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Abstract
MicroRNAs (miRNAs) are 19-22nt non-coding RNAs that post-transcriptionally regulate mRNA
targets. To identify endogenous miRNA binding sites, we performed photo-crosslinking
immunoprecipitation using Ago2 antibodies, followed by deep-sequencing of RNAs (CLIP-seq) in
mouse embryonic stem cells (mESCs). We also performed CLIP-seq in Dicer−/− mESCs that lack
mature miRNAs, allowing us to define whether the association of Ago2 with the identified sites
was miRNA-dependent. A significantly enriched motif, GCACUU, was identified only in wild-
type mESCs in 3′ untranslated and coding regions. This motif matches the seed of a miRNA
family that constitutes ∼68% of the mESC miRNA population. Unexpectedly, a G-rich motif was
enriched in sequences crosslinked to Ago2 in the presence and absence of miRNAs. Expression
analysis and reporter assays confirmed that the seed-related motif confers miRNA-directed
regulation on host mRNAs and that the G-rich motif can modulate this regulation.

miRNAs are key regulators of gene expression in fundamental processes including cell
proliferation, cell death, cell differentiation and cellular responses to the environment1-3.
These short non-coding RNAs guide a ribonucleoprotein complex, containing a member of
the conserved Argonaute (Ago) protein family, to sites predominantly in the 3′UTRs of their
target mRNAs, resulting in the destabilization of the message and/or inhibition of
translation4,5. Biochemical and computational studies have shown that base-pairing
between the “seed” (2nd -7th nucleotide) at the 5′ end of the miRNA and mRNA target is
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important for this regulation in animals6-10. Comparative genomic analysis for miRNA
seed sites in 3′UTRs suggests that miRNAs regulate ∼60% of all mammalian mRNAs11.
Moreover, both comparative genomic analysis and emerging data from a handful of genes
suggest that miRNAs also target coding sequences8,12,13, but the prevalence of this
interaction is unclear. Therefore, recent efforts14-16, including the study presented here,
have aimed at identifying bona fide miRNA binding sites on a genome-wide scale in
samples from whole mouse brain and whole-animal nematodes. However, one challenge of
these studies is to deconvolute the miRNA-target relationships in the mixed cell types from
these samples15,16.

Results
CLIP-seq identified miRNA-dependent and -independent sites crosslinked to Ago2

In this study, we dissect the miRNA-target relationship in a homogeneous cell population –
mouse embryonic stem cells (mESCs) – with defined miRNA characteristics17-19. RNA
tags photo-crosslinked to Ago2 in these cells were isolated by immunoprecipitation and
subjected to deep-sequencing (CLIP-seq)15,16,20,21. Importantly, no RNA species were
detectable by autoradiography in Ago2 immunoprecipitates without crosslinking, suggesting
that cloned RNA tags require crosslinking and thus are in direct association with Ago2 (Fig.
1a and Supplementary Fig. 1a). In addition, we performed a parallel analysis in derivative
mESCs that lacks Dicer and hence mature miRNAs22. Unexpectedly, we identified specific
RNAs crosslinked to Ago2 in Dicer−/− cells (Fig. 1a), indicating that Ago2 can associate
with RNAs in a miRNA-independent manner23,24.

Approximately 24.5M sequenced RNA tags from 3 wild-type mESC libraries representing
two biological replicates (WT1A, WT1B, WT2) and 10.6M tags from two Dicer−/− libraries
(KO1, KO2) were processed and mapped to the mouse genome (Supplementary Methods
and Supplementary Fig. 1b-d). Across all libraries, 79% reads uniquely matched to the
genome, 21% mapped to non-unique locations and 0.05% could not be aligned.

miRNAs crosslinked to Ago2 in mESCs were identified by screening reads with unique and
repeat matches to the genome against non-coding RNA databases (Supplementary Fig. 1e;
Supplementary Methods). Mature miRNAs are significantly enriched, as expected17,18, in
Ago2-crosslinked samples from wild-type cells compared with Dicer−/− cells. The
miR-290∼295 cluster, miR-467 family, and miR-302∼367 cluster (most members share the
AAGUGC seed) represents the largest fraction (∼68%) of the Ago2-crosslinked mature
miRNA population17-19,25 (Fig. 1b and Supplementary Fig. 1e), and the Ago2-CLIP and
whole cell miRNA populations were positively correlated (Fig. 1b). While WT2 library had
more reads mapping to ncRNA and repetitive regions than WT1 libraries, the distribution of
crosslinked miRNAs is similar between the libraries (Supplementary Fig. 1e). The
specificity of CLIP-seq method is shown by the absence of Ago2 crosslinking to the highly
abundant rRNAs (∼0.2%) and tRNAs (∼0.2%).

For each library, the remaining tags that mapped uniquely to 3′UTRs were subjected to a
data processing pipeline that consists of four filtering steps (Fig. 1c and Supplementary
Table 1): First, identical reads were collapsed as a single read to eliminate potential PCR
bias, and overlapping reads were then clustered (Clustering filter, Fig. 1c). 25nt flanking
regions were added to the clusters in case an RNase cleavage separated where the miRNA
bound and Ago2 crosslinked. Clusters were further considered only if they were
significantly enriched over background levels (Normalization filter, Fig. 1c; Supplementary
Methods). Third, to select for a reproducible signal, only the clusters that overlapped with at
least one other cluster from a Normalized biological replicate library were considered
(Multi-Library filter, Fig. 1c). Fourth, the remaining WT clusters that had overlaps with
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clusters from either Normalized Dicer−/− library (Knockout/KO) were removed (Knockout
filter, Fig. 1c). Finally, after removing duplicates from technical replicates WT1A and 1B,
430 clusters in the combined WT libraries (244 in WT1[A+B] and 186 in WT2), of average
length 81nt, passed all four filters. Various sets of clusters from different filtering steps were
then subjected to motif enrichment analysis using two independent approaches.

First, significantly enriched motifs were identified in 3′UTR-mapped clusters from WT and
KO sets independently (Fig. 1d, Supplementary Table 2 for all motif analyses). The motif
discovery tool MEME26 was used to search for significantly enriched motifs of variable
lengths over background (Supplementary Table 2a; Supplementary Methods). We found
significant enrichment for G-rich motifs in clusters from both WT and KO libraries,
suggesting that Ago2 may be associated with G-rich sequences independently of miRNAs.
The G-rich motifs identified independently in WT and KO libraries have an average Pearson
correlation of ∼0.80, suggesting a high degree of similarity between the motifs
(Supplementary Table 3a). Therefore, we defined a consensus G-rich motif by performing
MEME analysis on Ago2-crosslinked clusters that overlapped between WT and KO
libraries. This motif was highly statistically enriched (E-value=2.9 × 10−386) and present in
87% of the common clusters between Normalized WT and KO libraries. Examination of
individual libraries showed that this consensus G-rich motif was present at approximately
equal frequency in sequences crosslinked to Ago2 from wild-type and Dicer−/− mESCs,
again suggesting that its association with Ago2 is miRNA independent (Supplementary
Table 3b).

One of the two significantly enriched miRNA-dependent motifs identified in 3′UTRs was
GCACU[UG] (79 instances from 430 WT clusters). GCACUU (48/79 GCACU[UG] motifs)
is complementary to the seed AAGUGC of several highly expressed miRNA families in
mESCs. The only other statistically enriched miRNA-dependent motif in the selected
clusters was CCAGCC (51 instances). However, unlike GCACUU, this motif is not
complementary to any miRNA sequence with appreciable expression in mESCs.

To independently investigate enrichment of motifs from clusters within each individual
CLIP library (Fig. 1e, Supplementary Fig. 2a, Supplementary Table 2b for top 20 motifs),
we used an enumerative approach that guarantees global optimality by statistical
overrepresentation and avoids the problem of being trapped at local optima inherent in most
general motif-finding algorithms27. Briefly, we measured the statistical significance of the
occurrence of all possible n-mer sequences within each library compared to their occurrence
in sequences drawn randomly given a background distribution. This independent analysis
confirmed the significant enrichment of G-rich hexamers (≥3Gs, red dots, Fig. 1e,

Supplementary Fig. 2a) out of all possible hexamers in WT and KO libraries, as
demonstrated by their high p-values and z-scores at a false discovery rate (FDR) < 0.5%
(Supplementary Methods for derivations). The three hexamers encompassed in the
consensus G-rich motif are amongst the top 7 significantly enriched hexamers in WT and
KO libraries (black circle, Fig. 1e). Enrichment was observed exclusively in WT libraries
for several non-G rich hexamers (blue dots, Fig. 1e), including GCACUU (black dot) and
CCAGCC (light-blue dot). 29 non-G rich hexamers matched to miRNA seeds, but these
miRNAs are associated with Ago2 at a median frequency of 0.003% (p < 0.05;
Supplementary Fig. 1f, Supplementary Table 2b, c). Several other miRNA seed-matching
hexamers occurred with high frequency, but were not observed significantly more than
expected by chance and thus were not further considered (Supplementary Table 2c). The
miRNA-dependent motif GCACUU is one of the top significantly enriched non-G rich
hexamers in all WT libraries, including WT2 that had a lower proportion of 3′UTR-
mapping clusters. The enrichment of GCACUU is particularly apparent after applying the
Knockout filter, where common clusters between WT and KO libraries, many of which
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contain G-rich hexamers (red dots), are removed from the WT set. In effect, the Knockout
filter reveals GCACUU as the most significantly enriched non-G rich hexamer in mESCs
expressing miRNAs (black dot, left-most panel vs. right-most panel Fig. 1e). We also
observed enrichment of 7mers and 8mers containing GCACUU that match the extended
seed region6,8-10 of the AAGUGC-seed family (Supplementary Table 2d).

Sequences mapping to coding sequences (CDS) were also subjected to the same data
processing pipeline, resulting in a set of 197 clusters (106 in WT1[A+B], 91 in WT2). As in
the case of 3′UTR clusters, G-rich motifs were highly significantly enriched by MEME
analysis in CDS clusters from both WT and KO libraries (constituting ∼25% and ∼30% of
clusters, respectively; data not shown). Moreover, GCACUU hexamer was observed in the
CDS clusters from wild-type libraries (22 instances in 197 clusters; Supplementary Table
2a), but not KO libraries. Similarly, in the enumerative analysis of individual libraries, G-
rich hexamers were highly enriched in both WT and KO libraries and GCACUU was
enriched only in WT libraries (Supplementary Fig. 2b, Supplementary Table 2e, 3c). Unlike
3′UTR-mapped clusters, both MEME and enumerative analyses indicated no enrichment for
CCAGCC in the CDS-mapped clusters.

Ago2-CLIP genes exhibit a miRNA-dependent gene expression signature
mRNAs targeted by miRNAs are often destabilized, resulting in a lower abundance of
targeted transcripts in wild-type cells as compared to Dicer−/− cells4,28,29. We used mRNA
expression of two sets of Ago2-CLIP 3′UTR GCACUU transcripts in wild-type and
Dicer−/− mESCs to determine if their stability is miRNA-regulated. These two sets included
the high-confidence “Overlap” set, comprised of 43 genes that passed the Normalization and
Multi-Library filters, and a more inclusive “All” set, comprised of 201 genes that passed the
Normalization filter for any WT library. The log2 fold expression change (LFC) between
wild-type and Dicer−/− mESCs was compared to the LFC of a control set of genes that
lacked the GCACUU-motif. The Ago2-CLIP 3′UTR GCACUU-motif genes from both
“Overlap” and “All” sets showed significantly more downregulation in wild-type mESCs
relative to Dicer−/− mESCs, as compared to the control gene set (Fig. 2a-d; Supplementary
Table 4 for statistics and Supplementary Table 5 for gene lists). These results independently
support that these mRNAs physically bound to Ago2 are in vivo miRNA targets in mESCs.

Given that miRNA-dependent changes in mRNA expression have previously been shown
for high-confidence predicted targets based on computational analysis of conservation and
context around the seed site (TargetScan 5.18,11,30), the properties of these predicted
targets of the AAGUGC seed-related family were compared with the mRNAs identified by
Ago2-CLIP. Comparison of expression levels in wild-type mESCs of Ago2-CLIP genes and
predicted targets showed that the Ago2-CLIP 3′UTR GCACUU-motif genes tend to be
more highly expressed (Supplementary Fig. 3). This is not surprising, as biochemical
enrichment protocols tend to more effectively sample highly expressed genes.

To further compare properties of the predicted targets and CLIP-identified mRNAs other
than expression level, two expression-matched and 3′UTR length-matched sets of predicted
targets for the AAGUGC-seed family were generated. The first set, “All predicted targets”,
contains 799 TargetScan GCACUU-containing predicted targets. Compared with this
predicted set, both Ago2-CLIP “Overlap” and “All” gene sets have significantly greater
miRNA-dependent changes in expression (Fig. 2a and 2c), suggesting that the CLIP-
identified mRNAs possess features in addition to the miRNA seed match requirement.

To assess the importance of conservation and context around the seed site, we created two
gene sets (“Conserved predicted targets”) containing the highest-confidence
bioinformatically predicted targets, which are first ranked by branch length (i.e.
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conservation), then by context score (scored combinatorially by its site-type, 3′pairing, local
AU content, and position within the 3′UTR8,11) (Fig. 2b, d). These two sets were
comparable to the corresponding Ago2-CLIP “Overlap” and “All” sets in terms of gene
number, expression level, and 3′UTR length. No statistically significant difference in
miRNA-dependent gene expression change was observed between the Ago2-CLIP
“Overlap” gene set and the “All” gene set and their corresponding “Conserved predicted
targets” sets (Fig. 2a, c). Yet, the CLIP-identified GCACUU sites from the “Overlap” and
“All” sets are generally less conserved and surrounded by a relatively less favorable
sequence context than the “Conserved predicted targets” (Fig. 2b, d; Supplementary Table
4d-f). Taken together, our results suggest that the “All” set and the smaller “Overlap” gene
sets represent high confidence sets of miRNA-regulated mRNAs and that there are factors,
besides conservation and context around the GCACUU seed motif, that govern which sites
miRNAs target and/or are bound by Ago2 in mESCs.

We also sought to determine whether the GCACUU-motifs identified in CDS were
associated with a miRNA-dependent gene expression signature. To this end, expression of
Normalization filtered Ago2-CLIP CDS GCACUU-motif genes from all WT libraries
(excluding those with GCACUU in the 3′UTR) was compared to a set of controls that lacks
GCACUU in the CDS. The 80 Ago2-CLIP CDS GCACUU-motif genes showed miRNA-
dependent downregulation in mRNA expression compared with the control set (Fig. 2e).
Interestingly, other expression-matched CDS GCACUU-motif genes (“Predicted set”, Fig.
2e) showed a similar profile as the Ago2-CLIP identified set and a significant
downregulation compared with the control. This indicates that the presence of the GCACUU
motif in CDS, as in the case of 3′UTR, is associated with a miRNA-dependent gene
expression signature8,12.

The expression profile difference between wild-type and Dicer−/− mESCs was further
examined for genes with the G-rich motif, whose association with Ago2 appears to be
miRNA-independent, and with the CCAGCC motif, whose association with Ago2 might be
miRNA-dependent. Neither the G-rich motif nor the CCAGCC motif is complementary to
any miRNA sequence with appreciable expression in mESCs. We compared those
CCAGCC-containing genes that passed the Normalization filter (excluding those containing
GCACUU) with expression-matched sets of all mouse genes that do not contain CCAGCC
(control) in the 3′UTR (Fig. 2f). Surprisingly, we observed a significant downregulation of
gene expression for the CCAGCC-containing genes in wild-type mESCs relative to Dicer−/−

mESCs. This expression difference appears to be specific to those Ago2-CLIP CCAGCC-
containing mRNAs as other mRNAs containing CCAGCC did not have a similar change
(“Predicted set” in Supplementary Fig. 4). For the G-rich motif from Fig. 1d, we compared
the expression change for Ago2-CLIP genes that contain matches to this motif, but lack
GCACUU in their 3′UTRs, and passed the Normalization and Multi-library filters (Fig. 2f)
with a set of 3′UTRs randomly chosen from the mouse genome that was matched for
expression level, dinucleotide CG composition, and 3′UTR length. As is the case for
GCACUU- and CCAGCC-containing genes, a significant increase in gene expression was
observed upon deletion of Dicer for these G-motif containing genes identified by Ago2-
CLIP. Such observed change could be due to the presence of other miRNA seed matches in
the 3′UTRs of Ago2-CLIP G-rich motif genes. However, excluding those G-rich motif
genes harboring seed matches to abundant mESC miRNAs did not affect the aggregate gene
expression change of the G-rich motif gene set (Supplementary Fig. 4).

Interestingly, the degrees of change in mRNA expression observed for G-motif or CCAGCC
containing genes were not significantly different from those observed for the Ago2-CLIP
GCACUU-motif genes (Fig. 2f) and their expression-matched predicted GCACUU set (cf.
Fig. 2a). Correlated with this, previous data suggests that the effect of miRNAs can be
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mimicked by miRNA-independent tethering of Argonaute proteins to reporter mRNAs31,32.
Thus, the observed miRNA-dependent expression changes for Ago2-CLIP genes could be
due to the close proximity between Ago2 and the crosslinked mRNA targets.

GCACUU-containing clusters are sufficient to confer miRNA-mediated repression
Next, we sought to determine whether the GCACUU-containing regions that crosslinked to
Ago2 are sufficient to confer miRNA-dependent repression on luciferase reporter transgenes
in the presence of endogenous levels of the corresponding miRNAs. Since only four
genes33-36 have been validated as GCACUU seed match targets in mESCs, it was difficult
to evaluate our dataset with the existing literature. Instead, the ∼80nt Ago2-CLIP cluster
sequence was inserted into the 3′UTR of luciferase and the expression of this construct was
compared to an equivalent construct with the GCACUU motif mutated to CCUCAU. The
ratio of wild-type to mutant construct expression was evaluated in 3 cellular states: (1) wild-
type (endogenous miRNA levels), (2) Dicer−/− mESCs (no mature miRNAs) and (3)
Dicer−/− mESCs transfected with a miR-295 mimic, as illustrated in Fig. 3a. In each cellular
state, the relative repression was calculated by normalizing to the ratio in Dicer−/− cells. We
found that 8 out of 8 Ago2-CLIP 3′UTR GCACUU-motifs showed significant miRNA-
dependent repression in wild-type cells but not in Dicer−/− cells (Fig. 3b). However, the
repression in Dicer−/− cells was restored by addition of a miR-295 mimic, suggesting that a
member from this mESC-specific miRNA cluster (with AAGUGC seed) is sufficient to
provide the specificity for such regulation. Additionally, Ago2-CLIP-identified binding sites
were present in three genes that have previously been shown to be regulated by the
AAGUGC-related miRNA family (E2f137, Pten38, Cdkn1a33). These data show that the
Ago2-CLIP 3′UTR-bearing GCACUU-motif sites are indeed endogenous targets for direct
regulation by miRNAs in mESCs and the short fragment of ∼80nt containing such sites is
sufficient to confer mESC-specific miRNA-mediated repression through miR-290∼295.

To determine whether the Ago2-CLIP CDS GCACUU-motif sites are sufficient for miRNA
regulation, we inserted the CDS cluster sequence (∼80nt), or a seed mutant equivalent, in
the 3′UTR of luciferase. 7 out of 8 clusters containing CDS GCACUU-motifs conferred
downregulation on the luciferase reporter (Fig. 3c), suggesting that these sequences are
recognized by the endogenous miRNA machinery even in the heterologous context of the
3′UTR.

miRNA regulation can be modulated by G-rich motifs associated with Ago2
The enrichment of the G-rich motif in Ago2-CLIP sequences from both wild-type and
Dicer−/− mESCs (Fig. 1d) suggests that it is likely a miRNA-independent binding site for
Ago2. This binding preference has not previously been described for Ago2, so we used an
independent method to confirm the miRNA-independent association of Ago2 with the set of
the G-rich motif containing mRNAs. We transfected Dicer−/− mESCs with an HA-tagged
Ago2 construct, immunoprecipitated Ago2 by anti-HA antibodies, isolated the bound
mRNA, and hybridized it to Affymetrix microarrays. We also performed microarray
analysis on total RNA from Dicer−/− mESCs. The enrichment of mRNAs in the Ago2-IP
was determined by comparing expression values between Ago2-IP and total RNA. We then
determined whether the set of genes enriched in the Ago2-IP from Dicer−/− mESCs
significantly overlapped with the sets of Ago2-CLIP G-motif containing genes. We found
that 1.6-2.1 fold more genes overlapped between the Ago2-IP set and the Ago2-CLIP G-
motif set than expected by chance (Supplementary Table 6a). These data support the
observation that the G-motif containing genes identified by Ago2-CLIP are likely bound to
Ago2 or its associated protein complex in a miRNA-independent manner in mESCs.

Leung et al. Page 6

Nat Struct Mol Biol. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We previously determined that the CLIP-identified 3′UTR GCACUU mRNAs have a
miRNA-dependent expression change comparable to the high-confidence predicted targets,
despite being less conserved and in a less favorable sequence context (Fig. 2a-d). To explore
whether the G-motif is a feature in these sequences that can contribute to miRNA-dependent
regulation, we focused on a new miRNA target, Txnip, identified in this study. We validated
this target by demonstrating both its endogenous mRNA and protein levels are regulated by
Dicer in mESCs (Fig. 4a), similarly to previously validated miR-290∼295 target, Cdkn1a33.
One of the Ago2-CLIP clusters identified in Txnip was amongst the most repressed in our
3′UTR luciferase assay (Fig. 3b). This provides a good range of sensitivity to test whether
neighboring G-rich motifs affect the miRNA-dependent activity of GCACUU seed sites
(Fig. 4b).

The relationship between this G-rich motif and seed-motif was investigated as in Fig. 3
using the following luciferase constructs: (1) the WT cluster, (2) with GCACUU seed motif
mutated to CCUCAU, (3) a mutant G-rich motif where all Gs are mutated to Cs (not to alter
AU content8,10), (4) or both motifs being mutated. For Txnip “A” cluster, repression was
the strongest with wild-type GCACUU seed motif and G-motif (Fig. 4c). Interestingly, the
repression was relieved by 50% when the G-motif was mutated (Fig. 4c). However, in the
absence of GCACUU, the presence of G motif alone did not confer repression (Fig. 4c). We
extended this analysis by investigating the contributions of G-rich motifs to miRNA-
dependent repression in another cluster from Txnip, Txnip “B”, (Fig. 4d) and a cluster from
Ei24 (Fig. 4e). These clusters each have multiple G-rich motifs; mutation of each G-rich
motif individually has varying impact on repression by the GCACUU seed site, with
deletion of all G-rich motifs having the greatest effect on repression (Fig. 4f). Similar loss of
miRNA-dependent repression was also observed when the G-rich motif of Txnip “A” cluster
and Ei24 cluster is deleted (Supplementary Fig. 5a). Taken together, these data suggest that
the G-rich motif is important for the full activity of the miRNA seed site, but does not
contribute activity in the absence of the miRNA seed site.

Given that the CLIP-identified G-rich motif modulated the miRNA-mediated repression in
the three clusters examined, we further investigated the general features of this motif,
including its composition, conservation, and location within the Ago2-associated sequence.
We searched for enrichment of shorter motifs in the 3′UTR clusters and found that the
original 8mer G motif is comprised of enriched G-rich 4mers and 5mers (Supplementary
Fig. 5b). Next, we analyzed the conservation of the 8mer G-motif. We determined an
average conservation score for all G motifs based on the phastCons conservation39 of each
nucleotide within the motifs and compared with a background set of 8mers (Supplementary
Methods). We found that G-motifs are generally more conserved than random sequences
(p<1E-06) (Fig. 4g). We also analyzed nucleotide positional conservation of an alignment of
G-motifs with 10 nt flanks at either end. The level of conservation decreased immediately
after the 3′end of the motif whereas the higher level of conservation persists in the 10 nt 5′
of the motif (Supplementary Fig. 5c). Interestingly, further MEME analyses suggest that the
8mer G-motif is likely embedded in an extended G-motif (Supplementary Fig. 5b). The
excess conservation observed for G-motifs was true for all 3′UTR clusters, including those
lacking the GCACUU motif (Supplementary Fig. 5d). Thus, the excess conservation of the
G-motif is not a bystander effect from being near this particular miRNA seed match, but
rather the G-motif has attributes of a functional regulatory element40.

Another common feature of this G-motif is that it tends to be present in the 5′ half of the
sequence that is crosslinked to Ago2 (Supplementary Fig. 5e-f). In contrast, there is no
positional bias for the GCACUU motif (Supplementary Fig. 5f). In cases where both motifs
are present in the Ago2-CLIP sequences, there are no biases as to whether the G-motif is 5′
or 3′ of the GCACUU motif (data not shown). The activity of the examined G-motifs is
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independent of its location relative to GCACUU (c.f. Fig. 4b, d-e), suggesting that the
vicinity, rather than the directionality, is important for modulating miRNA repression.

Discussion
Photo-crosslinking followed by Ago2 immunoprecipitation, Ago2-CLIP, was used to
identify miRNA binding sites in mESCs. We found significantly enriched motifs in 3′UTRs
and CDS that correspond to miRNA seed matches, representing 201 and 103 potential
mESC miRNA targets in 3′UTRs and CDS, respectively. In regards to the latter point, this
study is in agreement with other studies that the presence of miRNA binding sites in CDS is
more widespread than has been previously considered and nearly as prevalent as in
3′UTRs14-16. Here we provided gene expression data suggesting that these CDS sites
regulate mRNA stability much like 3′UTR sites. Moreover, these sites can be recognized by
miRNAs at endogenous expression levels and confer repression in a heterologous
3′UTR8,13,41,42.

Two other Ago-CLIP studies have identified potential miRNA targets in mammalian cells
and tissue. Our study differs from those by analyzing mRNAs associated with endogenous
Ago2 in a mostly homogenous cell population of mESCs, whereas Chi et al.15 performed
CLIP on brain extracts using endogenous Ago antibodies and Hafner et al.14 performed
CLIP in 293 cells using HA-tagged Ago1-4 and crosslinking by a photoactivatable
nucleotide. Independently of the variations in the CLIP technique and data analysis, these
studies, as well as our studies, identified similar numbers of targets for each miRNA seed
family (several hundred), which is comparable to the number of moderately conserved
targets predicted for each miRNA seed family by TargetScan11 (Supplementary Notes for
cross-comparison with other CLIP datasets).

There are several previously published reports of miRNA-regulated mRNAs in mESCs that
we could compare to the Ago2-CLIP 3′UTR GCACUU-containing genes35, 43. Only
miR-294 (member of AAGUGC seed family) regulated mRNAs described by Melton et al.
43 showed significant overlap with the Ago2-CLIP 3′UTR GCACUU-containing mRNAs
(Supplementary Table 6b for all comparisons).

Unlike other cell types, including those used in other Ago2-CLIP studies14,44, mESCs
appear to be dominated by a single miRNA seed family that is probably responsible for most
of the miRNA regulation in this cell type. Essentially all of the GCACUU-motif containing
CLIP 3′UTR clusters conferred miRNA-dependent regulation when tested in luciferase
reporter assays in the presence of endogenous levels of miRNAs. This suggests that the
stringency of our filtering criteria resulted in selection of a high confidence set of
GCACUU-containing mRNAs that most likely are bona fide miRNA targets in mESCs.
Previous studies have already shown that this miRNA family plays important roles in
mESCs, including maintaining pluripotency, self-renewal and cell cycle control33-35,43,45.
But, few targets have been identified and validated. This study identifying a few hundred
new miRNA targets by Ago2-CLIP is a significant step in the exploration of this biology.

To understand the extent of miRNA-regulated pathways represented by the Ago2-CLIP
3′UTR GCACUU-motif genes (“All” set, 201 genes), we performed pathway enrichment
analysis (Supplementary Methods) and compared this set with the top 201 “Conserved
predicted targets” and all mRNAs expressed in mESCs that contain GCACUU hexamer in
the 3′UTR (“All predicted targets”, 2969 genes). 37 and 11 pathways were significantly
enriched in the CLIP and “Conserved predicted targets” sets, respectively (Supplementary
Figure 6a and Supplementary Table 7). The pathways significantly enriched in CLIP
included “Early S-phase” (4 genes), a pathway in which miR-290∼295 has been previously
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implicated33, and “TGF-beta receptor signaling” (5 genes), a pathway where miR-290∼295
has not been implicated.

The genes identified by Ago2-CLIP in “TGF-beta receptor signaling” pathway (p-value
0.013) include two intracellular pathway inhibitors, the cytoplasm-localized Smad7 and the
nucleus-localized Skil, and an extracellular inhibitor, Lefty146. Our reporter assay
confirmed that these 3 genes are indeed targeted by miR-295 (Supplementary Fig. 6b). We
extended this analysis to Lefty2, a gene that was not identified in the CLIP results, but is
homologous to Lefty1 and contains the GCACUU hexamer, and showed that it is also
targeted by miR-295 (Supplementary Fig. 6b). Correlated with this, miR-302 and miR-430,
which are related in miRNA seed to miR-290∼295, have been shown, respectively, in
human ESCs47 and zebrafish embryos48 to regulate differentiation through targeting Lefty
homologs. Here using a genome-wide approach, we found that the miR-290∼295 regulates
not only the extracellular Lefty homologs, but also additional inhibitory nodes of the TGF-
beta pathway localized in different cellular compartments (Supplementary Fig. 6c). This
coordinate inhibition, as observed for other miRNAs49-51, might confer robustness in this
signaling network.

We unexpectedly identified a G-rich motif in most of the sequences associated with Ago2
regardless of the miRNA status in the cell. We believe this is a true biological association,
rather than a technical artifact, based on the following observations. First, this motif is
conserved above the general 3′UTR background even when matched for sequence content.
Second, the genes containing this G-rich motif have significant overlap with the set of genes
enriched in HA-tagged Ago2 immunoprecipitates from Dicer−/− mESCs. Third, we only
observe G bias in genic sequences, and not miRNA or intergenic sequences crosslinked to
Ago2. Lastly, the enrichment of G residues is not likely due to CLIP itself as there are no
described G biases in the literature for any of the steps involved (Supplementary Notes for
further discussion).

Yet it remains unclear whether crosslinking to this G-rich sequence is due to Ago2 itself or a
binding partner of Ago2. Given that UV-crosslinking forms covalent bonds between protein
and RNA that are within angstroms, a potential binding partner would have to be in close
proximity to Ago2 and the mRNA target. Indeed, several proteins that co-immunoprecipitate
with Ago2 have binding preference for G-rich sequences, including HNRNP-H and
FMRP52-54, although we only observed one Ago2-dependent RNAprotein complex close to
the molecular weight of native Ago2 in the CLIP procedure. Alternatively, Ago2 itself could
have a previously unidentified preference for binding G-rich sequences. In either case, when
a G-rich sequence occurs near a miRNA binding site, it could give the Ago2/miRNA
complexes a higher affinity for this region and thus lead to increased probability that the
mRNA is targeted for degradation and/or inhibition of translation. In three cases examined,
this G-rich motif modulates the level of miRNA-dependent regulation by the miR-290∼295-
related seed motif, but imparts no regulation by itself. Therefore, identification of this
association indicates the value of Ago2-CLIP data from Dicer−/− mESCs as an invaluable
background in delineating bona fide microRNA targets.

Methods
Methods and any associated references are available in the online version of the paper at
http://www.nature.com/nsmb/

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of miRNA-dependent and –independent motifs associated with Ago2
(a) Autoradiograph of 32P-labeled RNA from Ago2 complexes immunoprecipitated from
Dicer−/− mESCs, WT mESCs and WT mESCs without UV crosslinking. Bracketed area
indicates the region of the blot that was excised and analyzed; arrow indicates where
endogenous Ago2 migrates. (b) Log plot of mature miRNA cloning frequency in the WT1A
Ago2-CLIP library vs. whole cell miRNA from wild-type mESCs (Pearson coefficient r =
0.63; Spearman coefficient ρ = 0.86). (c) Data processing pipeline. After preprocessing for
linker matching and stripping, and subsequently mapping to the mouse genome, Ago2-CLIP
sequence reads were subjected to the filtering steps as described in the text (Supplementary
Methods and Supplementary Table 1 for more details). WT reads were subjected to all 4
filters, KO reads were subjected to first 3 filters, Clustering, Normalization, and Multi-
Library (KO1,KO2 overlaps). (d) Sequence logos and statistics of the top three significantly
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enriched motifs derived from motif analysis of Ago2-CLIP 3′UTR-mapping clusters using
the motif tool MEME (Supplementary Methods for details). The number of sites containing
each motif out of the number of clusters examined is as indicated. In the heatmap, red
indicates significant enrichment (E < 1 × 10-5 cutoff) and blue indicates not significantly
enriched in either the WT or KO libraries. The G-rich motif (far left) was highly enriched in
all libraries analyzed, and the representative consensus sequence was taken from MEME
analysis (width 4-8) on Normalized KO1 clusters that had overlaps with clusters from any
Normalized WT library. The GCACU[UG] motif (middle) and CC[AG]GCC (far right)
were significantly enriched by MEME analysis (width 6) in only the 430 clusters that passed
all 4 filters in the combined wild-type libraries and not in the Ago2-CLIP 3′UTR clusters
from any Normalized KO library. There were 48 instances of GCACUU and 31 instances of
GCACUG represented in the GCACU[UG] motif. (e) Hexamer enrichment analysis by
statistical overrepresentation within individual libraries, using an enumerative approach
(Supplementary Methods). From left to right: Normalized and Multi-library filtered Ago2-
CLIP WT1A (WT), Normalized and Multi-library filtered Ago2-CLIP KO2 (KO), and
Normalized, Multi-library and Knockout filtered Ago2-CLIP WT1A (WT-KO). Refer to
Supplementary Fig. 2 for hexamer enrichment analyses in other libraries. Two measures of
significance are plotted: The X axis shows the z-score, which is a measure of the number of
standard deviations the observed frequency of a hexamer exceeds its expectation. The Y axis
is the negative log10 p-value (two-sided Fisher's exact test) of the hexamer enrichment above
background. All hexamers with a false discovery rate (FDR) ≥ 0.5% are in grey and not
considered as significantly enriched. Significantly enriched hexamers (FDR < 0.5%) are
classified into two types: G-rich (≥3Gs, red) and non-G-rich (blue). Those hexamers that
match the consensus G-rich motif derived from MEME analysis are circled. Hexamers only
significantly enriched in WT are GCACUU (black dots) and CCAGCC (light blue dot).
Note the change in scale for the far right plot.
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Figure 2. Ago2-CLIP genes exhibit a miRNA-dependent gene expression signature
(a, c, e, f) CDFs (cumulative density functions) of the log2 fold change (LFC) in mRNA
expression between the wild-type (WT) and Dicer−/− (KO) mESCs. Fold change is ratio of
expression level in WT cells to expression level in KO cells, such that a CDF with a more
negative LFC compared to another CDF indicates that the distribution has lower mRNA
expression in wild-type mESCs relative to Dicer−/− mESCs (i.e. population includes
mRNAs that are more downregulated in presence of miRNAs). Refer to Supplementary
Table 4 for detailed descriptions on statistics and Supplementary Table 5 for gene lists. (b,
d) Box plots of branch lengths (top), i.e. “Conservation”, and “Context” scores (bottom)
computed by TargetScan 5.1. (a-d) Gene sets include: Ago2-CLIP 3′ UTR GCACUU-motif
mRNAs (blue) that passed the Normalization and Multi-Library filters (a-b, “Overlap”) or
just the Normalization filter (c-d, “All”) in any WT library; “Conserved predicted”
expression-matched TargetScan GCACUU targets (dark pink), ranked by branch length (i.e.
conservation), then by context score (a, Top-ranked 43 genes; c, Top-ranked 201 genes);
“All predicted” expression-matched TargetScan GCACUU targets (light pink, 1469 genes);
and “Control” mRNAs (grey). (e) Gene sets include: Ago2-CLIP CDS GCACUU-
containing mRNAs that passed the Normalization filter in any WT library (“CLIP”, blue),
“Predicted” GCACUU-containing CDS mRNAs (pink) that were expression-matched to the
“CLIP” set but lacked GCACUU in their 3′UTRs, and matched “control” mRNAs (grey).
(f) Gene sets include: Ago2-CLIP 3′ UTR GCACUU-containing (blue) and G-motif-
containing mRNAs (red) that passed the Normalization and Multi-Library filters in WT
libraries, Ago2-CLIP 3′UTR CCAGCC-containing mRNAs (orange) that passed the
Normalization filter in at least one WT library, and corresponding matched controls (grey).
Any mRNAs with GCACUU in the 3′UTR or CDS were removed from the “G-motif” and
“CCAGCC” sets. Error bar is SD.
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Figure 3. Ago2-CLIP identified GCACUU-motif containing cluster is sufficient to confer
miR-295-mediated repression
Box plots of relative activity of Renilla luciferase transgenes bearing CLIP clusters plus 25nt
flanking regions in the 3′UTR. All raw Renilla luciferase values are normalized first to
values from Firefly luciferase transfection control. Error bars are S.D. (a) Exemplary plot of
a luciferase reporter assay testing an Ago2-CLIP 3′UTR cluster, Slc31a1 plus 25nt flanking
regions at both ends. Shown are box plots for the ratio of the expression level of a luciferase
reporter containing a wild-type Slc31a1 CLIP cluster in its 3′UTR to an identical luciferase
reporter where the GCACUU seed was mutated to CCUCAU. This ratio is defined as “WT/
Seed Mutant Activity” and calculated in three different cellular states: Dicer−/− mESCs
(black), wild-type mESCs (white), and Dicer−/− mESCs transfected with miR-295 mimic
(grey). For panels b-c, “Relative Luciferase Activity” is defined as “WT/Seed mutant
activity” in specific cellular state normalized to the corresponding value in Dicer−/− mESCs.
Genes that passed both the Normalization and Multi-library filters (i.e. “Overlap” set) are
marked with an asterisk. All remaining genes passed the Normalization filter in one WT
library. All box plots are from at least 3 independent experiments. (b) Relative luciferase
activity of CLIP-identified 3′UTR clusters plus 25nt flanking regions in wild-type mESCs
(grey) or Dicer−/− mESCs transfected with miR-295 mimic (white). Relative luciferase
activity is significantly less than one in all genes examined (p<0.05, two-tailed paired t-test).
(c) Relative luciferase activity of CLIP-identified CDS clusters plus 25nt flanking regions in
wild-type mESCs (grey) or Dicer−/− mESCs transfected with miR-295 mimic (white). Herc1
and Eif2c2 each have two GCACUU motifs. Relative luciferase activity is significantly less
than one for all genes examined except Tnrc6a (p<0.05, two-tailed paired t-test).
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Figure 4. G-rich motif modulates miRNA-mediated repression
(a) Western blot of GCACUU-containing targets, Txnip and Cdkn1a, in wild-type mESCs
(WT), Dicer−/− mESCs (KO) (left panel), and Dicer−/− mESCs transfected with miR-295
mimic at different concentrations (nM), 0 (control), 10, 100 (right panel). Tubulin loading
control and Dicer genotype control are also shown. (b, d, e) Genomic schematic of Ago2-
CLIP 3′UTR mapping clusters. The following features are depicted: the Ago2-CLIP cluster
sequence (thick black bar) with flanking regions (thin black bar), 8mer G-rich motif(s) in the
cluster (green bar and sequence in green to the right; Supplementary Methods for details),
predicted miR-290∼295 cluster GCACUU binding site (purple) using multiple algorithms
including TargetScan 5.111 and PITA55, UCSC genome browser 30-Way Mammalian
Multiz alignment and conservation39,56 (blue, heights indicate degree of conservation at
aligned position). Clusters depicted are Txnip “A” (b) and “B” (d) clusters from Txnip
3′UTR, and Ei24 cluster (e) from Ei24 3′UTR. All G-rich motifs shown match a consensus
G-rich motif p<0.05, Supplementary Methods for details. (c) Mutation of the Txnip “A” G-
rich motif reduces GCACUU seed-mediated repression. Luciferase reporter constructs were
created as in Fig. 3, using an Ago2-CLIP cluster, plus 25nt flanking regions, from the Txnip
3′UTR. Along with the GCACUU seed mutant construct, a G-motif mutant construct with
all the Gs in the G-motif changed to Cs as well as a construct with both the seed and G motif
mutated were created. The presence or absence of an intact GCACUU seed match or G-
motif in the construct is indicated by + (WT) or - (mutated). Relative luciferase activity was
calculated similarly as in Fig. 3 as the expression level of each indicated construct relative to
the seed(-) G-motif(-) double mutant construct in either wild-type mESCs (WT) (left, blue)
or Dicer−/− mESCs transfected with miR-295 mimic (right, green), normalized to the same
ratio in Dicer−/− mESCs (KO). Values shown are averages of three independent experiments
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and p-values < 0.05 were deemed significant and marked as asterisk. (f) Mutation of G-rich
motifs in Ago2-CLIP clusters reduces repression conferred by three independent miR-290
family seed sites. Similar data as in c but plotting the amount of seed-mediated repression on
the luciferase reporter in the presence (+) or absence (-) of the G-motif in either wild-type
mESCs (WT) (blue) or Dicer−/− mESCs transfected with miR-295 mimic (green),
normalized to the same ratio in Dicer−/− mESCs (KO). 100% Full seed repression was set as
one minus the ratio of the expression levels of the WT construct to the seed mutant construct
(G motif +). The % full seed repression in the absence of the G-motif was calculated as one
minus the ratio of the expression levels of the G-motif mutant construct to seed mutant, G-
motif mutant construct (G-motif -) as a percent of 100% full seed repression (as described
above). For Txnip “B” and Ei24 clusters, the G-motifs “+” or “-” correspond to same motifs
shown left to right in the schematics (d) and (e). Values shown are averages of three
independent experiments and p-values < 0.05 were deemed significant and marked as
asterisk. (g) Average phastCons score was determined for each G-motif (match score > 0,
data for Normalized Ago2-WT1A shown in black) along with a constrained background set
of random 8mers drawn from annotated mouse 3′UTRs (grey) (Supplementary Methods for
explanation of background derivation). On the X axis are bins for phastCons score cutoffs,
≥0.25, ≥0.50, ≥0.75 and ≥0.90. On the Y axis is the percentage of total G-motifs or random
8mers that are in each phastCons score cutoff bin. Ago2-CLIP G-motifs are on average more
conserved than random 8mers (p-values as indicated, Fisher's exact test). Error bar is SD.
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