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ABSTRACT 

Many markets have historically been dominated by a small number of best-selling products. The Pareto 
Principle, also known as the 80/20 rule, describes this common pattern of sales concentration. However, 
information technology in general and Internet markets in particular have the potential to substantially 
increase the collective share of niche products, thereby creating a longer tail in the distribution of sales. 
  
This paper investigates the Internet’s “Long Tail” phenomenon. By analyzing data collected from a multi-
channel retailer, it provides empirical evidence that the Internet channel exhibits a significantly less 
concentrated sales distribution when compared with traditional channels. Previous explanations for this 
result have focused on differences in product availability between channels. However, we demonstrate 
that the result survives even when the Internet and traditional channels share exactly the same product 
availability and prices. Instead, we find consumers’ usage of Internet search and discovery tools, such as 
recommendation engines, are associated with an increase the share of niche products. We conclude that 
the Internet’s Long Tail is not solely due to the increase in product selection but may also partly reflect 
lower search costs on the Internet. If the relationships we uncover persist, the underlying trends in 
technology portend an ongoing shift in the distribution of product sales. 
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1. Introduction 

Many markets have traditionally been dominated by a few best-selling products. Book sales are 

concentrated in a relatively small number of titles by established best-selling authors (Greco 1997); 

Billboard “top 40” hits account for the lion’s share of radio playlists and music sales; and movie rentals 

are dominated by a few “new releases”. Economists and business managers often use the Pareto Principle 

to describe this phenomenon of sales concentration. The Pareto Principle, which is sometimes called the 

80/20 rule, states that a small proportion (e.g., 20 percent) of products in a market often generate a large 

proportion (e.g., 80 percent) of sales.1  However, the Internet has the potential to shift this balance. 

Anderson (2004) coined a term—“The Long Tail”—to describe the phenomenon that niche products can 

grow to become a large share of total sales. On the Internet, the Pareto Principle may be giving way to the 

“Long Tail”.  

Anecdotal evidence suggests that Internet markets have helped shift the balance from a few best-selling 

products to niche products that were previously obscure. For example, Frank Urbanowski, Director of 

MIT Press, observes that the increased accessibility to backlist titles through the Internet has resulted in a 

12% increase in sales of these titles (Professional Publishing Report 1999). This increase happened 

despite flat growth in overall book sales. Similar observations have been made in electronic markets for 

music, DVDs, and electronics. Rhapsody, an online music provider, streams more songs each month 

beyond its top 10,000 than it does its top 10,000. While “new release” movies account for a dominant 

share of revenue in a video rental shop, DVDStation, a company that allows consumers to search and 

reserve movies online and pick them up in a DVD kiosk, reported that more than 50% of their rental 

revenue came from titles that are not new releases (DVDStation 2005).   

Two basic explanations have been offered for the Internet’s Long Tail phenomenon (Brynjolfsson, Hu, 

and Smith 2006). The first explanation focuses on the supply side. The Internet channel can carry a much 

larger product selection than traditional retail channels. For example, Brynjolfsson, Hu and Smith (2003) 

                                                
1 The 80/20 rule was first suggested by Vilfredo Pareto in his study of wealth distribution (Pareto 1896), and has 
since been applied to the analysis of city population, product sales, and sales force management.  
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document how centralized inventory and drop-shipping agreements allow online book retailers to offer 

over 2 million book titles (and millions more used and out-of-print titles). In contrast, physical space 

restrictions, logistics, and holding costs limit the product selection in a typical brick-and-mortar book 

store to between 40,000 and 100,000 titles. By increasing the supply of niche products that are 

unavailable through traditional channels, Internet commerce may boost the share of sales generated from 

these niche products, leading to a Long Tail.  

The second explanation centers on the demand side.  The Internet channel’s ability to allow consumers to 

acquire product information with greater convenience and at lower costs leads to increased demand for 

niche products. Many offline book shoppers do not search deeply, simply because of the inconvenience of 

locating a niche product in a big-box store with thousands of products on its shelves. Many catalog 

shoppers do not venture beyond a few popular products, even though more obscure products are available 

by going through the catalogs carefully or by calling sales representatives over the phone. In contrast, a 

retail website provides consumers with IT-enabled search, discovery tools and recommendation systems, 

lowering consumers’ costs of acquiring product information.  

Typically these two explanations exist concurrently, making it difficult to disentangle them. For instance, 

a firm can respond to the Internet’s lower information costs by increasing its product selection on the 

Internet. To make matters worse, although concentration is a popular measure of the importance of the 

Long Tail, the effect of product availability on the concentration of product sales may be non-monotonic. 

A moderate increase in production selection may lead to a less concentrated distribution of product sales; 

but if the market is flooded by a large number of products that have minimal sales, product sales can 

actually appear to be more concentrated even if the sales don’t change for any of the previously existing 

products. The comparison of Case 1A and Case 2 in Figure 1 provides a simple illustration of this.2 As a 

result, the concentration of product sales can be a misleading indicator of changes in the importance of 

niche products, especially when the number of available products changes. 

                                                
2 See Brynjolfsson, Hu and Smith (2010) for a related discussion of this issue. 



 3 

Figure 1: Concentration Can Be a Misleading Indicator of the Importance of the Long Tail 

 

Fortunately, the concentration of product sales will still be a good indicator of changes in the importance 

of niche products if the number of available products does not change. The comparison of Case 1B and 

Case 2 in Figure 1 provides a simple illustration of this. 

A unique feature of our study is the ability to control for differences in product availability. This not only 

allows us to distinguish the “supply-side” and “demand-side” stories proposed by Brynjolfsson, Hu and 

Smith (2006), but it also allows for an unambiguous interpretation of relative product concentration as a 

metric for the Long Tail.   

The data we analyze was provided by a retailer that aims to supply consumers with an identical selection 

of products (and at an identical set of prices) through both the Internet and catalog channels. These two 

Case 1A: 100 products are available and the top 50% of products account for 75% of total sales. 

Case 2:  Add a “tail” of 100 niche products with small sales, while leaving the sales of existing 
products unchanged.  Now 200 products are available, and the top 50% of products 
account for 95% of total sales. 

Case 1B: Sales of the top 100 products are exactly the same as in Case 1A. The only change from 
Case 1A is we now consider 100 niche products that have zero sales. In this case, 200 
products are available, and the top 50% of products account for 100% of total sales. 
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channels use the same prices and the same order fulfillment facilities. This controls for differences in 

prices, sales tax policies, shipping costs, product selection, and stock outs. In addition, we pick one 

catalog and the products that are printed in that catalog; we then study how those same products are being 

purchased through the catalog and Internet channels within an identical time window. Thus, the products 

we study are not only available but also “visible” in the catalog channel as well as in Internet channel. 

Finally, a third way to control for product availability and visibility is to focus on just one channel. Later 

in this paper we focus on purchases from just the Internet channel and investigate how consumers’ use of 

IT-enabled search and recommendation tools can have an effect on their tendency to purchase niche 

products through this channel.  

We provide empirical evidence that the Internet channel exhibits a significantly less concentrated sales 

distribution than the catalog channel, even when supply-side factors such as product availability and 

visibility are held constant. Moreover, on average, niche products make up a larger percentage of products 

sold in an Internet order than in a catalog order. This finding persists even after we introduce controls for 

differences in the characteristics of customers that use each channel.   

Our data allows us to directly measure how consumers use the search and recommendation tools provided 

by the company’s website. We explore how these demand-side (or consumer-side) factors can lead to 

changes in consumers’ purchasing patterns. We find that as consumers’ use of IT-enabled search and 

discovery tools increases, the percentage of sales generated by niche products becomes larger. These 

findings are robust to using alternative definitions of niche products and using different sets of variables 

as controls for consumer heterogeneity.  

Related Literature 

Brynjolfsson, Hu and Smith (2003) first analyzed the Long Tail phenomenon on the Internet when they 

showed that niche products that were unavailable through conventional channels accounted for a large 

share of sales, and consumer welfare, on the Internet. They noted that product selection was much greater 

on the Internet than offline in categories ranging from books to DVDs to cameras, and introduced Pareto 
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Curve as a way to quantify the longer tail on the Internet. In a subsequent article (Brynjolfsson, Hu and 

Smith 2006), they identified supply-side explanations (i.e., product availability), along with demand-side 

explanations, such as search tools and recommendation systems, for the Long Tail phenomenon.  

There are two recent papers that use aggregate sales data to study how the distribution of aggregate sales 

has changed over time in the market for video and music products. Both of these papers find some 

evidence of a shift toward niche products. Elberse and Oberholzer-Gee (2007) find evidence that a larger 

share of video sales have shifted toward niche products from 2000 to 2005. Bestselling videos as a 

category generate fewer sales in 2005 than in 2000, and studios sell fewer copies of a larger number of 

titles. Studying music sales data, Chellappa et al. (2007) find that the share of total sales generated from 

platinum albums has dropped from 33% in 2002 to 23% in 2006.  They also show that the number of 

albums released doubled in this period and so overall sales became more concentrated at the top when 

using a relative concentration metric— the top 0.5% titles accounted for 56% sales in 2002 but 68% sales 

in 2006, although it should be noted that the absolute number of albums counted as part of the top 0.5% 

doubled in those four years.  As noted above, a key feature of our paper is we study the concentration of 

product sales across channels and hold the number of available products fixed, which makes it easier to 

interpret the relative concentration metric. 

Two recent papers study the effect of recommendation systems on the concentration of sales. 3 

Oestreicher-Singer and Sundararajan (2006) measure how products are hyperlinked together on Amazon 

via its recommendation network, and show that such a hyperlinked content network can cause product 

sales to be more evenly distributed. In contrast, Fleder and Hosanagar (2009) use a theoretical model and 

simulations to demonstrate that recommendation systems that recommend products with high sales can 

lead to an increase in the concentration of sales.  

                                                
3 In addition, De, Hu, and Rahman (2010) study how consumers’ use of search and recommendation tools can have 
an effect on overall Internet sales.  
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Our paper is also related to a growing body of empirical research that investigates how a reduction in 

consumer search costs on the Internet can impact competition (Brynjolfsson, Hu, and Rahman 2009), 

prices and price dispersion (see Brynjolfsson and Smith 2000, Morton, Zettelmeyer, and Silva-Risso 2001, 

Brown and Goolsbee 2002, Hann, Clemons and Hitt 2003, Clay, Krishnan, Wolff, and Fernandes 2003, 

Anderson, Fong, Simester and Tucker 2010). There is also a significant theoretical literature on how 

search costs and other types of information costs can affect price, price dispersion, entry, and product 

variety (see Diamond 1971, Wolinsky 1986, Anderson and Renault 1999, Bakos 1997, Cachon, 

Terwiesch, and Xu 2008). None of these models consider the concentration of product sales. 

Structure of the Paper 

In Section 2 we describe the design of our empirical analyses, before presenting the findings in Sections 3 

and 4. The paper concludes in Section 5 with a review of the findings and broader implications. 

2. Design of Empirical Study 

The company we study is a medium-sized retailer selling women’s clothing at moderate price levels.4 All 

of the products carry the company’s private label brand and are sold exclusively through the company’s 

catalog channel (mail and telephone) and the Internet channel (website), with the Internet channel 

contributing roughly 60% of the company’s sales. The retailer also has a physical store that accounts for a 

negligible percentage of overall sales. Because the company is unable to adequately identify the relatively 

small number of consumers purchasing in its physical store, we do not have a record of purchases made 

by consumers in the physical store.5 This limits our study to the Internet and catalog channels.  

2.1. Product Selection 

A key feature of the company is that it offers the same product selection (and prices) through its Internet 

and catalog channels. This policy simplifies the company’s logistics and ordering processes. In addition, 

it avoids potential consumer dissatisfaction if consumers observe that they have paid higher prices for an 

                                                
4 The company asked to remain anonymous. 
5 Our results are robust to including or excluding consumers who live near the physical store. 
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item than other consumers (see for example Anderson and Simester 2010). There are differences in the 

ease with which consumers can acquire information across the two channels, due in large part to specific 

technologies like search and recommendation tools available only on the Internet. However, the company 

does not respond by varying the number of available products across the channels. In addition to offering 

the same set of products (and prices) through both channels, the company uses the same photo and 

product description in both channels. It also uses the same order fulfillment methods and facilities for the 

two channels. This controls for differences in sales tax policies, shipping costs, and the possibility of 

stock outs, eliminating several alternative explanations for potential differences in the sales distribution 

across the two channels. 

2.2. Catalog Channel 

Consumers ordering through the catalog channel place their orders either by calling the company’s toll-

free number and speaking to a service representative, or by completing the physical order-form bound 

into the middle of a catalog and mailing it to the company. The vast majority of orders through the catalog 

channel are made over the telephone.  

The company sends out catalogs to its consumers every four or five weeks, although they do not send out 

any catalogs in December. A typical catalog contains a few hundred products. The majority of the 

purchases made through the catalog channel are on products printed in the current catalog. Consumers 

occasionally purchase products that are not printed in the current catalog, by calling the company’s sales 

representatives and by using past catalogs. From the company’s own analyses, the impact of a current 

catalog lasts for about four weeks, and it diminishes greatly after the next catalog is mailed.  

It seems likely that the products printed in a catalog are more visible than products not printed, and such 

variations in visibility could alter sales and sales patterns. Our approach to controlling for such variations 

in visibility is straightforward—we pick a catalog and study only the products printed in that catalog 

during the time period when that catalog is the current catalog. To do so, we first obtain the mailing 

schedule of the company’s catalogs in Fall 2006, as shown in Table 1. 
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Table 1: Catalog Mailing Schedule 

Catalog Name Date 

August Catalog August 16, 2006 

September Catalog September 13, 2006 

October Catalog October 18, 2006 

November Catalog November 15, 2006 

 

We then obtain the exact list of products in the August catalog, and focus on how consumers purchase 

those products printed in that catalog during the period between August 16, 2006 and September 12, 2006. 

2.3. Internet Channel 

Consumers can also visit the company’s website and place their orders through the company’s Internet 

channel. In 2006 Internet sales accounted for approximately 60% of the company’s sales. To ensure there 

are no differences in product availability, we only study how consumers purchase via the Internet channel 

those products printed in the August catalog between August 16, 2006 and September 12, 2006. This 

approach allows us to tightly control for variations in supply-side factors such as product availability and 

visibility. 

The company offers one version of their website to all visitors. A visitor to the company’s website has 

several options. A website visitor may simply browse through the products that are available under each 

product category, moving from one product to the next one. Each product page shows a picture of a 

model wearing the product, as well as the price, available sizes, and colors. The process of browsing 

through available products on the website is similar to the process of browsing through available products 

in a catalog.   

However, a visitor may use the website’s more advanced features, such as a search function and a 

recommendation system. When a visitor use the search function to search for a specific product, with 

either its SKU or its product name, the website takes the visitor directly to the product page of that 

specific product. On the other hand, if a visitor searches with a non-specific keyword, the website 

presents a long list of relevant products that match the search keyword. In addition, when a visitor views a 
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product page, the website always recommends five other products that the retailer feels the visitor “may 

also like”. These five products are picked by the company’s experts based on their similarity and 

relevance to the focal product, and then recommended to all visitors. We note that this type of semi-

personalized recommendation system is widely adopted by many Internet retailers on their product pages. 

If a consumer responds to the recommendation system by clicking on one of the recommended products, 

she will be taken to the page of the clicked product.  

2.4. Hypotheses 

Next, we will formulate our hypotheses on how the Internet channel’s unique search and recommendation 

features can lead to changes in the purchasing patterns of consumers. Standard models of search behavior 

in the marketing and economic literatures predict that consumers search for information to improve their 

purchasing decisions (Stigler 1961, Engel et al. 1996, Kotler 2002). Consumers first conduct internal 

searches by scanning their memory and retrieving products for which they have ex ante awareness; when 

internal searches prove inadequate, they then decide to acquire additional information from external 

sources (Engel et al. 1996).  

More importantly, rational consumers continuously weigh expected benefits against search costs and will 

stop searching whenever expected benefits are lowers than search costs (Stigler 1961, Rothschild 1974). 

Therefore, in an extreme case where consumers can search for product information at zero costs, 

consumers will exhaustively search for all available products and the distribution of sales across products 

will fit closely to consumers’ “true” preferences. In the other extreme case where search costs are 

prohibitively high, consumers will conduct no external searches; as a result, consumers’ consideration 

sets will be limited to products for which they already have ex ante awareness and the sales distribution 

will be extremely concentrated on such products. Between these extreme cases, consumers will search for 

a subset of all available products; as search costs decrease, consumers will conduct more searches 

(Rothschild 1974) and the sales distribution will fit closer to consumers’ true preferences, being less 

concentrated on products for which consumers have ex ante awareness.  
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In the clothing industry, consumers are more likely to be aware of popular products than niche products. 

This is because consumers could obtain information of popular products from external sources, including 

fashion magazines and other media, which play a key role in setting the current trend for popular designs 

(Agins 1999). In addition, since each clothing retailer would offer its own version of those popular 

products that are consistent with the fashion trend (Rantisi 2002), consumers could gain ex ante 

awareness of the focal retailer’s popular products from previous shopping experiences at competing 

retailers. Finally, ex ante awareness could come from firm advertising and word-of-mouth referrals, 

which tend to favor popular products (Frank and Cook 1995).   

Compared with the catalog channel, the Internet channel provides unique search and recommendation 

tools. These tools can lower consumers’ search costs (Alba et al. 1997). As discussed above, lower search 

costs lead to a sales distribution that fits closer to consumers’ true preferences and is less concentrated on 

products for which consumers have ex ante awareness. Because consumers are more likely to be aware of 

popular products than niche products, we hypothesize that the Internet channel should have a sales pattern 

that places less weight on popular products and more weight on niche products, compared with the 

catalog channel. 

Each of the three search and recommendation tools may affect the sales pattern of the Internet channel in 

different ways. On one hand, Internet consumers can actively perform specific searches by searching for 

product SKUs or exact product names. This type of specific searches, or “directed searches” as called by 

Moe (2003), take consumers directly to the product page that displays the product being searched for, 

helping consumers quickly locate a product which they have already been aware of. As a result, the use of 

directed searches may not lead to a sales pattern with more weight on niche products for the Internet 

channel. 

On the other hand, consumers may use the search function to perform non-specific searches by typing in a 

keyword that is not a product SKU or an exact product name. Such searches are called “non-directed 

searches”, and they typically lead to a list of products. Furthermore, while viewing a product page, the 
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website will display five products that are related to the focal product. If a consumer clicks on one of the 

products being recommended, the recommendation system enables the consumer to explore and discover 

products that she otherwise may not have found and, hence, provides new information (Mobasher et al. 

2001). The recommendation system, along with the feature of non-directed searches, lowers the costs 

incurred by consumers when searching for additional information (Brynjolfsson et al. 2006).  We 

hypothesize that the use of the recommendation system and non-directed searches should lead to a sales 

pattern with more weight on niche products for the Internet channel.  

These are not the only possible outcomes. For example, sellers may wish to push certain products,via the 

Internet channel, the catalog channel, or both.  In particular if a seller prefers to steer consumers toward 

popular products, the recommendation engine could be tuned to disproportionately favor such products.  

Of course, the opposite is also possible, with niche products being favored, thereby leading to a longer tail.  

Because of these possibilities, theory alone cannot predict whether improvements in search or 

recommendation technologies will lead to a longer tail.  Ultimately, this is an empirical question. 

2.5. Cross Channel Transactions 

Consumers can find products they like from the catalog channel, and then visit the company’s website 

and order the same items from the Internet channel. The industry wisdom is that this certainly occurs. It is 

also true that the reverse may occur: consumers may identify products on the company’s website and then 

place an order over the telephone. We will present evidence that there is a longer tail on the Internet, 

compared to the catalog channel. Notice that this outcome cannot be explained by consumers obtaining 

information in one channel and then ordering through another channel. Indeed, to the extent this occurs it 

will reduce the differences between the channels and undermine our ability to detect any difference in the 

sales concentration across the two channels. 

3. Empirical Results 

Our empirical analyses focus on two questions: 

1. Does the Internet channel exhibit a less concentrated distribution of product sales?  
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2. Do demand-side factors, such as consumers’ usage of recommendation and search tools, have 

an effect on the sales of niche products on the Internet?  

As Figure 1 illustrates, it is important to control for product availability when we examine how the 

concentration of product sales varies across different channels. Next we describe how we have controlled 

for product availability. 

3.1. Controlling for Product Availability  

In principle, customers ordering through the catalog channel are not limited to the items included in the 

most recent catalog; they may also order other items that they have seen in prior catalogs or that are 

suggested by the customer service representative.  The same product selection is available in the Internet 

and catalog channels.  However, the majority of items ordered through the catalog channel are for items 

included in the most recent catalog.  Therefore, we will adopt a conservative definition of which products 

are “available” by restricting attention to only those products that were included in the most recent catalog.  

This ensures that any evidence that there is a longer tail of products on the Internet than in the catalog 

channel cannot be attributed to some items not appearing in the catalog. 

The retailer’s August 2006 catalog included a total of 734 products. This catalog was sent to consumers 

on August 16, while the next catalog was mailed on September 13 and so we will focus on purchases 

made between August 16 and September 12. This yields a sample of 26,686 units purchased over 12,081 

Internet orders and 18,663 units purchased over 6,905 catalog orders.6   

3.2. Aggregate-level Analyses  

We first calculate the aggregate sales for each of the 734 products in each channel between August 16 and 

September 12. We then use the Lorenz Curve and Gini Coefficient to study the concentration of product 

sales in each channel.7 Figure 2 presents two Lorenz Curves, the blue one for the Internet channel and the 

                                                
6 As we will discuss, the results are replicated when we use the products in the September catalog and focus on the 
time period between September 13 and October 17.  
7 Economists have long used the Lorenz Curve and Gini Coefficient to describe the inequality in income and wealth 
distribution (Lorenz 1905, Gini 1912). This paper is among the first to apply these two concepts to measure the 
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red one for the catalog channel. The Internet channel’s Lorenz Curve lies above the catalog channel’s 

Lorenz Curve, implying that the Internet channel exhibits a less concentrated distribution of product sales 

than the catalog channel. Correspondingly, the Gini Coefficient for the Internet channel (0.49) is lower 

than that for the catalog channel (0.53). From the Lorenz Curve, one can easily obtain the percentage of 

total sales generated by the bottom 80% products. For the catalog channel, the bottom 80% products 

generate 43% of sales; for the Internet channel, the bottom 80% products generate 47% of sales. 

Figure 2: Lorenz Curve and Gini Coefficient for the Internet and Catalog Channels 

 

Using the Lorenz Curve and Gini Coefficient, we have shown that these exists a difference between the 

sales distribution in the Internet channel and that in the catalog channel. However, these two tools do not 

allow us to conclude whether such a difference is statistically significant. In order to do so, we then fit the 

                                                                                                                                                       
concentration of product sales. The Lorenz Curve is drawn inside a square box with the x-axis being cumulative 
percentage of products and the y-axis being the cumulative percentage of sales. The Gini Coefficient is the ratio of 
the area between a Lorenz Curve and a 45 degree line to the total area under a 45 degree line. When sales are 
perfectly evenly distributed among products, the Lorenz Curve coincides with a 45 degree line and the Gini 
Coefficient equals zero. As the distribution becomes more concentrated, the Lorenz Curve curves away from a 45 
degree line and the Gini Coefficient increases.  
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sales and sales rank data to the following log-linear relationship and compare the Sales Rank coefficient 

obtained when using data from the two channels:  

ln(Salesj ) = β0 + β1 ln(SalesRankj ) + ε j .       (1) 

The Sales Rank is an ordinal ranking of the frequency with which each item was purchased, and the log-

linear curve described by Equation (1) is known as a Pareto Curve. Previous research has shown that it 

fits the relationship between product sales and sales rank very well across the full distribution of products 

(Brynjolfsson, Hu and Smith 2003). This curve has also been used to successfully describe the 

distribution of income, wealth, and city size (Pareto 1896, Zipf 1949). Given this specification, β1 

measures how quickly product j’s demand in a channel falls as the sales rank increases. If the Internet 

channel has a longer tail, then β1 would be less negative (i.e. lower in absolute value) in the Internet 

channel than in the catalog channel, indicating that products with large sales ranks retain a larger share of 

demand in this channel. 

We first estimate Equation (1) separately for the Internet and catalog data and report both sets of findings 

in Models 1 and 2 of Table 2. Both coefficients are highly significant, while the high R2 values suggest 

that the log-linear relationship fits the data well. The β1 coefficient is -0.925 for the Internet data, and 

-0.877 for the catalog data. Next, we test whether the β1 coefficient in Equation (1) is significantly less 

negative for the Internet channel than for the catalog channel. To do that, we pool Internet and catalog 

data into one data set and run a single regression. We create an “Internet” dummy indicating whether an 

observation is for the Internet channel, and interact the “Internet” dummy with ln(SalesRankj ) :  

ln(Salesj ) = β0 + β1 ln(SalesRankj ) + β2Internet j + β3Internet j * ln(SalesRankj ) + ε j . (2) 

 
Estimates for Equation (2) are reported in Table 2 (Model 3). The β3 coefficient on the interaction term is 

positive and highly significant, indicating that the original β1 coefficient in the model of Equation (1) is 

significantly less negative for the Internet channel than for the catalog channel. To check the robustness 
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of these results, we re-estimate Equation (2) using Quantile Regression and report the results in Table 2 

(Model 4). Quantile regression relates the conditional median of the dependent variable to independent 

variables and is more robust to outliers than linear regression. The β3 coefficient on the interaction term 

remains positive and highly significant.8 We conclude that the Internet channel has a significantly less 

concentrated distribution of sales (a longer tail) than the catalog channel.   

Table 2: Pareto Curve Estimates 

 Model 1: 
Internet Data 

Model 2: 
Catalog Data 

Model 3: 
Pooled Data, 

Linear 
Regression 

Model 4: 
Pooled Data, 

Quantile 
Regression 

Constant 8.126*** 
(0.084) 

8.002*** 
(0.081) 

8.002*** 
(0.083) 

8.519*** 
(0.077) 

Sales Rank -0.877*** 
(0.015) 

-0.925*** 
(0.014) 

-0.925*** 
(0.015) 

-0.991*** 
(0.014) 

Internet   0.124 
(0.117) 

0.140 
(0.109) 

Internet * Sales Rank   0.048** 
(0.021) 

0.045** 
(0.019) 

Adjusted R2 0.830 0.852 0.848 0.672 

Sample Size 733 728 1,461 1,461 

Models 1 and 2 present the coefficients from Equation 2 estimated using OLS.  Model 1 uses sales 
in the Internet channel and Model 2 uses sales in the catalog channel.  Model 3 presents the OLS 
coefficients when estimating Equation 3 using the pooled data from Models 1 and 2.  Model 4 re-
estimates Model 3 using Quantile Regression rather than OLS. Standard errors are in parentheses; 
***Significantly different from zero, p < 0.01; ** p < 0.05; * p < 0.10. 
 

We further check robustness by repeating the analysis using products and sales from the September 

catalog.  In particular, we use the 441 products printed in the September catalog and focus on the time 

period between September 13 and October 17.  Detailed findings are reported in the Online Appendix, 

Tables A4-A7. 

                                                
8 We can also compare the concentration of sales in the two channels using quantile-quantile plots. We report these 
results in the Online Appendix, Figures A1. The plot starts as an almost straight line and then curves downward. 
This is consistent with the findings reported for the Pareto Curve. We thank an anonymous reviewer for suggesting 
the use of quantile regression and quantile-quantile plots. 
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3.3. Order-level Analyses and Controlling for Consumer Selection via Sample Matching 

The analyses in Section 3.2 demonstrate that the Internet has a longer tail than the catalog channel. One 

could argue that consumers who purchase through the Internet channel could be systematically different 

from consumers who purchase through the catalog channel. This consumer selection effect could have 

confounded the results shown in Section 3.2. We use the propensity score matching method suggested by 

Rosenbaum and Rubin (1983) to control for this consumer selection effect.  

Before matching the two samples we first identify “niche” products as products that are purchased 

infrequently. Specifically, for each channel, we rank products by their aggregate sales and define the 

bottom 50% of products as “niche products”. Table 3 compares the unit sales and price across these two 

types of products. On the Internet, an average niche product sells just 12.1 units, while the other products 

average 60.6 units sold; through the catalog channel, an average niche product sells 7.4 units, while the 

other products average 43.4 units sold. We note that, in the Internet channel, the top 50% products has an 

average price of $30.80, while the average price for the bottom 50% products is $32.59; the difference has 

a t-statistic of 1.48 and is not statistically significant. Similarly, in the catalog channel, the average price 

is $31.78 for the top 50% products and $29.60 for the bottom 50% products; the difference has a t-

statistic of 1.75 and is not significant. 

Table 3: Niche Products 

 Average      
Unit Sales 

Average      
Price  

Internet Channel   

Top 50%: 367 most frequently purchased products 60.6 
(2.3) 

$30.80 
(0.70) 

Bottom 50%: 367 least frequently purchased products 12.1 
(0.3) 

$32.59 
(1.00) 

Catalog Channel   

Top 50%: 367 most frequently purchased products 43.4 
(1.9) 

$31.78 
(0.76) 

Bottom 50%: 367 least frequently purchased products 7.4 
(0.2) 

$29.60 
(1.00) 

Standard errors are in parentheses. 
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The propensity score matching method suggested by Rosenbaum and Rubin (1983) matches samples of 

data on observable dimensions.9  In this case we match the Internet observations (orders) with catalog 

observations (orders) based on the observable characteristics of consumers who made those orders.  This 

matching approach drastically reduces the difference between the two groups of observations.10   

We begin the analysis by matching observations using demographic and socioeconomic variables 

collected from the 2000 U.S. Census at the zip code level. A consumer’s demographic and socioeconomic 

variables such as her income, age, education, and gender may influence her demand (Goolsbee 2000), and 

whether a consumer lives in an urban area may influence that consumer’s demand (Glaeser et al. 2001).  

We focus on five demographic and socioeconomic variables: Population Density (population per square 

mile), Median Household Income, Percentage with Bachelor’s Degree, Percentage Female, and Median 

Age. For observations with Canadian zip codes or other zip codes that cannot be matched to the U.S. 

Census data (8.0% of the sample), we create a dummy variable No Demographics Information. 

We use the PSMATCH2 propensity score matching module in Stata to match samples (using the nearest 

10 neighbors).11 Before matching the Internet sample (orders made by consumers who purchase from the 

Internet channel) with the catalog sample (orders made by consumers who purchase from the catalog 

channel), we find that the Internet sample has a significantly higher Median Household Income, a 

significantly higher Percentage with Bachelor’s Degree, and a significantly lower Median Age. However, 

after matching, the matched Internet sample is no longer significantly different from the catalog sample 

on any of the five observable dimensions. These results are shown in Table 4a. 

 

                                                
9 Additional details on propensity score matching can be found in Rassler (2002). We note that after sample 
matching, the matched samples could still differ on unobservable dimensions, which is a limitation of this approach. 
10 Very few consumers made more than one order within this time period. Thus, our results are robust to conducting 
either an order-level analysis or a consumer-level analysis.  
11 The results are robust to using different numbers of neighbors and different algorithms. 
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Table 4a: Matching the Internet and Catalog Samples 

Matching Variables Catalog       
Sample 

Internet                       
Sample 

Matched                    
Internet                      
Sample 

Population Density (00s) 29.2 27.6               
(0.148) 

29.0              
(0.825) 

Median Household Income ($000s) 46.2 47.4***       
(0.000) 

46.1                  
(0.896) 

Percent with Bachelor’s Degree 10.5% 11.1%***        
(0.000) 

10.5%                      
(0.755) 

Percent Female 47.1% 46.7%*            
(0.093) 

47.0%                    
(0.781) 

Median Age 34.1 33.7***            
(0.005) 

34.1                  
(0.895) 

No Demographics Information 7.8% 8.1%                       
(0.350) 

7.8%                     
(0.954) 

Sample Size 6,905 12,081 6,905 

The numbers in parentheses are p-values, measuring the probability that the difference between the Internet 
and Catalog sample averages will be larger than the observed difference, under the null hypothesis that the 
true averages are identical. *** p < 0.01; ** p < 0.05; * p < 0.10. 
 

 
For each order we calculate the percentage of both unit and dollar sales generated by niche products.  The 

findings are presented in Table 4b, where we compare the outcomes for the catalog sample, the Internet 

sample, and the matched Internet sample. Before matching, we find that the percentage of unit sales 

generated by niche products is significantly higher in the Internet sample than in the catalog sample: 

15.2% versus 12.7%, with a t-statistic of 5.63. Similarly, the percentage of dollar sales generated by niche 

products is on average 15.4% in the Internet sample, versus 12.7% in the catalog sample, with a t-statistic 

of 6.10.  These results are consistent with the aggregate-level results in Section 3.2.  

After matching, the percentage of unit sales generated by niche products remains significantly higher in 

the matched Internet sample than in the catalog sample: 14.8% vs. 12.7%, with a t-statistic of 4.39.  The 
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percentage of dollar sales generated by niche products is 15.0% in the matched Internet sample, versus 

12.7% in the catalog sample, with a t-statistic of 4.77.12  

We conclude that the difference in sales patterns across the Internet sample and the catalog sample 

persists, even after controlling for the consumer selection effect using sample matching. 

Table 4b: Results Using the Matched Samples 

Percentage of Total Sales Generated 
by Each Sample of Niche Products 

Catalog       
Sample 

Internet                       
Sample 

Matched                    
Internet                      
Sample 

Unit Sales    

Bottom 40% (294 products) 8.2% 10.0%***     
(0.000) 

10.0%***    
(0.000) 

Bottom 50% (367 products)  12.7% 15.2%***     
(0.000) 

14.8%***    
(0.000) 

Bottom 60% (440 products) 18.9% 21.7%***    
(0.000) 

21.2%***    
(0.000) 

Dollar Sales    

Bottom 40% (294 products) 8.2% 10.3%***    
(0.000) 

10.3%***    
(0.000) 

Bottom 50% (367 products)  12.7% 15.4%***     
(0.000) 

15.0%***    
(0.000) 

Bottom 60% (440 products) 18.9% 22.0%***    
(0.000) 

21.3%***     
(0.000) 

Sample Size 6,905 12,081 6,905 

The numbers in parentheses are p-values, measuring the probability that the difference between the Internet 
and Catalog sample averages will be larger than the observed difference, under the null hypothesis that the 
true averages are identical. *** p < 0.01; ** p < 0.05; * p < 0.10. 

3.4. Robustness Checks 

Because the cutoff at the bottom 50% (or 367) seems somewhat arbitrary, we try to replicate our results 

using alternative definitions such as bottom 40% (or 294) products and bottom 60% (or 440) products. 

We find that our results are robust to using alternative definitions of this cutoff.  These findings are also 

                                                
12 A shift of 2.3% (the difference between 15.0% and 12.7%) in dollar sales from other products to niche products, 
across both channels, would be equivalent to a shift of $1.38 million, given that the company’s annual sales are 
roughly $60 million. 
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presented in Table 4b.  The difference in sales patterns between the catalog sample and the matched 

Internet sample remains significant. 

In addition to using demographic and socioeconomic variables to match samples, we also investigated 

other ways of constructing matched samples. In particular, we used the Recency, Frequency, and 

Monetary Value of customers’ historical purchases.  These measures were calculated using customers’ 

transactions made prior to August 16, 2006.13 These so-called “RFM” measures are widely used in both 

the catalog industry and the marketing literature to segment consumers. Customers whose previous 

purchases are more recent, more frequent, and/or include higher priced items are generally considered to 

be “more valuable”. These results using “RFM” measures as the basis of sample matching are reported in 

Table 5. The pattern of findings is similar to the results in Table 4b, demonstrating that our results are 

robust to using a different set of observable variables in sample matching.  

We also created a measure of each consumer’s historical tendency to purchase niche products. To do so, 

we first calculate the aggregate sales for each product sold in the two years prior to August 16, 2006 and 

define niche products as those products that cumulatively generate 80% of the company’s sales in those 

two years. For each consumer, we define a variable “Historical Niche Tendency” as the ratio of the 

number of niche products purchased by her to the total number of products purchased by her in those two 

years. For consumers who made no purchases in those two years, the dummy variable “No Historical 

Niche Information” is equal to one. These two new variables are added to the “RFM” measures as the 

basis of sample matching. We find that the pattern of findings is similar to the results in Table 5. For the 

sake of brevity, these results are reported in the Online Appendix as Table A3. 

 

                                                
13 Recencyi is defined as the number of days prior to August 16, 2006 that consumer i made a purchase.  Frequencyi 
is defined as the number of items placed by the consumer prior to August 16, 2006.  Monetary Valuei is defined as 
the average price of the items in consumer i’s historical orders. The dummy variable No RFM Information is equal 
to one for consumers who made no purchases prior to August 16, 2006. 
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Table 5: Matching Using Historical Transactions 

 Catalog       
Sample 

Internet                       
Sample 

Matched                    
Internet                      
Sample 

Matching Variables    

Recency 3.147 2.668***       
(0.000) 

3.119             
(0.520) 

Frequency 2.198 1.510***      
(0.000) 

2.192             
(0.858) 

Monetary Value 2.186 1.948***      
(0.000) 

2.187             
(0.988) 

No RFM Information 0.334 0.401***       
(0.000) 

0.334            
(0.983) 

 
Percentage of Total Sales Generated by Each Sample of Niche Products 

Unit Sales    

Bottom 40% (294 products) 8.2% 10.0%***     
(0.000) 

9.9%***       
(0.000) 

Bottom 50% (367 products)  12.7% 15.2%***     
(0.000) 

15.0%***    
(0.000) 

Bottom 60% (440 products) 18.9% 21.7%***    
(0.000) 

21.3%***    
(0.000) 

Dollar Sales    

Bottom 40% (294 products) 8.2% 10.0%***     
(0.000) 

10.5%***       
(0.000) 

Bottom 50% (367 products)  12.7% 15.4%***     
(0.000) 

15.6%***    
(0.000) 

Bottom 60% (440 products) 18.9% 22.0%***    
(0.000) 

22.9%***     
(0.000) 

Sample Size 6,905 12,081 6,905 

The numbers in parentheses are p-values, measuring the probability that the difference between the Internet 
and Catalog sample averages will be larger than the observed difference, under the null hypothesis that the 
true averages are identical. *** p < 0.01; ** p < 0.05; * p < 0.10. 

3.5. Summary 

Our findings confirm that sales in the Internet channel are more evenly distributed across products than in 

the catalog channel.  This difference cannot be attributed to differences in prices or product availability.  

Moreover, the result survives when we account for customer differences using a propensity matching 

algorithm.  In the next section we explore different explanations for this result by explicitly measuring 

customers’ use of Internet search mechanisms. 
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4. The Role of Internet Recommendation and Search Tools 

To investigate whether Internet recommendation and search tools may have contributed to the differences 

in these sales patterns between the two channels, we obtained the server log data recorded by the 

company’s website server. Each month the company’s website server records about 25 million lines of 

logs (the monthly server logs are about 20GB in size). Extracting the server log data allows us to trace 

each click made by a consumer while making an Internet order, and reveals the extent to which each 

customer used the retailer’s Internet recommendation and search tools.  

4.1. Measuring Consumers’ Use of Recommendation and Search Tools 

To measure consumers’ use of search and recommendation tools we first count the total number of page 

requests linked to each Internet order. We then count the number of times a consumer uses the website’s 

search tool to perform directed searches, the number of times she performs non-directed searches, and the 

number of times she clicks on one of the recommended products. These three measures are then 

normalized by the total number of page requests linked to an Internet order to produce three variables 

measuring the use of each mechanism: Directed Search, Non-directed Search and Recommendation 

System. Each of these three variables measures the percentage of page requests that are related to using a 

particular tool. This normalization procedure eliminates concerns stemming from the variation in the total 

number of page requests. 

Table 6 provides the descriptive statistics of consumers’ use of recommendation and search tools in our 

sample. We note that during the period between August 16 and September 12, an average consumer 

makes about 140 page requests when placing an Internet order. Among the 11,648 observations (orders) 

in our sample, 9,775 observations contain zero use of directed search; the mean of Directed Search for the 

remaining 1,873 observations is 7.6%; and the mean of Directed Search for all observations together is 

1.2%. Similarly, 10,593 observations contain zero usage of non-directed search; the mean of Non-directed 

Search for the remaining 1,055 observations is 4.2%; and the mean of Non-directed Search for all 

observations together is 0.4%. In addition, 6,971 orders contain zero usage of the recommendation system; 
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the mean of Recommendation System for the remaining 4,677 observations is 5.1%; and the mean of 

Recommendation System for all observations together is 2.0%.   

Table 6: Descriptive Statistics   

Variable Average  Standard 
Deviation Minimum  Maximum 

Average 
Non-Zero 

Observations 

Directed Search (%) 1.2% 3.5% 0.0% 36.2% 7.6% 

Non-directed Search (%) 0.4% 1.7% 0.0% 33.3% 4.2% 

Recommendation System (%) 2.0% 3.9% 0.0% 42.9% 5.1% 

 

4.2. Use of Recommendation and Search Tools and the Sales of Niche Products 

We follow the same definition of niche products that is introduced in Section 3.3 (the bottom 50% of 

products), and for each Internet order calculate the unit sales generated by these products. We estimate a 

negative binomial regression model to understand how consumers’ use of recommendation and search 

effects the unit sales of niche products on the Internet. We estimate the following model:  

  
f ( yi | Xi ) =

e−µiµ i
yi

yi !
, yi = 0,1,2,3,...         (3) 

where:  yi  is the unit sales of  the bottom 50% of products;  Xi  is a vector of explanatory variables; 

E(yi | Xi ) = µi = exp(Xiβ + εi ) is the conditional mean;  ε i  is the unobserved heterogeneity that follows 

a log-gamma distribution. The demographic and socioeconomic variables (in natural logs) are used as 

controls for consumer heterogeneity, and the natural log of the total unit sales for each Internet order is 

also added as a control.  The findings are presented in Table 7.  We note that 433 Internet orders (or 3.6% 

of our sample) could not be matched to the server log data. Thus, the number of observations in our 
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sample drops slightly to 11,648.14  The correlation matrix for all of the variables is reported in the Online 

Appendix, Table A1. 

Table 7: Sales of Niche Products and Consumers’ Use of Search and Recommendation Tools 

 Bottom 40%  Bottom 50% Bottom 60%  

Directed Search -0.166 

(0.504) 
-0.606 

(0.406) 
-0.314 

(0.325) 

Non-directed Search 2.605** 

(1.079) 
1.976** 

(0.874) 
2.021*** 

(0.711) 

Recommendation System 1.199** 

(0.493) 
1.386*** 

(0.385) 
0.874*** 

(0.323) 

Population Density 0.006 
(0.014) 

0.010 
(0.011) 

0.004 
(0.009) 

Median Household Income -0.057 
(0.086) 

-0.002 
(0.068) 

0.021 
(0.056) 

Percent with Bachelor’s Degree 0.664 
(0.573) 

0.108 
(0.456) 

0.017 
(0.375) 

Percent Female 2.331 
(1.564) 

1.188 
(1.211) 

0.700 
(0.981) 

Median Age -0.241 
(0.181) 

-0.070 
(0.143) 

-0.065 
(0.117) 

No Demographic Information -0.513 
(1.205) 

0.144 
(0.954) 

0.186 
(0.782) 

Total Unit Sales  1.206*** 

(0.031) 
1.172*** 

(0.024) 
1.174*** 

(0.019) 

Intercept  -2.055** 

(1.203) 
-2.317** 

(0.952) 
-1.956** 

(0.780) 

Pseudo R2 0.108 0.121 0.140 

Sample Size 11,648 11,648 11,648 

The table reports the coefficients when estimating Equation 3 using unit sales of 
products through the Internet channel.  The dependent variable is the units sales of the 
bottom x% of products, where X varies across the three models.   Standard errors are 
in parentheses; ***Significantly different from zero, p < 0.01; ** p < 0.05; * p < 0.10. 
 

The coefficient on Directed Search is not statistically significant, while the coefficients on Non-directed 

Search and Recommendation System are positive and statistically significant. This indicates that 

consumers’ use of the company’s recommendation system and the non-directed search tool both lead to 

                                                
14 Of the 11,648 observations (Internet orders) in our sample, 90 are made by consumers who also purchased from 
the catalog channel during this period. Our results are robust to including or excluding these 90 observations. 



 25 

increased sales of niche products. On the other hand, consumers’ usage of the directed search tool does 

not lead to more demand for niche products.  

4.3. Robustness checks 

The findings in Table 7 survive a wide range of robustness checks. For instance, because the cutoff of 

bottom 50% seems somewhat arbitrary, we replicate our results using the 40% and 60% cutoffs.  These 

results are also reported in Table 7. The coefficients on Non-directed Search and Recommendation System 

remain positive and significant, while the coefficient on Directed Search remains insignificant.  

We also investigated adding additional controls for consumer heterogeneity.  In particular, we included 

the historical Recency, Frequency, and Monetary Value measures as additional control variables. The 

results are very similar to those reported in Table 7.  

Finally, we also tried using the percentage of dollar and unit sales generated by niche products as 

alternative dependent variables.  The pattern of results is again virtually unchanged (these results are 

reported in the Online Appendix, Table A2).  

4.4. Economic Significance 

We can easily assess the marginal effects of the coefficients in Table 7 and whether they are economically 

meaningful. As reported in Table 6, the average of Non-directed Search is 4.2% for consumers who 

engaged in non-directed search. Using the coefficient on Non-directed Searches in the second column of 

Table 7 (1.976), we find that, a change in Non-directed Searches from 0% to 4.2% can increase unit sales 

generated by niche products by 8.3% (calculated as 4.2% of 1.976).15  

Similarly, the average of Recommendation System is 5.1% across consumers who used the 

recommendation system. Using the coefficient on Recommendation System in the second column of Table 

                                                
15 We note that this 8.3% increase in the sales of niche products is obtained when Total Unit Sales is used as a 
control variable. Thus, it represents a shift of sales in the amount of $0.47 million toward niche products from other 
products, given that niche products account for $5.6 million (or 15.2%) of the company’s $37 million annual sales 
on the Internet. 
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7 (1.386), we estimate that, a change in Recommendation System from 0% to 5.1% can increase unit sales 

generated by niche products by 7.1%.   

4.5. Summary  

We conclude that the results in this section are consistent with a shift to a longer tail in Internet channels 

as consumers search more. Use of the recommendation and non-directed search tools are both associated 

with a significant increase in sales of niche products.  In contrast, use of directed search does not lead to 

an increase in sales of niche products.  The difference in the outcomes for directed and non-directed 

search is consistent with the differences in the extent to which the two mechanisms expose customers to 

information about products that were not already in their consideration sets.  While directed search only 

provides information about products that customers were specifically considering, non-directed search 

may present customers with information about a much broader range of products. 

5. Conclusions 

Most markets have traditionally been dominated by a few best-selling products. However, Internet 

markets have the potential to increase the share of sales generated by niche products. Previous research on 

the Internet’s Long Tail phenomenon focuses on a “product availability” explanation: the Internet channel 

has the ability to carry a much larger product selection than traditional retail channels, leading to an 

increase in the sales of niche products and a longer tail in the sales distribution. While increased product 

selection is undoubtedly an important driver of the Long Tail, this paper investigates alternative 

explanations. We control for variation in product availability, and explore whether demand-side factors 

are associated with increased sales of niche products via the Internet.  

First, we present empirical evidence that confirms the existence of the Long Tail on the Internet: the 

Internet channel exhibits a significantly less concentrated sales distribution when compared with the 

catalog channel.  The Internet channel’s Long Tail phenomenon survives even though prices, product 

descriptions and pictures of the products are identical in both channels.  We also ensure that product 
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“availability” is the same in both channels by restricting attention to only those products that are printed 

in catalogs.  

Consumers who purchase from the Internet channel may differ systematically from consumers who 

purchase from the catalog channel.  To control for this selection effect we construct an Internet sample 

that matches our catalog sample on multiple observable dimensions. Our finding that niche products 

generate a larger proportion of sales in the Internet channel than the catalog channel persists when we 

study these two matched samples.  

We believe that lower search costs on the Internet is the most plausible explanation for these empirical 

results. To investigate this explanation further we directly measure consumers’ use of the website’s 

recommendation and search tools. Our analyses indicate that consumers’ use of recommendation and non-

directed search tools contributes to the increase in demand for niche products on the Internet.  Notably, 

this finding does not extend to directed search, apparently because directed search is less likely to present 

customers with information about products that they are not already considering.  We note that these 

recommendation and search tools are unique to the Internet channel. Moreover, the changes we detect are 

not only statistically significant but also economically meaningful.  We note that it is possible sellers use 

search and recommendation tools to bias sales toward niche products.  Thus, while we can rule out 

changes in product selection as a driver of the long tail in our setting, we cannot conclusively attribute the 

shift purely to lower search costs. 

Our results have significant implications for the future evolution of business strategies. As companies 

invest in ever-more sophisticated information technologies that allow consumers to actively and passively 

discover products that they otherwise would not have considered, and as consumers gain more experience 

using these IT-enabled tools, our findings suggest that product sales will become less concentrated. The 

balance will continue to shift from a few best-selling products to niche products that are previously 

difficult to be discovered by consumers. This Long Tail phenomenon could have a profound impact on a 

firm’s product development strategy, operations strategy, and marketing strategy.  
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As consumers use IT-enabled tools to discover niche products that may fit their tastes better than popular 

products, consumers are likely to obtain higher levels of consumer surplus. Although we do not 

specifically measure consumer surplus in this paper, this is an important issue for future research. 

Furthermore, our research shows that more experienced and more loyal consumers tend to have stronger 

tastes for niche products. One likely explanation is that such consumers may have already purchased 

popular products. Future research could study how consumers’ tastes evolve over time as they make more 

and more purchases and whether more experienced and more loyal consumers benefits more from the 

Internet channel and its IT-enabled tools. 

We might expect that consumers with niche tastes would be attracted to firms that not only offer a larger 

selection of niche products but also adopt technologies that make it easier for customers to find these 

products (Brynjolfsson, Hu and Rahman, 2009). In future research it would be interesting to study 

whether Internet firms strategically compete on product selection and the ease of discovering niche 

products. If competition does induce Internet firms to compete on these dimensions, we anticipate that it 

will tend to reinforce the long tail results studied in this paper and lead to even less concentration in 

product sales. 

We use a set of empirical tools that can be readily applied by future researchers to measure and analyze 

the concentration of product sales in other research settings. Moreover, we study an important 

phenomenon that is emerging thanks to the unique capabilities of Internet markets. Because the 

underlying technological drivers are almost certain to continue to progress in advanced economies, the 

implications of these technologies for firm strategies and economic welfare are likely to become 

increasingly important. 
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