables

chosen (either u's or z's) to be basic. For instance, if we consider

the row corresponding to Cik, then we pick either uik or zik to be

basic and set its value to C. and the value of the remaining variable

to zero. Note that such basic solutions always have uik > 0 (u ik= 0

or uik = C ) so that the lower bound in (4.3) is never violated when
ikik

talking about basic solutions to (4.5).

Hence, every extreme point of U is represented by a point whose

ik coordinate has value of either zero or C ik In terms of the net-

work, this means that every link is operating either at zero or full

capacity. Now, in order to perform a pivot on (4.5), we simply pick

one variable which is currently basic at value Cik (either uik or

ikk
z ik ) and replace it in the basis by the remaining variable (either

zik or u.k respectively). Hence, movement along an edge of U is equiva-

lent to picking a coordinate (say ik) of the current extreme point and

either increasing its value to Cik (if it is currently zero) or de-

creasing its value to zero (if it is currently at C ik). The total

number of edges emanating from any extreme point is therefore r.

We now are in a position to discuss the nature of edges of 3/,

since by Proposition 4.3 edges of / correspond to edges of U. First

we distinguish between the two basic types of control variables.

Definition 4.3: Suppose the single destination of the network is

node d. Then a control variable of the type u d is called a direct
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control. A control variable of the type u ik, k / d, is called an

intermediate control. See Figure 4.1.

u. < C k
x. ik - ik

Figure 4.1 Direct and Intermediate Control Variables

Now, a direct control enters into exactly one component of the

dynamic equation x = B u + a since there is no state variable associated

with the destination node. The contribution is

x. = -u. + ... + a.
1 id 1

(4.6)

where we have eliminated the single destination superscript on the

state and control variables and input. Also, an intermediate control

enters into exactly two components of the dynamic equation as follows

x. = -u. + ... + a.
U ik 1

+ axk+'uik +. k*

(4.7)
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Suppose now that the current operating point y = is an extreme

point of N. We wish to characterize the types of edges of 3( which

may emanate from Y. From (4.6) and (4.7) we distinguish the following

two types of edges of 3:

Type 1 - Exactly one coordinate of y changes from its value

at y . This edge corresponds to an edge of U for which a

direct control and its slack change places in the basis.

From equations (3.162) and (4.6) we see that the two possi-

bilities are:

Z id d-- id Ay. = C id (4.8)

uid Cid pvt uid 0

u.d= C. u. = 0
id pivot id C i y = -C (4.9)

Zid ~ =ci id
id id id

where Ay. indicates the change in that ith coordinate which

occurs when moving from one end to another of an edge. Notice

that Ay. is either plus or minus C id.

Type 2 - Exactly two coordinates of y change from their value

at y. This edge corresponds to an edge of for which an

intermediate control and its slack change places in the basis.

From equations (3.162) and (4.7) we see that the two possibili-

ties are:
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'u/ . C. Ay. =C.
Uu ipiot ik ik i ik (4.10)
z = C z = 0 Ay = -C.
ikik ik k ik

(u. = C.u = 0 Ay.=-C
ik ik pivot ik i ik(4.11)

kik p t ik ik Ayk =Cik

where Ay and Ayk indicate the changes in the ith and kth

coordinate respectively which occur when moving from one end

of an edge to another. Notice that Ayi and Ayk are both either

plus or minus Cik , and that Ay. = -Ayk'

Notation 4.1: An edge of Type 1 in which the change occurs in the

coordinate y. is represented as

1i

and an edge of Type 2 in which the change occurs in the coordinates

y and yk is represented as

i k

We now present a brief refresher on the geometrical point of view

applied to the analysis of various properties associated with the back-

ward construction algorithm. Assume that a current a -dimensional
p

operating point is e Y C N and the restricted Hamiltonian hyper-

plane is
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H (T) :z (T) = .Z A(T)y (4.12)

3- p

T E [T , T ) .

p p+1

We now choose to allow the state variables in L to leave the boundary

backward in time at the appointed boundary junction time tp E (T ,Tp *.

Note that T may represent a control switch time or the boundary junc-

tion time t before t in backward time. Then the values of the
p+1 p

leave-the-boundary costates X (t) for x7 E L are those for which the
i p p

enlarged Hamiltonian hyperplane

H (t ):z(t ) = , (t )y + . XJ(t )y (4.13)
p-1 p p 1 p I J 1 p 1

I p p

contains an L -positive face of P_ .

Notation 4.2: Let Y be a current set of operating points and L be
p p

the set of state variables to leave the boundary backward in time at

time t E (T , T ). Then an L -positive face of qg which is
p p p+l p p-1

contained in H (t ) for some A (t ), x. c L , is denoted F(Y ,t ,L ).
p-1 p i p 1 p p p p

The collection of all such faces is denoted J(Y , t , L ).
p p p

This completes our discussion of the geometrical preliminaries

required in the proofs of the next section. Additionally, we shall

have occasion to utilize some basic terminlogy and elementary results

from graph theory. The relevant definitions and a simple result are

presented here.
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Definition 4.4: A graph is a set of nodes {y , *.., yn} and a set of

ordered pairs y. y. called edges. We call y. and y. extremities of

the edge.

Note that we have actually referred to the coordinates of y as the

nodes. This shall be our usage. Edges of the form y. y. actually
1J

correspond in our discussion to edges of '/ emanating from yP.

Definition 4.5: A subgraph of a given graph is a graph which contains

a subset of the nodes and edges of the given graph.

Definition 4.6: A chain is a sequence of edges such that one of the

extremities of each edge belongs to the preceding edge in the sequence

and the other extremity to the following edge.

Definition 4.7: A graph is connected if two arbitrary distinct nodes

are always connected by a chain.

Definition 4.9: A connected graph without loops is a tree.

Proposition 4.4: A tree of s nodes contains s-1 edges.

4.3 Special Properties of the Algorithm

We begin with the central theorem of this section. The proof of

this theorem employs the geometrical point of view, and contains the

basic notions which are utilized in subsequent proofs.
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Theorem 4.1

For problems involving single destination networks, the values of

the leave-the-boundary costates are unique at a given boundary junction

time t
p

Proof: We emphasize that in this proof t is a fixed potential boundary

junction time, and begin by considering the case in which we wish to

allow all the states remaining on the boundary to leave the boundary at

t , that is, L = B . It will be easy to generalize the result to
p p p

cases for which L C B and L A B .
p p p p

We now divide the proof into two principal sections:

(a) Y contains an extreme point of 3/
p

(b) Y does not contain an extreme point of Y.
p

(a) Y contains an extreme point of 3(.
p

The proof will proceed by contradiction. Suppose the values of

the leave-the-boundary costates are not unique. Then according to the

geometrical interpretation ,;(Y , t , B ) contains at least two dis-
p p p

tinct members. Call these F'(Y , t , B ) and F"(Y , t, B ). Each
pp p p p p

of these is a face of N/ since L = B and 3 = Now, the
p p p-1

enlarged Hamiltonian hyperplane is actually the n-l dimensional global

Hamiltonian hyperplane, so that we refer to it as H(t ). In accordance
p

with the assumption that F'(Y , t , B ) and F"(Y , t , B ) are
pip p p p p

distinct, we must have that each is contained in a different global
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Hamiltonian hyperplane. We denote these global Hamiltonian hyperplanes

by H'(t ) and H"(t ) respectively and express them as
p p

H'(t ):z'(t ) = A.(t )y. + X(t )y. (4.14)
p p x p i x:B i p 2

H"(t ):z"(t ) = A .(t )y. + X'.'(t )y. (4.15)
p p . p i x ip p 1

i p 1 p

where we have eliminated the destination superscripting since we are

considering single destination networks. Now, Y p H (t ) and from
p p p

Theorem 3.5, part (a), we know that H (t ) C H' (t ) and H (t ) c H"(t ).
p p p p p p

Therefore, Y C H' (t ) and Y C H" (t ). The geometry associated with
p p p p

our assumption is depicted in Figure 4.2.

Consider now any operating point E Y . Then by the above con-

siderations we know that E H'(t ) and y E H"(t ); that is, v sat-

isfies both (4.14) and (4.15). Substituting into both of these

expressions we obtain:

z'(t ) = z"(t ). (4.16)
p p

We now make the further assumptions that F' (Y , t , B ) and
p p p

F" (Y , t , B ) are adjacent faces of '3. We may do this without any
p p p

loss of generality because if there is more than one member of

(Y , rt , B ) we may always pick two adjacent members. Now, according
p p p

to the definition of L -positive face, there must exist some point y
p

such that
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H'(t ) () H"(
p

H"(t)
p

H' (t
P

/r

H (t ), Y
p p p

Figure 4.2 Geometry in y-space Associated with

Assumption of Non-unique Costates



-220-

y E H' (t ) q H" (t ) (4.17)
p p

where y+ is in the positive orthant of R P; that is,

y. > 0 V x. E L = B . (4.18)
:i p p

By subtracting (4.15) from (4.14) and taking into account (4.16), we

conclude that any y E H' (t ) n H" (t ) satisfies
_ p p

(A! (t) - '.'(t ))y. = 0. (4.19)
x.EB 1 p ip 1

Therefore, y must satisfy

(A'(t ) - 't ) + = 0. (4.20).
1 p 1 p i

1 p

Our assumption that H' (t ) and H"(t ) are distinct hyperplanes implies
p p

that X' (t ) - A'.(t ) / 0 for at least one x. e B . This together with
J p 3 p I p

(4.18) implies

(A't ) - X(t ))y+ 0 for some x. E 1 . (4.21)
J p j p j I p

But (4.20) and (4.21) imply that there must exist some xk B p such

that X'(t ) - X"(t ) 0 where kt k p k(t ) is of opposite sign

from X' (t ) - X'.(t ). We now summarize the preceding observations:
J p j p

Positive Solution Condition. In order for the assumption of

non-unique costates to be true, it is necessary that

X'(t ) - V!"(t ) / 0 and X'(t ) - X"(t ) / 0 for some x. E B
J p J p kp k p 3 p
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and x E B . Moreover, it is necessary that X'.(t ) - X" (t )
k p J P J P

is of opposite sign from X'(t ) - X"(t ).
k p k p

Let us now consider the region F' (Y , t , B3 ) A F" (Y , t , B ). As
p p p p p p

we have assumed that the faces F' (Y , t , B ) and F" (Y , t , 13 ) are
p p p p p p

adjacent, their intersection must be non-empty. Also, since both

F'(Y , t , B ) and F"(Y , t , B ) are n-i dimensional faces of N, the
p p p p p p

intersection F' (Y, t , B ) n F" (Y , t, 1 ) is an n-2 dimensional face
p p p p p p

of W; that is, it is an n-2 dimensional convex polyhedron.

Recall now that in this part of the proof we are assuming that Yp

contains an extreme point of N. Denote such an extreme point by

E Y . By Definition 3.9 of an L -positive face, we have

y E F' (Y , t , 1 ) (4.22)
-e p p p

and

y E F"(Y , t , 13 ). (4.23)
-e p p p

Therefore, o e F'(Y , t , 1 ) f F" (Y , t , 1 ). Since v is an extreme
4 p p p p p p

point of W, it is also an extreme point of the n-2 dimensional convex

polyhedral face of 3', F' (Y , t , 13 ) n F" (Y , t , 13 ). Therefore,
p p p p p p

there is a minimum of n-2 independent edges of F' (Y , t , B ) A
p p p

F"(Y , t p, 13 ) which emanate from ye. These are also edges of W. Now,

we have
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F' (Y , t , ) C H'(t
p p p p

and (4.24)

F" (Y ,t , 3 ) C H"(t )
p p p p

in accordance with the geometrical interpretation. This implies that

F'(Y , t , 8 ) n F"(Y , t , B ) C H'(t ) fl H"(t ) (4.25)
p p p p p p p p

Hence, in order for our assumption of non-unique costates to be

true the following condition must also hold:

Edge Condition. If e Y is an extreme point of N then

there exists a minimum of n-2 linearly independent edges of

N emanating from which are also contained in

H' (t )n H" (t )
p p

We now begin the task of providing a contradiction to our assump-

tion by demonstrating that the positive solution condition and the

edge condition cannot hold simultaneously. In brief, we shall proceed

by enumerating all possible types of edges which emanate from and

that satisfy the requirements of the positive solution condition and the

edge condition. Our conclusion shall be that the maximum number of

such edges in n-3, which is one short of the number required by the

edge condition.

Now, the two basic types of edges of W were described in Section

4.2 under the names "Type 1" and "Type 2". In brief, Type 1 edges
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involve a change in exactly one coordinate of y while Type 2 edges

involve changes in exactly two coordinates of y. We now wish to be

more specific with regard to the type of state variables affected by

the pivots, that is, whether they are members of I or B . Our notation
p p

shall be that a pivot takes us from the current operating (extreme)

point y to an adjacent extreme point . We denote the ith coordinate

e
of by y and the ith coordinate of by y!.

(i) Type 1 edge involving x. e I
I p

According to (4.8)-(4.9) we have

Y! e 

I Yi (4.26)

y' = ye + Ay. where |AY I = C. > (.
J J J Jd

The edge condition requires y' E H'(t ) (~ H" (t ). Therefore, the
p p

point y' must satisfy the equations for H' (t ) and H" (t ). Substi-
p p

tuting y' into (4.14) and (4.15) and using (4.16) we obtain

X.(t )(Ay.) + X (t )y! = 0 (4.27)
J p x.p i

I p

X. (t )(Ay.) + E V(t )y! = 0. (4.28)
P 3' x.e ':

i p

e
Taking note of the fact that y! = 0 for x. E B (since y. = 0 for

i 1 p i

x E S) we obtain

(4.29)X. (t ) (Ay.) = 0.
J p J



-224-

The necessary conditions of optimality (3.32) call for X.(t ) > 0 for
I p

x. E I . But since (4.26) specifies JAy I > 0, equation (4.29) pre-
Sp

sents a contradiction. Therefore, this type of edge cannot satisfy

the edge condition and therefore is not a candidate for our n-2 required

edges.

(ii) Type 1 edge involving x. E B

In this case we have

e

1 i (4.30)

y Ay where JAy = Cjd > 0

By (4.8)-(4.9) and the fact that ye = 0 -x. E B . Once again, the
J J p

point y' must satisfy the equations for both H'(t ) and H"(t ). Sub-

stituting y' into (4.14) and (4.15) and simplifying obtain

X'(t )(Ay.) = X',(t )(Ay.) = 0. (4.31)
3 p 3 j p 3

But JAy.I > 0 and (4.31) imply

J=
A'(t ) = X''(t ).
J p j p

Therefore, edges of this type are potential edges of N with the

stipulation that

(4.32)'(t ) - X'(t ) = 0.
3 p J p
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(iii) Type 2 edge involving x. E 8 , x k 8
j p k p

In this case (4.1) and (4.11) give

y = e

S y

y -Ay where jAy = Cjk

V i 3/ j,k

(4.33)

> 0.

As before, we substitute (4.33) into (4.14) and (4.15) and simplify to

obtain

A'(t ) = Ag(t )
I p p(4.34)

X'(t ) = A"(t ).
J p k p

(iv) Type 2 edge involving x. E 8 , x k
J p k p

We have by (4.10) and (4.11) that

9t i 6 j,k

(4.35)

where JAY | = Cjk > 0

Substituting (4.35) into (4.14) and (4.15) and simplifying obtain

X!(t ) = X'(t ) = 0.
J p J p

(v) Type 2 edge involving x.
]J

E I xk

From (4.10) and (4.11) we have

e
l 1 y

y'.! Ay.

y =Ye - Ay

(4.36)
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y = yeV- i / j,k

y y + Ay. (4.37)

y= ye - Ay where JAy I = C > 0.
k j jk

Substituting (4.37) into (4.14) and (4.15) and simplifying obtain

X.(t ) = X (t ). (4.38)
J p k p

We shall refer to the admissible edges represented by (ii)-(iv)

above as "edges of type (ii)-(iv)" respectively.

We have now considered all possible types of edges emanating from

Ye and found that the edge condition has implied certain 
relationships

among the costates involved. Now, in our attempt to arrive at our

contradiction we shall not attempt to explicitly enumerate all edges

emanating from Y for a specific constraint figure /. Instead, we

shall consider all possible edges of types (ii)-(iv) above which may

exist and show that there are no more than n-3 independent edges which

also satisfy the positive solution condition. In order to facilitate

the discussion concerning an arbitrary set of edges, we introduce the

following graphical representation.

Definition 4.10: Consider the components of y (y1 , ... , yn) to be the

nodes of a graph and the arrows and arcs of notation 4.1 to be edges of

a graph. Then an edge graph is the collection of all such nodes and

edges which represent a set of edges of &/ emanating from y.
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t
Note that edges of Type (ii) (y. where x. E p ) are special in

1 1 p

that they only involve one extremity node. We now divide the nodes of

an edge graph into two mutually exclusive categories: those which

correspond to state variables which are members of the boundary set B3

and those which correspond to state variables which are members of the

interior set I . As a shorthand notation we shall say that if x. E B
p 1 p

then y. E 13, where B is now taken as a collection of nodes of the
i p p

edges graph. Likewise, if x. E I we say that y. E I . The use of the
1 p i p

notations 13 and I should be clear from the context. A typical edge
p p

graph categorized in this fashion is presented in Figure 4.3, where we

have represented components of y simply as y's.

p p

y y y y y ... y y y y y y y

1 2 2 3
p p p p p

Figure 4.3 Typical Edge Graph
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Using the notation we have established we now reiterate the four

possible types of edges which may exist and the costate conditions

which they imply:

B
p

t

(ii) y. * X'(t )-X'(y ) = 0 (4.39)
I Jp 3 p

B
p

(iii) y. y '.(t )-A"(t ) = A'(t )-A"(t ) (4.40)
J k j p j p k p k p

B I
p p

(iv) y. y '.(t )-A"(t ) = 0 (4.41)
3 k 3 P 3 p

p

(v) y. y k A.(t) = A (t) (4.42)
J k3 P k p

Definition 4.11: For a given edge graph, a B -subgraph (denoted B ,
p p

where the integer valued a ranges over the number of B -subgraphs)

consists of a set of y's in Bp and a set of edges for which the set

of y's is disconnected from all other members of B .
p

Definition 4.12: For a given edge graph, an I -subgraph (denoted 81
p p

where the integer S ranges over the number of I p-subgraphs) consists

of a set of y's in I and a set of edges for which the set of y's is
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disconnected from all other members of I.p

Examples of B - and I -subgraphs are presented in Figure 4.3.
p p

Definition 4.13: The subgraphs B and I are said to be connected if
p p

some member of Ba is connected to some member of I .
p p

1 2
For example, in Figure 4.3, B is connected to .

p p

Definition 4.14: The B -subgraph B is said to be independent if it is
p p

not connected to any I -subgraph.

3
In Figure 4.3, the B -subgraph B is independent.

p p

We now assume that all edges of any subgraph under discussion

satisfy the edge condition. Therefore, the relations (4.39)-(4.42)

are in force. We now apply these relations to make the following ob-

servations concerning members of B - and I - subgraphs:

p p

* If y. E Ba and y E Ba then
j p k p

X'(t ) - A'(t ) = '(t ) - X"(t ). (4.43)
3 p j p kp k p

That is, for any members of the same B -subgraph the values of

the corresponding costate differences are the same.

* If y. s I and y E I then
S p k p

X.(t ) = X (t ). (4.44)
3 p k p

That is, for any members of the same I -subgraph the values of
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the corresponding costates are the same.

0 if y . and y E I and I and B are connected then
j p k p - p p

X.'(t ) - X'.'(t ) = 0. (4.45)
j p 3 p

That is, each member of a B -subgraph which is connected to any

Ip -subgraph has its corresponding costate difference equal to

zero.

t
eIf y. B p and y. has the type (ii) edge y., then

J p j

'(t ) - '(t ) = 0 V-y. B. (4.46)
i p i p i p

That is, each member of a B -subgraph which contains a type (ii)

edge among any of its members has its corresponding costate

difference equal to zero.

Lemma 4.1: In order that the positive solution condition be satisfied

by the edges represented in a particular edge graph, it is necessary

that there are at least two independent B -subgraphs in the edge graph,

each of which does not contain a type (ii) edge.

Proof of Lemma 4.1: The positive solution condition requires that

we have an x. B and an x e B such that X' (t) -X'(t ) / 0 and
3 p k p j p j p

X'(t ) - X"(t ) / 0, and these costate differences must be of the

opposite sign. Equation (4.43) tells us that the state variables which
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satisfy this requirements must not correspond to coordinates of Y which

are members of the same B -subgraph. Therefore, xk and x . must corres-
p J

pond to members of separate B -subgraphs, say B3 and B . Now, by (4.45)
p p p

neither 85 or Bk can be connected to any I -subgraph, and hence each is
p p p

independent. Furthermore, (4.46) implies that neither & or Bk contain
p p

a type (ii) edge. U Lemma 4.1

We now interpret the property of linear dependence of edges into

our graph theoretic approach.

Lemma 4.2: Any subgraph of an edge graph which contains a loop must

represent a linearly dependent 4dge of &.

Proof of Lemma 4.2: It is easily seen that a two node subgraph with a

loop represents two linearly dependent edges of 3(. Now, consider the

three node subgraph with a loop in Figure 4.4. The edges are identi-

fied by circled integers. Suppose this subgraph represents three edges

Y2  y3

Figure 4.4 Three Node Subgraph with Loop

of & emanating from ye. Let us now denote by Ay. the change in the

coordinate y which occurs when moving along the edge 0 from to

an adjacent extreme point of Q&. From (4.10) and (4.11) we then have
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the following relationships:

Ay 2

1y 3Ay
Ay2 = -Ay

3

Ay1 = -Ay3

Let us now consider the three vectors in y-space corresponding to

edges 0 ® and g. When we perform the determinant test for

linear independence of these vectors, the above relationships yield:

Ay1  Ay 0

1 2

0 Ay2  Ay3  = 0
© ©

Ay1  0 Ay3

Therefore, edge is linearly dependent upon edges and ®

Now, consider a loop in the a subgraph of arbitrary size. See

Figure 4.5.

Y y2 Y3 Y4 -... Ys- 1  Ys

/ e

Figure 4.5 Loop in Subgraph of Arbitrary Size
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From the previous argument concerning a three node loop we conclude

that

y 1  y 3 is a linear combination of y1  y 2 and y 2  y 3 '

y1  y4 is a linear combination of y1  y 3 and y 3  y 4 '

y ys is a linear combination of y ys-1 and ys-1 s'

Therefore, the edge of 3 represented by y y is a linear combination

of those represented by y1  y2 ' y2  y3 ' '. ys-1  ys*

Lemma 4.2 0

In counting linearly independent edges of an edge graph we shall

be considering the following special subgraphs.

Definition 4.15: A connected subgraph of an edge graph is either a

B -subgraph, an I -subgraph, or the union of a B -subgraph and an

I P-subgraph which are connected.

Lemma 4.3

(a) Any connected subgraph consisting of s nodes has s-1

linearly independent edges, not including any edges

of type (ii).

(b) No more than one edge of type (ii) can be added to a

connected subgraph representing linearly independent

edges of 3( and have the new set of edges represented



-234-

remain linearly independent.

Proof of Lemma 4.3:

(a) If the connected subgraph contains a loop, then by Lemma 4.2 it

contains at least one linearly dependent edge. Therefore, discard one

edge per loop. The remaining subgraph is loop free and connected. By

Definition 4.9 it is then a tree. Also, by Proposition 4.4 it contains

s-1 edges. It is not difficult to see that all of the edges of a tree

are linearly independent.

(b) By part (a) a connected subgraph with s nodes contains s-1 linearly

independent edges. But we may have not more than s independent edges

in a subspace of dimension s. Therefore, only one type (ii) edge may

be added. ELemma 4.3

We now proceed to determine the maximum number of independent

edges which satisfy Lemmas 4.1 and 4.3 (which embody the positive solu-

tion condition and the edge condition). The breakdown of I and B is
p p

as follows:

According to Lemma 4.1, there must be at least two independent

B -subgraphs in B each of which does not contain an edge of type (ii).
p p

Call these B -subgraphs B' and B". Then by Lemma 4.3, the number of
p p p

linearly independent edges of S/ represented by these B p-subgraphs

are cardinality (B')-l and cardinality (B")-l respectively.
p p

In addition, we may have some B -subgraphs, each of which contains
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a type (ii) edge. By Lemma 4.3 each of these represents the maximum

possible number of linearly independent edges of N, which is exactly

the number of nodes in the subgraph. Denote the collection of all

such subgraphs by B"' . Then the number of linearly independent edges
p

representedy by B"' is cardinality (1"' ).
p p

Finally, we must consider all of the I -subgraphs and the remaining

B3 -subgraphs. From Theorem 4.3 we conclude that these subgraphs will

represent the maximum possible number of linearly independent edges

of N if each B3p-subgraph is connected to an I p-subgraph by an edge of

type (iv) to form a connected subgraph. Denote the union of all these

subgraphs by W. Then the number of linearly independent edges repre-

sented by W is cardinality (W) -l.

The above breakdown is depicted in Figure 4.6.

p p

1 2 3 1 2 3 , 11 13I

p p p p p p p p p

Figure 4.6 Edge Graph Which Satisfies Positive

Solution Condition and Edge Condition

We now tally up the total maximum number of linear independent edges of

* represented by the above:
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maximum no. of
linearly independent
edges = cardinality (B' + B" + B"' + ) - 3

p p p

= cardinality (B U I ) - 3
p p

= n-3 . (4.47)

But the edge condition requires that we produce n-2 such edges. Hence,

our original assumption that JT(Y , t , B ) contains more than one
p p p

element must be false if Y contains an extreme point of W.
p

(b) Y does not contain an extreme point of W
p

If Y does not contain an extreme point of W, then it must lie on
p

some face of W whose dimension is greater than the dimension of H (t ).
p p

This is so because if the face on which Y lies is of dimension less
p

than or equal to that of H (t ), then Y must be that face, and hence

contain an extreme point of N. Let the g-dimensional face of N on

which Y lies be denoted F , where c < g < n-l. See Figure 4.7.
p gp

The geometry of linear programs tells us that any globally maxi-

mizing Hamiltonian hyperplane H(t ) which contains Y must also contain
p p

the face on which it lies, namely F . Hence H(t ) must contain the
g p

g-l dimensional linear variety in which F lies, call it H (t ). Now
g g p

H (t ) must contain H (t ), so that it has the form:
g p p p

H (t .(t )y. + X.(t )y. = A.(t )y (4.48)
g p ip i, p iip i

X. pJ x.pB' ' .6p
I p 1 1'p
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n-UT

Figure 4.7 Situation in Which Y Does Not
p

Contain Extreme Point of ~

p
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0 .th
where y9 is the i component of any point in Y and S' C B . The

P p

values of X .(t ) for all x. e B' are now considered fixed. The global
i p 1

Hamiltonian hyperplane must have the form:

H(t ): . (t )y + X. (t )y. + A. (t )y.
S x. p i 1 p i x.B" p

1 p i p ip

= A .(t )y (4.49)

x.61 p 1
I p

where B' U B" = B . We shall once again proceed by contradiction. We
p p p

assume that ,(Y , t , B ) contains two elements and we associate them
p p p

with the distinct Hamiltonian hyperplanes H' (t ) and H"(t ) whose
p p

equations are given by

H'(t ): .X.(t )y. + A.(t )y. + A'(t )y.
S X. i1 p 1 , 1 p ,, p 1

= X.(t )y 0 (4.50)
1.E p 1

p
and

H"(t ): X.(t )y. + A.(t )y. + A'(t )y.
x.P I 1 p .1 p 1 p

ip

X.(t )yO. (4.51)
X 1 p 1,

1 p

If we pick any extreme point of F , say we are assured that it lies

in H'(t ) n H"(t ) with H'(t ) and H"(t ) as given in (4.50) and (4.51).
p p p p
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Also, 4' is an extreme point of S(. Therefore, we may proceed as in

part (a) with y replaced by ', 1 replaced by I U 1' and B replaced
Y-ep p p

by 3". The statements of the positive solution condition and the edge
p

condition are analogous to those of part (a). We are again unable to

produce more than n-3 edges of the requires type, thus contradicting

the assumption that 5r(Yp, t , B8 ) contains more than a single element.

The case in which Y does not contain an extreme point of N{ is com-
p

plete.

The proof is therefore complete for the case in which L = B .
p p

We have demonstrated the uniqueness of F(Y , t ,13 ). If L C B3 , but
pp p p p

L B ,then

a +p
F(Y , t , L ) = F(Y, t , B ) n R CY p

pp p p p p

a +
where the basis vectors of R are the elements of I . There-

p-1

fore, F(Y , t , L ) is the unique element ofj;'(Y , t , L ).
p p p p p p

* Theorem 4.1

In view of relation (4.52) and the fact that the constructive

algorithm calls for every state variable in B3 to leave the boundary

backward in time, we shall be interested in F(Y , t , 13 ) in order to
pp p

determine all the leave-the-boundary costate values at the potential

boundary junction time t p (,o, t p+). For the purpose of the current

discussion let us replace t by the running time variable T s (-o0,t ).
p p+1

Then our geometric interpretation of the necessary conditions has the
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global Hamiltonian hyperplane H(T) lying on the unique (by Theorem 4.1)

L -positive face F(Y , T, B ) at every time T E (-0, t p+). Also, we

introduce one additional piece of notation.

Notation 4.2

C = cardinality (B ) (4.52)
p p

Let us now consider the case in which Y contains an extreme point
p

of Wy. Call this point 4. Now, in order for all p state variables

in B to leave the boundary backward in time at T, we must be able to
p

have y. > 0 for all x. E 8 . Such points must therefore lie on
1 p

F(Y , T, B ). But at y we have y. = 0 for all x E Bp and the only

edges which involve changes in yi for x. B are those of types (ii),

(iii) and (iv) detailed in the proof of Theorem 4.1. These observations

suggest the following condition:

Independent Edge Condition. At any time T, the unique

L -positive face F(Y , T, B ) contains C independent

edges emanating from of either type (ii),,(iii) or

(iv) detailed in the proof of Theorem 4.1.

For reference, we now list the edges of types (ii), (iii) and (iv)

and detail what the requirement that the edges lie in H(T) implies

about the associated costates. First, we note that we are dealing

with a unique global Hamiltonian which contains F(Y , T, B ) at time T
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and express this as

H (T) : X. (T)y. + X. (T) y. = A . (T)y

xxl xl 1  l
ipi p l p

(4.53)

T E (-COI tp+l

where y is the ith component of y evaluated at the extreme point e

Utilizing the fact that every edge under consideration must lie in the

Hamiltonian hyperplane of (4.53) we obtain the following costate rela-

tionships corresponding to edges of types (ii), (iii) and (iv):

B
p

t
(i ) y.

B
p

(iii)

B I

(iv)

p p

y . y
,, k

= 0.
J

J k (T)jk

= A (T)
J k

We now shall establish what the edge graph will look like at a

given time T in light of the independent edge condition. We make the

following claim and then justify it:

Edge Graph Characterization. Every B -subgraph contains

an edge of type (ii) or is connected to an I -subgraph

(4.54)

(4.55)

(4.56)
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with an edge of type (iv) .

The justification for the above assertion is as follows: 8 con-
p

tains Cp members, and by the independent edge condition it must contain

C independent edges of type (ii), (iii) or (iv). Now, any 8 -subgraph

containing C' members, where C' < C , can contain no more than C'-1
-p p

independent edges of type (iii) by Lemma (4.1), part (a). However, by

part (b) of that lemma any 8 -subgraph of C' members may contain no
p p

more than C' independent edges. Therefore, every 8 -subgraph must
p p

contain a number of edges equal to the number of its members. This

may only be achieved by either adding an edge of type (ii) or connecting

the 8 -subgraph to an I -subgraph by an edge of type (iv).

We denote a B -subgraph which contains a type (ii) edge by By,
p p

where the integer y ranges over the number of such subgraphs. The edge

graph corresponding to this situation is pictured in Figure 4.8.

1p Bp

1 2 3 1 2 3 fl '2I I I ... 8 8 8 ... 8 8B...
p p p p p p p p

Figure 4.8 Edge Graph Which Satisfies Edge
Graph Characterization



-243-

For convenience, we have labelled connected B - and I -subgraphs with
p p

the same superscript in Figure 4.8. Before continuing, we characterize

edges of type (v) in order to round out our understanding of the co-

state implications of the edge graph.

I
p

(v) y. y y.(T) = y (4.57)
9 k 3k

We now return to consideration of some y . E B . From the edge
i p

graph characterization above we see that y . is either a member of some

a +
B or some B7. We now examine these two cases:

p p

tY
e if y B , then from (4.54) and (4.55) we have

ip

= 0. (4.58)

0 If y E Ba, then from (4.55)-(4.57) we have
p

( = .(T) (4.59)
1 J

for any y. E Ia, where Ia is the I -subgraph connected to Ba.
J p p p p

We now present two lemmas which together characterize the dynamic

costate behavior associated with single destination network problems

with all unity weightings in the cost functional. This characteriza-

tion will constitute the basic principle in the proofs of the subse-

quent results of this chapter.



-244-

Lemma 4.4: Consider single destination network problems with all unity

weightings in the cost functional. Suppose all of the costates cor-

responding to state variables on boundary arcs achieve their leave-the-

boundary values. Then every costate satisfies exactly one of the

following conditions between boundary junctions:

X.(T) =(T) T) = 0 (4.60)
1 1

or

X.(T) = -1 and X.(T) > 0 (4.61)

V T 6 (-CO, tp *

Proof:

We begin by pointing out that the supposition that all of the

costates corresponding to state variables on boundary arcs can achieve

their leave-the-boundary values shall be shown to be valid in the dis-

cussion following Lemma 4.5. Also, we make the assumption of Section

3.3.2.2 that once a state variable enters an interior arc it remains in

the interior backward in time. In Theorem 4.4 we shall show this

assumption to be valid for the class of problems currently under con-

sideration.

Consider the case in which some x. E I . Then by the assumption

that x. remains in I as time runs to minus infinity and by (3.32)
e hp

we have

X. (T) = -l V T E (-oo, t ).
1 p+1
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We must also have X. (t ) > 0, so X. (T) satisfies (4.61).
1 p+1 1

On the other hand, consider the case in which some x E B . Since

we are considering the leave-the-boundary values of the costates cor-

responding to state variables on the boundary, our geometric interpre-

tation has H(T) lying on the unique L -positive face F(Y , T, B ) at
p p p

every time T E (-0o, t ). See Section 3.3.2.2. Recall that Y is
p+1 p

the current set of operating points. Uniqueness is insured by Theorem

4.1. Note that we are considering the global Hamiltonian hyperplane

as in Theorem 4.1. Now, the values of the leave-the-boundary costates

at T are determined by the face F(Y , T, B ) on which H(T) lies. But
pp

as T runs from t to minus infinity H(T) rotates due to changing
p+1

values of XA.(T) for x. s 1 . Therefore, we are basically concerned
J J P

with investigating if F(Y , T, B ) changes with time, and determining
p p

what is implied about the leave-the-boundary costate values. To this

end, we now divide the remainder of the proof into two sections as in

the proof of Theorem 4.1: (a) Y contains an extreme point of N and
p

(b) Y does not contain an extreme point of .

(a) Y contains an extreme point of W4
p

Denote the extreme point by 4. Then by the independent edge con-

dition stated earlier, F(Y , T, B ) has C independent edges emanating
p p p

from 4. These edges are represented by an edge graph that has the

format of Figure 4.8. The leave-the-boundary values of the costates

at T are determined by the edge graph at T through (4.58) and (4.59).
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We therefore wish to examine the time varying behavior of the edge

graph.

By the edge graph characterization we know that the edge graph

must maintain the format of Figure 4.7 as a function of time. We must

consider both the situation in which the edge graph does not change with

time and that in which it does change with time. The latter situation

must correspond to the disappearance of a set of edges and the appear-

ance of an equal number of edges elsewhere. We shall refer to the time

at which such an edge change occurs as an edge switch time, denoted by

T . Also, the times just before and after the switch (in backward
5

time) are denoted T and T respectively.
S S

We now return to our discussion of some state x. s B and examine
1 p

the behavior of X.(T) as determined by the edge graph behavior as a

function of T. The situations to be considered are:

1) No switch in edge occurs.

2) A switch in edge occurs at and y. is in some B before
s i p

the switch (that is, at T =

3) A switch in edge occurs at Ts and yi is in some B before

the switch (that is, at T = T ).
S

We now consider the above situations one at a time:

1) No switch in edge occurs.

Yl Y
If y. 6 B for some subgraph B , then X. (T) = 0 for all

S p p i

T (-co, tp+) by (4.58). In this case condition (4.60) of the lemma
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statement is satisfied. On the other hand, suppose y. E B for some
i p

subgraph B . Then A.(T) = A.(T) for any y. E I , where I is the
p 1 J J p p

subgraph connected to BC. Therefore, condition (4.61) of the lemma
p

statement is satisfied.

y1  +
2) A switch in edge occurs at T and y. EB at T = T .

s i p s

The possibilities for this case are:

+ tYi
* T = T :y. 8

si p

T = T :y. S BT Ts :Yi EBp

Here we are considering the situation in which the edge switch

tyl
causes the composition of B to change but that y. remains a member.

p1

Now, from (4.58) we have

A. (T) =0 V T (T+, t
1 5 p+l (4.62)

A.(T) = 0 T 0 (O, T~)
S

so that A. remains equal to zero on (-O, t ) .

*T = T+:y B
s i p

T=T:y YB2 1 2T = T :y.E 2
s i p

Once again, we apply (4.58) to obtain

A.(T) =0 :V T 6 (T+ , t)+ +
- 5 p+1  

(4.63)

k. (T) = 0 T C (-.o, T~)

so that X . remains equal to zero on (-co, t ).
1 p+1
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+ yl
0T = T :y. B

s p

T =T s:y. S5 1 p

Equations (4.58) tells us that

= 0 V T C (T+, t ) (4.64)
s p+l

and (4.59) says

.(>) = X.(t) >0 V T 6 (-0, T) (4.65)
J s

where y. E 1a. But (4.64) and (4.65) imply that X. experiences a jump
j p

of negative sign forward in time across T . But this contradicts the
S

fact that the costates may only experience positive jumps forward in

time by equation (3.36). Therefore, this kind of edge switch cannot

occur.

Summarizing the above situations, we see that if yi is in some

tYi
B at any time T on (-o, t p+) then X remains zero on this interval.

This behavior suits equation (4.60) of the lemma statement.

ai +
2) A switch in edge occurs at T and y E B5 at T = T .

5 1 p s

We begin with the following observation which results directly from

the fact that the Hamiltonian hyperplane H(T) rotates continuously in

time:

Edge Switch Condition: Let Ts be the time at which the

edge graph switch occurs. Suppose the edge e +is replaced
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by the edge e at T . Then both e and e are in the edge
S

graph at Ts'

This situation is illustrated in Figure 4.9, where we depict the

hyperplane just before and after the switch of edges.

H (t + E)
s

y E Y
-p p

H(t -E)
s

direction of
rotation

Figure 4. 9 Continuously Rotating Hamiltonian Hyperplane

The possibilities for this case are:

+ T = T :y. E B
s i p

s 
p
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This corresponds to the situation in which a member is added or

removed from B . From (4.55)-(4.57) we have
p

X.(T) = X.(T)

I I
X. (T) = X.(T)

i 3)

V T E (T , t
s p+l

3 T E (-o, T~)s

For any y. E I . Therefore
J P

X. (T) = X.(T)
i J

3 T E (-0, t )p+1

With the assumption that states on interior arcs remain on interior

arcs as T runs to minus infinity, we have from (3.32) that

X.(t )> 0
J p+1l

I()= -1'

(4.67)
v T (-001 tp+l *

Equations (4.66) and (4.67) imply

(T) > 0

(T) = -land

(4.68)
V T C (0 , tp+1 *

0 T = T :y. E B
s i p

5 Ea 
T= T~:y. E B

s i p

Then from (4.55)-(4.57) we have

x (T) = X (T)
TS tp+l (4.69)

X.() =A. -u)ET C- T)

(4.66)

and

12
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2
for any y. E I p and y . E I . But the edge switch condition says

Jl p J2 P

that at the time of switch T' y B and y. a2 Consequently,
S.p- 1  p

by (4.69) we have

X.(T ) = X. (T ) = . (T ). (4.70)

Once again invoking the assumption that states that interior arcs

remain on interior arcs for all T E (-0, tp+1 ), we have

1() 32 (T) = -1 V T (-, t p+) (4.71)

and

X. (t ) > 0.
Ji P+1

Equations (4.69)-(4.71) imply

A.(T) > 0
(4.72)

A.(T) = -l V T E (-0, t ) .
+p+l

t

T= T+:y E By
S 1 p

The edge switch condition says that both of the above edges are in

effect at switch time Ts. Under this circumstance, equation (4.58)

tells us that

A (Ts) = 0 (4.73)

and (4.59) says
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X.(T ) = X.(T ) > 0 (4.74)
i s j s

for some y. E S
J p

Since (4.73) and (4.74) are in contradiction, this kind of edge

switch cannot occur.

Summarizing the above situations, we see that if y. is in some B11
p

at any time T 6 (-C, t ), then .(T) = -1 and X.(T) > 0 for all
p+1  i

T E (--o, t p+1). This behavior suits equation (4.61) of the lemma state-

ment. Hence, the lemma is proved if Y contains an extreme point of W.

(b) Y does not contain an extreme point of f
p

We take the same approach here as in part (b) of the proof of

Theorem 4.1. The solution set Y lies on some face of j', call it F ,
p g

of dimension g, where U < g < n-l. Refer to Figure 4.7. Following

the reasoning of that section, we now have the global Hamiltonian

H(T): X. (T)y. + A. (T)y. + X. (T)y.
x. 1 x. Es' 1 x E

i p i'p ip

S X. (T)y . (4.75)
x.SE 1 1

1 p

where 1' U B" = B. If we now pick any extreme point of F , say y',we
p p p g 4

may proceed as in part (a) of this proof with replaced by , 13

replaced by 13" and the edges corresponding to B' fixed (since these are
p p

the edges of the invariant face F upon which Y lies) . We are again
g p
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able to show that in the face of all possible switches in edges, the

costates behave either as in (4.60) or (4.61). E Lemma 4.4

Now, statements (4.60) and (4.61) of Lemma 4.4 imply that the

costate trajectories on (-=, t p+) appear as in Figure 4.10.

Lemma 4.5: Consider single destination network problems with all

unity weightings in the cost functional. Suppose all of the costates

corresponding to state variables on boundary arcs achieve their leave-

the-boundary values. Then the costates do not experience jumps across

boundary junction times.

Proof:

As in the case of Lemma 4.4 we point out that the supposition that

all of the costates corresponding to state variables on boundary arcs

can achieve their leave-the-boundary values is shown to be valid in the

discussion following this proof.

Consider now the boundary junction time t E (-o, t p+) at which

the state variables in L leave the boundary backward in time. Then

for T E [t , t ) the set of state variables on the boundary is B ,
p p+1l

the set of states in the interior is Ip and the I-space solution set

is Y . Likewise, for T E (-o, t ) those sets are B 1l , I and YP-l

respectively.

Now, consider some x. E I . Then by (3.22) X. does not experience

a jump at t .
p
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x
X. for all x. E I

1 1 P
and for some x.E B

1 p

A. for some x. E B
1 1 p

t

tp+
1

Figure 4.10 Costate Trajectories Implied by Lemma 4.4

-l I
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Consider now some x. E B . If x. E L , then by hypothesis X . (t )
1 p 1 p

is at its leave-the-boundary value. Therefore, no jump in X is exper-

ienced when x. leaves the boundary. On the other hand, suppose

x. e B /L , that is, x. B 1 . In this case X . is determined by the
1 p p 1 -

face F(Y , t, B ) on which H(t ) lies. We now claim that
p-1 p p-1  p

F(Y 1 , Bt ) = F(Y , t , B ). (4.76)
p-1 p-lp p p

To verify (4.76) we first note that by the continuity of the Hamilton-

ian, the solution set Y lies on F(Y , t , B ) . Also, by definition
p-1 p p p

F(Y , t , B ) is the B -positive face of 3/ with respect to Y and
p p p p p

H(t ). Therefore, since B C B , F(Y , t^, B ) must also be the
p p-1  p p p p

B -positive face of y with respect to Y and H(t ). The preceding
p-1 p-1  p

statement is equivalent to (4.76). As a consequence of (4.76) we have

that X . for x. E B does not change across t . This completes the
1 p-1  p .

proof that no costate jumps across t . M Lemma 4.5
p

We conclude from Lemma 4.5 that across the boundary junction t

all the costates continue to propagate backward in time asin Figure 4.10

except for the following cases:

(i) X.(T) = 0 for T E (t , t ) and x. is leaving the
1 p p+1 1

boundary at t . In this case X . (T) = -l for T E (-0, t ).
p 1p

(ii) X .(T) = 0 for T E (t , t ) and x remains on the
1p p+1 1

boundary but the leave-the-boundary value of X. (T) ,
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T S (-00, t ), dictates that M.(T) = M.(T) for
p 1J

some A. satisfying case (i) above. In this case
J

= .(T) = -l for T E (-=, t ).
1 J p

The picture of the costate behavior across the boundary junction time

is presented in Figure 4.11. Note that the set of x. satisfying (i)

and (ii) above are not dependent upon the boundary junction time t .
p

We now combine the results of Lemmas 4.4 and 4.5 into a general

description of the costate trajectories. Consider any backward optimal

trajectory corresponding to some sequence of state variables leaving

the boundary backward in time at a series of boundary junction times.

Then if all boundary costates achieve their leave-the-boundary value,

then each costate X. satisfies the following trajectory:

= .(T) = 0 V T E (t., t )l1 1 f
(4.77)

1 16 ( 0 1t

where t. is one of the boundary junction times between (and possibly

including) tf and the time at which x leaves the boundary. A typical

set of costate trajectories for a backward optimal trajectory is

depicted in Figure 4.12..

In Lemmas 4.4 and 4.5 we make the supposition that all boundary

costates can achieve their leave-the-boundary values. We now verify

that supposition. In (4.77) we describe the trajectory which must be
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x
X. for all x. E 1

1 1i p-1~
and for some x. E B

1 p-1

X. for x.
i i

satisfying (i) and (ii)

-1

t

t tp+1pp+

Figure 4.11 Costate Trajectories Implied by Lemma 4.5
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Typical Set of Costate TrajectoriesFigure 4.12
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satisfied by any costate in order that all boundary costates are main-

tained at their leave-the-boundary values. The required trajectories

bear the following relationships between boundary and interior arcs

(see (4.77)):

( .(T) = -l1

V x. (T) = 0 or (4.78)

A.(T) =0

V x. (T) > 0 .1(T) =-l (4.79)

Since a. = 1 for all x., then (4.78) and (4.79) satisfy the necessary

conditions (3.32)-(3.34). Therefore, the leave-the -boundary values of

the costates can be achieved by costate trajectories which satisfy the

necessary conditions.

Lemma 4.6: The set of optimal controls does not switch between boundary

junction times; that is, there are no break points between boundary

junctions.

Proof: In accordance with the necessary conditions (including those

satisfying the constrained minimization), all optimal controls must be

a solution to the global minimization

T
u*(T) = ARG MIN A (T)x(T) (4.80)

uU

pointwise in T for all T e [t0, t 1 . Consider the typical control

variable u.k for a single destination network. Since u.k enters into
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either one or two state dynamic equations in the fashion of equations

T
(4.6) and (4.7) respectively, then the term of X (T)x(T) which involves

uik is

(X (T) - X.(T))u. CT) (4.81)
k i1 i

where we take X k= 0 if node k is the destination. The constraint

associated with uik is simply 0 < uik < C ik. The optimal control is

then

C if X (T) - X.(T) < 0
ik k 1

u* (T)= 0 if A CT) - X. CT) > 0 (4.82)
ik k 1

[0, C. I if k CT) - M.T) = 0
ik k 1

V (ik) E L.

The optimal control therefore depends only on SGN(X kT) - Xi(T)). But

from Lemma 4.4 we see that SGN(X CT) - X. T)) remains constant on
k 1

(-co, t p+1) if no state variables leave the boundary on that interval;

that is, SGN(A kT) - X. T)) is constant between boundary junction times.

Consequently, the set of optimal controls does not switch between

boundary junctions. U Lemma 4.6

From Lemma 4.6 we know that for the class of problems under con-

sideration all feedback control regions are of the non-break variety.

Theorem 4.2

For single destination network problems with all unity weightings

in the cost functional, there is one subregion per region with respect
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to any set of state variables leaving the boundary.

Proof:

Consider the feedback control region BA constructed from the
p

optimal solution on (-0, t p+1) Also, let L be the set of state

variables which we choose to allow to leave from R? backward in time,
p

where L C 8 . According to Lemma 4.6, the optimal trajectory asso-
p p

ciated with the state variables in L leaving R p backward in time,does
p p

not experience a break as time runs to minus infinity. Denote by _0

the single set of optimal controls corresponding to the trajectory.

Then according to Definition 3.8 we must show that the state variables

in L leave with the same set of optimal controls Q_0 from every point
p

in R . This is equivalent to showing that the set of optimal controls
p

20 associated with the state variables in L leaving the boundary is

the same for every boundary junction time t S (-=, t p+1). Note that

we need not be concerned with the common breakwall stipulation of

Definition 3.8 since there are no breakwalls.

We begin by noting that

.0= G p-1 (4.83)

where

-_0 is the set of optimal controls with which the state

variables in L leave R? backward in time and that
p p

keep the state variables in SP_ on the boundary,
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Q'j is the globally optimal set of controls associated

with the state variables in L leavingsR backward
p p

in time,

and

B -is the set of all controls which keep the state

variables in SP_ on the boundary.

Now, 0 is time invariant. Therefore, if we can show that G is

the same for any t E (-0o, t ), then the desired result is obtained.

To this end, recall that QG is given componentwise by (4.82) where

T E (-co, t ). From Lemmas 4.4 and 4.5 we conclude that SGN(Xk(T) -

X.(T)) is the same for all T E (-o0, t ) and all t E (-O, t ). This

observation coupled with (4.82) give us the desired result.

* Theorem 4.2

Theorem 4.3

For problems involving single destination networks with all unity

weightings in the cost functional, any solution to the constrained

optimization problem (of Operation 1, part (a)) is also a globally

minimizing solution.

Proof: Let us assume that Y is a set of a -dimensional operating
p p

points which maximizes the restricted Hamiltonian hyperplane H (T)

with respect to the restricted constraint figure gr at time T. In
p

Section 3.3.2.2 we identified the following demonstration of global
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optimality of Y at T: Find values of A.(T) for x. E B such that
p 1 1 p

H(T) ismaximized over ./ at Y , that is, values which rotate the global

Hamiltonian hyperplane H(T) about H (T) until H(T) becomes tangent to

W at Y . In the discussion following Lemma 4.5 it was established
P

that values of the boundary costates can always be found which bring

H(T) tangent to F(Y , T, B ). Consequently, H(T) may be brought tan-
p p

gent to f since F(Y , T, B ) is a face of 3f. U Theorem 4.3
p p

The following theorem is the final result of this section. It is

equivalent to saying that there always exists a solution which does not

call for the return of state variables to the boundary backward in time.

Hence, the assumption made in the beginning of the proof of Lemma 4.4

is valid.

Theorem 4.4

For problems involving single destination networks with all unity

weightings in the cost functional, there always exists an optimal con-

trol which has :I < 0 for all x..

Proof: Suppose that x leaves the boundary backward in time at tp+1 as

a member of some L . Then x. leaves the boundary with some optimal
p+1 1

slope

x = b.u + a. < 0 (4.84)
1 -i-n 1

where b. is the i row of B and u is an optimal control which applies
- - -p

on (-<x>, tp+1) if no other state variables leave the boundary backward
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in time. We shall now show that x* given by (4.84) remains optimal on

-, t p+1) even if other state variables leave the boundary backward in

time on that interval. This property holds no matter what sequence of

states leave the boundary. Suppose that the state variables in L
p

leave the boundary at some boundary junction time t < t p+1 See

Figure 4.13. Let us now examine the optimal values of the controls

which enter into x . Consider the typical control variables uik and
1 i

u , where uik represents those control variables on links outgoing

from node i and u represents control variables on links incoming to

node i. Then the terms to be minimized corresponding to these control

variables are

(k (T) - AX.(T) )u.
k U ik

and (4.85)

where T 6 (t, t ).p p+1

Now since x.(T) > 0 for T E (t , t ) then A.(T) > 0 for T E (t ,t ).
1p p+1 1 p

We begin by considering u ik and the following two possibilities:

(i) Xk i - X (T) / 0 for T 6 [t , tp+1)*

Then the optimal value of u k on [t , t p+) is

C. if (X (T) - X. (T)) < 0
ik k Ii

u A 10 if k - 1 >0 (4.86)

ki
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Fp 4 p+l

Figure 4.13 State Trajectories for Proof of Theorem 4.4
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T E [t , t ).

But from (4.77) we know that SGN(X k(T) - Xi(T)) is constant for

T 6 (-o, t p+) irregardless of which state variables leave the boundary

on that interval. Therefore, the control in (4.85) is optimal on

T C (-0o, t p+) irregardless of which state variables leave the boundary

on that interval.

(ii) x (T) - X.(T) = 0 for T E [t , t )
k i p p+1

Then the optimal value of u.k on [t , t ) is any value
ikp p+1

0 < u < C which together with all the other controls keeps the
- ik - ik

state variables in 8 on the boundary. But by (4.77) and the fact that

x ('r) > 0 for T E (t , t ) we conclude that X (T) - X. (T) = 0 for
1 p p+l k i

all T C (-O, t p+) irregardless of which states leave the boundary on

that interval. Therefore, if we consider the interval [tp_, t ), then

the optimal value of uik on [tP-1, t ) is any value 0 < uik - ik which

together with all the other costates keeps the state variables in BpP-

on the boundary. But since BP-1 C p, any optimal control on [t ,t p+l

which keeps the state variables in B on the boundary must also be an

optimal control on [t , t ) which keep the state variables in B P on
p+1 p p-1

the boundary. Therefore, by induction on all possible time intervals

backward in time corresponding to state variables leaving the boundary

we may conclude that the optimal value of uik on [t , t p+) is optimal

for all T C (-co, tp+ ).
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Arguments (i) and (ii) above also pertain to u . Consequently,

for any control variable which enters into the equation for x we have

that any optimal value for T E [t , t ) is also an optimal value for

all T 1 (o, t ). We conclude that x. is optimal for all
p+l 1

Te(-0, tp+1 ). U Theorem 4.4

4.4 Computational Algorithm

In light of the results of Section 4.3, we are able to construct a

computer algorithm which realizes the backward constructive algorithm

of Chapter 3 for the special case under consideration. We begin by

making the following observations:

0 By Theorem 4.1, the leave-the-boundary value of the costates

are unique and given by the coefficients of the global Hamiltonian

hyperplane which lies on the B -positive face. Therefore, all we need

do to determine these costates at some boundary junction time t is
p

to rotate H(t ) about H (t ) until it touches F(Y , t , B ). We shall
p p p p p p

demonstrate a technique for this shortly.

OSuppose we have a set of state variables Ip off the boundary as

we are working our way backward in time on an optimal trajectory. Then

the rule for the execution of the basic step (see Section 3.3.2.2) calls

for allowing the members of L to range over all possible subsets of B

at the boundary junction time t . Now, from Theorem 4.2 we realize that
p

t may be any time on (-o, tp+) so that we may arbitrarily take
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t = t - 1. Furthermore, Theorem 4.3 tells us that each of the sets
p p+i

of state variables leaving the boundary corresponds to a globally opti-

mal solution, so that the test for global optimality (Section 3.3.3.2,

Operation 1, part (b)) is not required.

*Consider a particular set of state variables L leaving the
p

boundary at some boundary junction time t . Then the initial set of
p

controls corresponding to this situation persists to time equals minus

infinity without a break according to Lemma 4.6. Therefore, we need

only perform the constrained optimization problem once on (-0O, t p), so

that we may arbitrarily take the time at which it is performed as t_ 1 .

Moreover, every feedback control region constructed is of the non-break

variety of Section 3.3.3.3.

*Theorem 4.4 tells us that no state variable is ever required by

optimality to increase forward in time. Therefore, if we consider only

those trajectories for which x.(t) < 0 for all x and all t, then we
I - 1

shall never have state variables returning to the boundary backward in

time.

Now, the second observation above says that in order to be certain

that we will fill up the state space with optimal controls, we must

allow all possible combinations of state variables to leave the bound-

ary in all possible orders. Furthermore, we are guaranteed that all

of these sequences of state variables leaving the boundary will corres-
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pond to optimal trajectories. As pointed out in Section 3.3.2.2, by

allowing all possible combinations of state variables to leave the

boundary we are being conservative and will probably be "writing over"

previously constructed feedback control regions on occasion. At any

rate, by the final observation above we may list a priori all of the

appropriate sequences where the departure of the state variables from

the boundary may occur in intervals of one unit of time.

Example 4.1

Consider a network with three state variables x, x 2 and x3 . Then

the sequences are (state variables enclosed in the same parentheses

leave the boundary simultaneously):

tf- 2  tf 1  tf tf- 2  t f- t tf-2 t t

x 1 x 2 x3 x3 x1 x2 x3 lx'X 2

x 2 X1 3 3 1 2 2 l' 3

1(x ,x2 x3  x3  x2  x1  - 1  (X2,x3

x x3 2 2 3 1 l' 2',3

- (x 2 ,x3 1

A typical trajectory appears as in Figure 4.14.

0 Example 4.1

The complete algorithm consists of performing all of the possible

backward trajectories as in Example 4.1 and constructing the associated

non-break feedback control regions. In order to describe the computa-
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tional algorithm we will follow one particular optimal trajectory back-

ward in time from tf for a few steps. In the course of the discussion

we will demonstrate the method by which the leave-the-boundary costates

may be determined.

Several Steps of the Computational Algorithm for the Construction

of the Feedback Space

0 Step 1

o Operation 1

(i) Start at t f

(ii) Pick L C B Then f = Lf. See Figure 4.15.

(iii) By Corollary 3.2, X(t f) = 0 V xi Lf.

(iv) Arbitrarily set t - t f 1 = 1.

(v) xi(t f_) = 1 IV x. s Lf.

(vi) Solve the following constrained optimization problem

for all extremal solutions:

u* = ARG MIN E X.(t )bTu
u:U x 6I f1 f-1 -i-
-2 1i f-i

= ARG MIN T(1)b (u) (4.87)
-i -

.- EU Xi f-i

T
subject to b.u < -a. V X. 6 1 (4.88)

-i- - i 1 ' f-l

T
bu = -a1 x Bf- (4.89)

where b is the ith row of B. Denote this solution
-i-
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Figure 4.15 State and Costate Trajectories for
Several Steps of the Computational
Algorithm
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set by Q f 1. We have used the notation f _1 instead

of the usual Q, to distinguish this non-break optimal

control set from those subsequently obtained in this

discussion. By Theorem 4.3 we know that Q is globally

optimal.

0 Operation 2

(i) Form the set of rays Vf 1 which corresponds to Q fi

in the sense of Definition (3.10).

(ii) Construct the convex polyhedral cone

R = Co(0 UV )/0. (4.90)
f-1 - f-l -

1W f is a non-break feedback control region with

associated optimal control set 0 _ .

At this point we prepare for Step 2 as follows:

* Determination of the Leave-the-Boundary Costates

We shall require the values of X (t ) for all x c B _ .0These

are the values of the coefficients of the hyperplane H(t ) which

cause it to lie on the face F(Y , t f ) of *, where Y f 1

corresponds to 0 _ obtained in Step 1, Operation 1, part (iv) above.

By (4.77) we know that

A . (tf l) = 0 -V x Bf 1 0
or A (tf 1 ) = t f- tf =

In order to determine the appropriate value, we rotate the global
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Hamiltonian hyperplane H(t f 1 ) about the hyperplane Hf (t f 1 ) until

it touches the face of F(Y f 1 , tf_1 , B ) while holding X(t f 1 ) con-

stant for all x. e L . We may achieve this rotation by the following

algorithm. Denote by xi, x2 ' *' ' ., _ all the members of 8 _l*

(i) Set k = l.

(ii) Release the constraint xk 0 temporarily by adding a

slack variable zk > 0 to the appropriate equation of

(4.89) in the following fashion:

b Tu + z= -a (4.91)

The variable zk is now a non-basic decision variable of

the linear program (4.87)-(4.89). By (4.91) we have

zk = xk (4.92)

Note that xk = 0 for any solution to (4.87)-(4.89).

(iii) Adjoin the term

k(t ) k = k(t f-)z k (4.93)

to the cost function (4.87). The new linear program is

now

u* = ARG MIN (Tl) u - Xk (t )z (4.94)

T
subject to b.u < -a. V- x. e L (4.95)

71-- 1 1 f

b u = -a. V x. E 8 (4.96)
1-- 1 i f-lk

u+zk = -ak (4.97)
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(iv) Set X k(t ) = 0.

Therefore, any solution to (4.87)-(4.89) is also a

solution to (4.94)-(4.97).

(v) Start with any solution to (4.87)-(4.89). Holding tf 1

fixed, solve (4.94)-(4.97) parametrically in Xk (t f 1 )

for X k(t _ ) increasing linearly. Stop when a change in

extreme point causes z k to enter the basis with a strictly

positive value (a degenerate pivot in the parametric pro-

gram may cause z k to enter the basis with zero value).

When zk is strictly positive then xk is strictly negative.

We have therefore caused the hyperplane H(t ) to lie on

F(Y f 1  tf 1 , xk ).

(vi) Return to the original solution of (4.87)-(4.89) chosen

in (v) by performing reverse pivots from those executed

in the parametric program.

(vii) Set k = k+l.

(viii) If k > f- go to (x).

(ix) Go to (ii).

(x) End.

Upon the completion of the above algorithm we have caused the

global Hamiltonian hyperplane H(tf) to lie on F(Yf, tf 1 , XY)

r Ff)(Y ,t ). But by Theorem 4.1 we

know that ?((Y , t , 8 ) contains the single member F(Yf _, tf 1 I
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B f). Therefore, H(t ) must be lying upon F(Y , tf_ , 1 _) and

A1 (t f_ ) X 2 (tf ) ... , x (t f) must be the appropriate values of

the leave-the-boundary costates at t f_.

0 Step 2

0 Operation 1

(i) Start at boundary junction time t f_*

(ii) Pick L _ c B _ . Then If-2 =Lf Uf-l See

Figure 4.14.

(iii) A. (t )= t f- t V=1 x. E L

A (tf) = (leave-the-boundary value determined at t f_

1 f-

(iv) Arbitrarily set tf- 2 - t_ =1

(v) X.(tf) = 2 v x. E Lf

X.(tf 2 ) = X.(tf1 ) + 1 V# x. E Lf1 -
i (tf-2 Xi (tf-l +1 xi cLf-l*

(vi) Solve the following constrained optimization problem

for all extremal solutions:

u* = ARG MIN T (t )bu (4.98)

u~ i f-2

subject to bT u < -a. V x. I (499)
-1-- 1 1 f-2 (.9

bTu = -a. v x. B (4.100)
1-- i f-2

Denote this solution set by f-2. By Theorem 4.3 Qf-2

is globally optimal.
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* Operation 2

(i) Form the set of rays Vf- 2 which corresponds to 0 f-2

in the sense of Definition (3.10).

(ii) Construct the convex polyhedral cone

gf-2 = Co( ? f U V f 2 )/8?f1  (4.101)

wher f-1 f-2 f2
where R f- is given by (4.90). Then R f-2 is a non-

break feedback control region with optimal control set

f-2'

0 Determination of the Leave-the-Boundary Costates

We determine the leave-the-boundary values of A (t f-2) for all

x. B f-2 using the parametric programming scheme detailed following

Step (1).

The extension of the above steps to include the general step at

boundary junction time tp is a trivial exercise in notation and shall

not be presented here. All of the linear programming manipulations

called for in the algorithm are readily performed by available linear

programming packages with the exception of the calculation of all

extremal solutions. A program utilizing Chernikova's algorithm

(described in Appendix A) was devised for this purpose.

Example 4.2

A computer program was devised to implement the above algorithm
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for a fully connected five node single destination network (a total of

4 state variables and 16 control variables). For this situation, com-

plete execution of the algorithm calls for approximately 190 steps.

All operations in the program performed with acceptable efficiency (with

regard to speed of computation and storage requirements) with the

notable exception of the program which calculates all of the extremal

solutions. The poor efficiency of this program rendered the complete

execution of the algorithm an impracticality. Example 4.2

4.5 Extension to General Network Problems

In this section we indicate how the geometrical approach used in

this chapter may possibly be applied to the further development of the

backward constructive algorithm for problems involving multi-destination

networks with arbitrary weightings in the cost functional. In particu-

lar, we must cope with the four complicating properties discussed in

Section 3.3.4. We present in Section 3.3.3.2 the geometrical interpre-

tation in r-space of three of these problems (global optimality, leave-

the-boundary costates, subregions). For those cases, the discussion

centers around the constraint figure 2, for which we do not have an

explicit representation. In particular, we talk about a particular

class of faces of W1 which lie adjacent to current operating points -

these are the so-called "L -positive faces."

Currently, we possess no method for obtaining explicit knowledge

of these faces for the general multi-destination network problem. Let
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us now describe our dilemma in more specific terms. Assume for the

sake of argument that the current set of operating points is Y . Then
p

for any potential boundary junction time t E (--, t p+ ) we wish to

know the set of faces 47(Y , t , B ); actually, we require the hyper-
p p p

plane in which each of these faces lies. Now, further assume that Y
p

contains an extreme point of N?, call it ye. Then some subset of the

set of edges of 3/ emanating from y determine the required hyperplanes.

The questions now becomes: (i) what is the set of edges of y emanating

from ye and (ii) which edges among these represent the required hyper-

planes?

We begin our examination of question (i) by extending to general

multi-destination networks the description of edges presented in

Section 4.2 for single destination networks. Once again, we examine

the form of the control constraint figure D u < C. For the link con-

necting node i to node k the appropriate constraint equation is

1 2 i-1 i+1 k N
u. +u. +..+u. +u. +..+u. +..+u. +z. =C.412
ik ik ik ik ... ik ... ik ik ik

z. > 0

where we have adjoined the non-negative slack variable z ik. In (4.102)

kk
kthe control variable u.k is termed a direct control and all other con-

trol variables are referred to as indirect controls (Definition 4.3).

Note that there is exactly one direct control per link. Now, the com-

plete set of equations of the type (4.102) corresponding to D u < C

has the form:
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u+u+... +z =C

u+u+... +z =C

.1 Nr u. ++u. +z.=C
ik ik ik ik

u+u+... +z = C

m r
(4.103)

where we have eliminated all subscripts except for ik to avoid nota-

tional havoc. Recall that r is the number of links and m is the dimen-

sion of the control vector. Now, notice that each control variable

enters into exactly one equation in (4.103); hence, (4.103) is immedi-

ately in canonical form with respect to any set of r variables chosen

(either u's or z's) to be basic. For instance, if we consider the

row corresponding to Ci then we pick zik or some control u k

to be basic and set its value equal to Cik and the value of the re-

maining variables to zero. We do this for each row. Note that since

C > 0, every basic solution to (4.103) automatically has u > 0.

Therefore, every extreme point of U is represented algebraically

by a point whose ik coordinate has value of either zero or C ik Move-

ment along an edge of U is equivalent to picking one variable which

is currently basic at value C (either some u. , j/i, or zi) and re-
ik Ik ik

placing it in the basis by one of the remaining variables. The possible

points which may occur are:
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1) direct control exchanges with slack on link ik

2) intermediate control exchanges with slack on link ik

3) direct control exchanges with indirect control on link ik

4) indirect control exchanges with indirect controls on link ik.

Notice that there is no pivot between two direct controls since there is

exactly one direct control per link. Now, the edges corresponding to

pivots (1) and (2) above are those of Type 1 and Type 2 detailed in Sec-

tion 4.2. We now characterize the following types of edges of &N emana-

ting from corresponding to pivots (3) and (4) above:

Type 3 - Exactly three coordinates of y change from their

values at 4. This edges corresponds to an edge of U for

which a direct control and an indirect control change

places in the basis. From equations (3.38) and (3.162) we

see that the possibilities are:

k

Ay. = -C.

k Cu 0i

uk ik i ik
Ay = C

J-1 ik
U.? 0 u. C.
ik ik ik A3 = -C.

k ik

Ay. = C.
k k i ik

uik ~ pivot uik Cik -- Ay0 = -C.

u C U.? 0 . k
ik ik ik =C

k ik

where Ay , AyI- and Ay indicate the change in the respective



-282-

coordinates of y when moving from one end to another of an

edge.

Type 4 - Exactly four coordinates of Z change from their

values at 4. This edge corresponds to an edge of U for

which two indirect controls change places in the basis.

From equations (3.38) and (3.162) we see that the possibili-

ties are:

Ay. = C
i ik

U = C u( = 0 Ay? = -C
ik ik, pivot ik i ik

u i = 0 u ik= C ikAy k= -C iikuik =ik Ak =Cik

Ayl = C
k ik

Ay = -C.
i ik

u? =0 u -C Ay= C
ik pivot ik ik i ik

u. = C u. = 0 Ay = C
ik ik ik k ik

Ayj = -C
k ik

We therefore have a characterization of all four possible types

of edges of 3(. Since the maximum number of coordinates of Z which

change when moving along any given edge is four, the constraint figure

N for multidestination networks is not significantly more complex than

that for single destination networks (where the maximum number is two) .

One should be able to exploit this fact to achieve a better under-

standing of the nature of the complicating properties of the algorithm
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for general multidestination network problems. For instance, it should

not be difficult to establish an upper bound on the number of members

of (Y , t , L ). This is equivalent to placing an upper bound on
p p p

both the number of extreme points in the leave-the-boundary costate

set and the number of subregions in R with respect to L P. However,

in order to implement the algorithm one must possess explicit know-

ledge of the set of edges of the members of JV(Y , t , L ) which
pp p

emanate from 4. A technique must therefore be devised to identify

those edges of U which correspond to the required edges of SK.



Chapter 5

CONCLUSION

5.1 Discussion

In this section we attempt to place in perspective the accomplish-

ments of the preceding chapters. In Chapter 1 we express the desire to

develop a dynamic procedure for message routing in a store-and-forward

data communication network. As an initial step toward achieving this

goal a linear dynamic state space model is presented in Chapter 2

which represents the flow and storage of messages in such a network.

Although the model is sufficiently general to represent a stochastic

user demand environment, we choose to consider the simplifying case of

deterministic inputs for initial analytical studies. We associate with

the model a linear integral cost functional which is the weighted total

delay experienced by all the messages as they travel through the network

until all reach their respective destinations. The desired minimization

of the cost functional results in a linear optimal control problem with

linear state and control variable inequality constraints. We seek a

feedback solution to this problem.

We now digress a moment to discuss the basic approach. Attempts

to apply optimal control theory to problem areas in which other tech-

niques have proven inadequate have become common practice since the

-284-
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inception of the field in about 1960. Not coincidentally, this timing

corresponds to the beginning of the era of computers, a tool which is

relied upon by both theorists and practitioners of optimal control.

Over the years optimal control has enjoyed a number of successes, most

notably in the areas of application of Linear-Quadratic-Gaussian (LQG)

control and filtering. However, it has also become apparent that

"optimal" in the mathematical sense does not always imply "best" in

some more general sense, so that optimal control theory has a great

many detractors. See for example Horowitz [1975). One complaint is

that in minimizing a single objective, optimal solutions often ignore

and sometimes aggravate other properties of the system performance.

Also, optimal solutions are often obtained and implemented at great

computational expense. Finally, if the objective curve is relatively

flat near the optimum, then the marginal benefit obtained from the

optimal solution over some more easily obtained sub-optimal solution

may not justify the additional expense. One must therefore carefully

weight the disadvantages of an application of optimal control with

respect to the advantages. The fundamental advantages for our problem

are described in Sections 1.2 and 1.3. We shall point out some dis-

advantages in the course of this discussion.

Returning now to the optimal message routing problem, the solution

which we seek calls for all of the message storage in the network to go

to zero at the final time. It is clear that this requirement does not

correspond to the usual data network mode of operation in which there
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is a continuous input and flow of messages through the network. How-

ever, a particular case for which this requirement would be suitable

is when one desires to relieve network congestion locally in time by

getting rid of current message backlogs stored in the nodes. In this

case, the inputs to the networks would be regulated so that the back-

logs could be emptied with the available link capacity. Values of

constant inputs for which this is possible are given in Theorem 3.3.

Having formulated the optimal control problem, the remainder of

the thesis is devoted to developing a technique for finding the feed-

back solution for the case in which the inputs are constant in time.

Of course, the constant input assumption further restricts the appli-

cability of this approach to real network problems. However, one can

conceive of situations in which the inputs are regulated at constant

values, such as the backlog emptying procedure described above. From

the optimal control viewpoint, constant inputs appear to provide us

with the minimum amount of structure required to characterize and

construct the feedback solution with reasonable effort.

The backward constructive algorithm is described in principle for

multidestination networks, although it is not currently understood

how this algorithm may be implemented to obtain the solution for this

general class of problems. However, the complicating aspects of the

algorithm disappear when we consider problems involving single destina-

tion networks with all unity weightings in the cost functional. Our

ability to completely solve only this special class of problems is not
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surprising when we consider that for static maximum flow problems the

general multi-commodity problem remains unsolved. It stands to reason

that a dynamic multi-destination problem must be quite difficult!

Throughout the development we have exploited the total linearity

of the problem (in dynamics, cost and constraints) to obtain many of

our results. In particular, we have frequently employed concepts in

linear programming both in the synthesis of the backward constructive

technique and in the development of the computational algorithm. It

is felt that this approach may prove helpful in other optimal control

problems with a high degree of linearity.

Perhaps the primary disadvantage associated with the feedback

solution is the amount of computer storage which will be required to

implement it. The feedback control regions must be specified by a set

of linear inequalities which in general may be extremely large, and the

optimal controls within these regions must also be specified. On the

bright side, however, we note that if the particular network for which

we are providing the feedback solution contains one or more large com-

puters, the required storage may possibly be made available. Another

disadvantage is the amount of computation required in the original con-

struction of the feedback solution. In particular, the program devel-

oped to determine all the extremum solutions to a linear program

(Appendix A) requires a substantial amount of computation time and

storage.
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5.2 Summary of Results and Related Observations

5.2.1 Results

In this section we describe briefly the primary results of the

thesis in the order in which they appear.

In Section 3.2.1 we develop the necessary conditions of opti-

mality associated with the linear optimal control problem with linear

state and control variable inequality constraints. We also prove the

important result that the necessary conditions are also sufficient.

Note that these results are valid for general deterministic inputs.

Starting in Section 3.2.2 we assume that all the inputs to the

network are constant in time. In the same section we state and prove

a necessary and sufficient condition for the controllability of any

initial state to zero. Utilizing the necessary conditions of optimal-

ity, we prove in Section 3.2.3 that the feedback regions of interest are

convex polyhedral cones in the state space.

Section 3.3 is devoted to a general description of the algorithm

for the backward construction of the feedback space. The steps of the

algorithm are detailed in Section 3.3.2.2. In Section 3.3.3.1 we show

how parametric linear programming may be employed to efficiently solve

the pointwise linear program in time. The geometrical interpretation

is introduced in Section 3.3.3.2 and shown to be useful in analyzing

several of the difficult problems associated with the algorithm. The

construction of feedback control regions is detailed in Sections
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3.3.3.3 and 3.3.3.4 respectively.

We show by example in Section 3.3.4.1 that for this problem there

may be non-unique costates corresponding to state variables on interior

arcs.

Chapter 4 is devoted to problems involving single destination

networks with all unity weightings in the cost functional. In Section

4.3 we confront those properties which complicate the general algorithm

and show that they present no problem for the class of problems under

discussion. All proofs utilize the geometrical interpretation intro-

duced in Section 3.3.3.2. In particular, we show that all costates

corresponding to state variables on the boundary are unique. We also

prove that the control does not break between boundary junction times.

In Section 4.4 we present a complete computer implementable algorithm

for the construction of the feedback solution for this special case.

5.2.2 Related Observations

Although the approach which we have taken may be limited in prac-

tical applicability, the results which we have obtained can provide

valuable insight into the dynamic message routing problem. In this

section we discuss several issues from this point of view.

We begin with a discussion of the state information required to

implement the optimal control. As pointed out in Section 2.5, by spe-

cifying a feedback control function of the type u(t) = u(t, x(t)) we

are assuming that total information regarding the storage state x(t)
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is available at each node of the network for control decisions at that

node. Such a scheme requires a centralized method of observing and

communicating the state of the system at every point in time. However,

in practice one may wish to consider control strategies which do not

require total knowledge of the state at every time. For instance, it

may be desirable to have a decentralized strategy that makes control

decisions based on local state information only.

Such considerations lead us to examine the nature of the state

information requirements associated with the solution we have obtained

in the specific case of constant inputs. We have found that the struc-

ture of the solution is such that regions in the state space of common

optimal control are convex polyhedral cones. This situation is depicted

conceptually for a two dimensional example in Figure 5.1.

x

A.A

03

-2

Figure 5.1 Typical Form of Feedback Solution
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We see from Figure 5.1 that the optimal control is always a func-

tion of both x1 and x 2. A completely decentralized scheme is therefore

not possible. However, due to the nature of the optimal control re-

gions, we do not require exact values of x1 and x 2 but only their

x2
relative values. For example, we need only know that -- > and

x > 0 to conclude that u* is the appropriate optimal control. This

relationship may hold true for relatively long periods of time, so

that periodic rather than continuous updating of the ratio -- should
xl

prove to be rather good. In fact, based upon the current state and

optimal control it is easy to predict (due to linearity) the time at

which the state will move from the current feedback control region

into an adjacent feedback control region in the absence of outside dis-

turbances or variations in the system parameters. Therefore, one may

wish to update the state information (and the optimal control, if

called for) at these predicted switch times. Although this scheme would

not cut down on the amount of state information required, it drasti-

cally reduces the frequency with which it must be supplied.

For the purpose of our next discussion we refer to the network

problem of Example 3.1. From Figure 3.9 we see that if the state lies

in the region between the lines x2 -3x1 = 0 and x1 -3x 2 = 0 (not inclu-

ding these lines) then any admissible values of the control variables

ul2 and u21 are optimal. Therefore, looping of messages between

nodes 1 and 2 of Figure 3.7 may be optimal. However, such looping is

not desirable in data communication networks for obvious reasons. This



-292-

problem is an example of peripheral considerations which may be ignored

by optimal solutions with limited objectives. In order to alleviate

this situation, one must modify the problem statement appropriately.

For this case, optimal solutions may tend to avoid looping if we incor-

T
porate a term linear in the control, say TT u, into the cost functional.

The idea here is to discriminate against frivolous use of the links.

Fortunately, this modification does not complicate the solution tech-

nique presented in this thesis since the only change from before is

that the pointwise minimization is now

u*(T) = ARG MIN [(X(T)B + 7r) u].
ucU

5.3 Contributions

In this thesis we expand the areas of application of optimal con-

trol theory to include the important class of problems involving message

routing in data communication networks. As in many previous applica-

tions, we find that this approach may provide significant advantages

over previous techniques used to attack the problem at hand. In this

case, we obtain the dynamic and closed-loop properties lacking in the

queueing theory approach. The concept of applying optimal control

theory to the dynamic routing problem was pioneered by Segall [19761

and this is the first work to provide a detailed solution to the optimal

control problem. It is hoped that the success of this effort will

stimulate further investigation into this approach so that its full
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potential may be realized and understood with respect to other tech-

niques.

From the control theory point of view, it is commonly known that

optimal feedback solutions are in general very difficult to determine.

This is particularly true for problems involving state variable inequal-

ity constraints, where one can at best hope to find such solutions only

for special problems. We have found a complete feedback solution to

a meaningful linear optimal control problem with linear state and con-

trol variable constraints and consider this achievement to be a signi-

ficant contribution to the theory of deterministic optimal control. Of

particular interest is our novel combination of necessary conditions,

dynamic programming and linear programming. In addition, we have

developed a theory based on geometrical concepts in linear programming

for the analysis of linear optimal control problems with linear con-

straints.

5.4 Suggestions for Further Work

We view this work as an initial investigation into the feasibility

of applying optimal control theory to problems of dynamic routing in

data communication networks. As such, we realize that many more ques-

tions remain unanswered than have been satisfactorily resolved.

The primary challenge is to gain an understanding of the method by

which the backward constructive algorithm for general network problems

may be implemented on the computer. From our arguments in Chapter 4 it
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is clear that the geometrical interpretation is a powerful tool in

understanding the various properties associated with the algorithm.

Although we know that the special properties of Chapter 4 do not hold

in general, we feel that the geometrical interpretation may be used to

identify such properties as do hold. This possibility is discussed in

Section 4.5. Hopefully these properties may be adapted to a computer

implementable algorithm.

An important area for significant advance is in the development of

an efficient algorithm which computes all of the extreme point solutions

to a linear program. As mentioned in Section 3.3.3.1 this is a classi-

cal problem in linear programming and to the author's knowledge there

is no algorithm available which is efficient enough for our purposes.

Perhaps a good place to start is by attempting to exploit the special

structure of single destination networks to construct an efficient

algorithm for that case. At any rate, the desirability of the backward

constructive technique will be greatly enhanced upon finding a satis-

factory solution to this problem.

Finally, of course, there remains to extend the feedback solution

first to general deterministic inputs and ultimately to the most real-

istic case of stochastic inputs. It is clear that both of these prob-

lems are extremely difficult due to the state variable inequality con-

straints. Segall [1976] presents a sufficient condition of optimality

in the stochastic case when the inputs are modelled as mutually inde-

pendent jump processes with positive jumps only. However, the condition
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is expressed in terms of the partial differential equation of the opti-

mal cost to go and solution by numerical integration is out of the

question due to excessively high dimensionality. Therefore, alternate

solutions must be investigated.



Appendix A

FINDING ALL EXTREME POINT SOLUTIONS

TO THE CONSTRAINED OPTIMIZATION PROBLEM

Operation 1, part (a), of the backward constructive algorithm

calls for finding all of the extreme point solutions to the constrained

optimization problem. At a fixed instant of time this problem is the

linear program (the time variable has been dropped):

min z (A.l)

where

z = Z Xbju (A.2)

i p-1
subject to

D u < C (A.3)

U' bju = -a7 1 - X E (A.4)
-i- i i p-l

u > 0 (A.5)

where bi is the row of B corresponding to x
7 . Suppose we have utilized

-i 1

a standard linear program routine employing the simplex algorithm to

find a single extreme point solution to (A.l)-(A.5). Call this solu-

tion u*. Then if we denote z* = .E Xjbju*, the hyperplane

I p-1
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z*= Xbu (A.6)
x El 1

1 p-1

is tangent to the convex polyhedron U' at u* and every point contained

in the face of tangency is a solution to (A.l)-(A.5). Consequently, in

order to find all extreme point solutions to (A.l)-(A.5) we must find

all vertices of the convex polyhedron:

U'

QU . .j j = (A.7)

i p-1

Rubin [1975] demonstrates that the problem of finding all the ver-

tices of an m-dimensional convex polyhedron can easily be formulated

as the problem of finding all the edges of an m+l-dimensional convex

polyhedral cone. Furthermore, Chernikova [1964],[1965] has presented

algorithms for finding all the edges of a convex polyhedral cone repre-

sented by a set of homogeneous linear equations and inequalities.

Bloom [1976] has programmed Chernikova's algorithm as a FORTRAN sub-

routine and reports on computational experience gained using it. He

finds that for problems of reasonably large size the amount of computa-

tion and memory required to execute the algorithm is excessive. At the

root of the problem is the extreme numerical sensitivity of the

algorithm to the value of z*. If z* is slightly too large, then the

hyperplane (A.6) does not intersect U', and hence U" is empty. If z*

is slightly too small, the hyperplane (A.6) intersects U' below the
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desired face of tangency and therefore many extraneous extreme points

may be generated. For these reasons Chernikova's algorithm appears

unsuitable for our application.



Appendix B

EXAMPLE OF NON-BREAK AND BREAK FEEDBACK CONTROL REGIONS

We present here a simple example to illustrate the two types of

feedback control regions. The network is shown in Figure B-1 and the

cost functional is taken to be

J = ft (x1 2 (t) + x 3 2 (t) + x 2 3 (t))dt. (B. l)

0

The y-constraint figure for this network is presented in Figure

B-2. We shall be interested in the operating points - ® , and

the coordinates are indicated in the order y1 2 ' y 3 2 and y 2 3. The

controls corresponding to these points are listed in Figure B-3. The

particular backward optimal trajectory which is depicted in Figure B-4

has x1 2 leaving boundary first backward in time, x 3 2 leaving next back-

ward in time and finally x3 2 leaves the boundary. The regions corres-

ponding to controls (, ® and ® are non-break feedback control

regions. The region corresponding to control (below the breakwall

3
x - 3x - - x =0) is a break feedback control region.

12 32 2 23
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x 2 3

1 2

(1. 0,1.0,r1.5)

(1.5,0.5,1.0)

(1.5,0,0)

(1.5,0.5,0)

Figure B-2

l2
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1 0 0 0 .5 0 0 0 0 0 0 .5
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