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Abstract  27 

DnaA is a AAA+ ATPase and the conserved replication initiator in bacteria. Bacteria control 28 

the timing of replication initiation by regulating the activity of DnaA. DnaA binds to multiple 29 

sites in the origin of replication (oriC) and is required for recruitment of proteins needed to load 30 

the replicative helicase. DnaA also binds to other chromosomal regions and functions as a 31 

transcription factor at some of these sites. Bacillus subtilis DnaD is needed during replication 32 

initiation for assembly of the replicative helicase at oriC and during replication restart at stalled 33 

replication forks. DnaD associates with DnaA at oriC and at other chromosomal regions bound 34 

by DnaA. Using purified proteins, we found that DnaD inhibited the ability of DnaA to bind 35 

cooperatively to DNA and caused a decrease in the apparent dissociation constant. These effects 36 

of DnaD were independent of the ability of DnaA to bind or hydrolyze ATP. Other proteins 37 

known to regulate B. subtilis DnaA also affect DNA binding, whereas much of the regulation of 38 

E. coli DnaA affects nucleotide hydrolysis or exchange. We found that the rate of nucleotide 39 

exchange for B. subtilis DnaA was rapid and not affected by DnaD. The rapid exchange is 40 

similar to that of Staphylococcus aureus DnaA and in contrast to the slow exchange rate of 41 

Escherichia coli DnaA. We suggest that organisms in which DnaA has a rapid rate of nucleotide 42 

exchange predominantly regulate the DNA binding activity of DnaA and those with slow rates of 43 

exchange regulate hydrolysis and exchange.  44 

 45 

 46 

47 
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Introduction 48 

Accurate and complete replication of DNA is essential for the propagation of genomic 49 

information. DNA replication in bacteria initiates from a single origin of replication (oriC) and 50 

depends on the conserved AAA+ ATPase DnaA (reviewed in 13, 25, 27, 29, 35, 45). DnaA 51 

binds both ATP and ADP, and DnaA-ATP is required for replication initiation (2, 17, 33, 47, 52 

57). The ATP bound form of DnaA forms oligomers that are important for promoting replication 53 

initiation (14, 18, 35, 41, 58). DnaA-ATP binds to sites in oriC and promotes the unwinding of 54 

the DNA Unwinding Element (DUE), which serves as a platform for assembly of the replicative 55 

helicase and the rest of the replication machinery. Wherever examined, the nucleotide bound 56 

state of DnaA controls its activity (e.g., 39, 42, 57, 63), and this can be affected by factors that 57 

alter nucleotide hydrolysis and exchange (16, 26, 28, 64). The rate of nucleotide exchange for 58 

purified E. coli DnaA is relatively slow, with a half-life of 45 min (57). This slow inherent rate 59 

of exchange enables the modulation of DnaA activity by factors that stimulate the rate of 60 

nucleotide hydrolysis and/or exchange (11, 16, 26, 64).  61 

In contrast to the widespread conservation of DnaA, other proteins required for replication 62 

initiation are less conserved. For example, steps involved in loading the replicative helicase at 63 

oriC are different between E. coli and Bacillus subtilis. In B. subtilis and other low G+C Gram 64 

positive bacteria, helicase loading requires the essential primosomal proteins DnaD, DnaB, and 65 

DnaI, in addition to DnaA (5-8, 12, 36, 37, 54, 59, 62, 65). DnaD is associated with oriC and this 66 

association depends on DnaA (54, 59). Association of DnaB with oriC depends on DnaD, and 67 

finally, DnaI-mediated assembly of the helicase at oriC depends on DnaB. DnaD and DnaB bind 68 

both double and single stranded DNA, which may help stabilize opening up of the origin of 69 

replication (7, 38, 68).  70 
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In addition to binding to sites in oriC, B. subtilis DnaA binds to sites in chromosomal regions 71 

outside of oriC (4, 20, 24). DnaA functions as a transcription factor at some of these secondary 72 

binding regions (4, 9, 20, 24). Where tested, DnaD and DnaB are also found associated with 73 

these secondary DnaA binding regions, and this association depends on DnaA (60). However, in 74 

contrast to oriC, these secondary DnaA-binding regions do not function as origins of replication 75 

and there is no indication that they are capable of loading the replicative helicase (60).  76 

Because of the association of DnaD with DnaA at multiple regions throughout the 77 

chromosome, we hypothesized that DnaD modulates the activity of DnaA. Some factors that 78 

affect the activity of DnaA, predominantly in E. coli, are known to alter its nucleotide-bound 79 

state (16, 26, 64). In contrast, regulators of B. subtilis DnaA, (e.g., YabA, Soj, and SirA) are 80 

known to alter its DNA binding properties (40, 53, 55, 66). Using purified proteins, we tested for 81 

effects of DnaD on both the ability of DnaA to bind DNA and on nucleotide exchange.  82 

We found that the rate of nucleotide exchange for B. subtilis DnaA was relatively rapid, 83 

similar to that of DnaA from Staphylococcus aureus (32), and in contrast to the slow rate of 84 

exchange for DnaA from E. coli (57). DnaD had no effect on the rate of exchange of B. subtilis 85 

DnaA. In contrast, DnaD had a marked effect on the ability of DnaA to bind DNA. Binding of 86 

DnaA-ATP to DNA fragments that contain multiple binding sites is normally highly cooperative 87 

(40, 41). We found that in the presence of DnaD, binding of DnaA to DNA was no longer 88 

cooperative and the apparent dissociation constant for DnaA and DNA was reduced. We found 89 

that the ATPase activity of DnaA was not needed for these effects by DnaD, indicating that 90 

DnaD is not regulating the ATPase activity of DnaA. These effects of DnaD on the ability of 91 

DnaA to bind DNA are similar to the effects of YabA (40) and Soj (55), two other regulators of 92 

B. subtilis DnaA and replication initiation and further substantiate the notion that modulation of 93 
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cooperative binding and oligomerization of DnaA to DNA might be a common mechanism of 94 

regulation (40, 55). 95 

 96 

 97 

Materials and Methods 98 

Purification of DnaA and DnaD  99 

B. subtilis DnaA (no tag) was produced in and purified from an E. coli dnaA null mutant, 100 

using a clone and strain provided by A. Albuzzi and W. F. Burkholder, essentially as described 101 

(17, 60). Protein was stored frozen (-80 ºC) in buffer containing 45 mM Hepes pH 7.6, 0.5 mM 102 

EDTA, 10 mM magnesium acetate, 1 mM DTT, 700 mM potassium glutamate, and 20% 103 

sucrose. DnaD-his6 was produced in and purified from E. coli, essentially as described (60). 104 

Protein was stored at -80°C in buffer containing 50 mM Tris pH 8, 0.1 mM EDTA, 1 mM DTT, 105 

500 mm NaCl and 10% Glycerol. Proteins were quantified using absorbance at 280 nm.  106 

Nucleotide exchange reactions 107 

Nucleotide exchange was measured using alpha-32P-ATP or 14C-ADP. Exchange reactions 108 

contained 40 mM Hepes pH 7.5, 10 mM magnesium acetate, 0.5 mM EDTA, 1 mM DTT, 150 109 

mM potassium glutamate, 100 µg/ml BSA, 10% glycerol and 1 µM alpha-32P-ATP or 1 µM 14C-110 

ADP in the absence or presence of DnaD (600 nM). DnaA (300 nM) was incubated with either 111 

nucleotide for 2 hours on ice in exchange buffer. Fifty microliters were removed at time zero to 112 

measure binding and unlabeled ATP was added in excess (2 mM) and incubated at 37°C. Filter 113 

binding was used to measure the amount of radio-labeled nucleotide still bound to DnaA at each 114 

time point. Fifty microliter aliquots were removed and place on equilibrated nitrocellulose 115 

membranes (Millipore), washed with buffer (40 mM Hepes pH 7.5, 150 mM KCl, 10 mM 116 
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magnesium acetate, 0.5 EDTA, 10ug/ml BSA) and the amount of 32P-ATP or 14C-ADP 117 

remaining on the filter was measured in triplicate and averaged. The half-life was calculated 118 

using an exponential decay formula and plotted using GraphPad Prism 5 software.  119 

Gel Shift Assays  120 

The DNA template from the oriC region (dnaA promoter region) used for the gel shift assays 121 

was an end-labeled 400 bp fragment, 382 bp of which correspond to chromosomal DNA from 122 

the part of the oriC region that is upstream from dnaA. The fragment was generated by PCR 123 

using primers OCB23 (5’-CCGGAATTCTTTTTTTAGTATCCACAGAGG-3’) and OCB24 (5’-124 

CGCGGATCCCTTTTCTTAGAAAATGGC-3’) and B. subtilis chromosomal DNA as template. 125 

Allowing for one mismatch from the DnaA binding site consensus sequence (5′-TTATNCACA-126 

3′), this fragment contains eight consensus DnaA binding sites. The DNA template from 127 

upstream of yydA used for gel shift assays was an end-labeled 228 bp fragment generated by 128 

PCR using primers WKS167 (5’-CCCACAGCCTGTGAATTATG-3’) and WKS168 (5’-129 

CGTAGGCCGAAAGTCGTTTG--3’). Allowing for 1 mismatch, this fragment contains four 130 

consensus DnaA binding sites. It is important to note that the sequence requirements for binding 131 

DnaA are not well defined and this estimate of the number of potential binding sites is likely an 132 

underestimate as DnaA is also likely to bind sequences with more than one mismatch from 133 

consensus (17).  134 

The PCR products were purified on columns (Qiagen) and end-labeled with gamma-32P-ATP 135 

using T4 polynucleotide kinase. The labeled DNA fragment was separated from free ATP with a 136 

G50 Column (GE). DnaA was incubated with 2.5 mM ATP for two hours on ice before being 137 

used in gel shift reactions containing 40 mM Hepes pH 7.6, 10 mM KCl, 140 mM potassium 138 

glutamate, 10 mM magnesium acetate, 2.5 mM ATP, 0.5 mM EDTA, 1 mM DTT, 50 µg/ml 139 
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BSA, 20% glycerol, and 50 pM DNA probe in the presence or absence of DnaD-his6 (300 nM) 140 

for 20 minutes at room temperature.  141 

To determine an appropriate concentration of DnaD to use, we measured the effects of 142 

different concentrations of DnaD-his6 on the electrophoretic mobility of the DNA fragment from 143 

the oriC region in the presence of 10 nM DnaA-ATP, or with no DnaA (Fig. 1).  DnaD-his6 was 144 

used at 25, 50, 100, 200, 300 nM.  At these concentrations of DnaD-his6, there was little or no 145 

change in electrophoretic mobility of the DNA fragment in the absence of DnaA.  However, in 146 

the presence of DnaA, there was a change in the gel shift beginning at 50 nM DnaD-his6.  We 147 

chose to use 300 nM DnaD because there was a large change in the gel shift in the presence of 148 

DnaA, but little or no change in its absence.  149 

The binding reactions were run on a 5% polyacrylamide gel with 2.5% glycerol run in 0.5X 150 

TBE at approximately 12 volts/cm for 3 hours. Gels were imaged on a Typhoon scanner (GE 151 

Healthcare) and GraphPad Prism 5 software used to plot binding curves. Data were plotted and 152 

fitted to the Hill equation {y=(m1*xn)/(Kdn+xn)} where y is the % DNA bound at any given 153 

DnaA concentration, x is the DnaA concentration, m1 is maximal binding (100%), Kd is the 154 

apparent dissociation constant (concentration at which 50% of DNA is bound determined from 155 

data) and n is the Hill coefficient. All experiments were done in triplicate. Data presented are 156 

averages of triplicates ± standard error.  157 

ATPase Assays 158 

ATPase assays were carried out using gamma-32P-ATP as substrate and products were 159 

separated by thin layer chromatography (TLC). Reactions (50 µl) contained 100 nM DnaA, 50 160 

mM Tris pH 7, 5 mM magnesium acetate, 1 mm DTT, 100 ng/ml BSA, 10% glycerol, and 1 µM 161 

ATP (1/1000 gamma-32P-ATP) and, where added, 1 µM PCR product from oriC fragment 162 
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containing eight DnaA binding sites. Time points were stopped with 2 volumes of stop buffer 163 

(0.5% SDS, 250 mM NaCl, 25 mM EDTA) and spotted on cellulose TLC plates. Products were 164 

separated with 0.5 M LiCl, 1M formic acid. Plates were dried and exposed to a phosphostorage 165 

screen. Free radiolabeled orthophosphate and ATP were measured and percent hydrolysis 166 

calculated. All experiments were done in triplicate and data are presented as the averages ± 167 

standard error.  168 

Nucleotide Binding Assays 169 

Nucleotide binding was measured using alpha-32P-ATP. DnaA (100 nM) and ATP (1 µM) 170 

were incubated for 30 min at room temperature in 50 µl reactions containing 40 mM Hepes pH 171 

7.5, 10 mM Mg Acetate, 0.5 mM EDTA, 1 mM DTT, 150 mM potassium glutamate, 100 µg/ml 172 

BSA, and 10% glycerol. The reactions were placed on equilibrated nitrocellulose membranes 173 

(Millipore), washed with buffer (40 mM Hepes pH 7.5, 150 mM KCl, 10 mM magnesium 174 

acetate, 0.5 mM EDTA, 10 µg/ml BSA) and radioactivity was measured by filter binding as 175 

described for the nucleotide exchange assay. All experiments were done in triplicate and data are 176 

presented as the averages ± standard error. The apparent Kd for ATP binding to DnaA was 29 177 

nM (data not shown) similar to previous reports (17).  178 

 179 

 180 

181 
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Results  182 

DnaD does not affect nucleotide exchange for DnaA 183 

We found that the rate of nucleotide exchange for DnaA was relatively rapid and that DnaD 184 

had no detectable effect on this rate. To measure nucleotide exchange, we incubated purified 185 

DnaA with radio-labeled ADP or ATP. The amount of radioactive nucleotide that remained 186 

associated with DnaA was measured at various times after addition of excess unlabeled ATP at 187 

37°C, and the amount of nucleotide that was released was calculated. For both DnaA-ADP (Fig. 188 

2A) and DnaA-ATP (Fig. 2B), the radioactive nucleotide was released with a half-life of 5 189 

minutes. The addition of DnaD-his6 (Materials and methods) had no detectable effect on this 190 

half-life (Fig. 2). Based on these results, we conclude that the rate of nucleotide exchange for B. 191 

subtilis DnaA is relatively rapid compared to the 45 min half-life of exchange for E. coli DnaA 192 

(57) and that DnaA-ATP is regenerated from DnaA-ADP in the absence of any other cellular 193 

factors. The relatively rapid rate of nucleotide exchange is similar to that of DnaA from S. aureus 194 

(32).  195 

DnaD increases affinity and reduces cooperativity of DnaA-ATP binding to DNA  196 

Given the in vivo association of DnaD to DnaA binding sites around the chromosome (60), 197 

we tested for effects of DnaD on the ability of DnaA to bind DNA using gel electrophoretic 198 

mobility shift assays. DnaA-ATP bound to a DNA fragment from the oriC region with an 199 

apparent dissociation constant (Kd) of 27 nM (Fig. 3A, C). Binding was highly cooperative and 200 

had a Hill coefficient of 8. These results are consistent with previous findings (40).  201 

We measured the effects of DnaD-his6 on the ability of DnaA to bind to DNA. DnaD-his6 202 

alone (300 nM) did not have detectable binding activity under these assay conditions (Fig. 1, 203 

3B), as previously reported (60). However, addition of DnaD-his6 to DNA and DnaA-ATP 204 
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substantially altered the binding properties of DnaA-ATP to DNA. The apparent dissociation 205 

constant in the presence of DnaD was approximately 7 nM, compared to 27 nM in the absence of 206 

DnaD. There was a concomitant loss of cooperative binding as the Hill coefficient decreased 207 

from 8 in the absence of DnaD to 1 in its presence (Fig. 3, Table 1). This decrease in the Hill 208 

coefficient and decrease in the apparent binding constant is consistent with DnaA-ATP binding 209 

independently to multiple sites in the DNA fragment.  210 

The DNA fragment used in these experiments was derived from sequences upstream of dnaA 211 

in the oriC region. We found that DnaD had a similar effect on the ability of DnaA-ATP to bind 212 

to a DNA fragment from a different chromosomal region. In addition to the oriC region, DnaA is 213 

found associated with several chromosomal regions in vivo (20, 24), including the region 214 

between yydA and yydS (4, 20, 24), two genes of unknown function. This region has also been 215 

implicated in regulating DNA replication by recruiting DnaA away from oriC (51). Therefore, 216 

we isolated a DNA fragment from the region upstream of yydA that contains four DnaA binding 217 

sites with ≤1 mismatch to the consensus and tested the ability of DnaD to affect DnaA binding to 218 

this region. DnaA-ATP bound to this fragment with an apparent dissociation constant of 25 (Fig. 219 

3D). Binding was cooperative with a Hill coefficient of 6, indicative of binding to 6 possible 220 

DnaA sites. Addition of DnaD-his6 (300 nM) to these reactions decreased the apparent 221 

dissociation constant to 5 nM and reduced the Hill coefficient to 1, indicating that there was 222 

essentially no cooperative binding in the presence of DnaD. These effects are similar to those on 223 

the binding of DnaA-ATP to DNA fragment from the oriC region upstream from dnaA (Fig. 3). 224 

Together, these results indicate that DnaD affects binding of DnaA to DNA fragments from the 225 

oriC region and at least one origin-distal region. Since DnaD is found at multiple chromosomal 226 
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regions bound by DnaA in vivo (60), we suspect that DnaD similarly affects DnaA binding at 227 

these regions.  228 

We have not been able to detect any changes in the footprint of DnaA on DNA in the 229 

presence compared to the absence of DnaD (unpublished results).  This is likely because at the 230 

high concentrations of DnaA needed to observe a footprint (17), the addition of DnaD has no 231 

detectable effect on binding (Fig. 3).  At lower concentrations of DnaA, where DnaD does 232 

influence binding, we suspect that there is a population of DNA molecules with different sites 233 

occupied by DnaA, thereby not producing any obvious protection in a footprint experiment, but 234 

still capable of generating a change in electrophoretic mobility.   235 

Characterization of DnaA mutants defective in ATPase activity  236 

Since the rate of ADP exchange for ATP of B. subtilis DnaA is relatively rapid and 237 

unaffected by DnaD, and DnaD affects the ability of DnaA-ATP to bind DNA, we hypothesized 238 

that DnaD would affect DnaA mutants that are defective in nucleotide hydrolysis and/or binding. 239 

To test this, we made two different mutations in dnaA. One mutation is in the conserved Walker 240 

A motif and changes the lysine at amino acid 157 to alanine, DnaA(K157A), and is predicted to 241 

reduce nucleotide binding (21). We also made a mutation in the conserved Walker B motif that 242 

changes the glutamate at amino acid 215 to alanine, DnaA(D215A), and is predicted to alter 243 

nucleotide hydrolysis (21). We purified the mutant proteins and tested them in vitro.  244 

Both DnaA(K157A) and DnaA(D215A) were defective in ATP hydrolysis. We measured the 245 

rate of ATP hydrolysis using gamma-32P-ATP and measuring the release of ortho-phosphate 246 

(Materials and Methods). The rate of ATP hydrolysis by wild type DnaA was 1.8 moles of ATP 247 

hydrolyzed per mole of DnaA per hour. Upon addition of DNA, the rate of hydrolysis increased 248 

approximately 6-fold to 12 moles of ATP hydrolyzed per mole of DnaA per hour. These rates of 249 
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ATP hydrolysis and the effects of DNA are consistent with previously published data for DnaA 250 

from E. coli and S. aureus (32, 57). In contrast to the wild type protein, DnaA(K157A) and 251 

DnaA(D215A) had rates of ATP hydrolysis of approximately 0.07 and 0.1 moles of ATP per 252 

mole of DnaA per hour, respectively (Table 2).  253 

As expected, the DnaA(K157A) mutant was defective and the DnaA(D215A) mutant had 254 

normal ATP binding. At saturating ATP concentrations, we found that wild type protein bound 255 

0.4 molecules of ATP per molecule of DnaA (Table 2), consistent with previous reports for 256 

DnaA from E. coli (0.48 and 0.55) (10, 57) but greater than a previous report for B. subtilis 257 

DnaA (0.17) (17). The DnaA(D215A) mutant had ATP binding (Table 2) that was 258 

indistinguishable from that of the wild type protein. In contrast, the DnaA(K157A) mutant 259 

appeared to bind 0.02 molecules of ATP per molecule of DnaA (Table 2), consistent with little or 260 

no ATP binding.  261 

DnaD affects DnaA mutants defective in ATPase activity and nucleotide binding  262 

We determined the effects of DnaD on the ability of the mutant DnaA proteins to bind DNA 263 

and compared the binding properties to those of wild type DnaA. The mutant DnaA that binds 264 

ATP but is defective in hydrolysis {DnaA(D215A)} bound DNA with an apparent Kd of 12 nM, 265 

compared to 27 nM for the wild type protein (Fig. 4A). Binding to DNA was cooperative and 266 

had a Hill coefficient of approximately 5 (Fig. 4A). Addition of DnaD reduced the apparent Kd 267 

to approximately 6 nM and the Hill coefficient to approximately 2 (Fig. 4A, Table 1). The 268 

mutant DnaA that is defective in binding ATP {DnaA(K157A)} has an apparent Kd of 36 nM 269 

and a Hill coefficient of approximately 5 (Fig. 4B). Addition of DnaD reduced the apparent Kd 270 

to 17 nM and the Hill coefficient to approximately 3 (Fig. 4B, Table 1). Together, these results 271 
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indicate that the effects of DnaD on the ability of DnaA to bind DNA do not require ATP 272 

binding or hydrolysis.  273 

Previously, we found that YabA, a negative regulator of replication initiation, inhibited 274 

cooperativity of DnaA while reducing the apparent Kd (40). We tested the effects of YabA on 275 

the DnaA(K157A) mutant and found that the addition of YabA (700 nM) reduced the apparent 276 

Kd from 36 nM to 14.7 nM and the Hill coefficient from 5.6 to 2 (Fig. 4C). These results are 277 

consistent with the previous reports of the effects of YabA on the ability of DnaA to bind DNA 278 

(40) and are comparable to the effects of DnaD, and suggest that they may regulate DnaA by 279 

similar mechanisms. 280 

 281 

 282 

Discussion 283 

In many bacteria, the conserved replication initiator DnaA is a target for the control of 284 

replication initiation. DnaA is also a transcription factor, and many of the factors that modulate 285 

its activity in replication initiation are likely to affect its activity as a transcription factor. 286 

Mechanisms regulating DnaA have been most studied with E. coli and its close relatives. 287 

However, the proteins and mechanisms used by E. coli are largely limited to the proteobacteria 288 

and are not found in Gram positive organisms like B. subtilis. Likewise, some of the proteins and 289 

mechanisms used by B. subtilis are not found in E. coli and other proteobacteria. Results 290 

presented here indicate that B. subtilis DnaD is a regulator of DnaA. Below, we discuss the 291 

possible role of DnaD in regulation of DnaA and the different properties of DnaA that might lead 292 

to differences in its regulation in different organisms.  293 
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Role of DnaD in replication initiation and regulation of DnaA  294 

DnaD is found in B. subtilis and other low G+C-content Gram positive bacteria, but not in E. 295 

coli and other Gram negative bacteria. DnaD is required for replication initiation (5, 6), interacts 296 

with DnaA (23, 60), and is needed to recruit the helicase loading protein DnaB to oriC (7, 59). 297 

DnaD is found associated with the oriC region of the chromosome (54, 59) and many other 298 

chromosomal regions that also bind DnaA (60). The association of DnaD with these regions is 299 

dependent on DnaA (59, 60).  300 

We found that DnaD decreases the apparent Kd of DnaA-ATP for DNA, and also decreases 301 

the cooperativity of DnaA binding to DNA. These effects could indicate that DnaD functions 302 

either as an activator or repressor of DnaA, or both. For many regulators, the phenotype caused 303 

by a null mutation typically indicates regulation is positive or negative. Unfortunately, dnaD is 304 

essential and null mutations are not viable. Temperature sensitive and other conditional loss of 305 

function dnaD mutants result in increased association of DnaA with chromosomal regions (4, 306 

20), consistent with DnaD normally functioning to reduce binding of DnaA to DNA. However, 307 

these mutations also lead to a decrease in replication initiation. Analyzing effects of 308 

overexpressing DnaD is also problematic because overexpression of DnaD causes a severe 309 

growth defect that is independent of replication initiation from oriC (38). Mutations in other 310 

genes that cause a decrease in replication initiation also cause an increase in DnaA activity (4, 311 

20) making it difficult to discern if the effects of DnaD are direct, due to changes in replication 312 

initiation, or both.  313 

It is well established that DnaD is essential and has a positive role in replication initiation. 314 

During replication initiation, DnaA-ATP binds cooperatively to many sites in oriC (e.g.,18, 39, 315 

41). By analogy to E. coli, it is likely that the temporal order of binding of DnaA-ATP to sites in 316 
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oriC is important for open complex formation (39, 41). In B. subtilis, association of DnaD with 317 

the oriC region requires DnaA. DnaD is then required for association of DnaB and subsequent 318 

loading of the replicative helicase (6, 7, 54, 59). It is possible that the effects of DnaD on the 319 

binding of DnaA to oriC (increase in apparent affinity) could also stimulate replication initiation 320 

by maintaining DnaA bound to oriC. However, we think that this is unlikely if ordered and 321 

cooperative binding of DnaA is important for replication initiation.  322 

In addition to its known positive role in replication initiation, we postulate that DnaD also 323 

serves to negatively regulate replication initiation through its effects on the ability of DnaA to 324 

bind DNA. The ability of DnaD to inhibit cooperative binding of DnaA-ATP to DNA is similar 325 

to the effect of two other negative regulators of replication initiation, YabA (40) and Soj (55).  326 

We postulate that immediately before or after replication initiation, DnaD helps keep DnaA 327 

inactive at oriC by inhibiting cooperative binding. This activity of DnaD as a negative regulator 328 

of DnaA could be modulated by changes in the amount of available DnaD during the replication 329 

cycle.  For example, the amount of DnaD available to interact with DnaA at oriC could change 330 

during a replication cycle, perhaps due to association of DnaD with other proteins or 331 

chromosomal regions (60), or possible changes in its synthesis or stability. We have not yet 332 

tested these possibilities.  333 

It is also possible that inhibition of DnaA by DnaD is relieved by the replication initiation 334 

protein DnaB.  That is, DnaD might be keeping DnaA inactive at oriC until proper assembly of 335 

additional parts of the replication initiation complex.  For example, DnaD is needed to recruit 336 

DnaB (part of the helicase loader) to oriC (59) and other chromosomal regions bound by DnaA 337 

(60).  Association of DnaB might alter interactions between DnaA and DnaD, relieving the 338 

putative inhibitory effect mediated by DnaD, enabling replication initiation.  Preliminary 339 
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attempts to test this in vitro have not been successful, perhaps because of a possible role of the 340 

membrane in interactions between DnaB and DnaD (54).   341 

 342 

Emerging theme in the regulation of DnaA 343 

One of the emerging themes of regulation of B. subtilis DnaA and replication initiation is the 344 

role of regulators that directly alter the ability of DnaA to bind DNA. Including DnaD, there are 345 

now at least four regulators of this type. The production and activities of the regulators are 346 

differentially controlled and each regulator is likely to be important at different times during the 347 

growth and replication cycles. The regulators are also likely to be partly redundant.  348 

SirA. SirA is a negative regulator of DnaA that is produced during entry into stationary phase 349 

and the initiation of sporulation (52, 66). SirA likely interacts with domain I of DnaA, and it 350 

inhibits the ability of DnaA to bind sequences in oriC in vivo (53).  351 

YabA. YabA was identified in a yeast two-hybrid screen for interactors with replication 352 

proteins (48). YabA is produced during growth and interacts with both DnaA and DnaN, the 353 

processivity clamp of DNA polymerase (48, 49). Like DnaD, YabA reduces the apparent Kd and 354 

cooperativity of DnaA binding to DNA in vitro, and these effects are independent of the ATPase 355 

activity of DnaA (40). Also like DnaD, YabA is found associated with chromosomal regions that 356 

are bound by DnaA in vivo and this association is DnaA-dependent (40). In addition, YabA is 357 

found associated with replication forks during ongoing replication (19, 49, 61), and this 358 

association is likely due to interaction between YabA and DnaN. The interaction between DnaN 359 

and YabA likely functions to reduce the ability of YabA to negatively regulate DnaA and 360 

replication initiation (40, 49, 61) and could couple relief of YabA-mediated inhibition to the 361 

release of DnaN from the replisome during replication termination (40).  362 
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Soj. B. subtilis Soj is expressed during growth and is a member of the ParA family of 363 

chromosome partitioning proteins involved in chromosome and plasmid partitioning. Soj is a 364 

negative regulator of replication initiation (34) and DnaA (46, 55, 56). Soj inhibits the ability of 365 

DnaA to form a helix on DNA, independently of the ATPase activity of DnaA (55). The 366 

inhibitory effects of Soj on replication initiation appear to be relieved by Spo0J (56), perhaps 367 

coupling an aspect of replication control to chromosome organization or partitioning (46, 56).  368 

Diverse mechanisms controlling DnaA in different organisms  369 

The mechanisms used to control DnaA are diverse. Using E. coli and B. subtilis as examples, 370 

there are some common mechanisms and some striking differences. In both of these organisms, 371 

and many others, DnaA represses its own transcription (e.g., 1, 3, 20, 50, 67), establishing a 372 

homeostatic regulatory loop. In addition, there are DnaA binding sites outside of oriC that 373 

function to titrate DnaA away from oriC (51, 60). In E. coli, the datA locus binds DnaA and 374 

appears to help limit the amount of DnaA available for replication initiation (31, 43, 44). 375 

Similarly, in B. subtilis, there are six chromosomal regions outside of oriC that have clusters of 376 

DnaA binding sites (20, 24, 51). At least one of these clusters seems to function to help limit the 377 

amount of DnaA available for replication initiation (51).  378 

One of the most notable differences between regulation of E. coli and B. subtilis DnaA is the 379 

stimulation of nucleotide binding and hydrolysis in E. coli. One of the primary mechanisms used 380 

by E. coli to inhibit the activity of DnaA is called RIDA (Regulatory Inactivation of DnaA) and 381 

uses a protein called Hda (26, 28). Hda interacts with E. coli DnaN (ß-clamp) and stimulates 382 

nucleotide hydrolysis by DnaA, thereby stimulating conversion of the replication-competent 383 

DnaA-ATP to the inactive DnaA-ADP (64).  E. coli also has specific DnaA-reactivating 384 

sequences that directly promote nucleotide exchange to generate DnaA-ATP from DnaA-ADP 385 
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(16). The stimulated rate of nucleotide exchange for E. coli DnaA (15) is about the same as the 386 

basal rate for B. subtilis DnaA. E. coli also has a protein called DiaA that stimulates replication 387 

initiation by stimulating binding by DnaA-ATP (22, 30).   388 

In contrast to the mechanisms used by E. coli to regulate DnaA and replication initiation, B. 389 

subtilis is not known to regulate nucleotide hydrolysis or exchange. Rather, the primary 390 

mechanisms for controlling B. subtilis DnaA affect its binding to DNA (40, 53, 55), probably by 391 

inhibiting formation of multimeric DnaA structures (helix formation) on the DNA and 392 

preventing cooperative binding to sites in oriC (40, 55). No known regulator of DnaA in B. 393 

subtilis affects nucleotide hydrolysis or exchange.  394 

Clearly, different organisms use different mechanisms to control the activity of DnaA and 395 

replication initiation. We suggest that the multiple mechanisms may have evolved in different 396 

organisms, in part, due to the different rates of nucleotide exchange. For organisms like E. coli 397 

where DnaA has a relatively slow rate of nucleotide exchange, stimulation of nucleotide 398 

hydrolysis and exchange is likely to be a predominant mode of regulation. In contrast, for 399 

organisms like B. subtilis and S. aureus where DnaA has a relatively rapid rate of nucleotide 400 

exchange, the predominant modes of regulation of DnaA affect DNA binding and cooperativity.  401 

 402 

 403 

Acknowledgments  404 

We thank T. Baker, A. Olivares, and members of the Grossman lab for useful discussions, 405 

and C. Lee, J.L. Smith, C. Seid, M. Laub, and L. Simmons for comments on the manuscript. 406 

This work was supported, in part, by Public Health Service grant GM41934 to A.D.G.  407 

 408 



 Bonilla and Grossman 19 

References 409 

1. Atlung, T., E. S. Clausen, and F. G. Hansen. 1985. Autoregulation of the dnaA gene of 410 
Escherichia coli K12. Mol Gen Genet 200:442-450. 411 

2. Bramhill, D., and A. Kornberg. 1988. Duplex opening by dnaA protein at novel 412 
sequences in initiation of replication at the origin of the E. coli chromosome. Cell 413 
52:743-755. 414 

3. Braun, R. E., K. O'day, and A. Wright. 1985. Autoregulation of the DNA replication 415 
gene dnaA in E. coli K-12. Cell 40:159-169. 416 

4. Breier, A. M., and A. D. Grossman. 2009. Dynamic association of the replication 417 
initiator and transcription factor DnaA with the Bacillus subtilis chromosome during 418 
replication stress. J Bacteriol 191:486-493. 419 

5. Bruand, C., S. D. Ehrlich, and L. Janniere. 1995. Primosome assembly site in Bacillus 420 
subtilis. EMBO J 14:2642-2650. 421 

6. Bruand, C., M. Farache, S. Mcgovern, S. D. Ehrlich, and P. Polard. 2001. DnaB, 422 
DnaD and DnaI proteins are components of the Bacillus subtilis replication restart 423 
primosome. Mol Microbiol 42:245-255. 424 

7. Bruand, C., M. Velten, S. Mcgovern, S. Marsin, C. Serena, S. D. Ehrlich, and P. 425 
Polard. 2005. Functional interplay between the Bacillus subtilis DnaD and DnaB 426 
proteins essential for initiation and re-initiation of DNA replication. Mol Microbiol 427 
55:1138-1150. 428 

8. Bruck, I., and M. O'donnell. 2000. The DNA replication machine of a gram-positive 429 
organism. J Biol Chem 275:28971-28983. 430 

9. Burkholder, W. F., I. Kurtser, and A. D. Grossman. 2001. Replication initiation 431 
proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104:269-279. 432 

10. Carr, K. M., and J. M. Kaguni. 1996. The A184V missense mutation of the dnaA5 and 433 
dnaA46 alleles confers a defect in ATP binding and thermolability in initiation of 434 
Escherichia coli DNA replication. Mol Microbiol 20:1307-1318. 435 

11. Crooke, E., C. E. Castuma, and A. Kornberg. 1992. The chromosome origin of 436 
Escherichia coli stabilizes DnaA protein during rejuvenation by phospholipids. J Biol 437 
Chem 267:16779-16782. 438 

12. Davey, M. J., and M. O'donnell. 2003. Replicative helicase loaders: ring breakers and 439 
ring makers. Curr Biol 13:R594-596. 440 

13. Duderstadt, K. E., and J. M. Berger. 2008. AAA+ ATPases in the initiation of DNA 441 
replication. Crit Rev Biochem Mol Biol 43:163-187. 442 

14. Felczak, M. M., and J. M. Kaguni. 2004. The box VII motif of Escherichia coli DnaA 443 
protein is required for DnaA oligomerization at the E. coli replication origin. J Biol Chem 444 
279:51156-51162. 445 

15. Fujimitsu, K., and T. Katayama. 2004. Reactivation of DnaA by DNA sequence-446 
specific nucleotide exchange in vitro. Biochem Biophys Res Commun 322:411-419. 447 

16. Fujimitsu, K., T. Senriuchi, and T. Katayama. 2009. Specific genomic sequences of E. 448 
coli promote replicational initiation by directly reactivating ADP-DnaA. Genes Dev 449 
23:1221-1233. 450 

17. Fukuoka, T., S. Moriya, H. Yoshikawa, and N. Ogasawara. 1990. Purification and 451 
characterization of an initiation protein for chromosomal replication, DnaA, in Bacillus 452 
subtilis. J Biochem (Tokyo) 107:732-739. 453 



 Bonilla and Grossman 20 

18. Fuller, R. S., B. E. Funnell, and A. Kornberg. 1984. The dnaA protein complex with 454 
the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38:889-900. 455 

19. Goranov, A. I., A. M. Breier, H. Merrikh, and A. D. Grossman. 2009. YabA of 456 
Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional 457 
response to replication stress. Mol Microbiol 74:454-466. 458 

20. Goranov, A. I., L. Katz, A. M. Breier, C. B. Burge, and A. D. Grossman. 2005. A 459 
transcriptional response to replication status mediated by the conserved bacterial 460 
replication protein DnaA. Proc Natl Acad Sci U S A 102:12932-12937. 461 

21. Hanson, P. I., and S. W. Whiteheart. 2005. AAA+ proteins: have engine, will work. 462 
Nat Rev Mol Cell Biol 6:519-529. 463 

22. Ishida, T., N. Akimitsu, T. Kashioka, M. Hatano, T. Kubota, Y. Ogata, K. Sekimizu, 464 
and T. Katayama. 2004. DiaA, a novel DnaA-binding protein, ensures the timely 465 
initiation of Escherichia coli chromosome replication. J Biol Chem 279:45546-45555. 466 

23. Ishigo-Oka, D., N. Ogasawara, and S. Moriya. 2001. DnaD protein of Bacillus subtilis 467 
interacts with DnaA, the initiator protein of replication. J Bacteriol 183:2148-2150. 468 

24. Ishikawa, S., Y. Ogura, M. Yoshimura, H. Okumura, E. Cho, Y. Kawai, K. 469 
Kurokawa, T. Oshima, and N. Ogasawara. 2007. Distribution of stable DnaA-binding 470 
sites on the Bacillus Subtilis genome detected using a modified ChIP-chip method. DNA 471 
Res 14:155-168. 472 

25. Kaguni, J. M. 2006. DnaA: controlling the initiation of bacterial DNA replication and 473 
more. Annu Rev Microbiol 60:351-375. 474 

26. Katayama, T., T. Kubota, K. Kurokawa, E. Crooke, and K. Sekimizu. 1998. The 475 
initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. 476 
coli chromosomal replicase. Cell 94:61-71. 477 

27. Katayama, T., S. Ozaki, K. Keyamura, and K. Fujimitsu. 2010. Regulation of the 478 
replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev 479 
Microbiol 8:163-170. 480 

28. Kato, J., and T. Katayama. 2001. Hda, a novel DnaA-related protein, regulates the 481 
replication cycle in Escherichia coli. EMBO J 20:4253-4262. 482 

29. Kawakami, H., and T. Katayama. 2010. DnaA, ORC, and Cdc6: similarity beyond the 483 
domains of life and diversity. Biochem Cell Biol 88:49-62. 484 

30. Keyamura, K., N. Fujikawa, T. Ishida, S. Ozaki, M. Su'etsugu, K. Fujimitsu, W. 485 
Kagawa, S. Yokoyama, H. Kurumizaka, and T. Katayama. 2007. The interaction of 486 
DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP 487 
DnaA-specific initiation complexes. Genes Dev 21:2083-2099. 488 

31. Kitagawa, R., T. Ozaki, S. Moriya, and T. Ogawa. 1998. Negative control of 489 
replication initiation by a novel chromosomal locus exhibiting exceptional affinity for 490 
Escherichia coli DnaA protein. Genes Dev 12:3032-3043. 491 

32. Kurokawa, K., H. Mizumura, T. Takaki, Y. Ishii, N. Ichihashi, B. L. Lee, and K. 492 
Sekimizu. 2009. Rapid exchange of bound ADP on the Staphylococcus aureus 493 
replication initiation protein DnaA. J Biol Chem 284:34201-34210. 494 

33. Kurokawa, K., S. Nishida, A. Emoto, K. Sekimizu, and T. Katayama. 1999. 495 
Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA 496 
protein in Escherichia coli. EMBO J 18:6642-6652. 497 

34. Lee, P. S., and A. D. Grossman. 2006. The chromosome partitioning proteins Soj 498 
(ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of 499 



 Bonilla and Grossman 21 

replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol 500 
Microbiol 60:853-869. 501 

35. Leonard, A. C., and J. E. Grimwade. 2010. Regulating DnaA complex assembly: it is 502 
time to fill the gaps. Curr Opin Microbiol 13:766-772. 503 

36. Li, Y., K. Kurokawa, M. Matsuo, N. Fukuhara, K. Murakami, and K. Sekimizu. 504 
2004. Identification of temperature-sensitive dnaD mutants of Staphylococcus aureus that 505 
are defective in chromosomal DNA replication. Mol Genet Genomics 271:447-457. 506 

37. Marsin, S., S. Mcgovern, S. D. Ehrlich, C. Bruand, and P. Polard. 2001. Early steps 507 
of Bacillus subtilis primosome assembly. J Biol Chem 276:45818-45825. 508 

38. Marston, F. Y., W. H. Grainger, W. K. Smits, N. H. Hopcroft, M. Green, A. M. 509 
Hounslow, A. D. Grossman, C. J. Craven, and P. Soultanas. 2010. When simple 510 
sequence comparison fails: the cryptic case of the shared domains of the bacterial 511 
replication initiation proteins DnaB and DnaD. Nucleic Acids Res. 512 

39. Mcgarry, K. C., V. T. Ryan, J. E. Grimwade, and A. C. Leonard. 2004. Two 513 
discriminatory binding sites in the Escherichia coli replication origin are required for 514 
DNA strand opening by initiator DnaA-ATP. Proc Natl Acad Sci U S A 101:2811-2816. 515 

40. Merrikh, H., and A. D. Grossman. 2011. Control of the replication initiator DnaA by 516 
an anti-cooperativity factor. Mol Microbiol 82:434-446. 517 

41. Miller, D. T., J. E. Grimwade, T. Betteridge, T. Rozgaja, J. J. Torgue, and A. C. 518 
Leonard. 2009. Bacterial origin recognition complexes direct assembly of higher-order 519 
DnaA oligomeric structures. Proc Natl Acad Sci U S A 106:18479-18484. 520 

42. Mizushima, T., T. Takaki, T. Kubota, T. Tsuchiya, T. Miki, T. Katayama, and K. 521 
Sekimizu. 1998. Site-directed mutational analysis for the ATP binding of DnaA protein. 522 
Functions of two conserved amino acids (Lys-178 and Asp-235) located in the ATP-523 
binding domain of DnaA protein in vitro and in vivo. J Biol Chem 273:20847-20851. 524 

43. Morigen, A. Lobner-Olesen, and K. Skarstad. 2003. Titration of the Escherichia coli 525 
DnaA protein to excess datA sites causes destabilization of replication forks, delayed 526 
replication initiation and delayed cell division. Mol Microbiol 50:349-362. 527 

44. Morigen, F. Molina, and K. Skarstad. 2005. Deletion of the datA site does not affect 528 
once-per-cell-cycle timing but induces rifampin-resistant replication. J Bacteriol 529 
187:3913-3920. 530 

45. Mott, M. L., and J. M. Berger. 2007. DNA replication initiation: mechanisms and 531 
regulation in bacteria. Nat Rev Microbiol 5:343-354. 532 

46. Murray, H., and J. Errington. 2008. Dynamic control of the DNA replication initiation 533 
protein DnaA by Soj/ParA. Cell 135:74-84. 534 

47. Nishida, S., K. Fujimitsu, K. Sekimizu, T. Ohmura, T. Ueda, and T. Katayama. 535 
2002. A nucleotide switch in the Escherichia coli DnaA protein initiates chromosomal 536 
replication: evidnece from a mutant DnaA protein defective in regulatory ATP hydrolysis 537 
in vitro and in vivo. J Biol Chem 277:14986-14995. 538 

48. Noirot-Gros, M. F., E. Dervyn, L. J. Wu, P. Mervelet, J. Errington, S. D. Ehrlich, 539 
and P. Noirot. 2002. An expanded view of bacterial DNA replication. Proc Natl Acad 540 
Sci U S A 99:8342-8347. 541 

49. Noirot-Gros, M. F., M. Velten, M. Yoshimura, S. Mcgovern, T. Morimoto, S. D. 542 
Ehrlich, N. Ogasawara, P. Polard, and P. Noirot. 2006. Functional dissection of 543 
YabA, a negative regulator of DNA replication initiation in Bacillus subtilis. Proc Natl 544 
Acad Sci U S A 103:2368-2373. 545 



 Bonilla and Grossman 22 

50. Ogura, Y., Y. Imai, N. Ogasawara, and S. Moriya. 2001. Autoregulation of the dnaA-546 
dnaN operon and effects of DnaA protein levels on replication initiation in Bacillus 547 
subtilis. J Bacteriol 183:3833-3841. 548 

51. Okumura, H., M. Yoshimura, M. Ueki, T. Oshima, N. Ogasawara, and S. Ishikawa. 549 
2012. Regulation of chromosomal replication initiation by oriC-proximal DnaA-box 550 
clusters in Bacillus subtilis. Nucleic Acids Res 40:220-234. 551 

52. Rahn-Lee, L., B. Gorbatyuk, O. Skovgaard, and R. Losick. 2009. The conserved 552 
sporulation protein YneE inhibits DNA replication in Bacillus subtilis. J Bacteriol 553 
191:3736-3739. 554 

53. Rahn-Lee, L., H. Merrikh, A. D. Grossman, and R. Losick. 2011. The sporulation 555 
protein SirA inhibits the binding of DnaA to the origin of eeplication by contacting a 556 
patch of clustered amino acids. J Bacteriol 193:1302-1307. 557 

54. Rokop, M. E., J. M. Auchtung, and A. D. Grossman. 2004. Control of DNA 558 
replication initiation by recruitment of an essential initiation protein to the membrane of 559 
Bacillus subtilis. Mol Microbiol 52:1757-1767. 560 

55. Scholefield, G., J. Errington, and H. Murray. 2012. Soj/ParA stalls DNA replication 561 
by inhibiting helix formation of the initiator protein DnaA. Embo J. 562 

56. Scholefield, G., R. Whiting, J. Errington, and H. Murray. 2011. Spo0J regulates the 563 
oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA 564 
replication initiation. Mol Microbiol 79:1089-1100. 565 

57. Sekimizu, K., D. Bramhill, and A. Kornberg. 1987. ATP activates dnaA protein in 566 
initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell 567 
50:259-265. 568 

58. Simmons, L. A., M. Felczak, and J. M. Kaguni. 2003. DnaA Protein of Escherichia 569 
coli: oligomerization at the E. coli chromosomal origin is required for initiation and 570 
involves specific N-terminal amino acids. Mol Microbiol 49:849-858. 571 

59. Smits, W. K., A. I. Goranov, and A. D. Grossman. 2010. Ordered association of 572 
helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol 573 
Microbiol 75:452-461. 574 

60. Smits, W. K., H. Merrikh, C. Y. Bonilla, and A. D. Grossman. 2011. Primosomal 575 
proteins DnaD and DnaB are recruited to chromosomal regions bound by DnaA in 576 
Bacillus subtilis. J Bacteriol 193:640-648. 577 

61. Soufo, C. D., H. J. Soufo, M. F. Noirot-Gros, A. Steindorf, P. Noirot, and P. L. 578 
Graumann. 2008. Cell-cycle-dependent spatial sequestration of the DnaA replication 579 
initiator protein in Bacillus subtilis. Dev Cell 15:935-941. 580 

62. Soultanas, P. 2002. A functional interaction between the putative primosomal protein 581 
DnaI and the main replicative DNA helicase DnaB in Bacillus. Nucleic Acids Res 582 
30:966-974. 583 

63. Speck, C., C. Weigel, and W. Messer. 1999. ATP- and ADP-dnaA protein, a molecular 584 
switch in gene regulation. EMBO J 18:6169-6176. 585 

64. Su'etsugu, M., T. R. Shimuta, T. Ishida, H. Kawakami, and T. Katayama. 2005. 586 
Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp 587 
complex. J Biol Chem 280:6528-6536. 588 

65. Velten, M., S. Mcgovern, S. Marsin, S. D. Ehrlich, P. Noirot, and P. Polard. 2003. A 589 
two-protein strategy for the functional loading of a cellular replicative DNA helicase. 590 
Mol Cell 11:1009-1020. 591 



 Bonilla and Grossman 23 

66. Wagner, J. K., K. A. Marquis, and D. Z. Rudner. 2009. SirA enforces diploidy by 592 
inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis. Mol 593 
Microbiol 73:963-974. 594 

67. Wang, Q. P., and J. M. Kaguni. 1987. Transcriptional repression of the dnaA gene of 595 
Escherichia coli by dnaA protein. Mol Gen Genet 209:518-525. 596 

68. Zhang, W., S. Allen, C. J. Roberts, and P. Soultanas. 2006. The Bacillus subtilis 597 
primosomal protein DnaD untwists supercoiled DNA. J Bacteriol 188:5487-5493. 598 

 599 
600 



 Bonilla and Grossman 24 

 601 

Table 1. Summary of DNA binding by wild type and mutant DnaA1.  602 
 603 

 DnaA DnaA(K157A) DnaA(D215A) 

DnaD2 - + - + - + 

apparent Kd 27 ± 0.4 6.6 ± 1 36 ± 0.8 17 ± 1 12 ± 0.3 5.7 ± 0.3 

Hill coefficient 8.6 ± 0.9 1.0 ± 0.1 5.3 ± 0.5 2.7 ± 0.4 5.2 ± 0.4 2.2 ± 0.2 
 604 
 605 
1 Results presented in Fig. 3C, 4A, and 4B are summarized. The DNA template was a fragment 606 

containing sequences upstream from oriC with eight DnaA binding sites (≤1 mismatch from 607 

consensus).  608 

2 DnaD-his6 was either added at 300 nM (+) or absent (-).  609 

 610 
611 
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 612 
Table 2. Summary of ATP hydrolysis and binding by wild type and mutant DnaA1.  613 
 614 

protein ATPase ATPase + DNA ATP binding 

DnaA 1.8 ± 0.25 11.9 ± 2.2 0.4 ± 0.05 

DnaA(K157A) 0.07 ± 0.002 0.3 ± 0.04 0.02 ± 0.01 

DnaA(D215A) 0.1 ± 0.2 0.3 ± 0.01 0.4 ± 0.11 
 615 
 616 
1 The rate of ATP hydrolysis (ATPase) is presented as the number of moles of ATP hydrolyzed 617 

per mole of DnaA per hour. Where indicated, the 400 bp DNA fragment from the oriC region 618 

that was used for the gel shift assays was added (1 µM). The amount of ATP bound (ATP 619 

binding) is presented as moles of ATP per mole of DnaA.  620 

 621 

622 
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Figure legends  623 

 624 

Figure 1.  Effect of different concentrations of DnaD on DnaA binding to oriC.  625 

Representative gel of the radiolabeled DNA probe from the oriC region with different amount of 626 

DnaD-his, in the absence of DnaA (six lanes on the left) or presence of 10 nM DnaA-ATP (six 627 

lanes on the right).  Concentrations of DnaD-his are 0 (-), 25, 50, 100, 200, or 300 nM and are 628 

indicated below each lane.  629 

 630 

 631 

Figure 2. DnaD does not affect nucleotide exchange by DnaA. The amount of 14C-ADP 632 

(A) or 32P-ATP (B) bound to DnaA (300 nM) at various times after addition of unlabeled ATP (2 633 

mM)) at 37°C was measured by filter binding in the absence (open circles) and presence (filled 634 

squares) of DnaD-his6 (600 nM). Data are averages of triplicates ± standard error and are 635 

normalized to the starting amount of radioactivity in the absence of unlabeled ATP.  636 

 637 

638 
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Figure 3. DnaD inhibits cooperative binding of DnaA to DNA. Representative gels and 639 

binding curves measuring binding of DnaA-ATP to DNA (50 pM) with and without purified 640 

DnaD-his6 (300 nM) are shown. DnaA concentrations used were: 0, 1, 2, 5, 10, 20, 30, 40, 50, 641 

60, 80, 100, and 200 nM.  642 

A, B. Representative gels with increasing concentrations of DnaA-ATP incubated with 643 

template DNA from the oriC region in the absence (A) or presence (B) of DnaD-his6. Probe with 644 

no added protein is shown in the first lane (A) or first lane (B). Probe with DnaD-his6 and no 645 

DnaA is shown in the second lane of panel B.  646 

C, D. Data from three independent gel shift assays using template DNA from the oriC region 647 

(C) or the yydA region (D) are plotted as percent DNA bound vs. the concentration of DnaA-648 

ATP, in the absence (open circles) and presence (filled squares) of DnaD-his6.  649 

In experiments with the DNA fragment from the oriC region (C), the calculated Hill 650 

coefficient for DnaA-ATP was 8.6 in the absence of DnaD-his6 and 1 in the presence of DnaD-651 

his6. The apparent Kd for DnaA-ATP was 27 nM in the absence and 6.6 nM in the presence of 652 

DnaD-his6. In experiments with the DNA fragment from the yydA region (D), the calculated Hill 653 

coefficient for DnaA-ATP was 6 in the absence of DnaD-his6 and 1 in the presence of DnaD-654 

his6. The apparent Kd for DnaA-ATP was 25 nM in the absence and 5 nM in the presence of 655 

DnaD-his6.  656 

 657 

 658 

659 
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Figure 4. Effects of DnaD and YabA on DnaA binding to DNA are independent of 660 

ATPase activity. Binding curves of DnaA mutants defective in ATP hydrolysis, DnaA(D215A)-661 

ATP (A) and ATP binding, DnaA(K157A) (B, C) within the DNA fragment from the oriC 662 

region. DnaA concentrations tested were: 0, 1, 2, 5, 10, 20, 30, 40, 50, 60, 80, 100, and 200 nM.  663 

A, B. Binding in the absence (open circles) and presence (filled squares) of DnaD-his6 (300 664 

nM).  665 

C. Binding in the absence (open circles) and presence (filled diamonds) of his6-YabA (700 666 

nM). For the DnaA mutant defective in ATP binding, DnaA(K157A), the presence of YabA 667 

reduced the Hill coefficient from 5.6 to 2 and the apparent Kd from 36 nM to 14.7 nM.  668 

 669 
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