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Abstract

A thermodynamically-consistent coupled-theory which accounts for diffusion of hydrogen, trapping

of hydrogen, diffusion of heat, and large elastic-plastic deformations of metals is developed. Our

theoretical framework places the widely-used notion of an "equilibrium" between hydrogen resid-

ing in normal interstitial lattice sites and hydrogen trapped at microstructural defects, within a

thermodynamically-consistent framework. The theory has been numerically implemented in a fi-

nite element program. Using the numerical capability we study two important problems. First,
we show the importance of using a prescribed chemical potential boundary condition in modeling

the boundary between a metal system and a hydrogen atmosphere at a given partial pressure and

temperature; specifically, we perform simulations using this boundary condition and compare our

simulations to those in the published literature. Secondly, the effects of hydrogen on the plastic

deformation of metals is studied through simulations of plane-strain tensile deformation and three-

point bending of U-Notched specimens. Our simulations on the effects of hydrogen on three-point

bending of U-notched specimens are shown to be in good qualitative agreement with published

experiments.
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Chapter 1

Introduction

Hydrogen is expected to play an increasingly important role in the development of a "clean" source
of energy.1 However, hydrogen is a gas at ambient conditions, and the storage and distribution
of hydrogen in its molecular or atomic form is a technological challenge which must be overcome
in order to make this source of energy economically viable (cf., e.g., Zittel et al., 2010; Zheng
et al., 2011). Atomic hydrogen, being the smallest of gaseous impurities, readily dissolves in and
permeates through most materials. Hydrogen dissolution and permeation can be significant at high
pressures, and since hydrogen can have deleterious effects on a material it may affect the integrity
of structural components used for hydrogen storage and distribution.

Accordingly, it is important to understand and model the coupled diffusion-mechanics response
of metallic components used to contain this gas, and this topic is receiving increasing attention
because of its potential application to the development of large-scale production, storage, and
distribution of hydrogen (cf., e.g., San Marchi et al., 2007; Dadfarnia et al., 2009).

The deleterious effects of hydrogen on the mechanical response of iron and steel are well-known
(cf., e.g. Hirth, 1980). The precise microscopic mechanisms by which hydrogen embrittles steels
are still not very well understood or modeled. As reviewed by Dadfarnia et al. (2010), research to

date has identified two possible mechanisms for hydrogen embrittlement at room temperature: (i)
hydrogen-enhanced localized plasticity (HELP), and (ii) hydrogen-induced decohesion (HID). The

HELP mechanism is based on the observation that hydrogen reduces the strength of the barriers to

dislocation motion and thus enhances the mobility of dislocations. This leads to a reduction in the

resistance to plastic flow in regions where the hydrogen concentration is locally high. The precise

mechanism by which hydrogen embrittles steels continues to be the focus of intensive theoretical

and experimental research (cf., e.g., Ramasubramaniam et al., 2008; Serebrinsky et al., 2004; Novak

et al., 2010; Dadfarnia et al., 2010) and is not the focus of this work. Instead, our focus here is

on the development of a thermodynamically-consistent continuum-level theory for the diffusion of

hydrogen coupled with the thermo-elastic-plastic response of materials. The development of such

'Hydrogen is produced from water by electricity through an electrolyser, and the hydrogen so-produced is a
"renewable" fuel only if its produced directly from solar light, or indirectly from a renewable source, e.g., wind- or

hydro-power Ziittel et al. (2010).
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a theory is an essential prerequisite to any attempt to address the issue of hydrogen-embrittlement
related failures in structural components.

It has long been observed that there is an asymmetry between the kinetics of absorption and
the kinetics of evolution of hydrogen in steels, in that absorption proceeds with a larger apparent
diffusivity than does evolution. This asymmetry in diffusivities is attributed to trapping of the
hydrogen atoms at various microstructural "trapping sites," which include interfaces between the
matrix and various second-phase particles, grain boundaries, and dislocation cores. A widely-used
micro-mechanical model for describing the asymmetry in diffusivities is that of Oriani (1970). His
model is based on a crucial assumption regarding the effects of the microstructure on hydrogen
transport and trapping. Oriani postulated that within a continuum-level material point, and for a
specific range of trap binding energies, the microstructure affects the local distribution of hydrogen
in a manner such that the population of hydrogen in trapping sites is always in equilibrium with
the population associated with normal interstitial lattice sites.

One of the earliest papers which attempts to couple nonlinear diffusion of hydrogen with large
elastoplastic deformation of metals is the seminal paper of Sofronis and McMeeking (1989), who
formulated a theory which has Oriani's postulate of "local equilibrium" as one of its central argu-
ments. The theory of Sofronis and McMeeking was extended by Krom et al. (1999) to account for
the effects of an increase in the number of trapping sites due to plastic deformation, and by Lufrano
and Sofronis (1998) to account for lattice-dilatation due to the presence of hydrogen. These compo-
nents are all present in the work of Taha and Sofronis (2001) which, with minor modifications, is at
present most often used to analyze the effects of interactions of hydrogen transport, elastic-plastic
deformation, lattice-dilatation, and hydrogen-induced reduction of the resistance to plastic flow.
These coupled theories are not formulated in a thermodynamically-consistent manner and always
have Oriani's postulate of "local equilibrium" as a central argument.

The purpose of this work is to develop a thermodynamically-consistent thermo-mechanically-
coupled theory accounting for diffusion of hydrogen, trapping of hydrogen, diffusion of heat, and
large elastic-plastic deformations within a modern continuum-mechanical framework. In formulat-
ing our theory, we limit our considerations to isotropic materials and develop a reasonably general
theory in Sections 2.1 through 2.10 of Chapter 2. In Sections 2.11 and 2.12 of Chapter 2 we discuss a
special set of constitutive equations which should be useful for applications. We have enhanced our
theory with a strain-gradient component in order to avoid mesh-dependent results when modeling
materials which plastically soften, this is important to the problem of hydrogen embrittlement of
steels since the HELP mechanism suggests that the resistance to plastic flow should decrease in
regions of high hydrogen content.

Our specialized theory is similar in spirit to that of Taha and Sofronis (2001), but has the
following distinctive characteristics: (i) we do not use Oriani's hypothesis as a central argument
to our theory of trapping; rather, based on thermodynamically consistent constitutive choices, we
recover his argument as a special case of our theory; (ii) it is phrased entirely at the continuum-level;
(iii) it is consistent with modern continuum thermodynamics; (iv) it is properly frame-indifferent;
(v) it is not restricted to isothermal conditions.

In Chapters 3 and 4 we present numerical simulations using the chosen constitutive equations
and compare our numerical results to some of the published literature. We close in Chapter 5 with
a brief summary and listing some outstanding issues that need further research.

In Appendix A we illustrate how our theoretical framework may be used to model hydrogen
trapping without the use of Oriani's hypothesis in a thermodynamically-consistent manner. In
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Appendix B we provide details on the numerical implementation of our specialized constitutive

theory.



18



Chapter 2

Theoretical framework

2.1 Introduction

In this chapter we present our thermodynamically-consistent continuum-level theory for the diffu-

sion of hydrogen, trapping of hydrogen, and large elastic-plastic deformation of metals. In Sections

2.2 through 2.10 we present a relatively general theoretical framework. In Sections 2.11 and 2.12

we discuss a special set of constitutive equations which should be useful in applications.

2.2 Notation

We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifically: V

and Div denote the gradient and divergence with respect to the material point X in the reference

configuration; grad and div denote these operators with respect to the point x = X(X, t) in the

deformed body; a superposed dot denotes the material time-derivative. Throughout, we write

Fe-1 = (Fe)-1, Fe-T = (Fe)-T, etc. We write trA, symA, skwA, AO, and sym0 A respectively,
for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the

inner product of tensors A and B is denoted by A: B, and the magnitude of A by IAl v/A: A.

2.3 Kinematics

2.3.1 Standard kinematics

Consider a macroscopically-homogeneous body B with the region of space it occupies in a fixed

reference configuration, and denote by X an arbitrary material point of B. A motion of B is then a

smooth one-to-one mapping x = X(X, t), with deformation gradient, velocity, and velocity gradient

given by
F = VX, V , L = gradv = ]FF- 1. (2.1)

Following modern developments of large-deformation plasticity theory (cf., e.g., Anand and

Gurtin, 2003; Gurtin and Anand, 2005), we assume that the deformation gradient F may be

19
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multiplicatively decomposed as (Kr6ner, 1960; Lee, 1969)

F = FeFP. (2.2)

Here, suppressing the argument t

" FP(X) represents the local deformation of the material in an infinitesimal neighborhood of X
due to "plastic" mechanisms. This local deformation carries the material into - and ultimately
"pins" the material to - a coherent structure that resides in the intermediate space at X (as
represented by the range FP(X));

" Fe(X) represents the subsequent stretching and rotation of this coherent structure, and
thereby represents an "elastic" mechanism.

We refer to FP and F' as the plastic and elastic distortions.
The deformation gradient F(X) maps material vectors to spatial vectors; thus consistent with

(2.2), the domain of FP(X) is the reference space, the space of material vectors, and the range of
Fe(X) is the observed space, the space of spatial vectors. By (2.2) the output of FP(X) must equal
the input of Fe(X); that is

defthe range of FP(X) = the domain of Fe(X) = I(X). (2.3)

We refer to I(X) as the intermediate space for X. Thus, for any material point X, FP(X) maps
material vectors to vectors in 1(X), and Fe(X) maps vectors in 1(X) to spatial vectors.

By (2.1)3 and (2.2)
L =Le + FeLPFe-l (2.4)

with
Le = NeFe-1, and LP = NPFP-1. (2.5)

The elastic and plastic stretching and spin tensors are defined through

De = sym L', We = skw Le,

DP = sym LP, WP = skw LP. (2.6)

We assume that
def

J = detF > 0 (2.7)

and hence, using (2.2),

JJeJP where Je d detFe > 0 and J f idetFP > 0, (2.8)

so that F and FP are invertible.

The right polar decomposition of F' is given by

Fe = ReUe, (2.9)

where R' is a rotation, while Ue is a symmetric, positive-definite tensor with

U e = v'FeT Fe. (2.10)



The right elastic Cauchy-Green strain tensor is given by

Ce = (Ue) 2 = FeTFe.

Differentiating (2.11) results in the following expression for the time rate of change of Ce

1.
-de = sym(FeTe),
2

a result that we reserve for later use.

We make two basic kinematical assumptions concerning plastic flow:

(i) First, we make the standard assumption that plastic flow is incompressible, so that

JP = detFP = 1

Hence, using (2.8)

and trLP = trDP = 0.

J =Je

(ii) Second, from the outset we limit our discussion to isotropic materials, for which it is widely

assumed that plastic flow is irrotational in the sense that'

Then, trivially, LP = DP and

Let
p def/3DPI

define an equivalent tensile plastic strain rate.2

tensile plastic strain by

,P(X, t) d

Then, as is traditional, we define an equivalent

I P(X, ()d(, subject to the initial condition

0

Whenever |DP| z 0,

NP = e
|DP|'

defines the plastic flow direction, and therefore

with trNP = 0,

DP = T3//2PNP.

'This assumption is based solely on pragmatic grounds: when discussing finite deformations for isotropic materials

the theory without plastic spin is far simpler than one with plastic spin.
2 This is a slight abuse in notation in the sense that P is not the material time derivative of -e.
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(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

O(X, 0) = 0. (2.18)

(2.19)

(2.20)

WP = 0.

# P = DPFP.
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Using (2.1), (2.4), (2.5), (2.16), and (2.20) the rates j, #*, and P are related through

(Vj)F-' = NeFe-l + /3/2PFeNPFe-', (2.21)

a result that we reserve for later use.

2.3.2 An additional microvariable eP

We view e as an isotropic measure of the past history of plastic strain in the material. For
the purpose of mathematical regularization and ease of computation in the modeling of
materials involving strain softening and localized deformation, following Anand et al. (2012) and
Forest (2009), we introduce a positive-valued scalar microvariable eP.

* The microvariable eP serves as an additional microscopic kinematical degree of freedom in
developing a gradient theory. Specifically, in contrast to traditional gradient theories which
are based on P and VP, here we develop a theory which depends on 6, eP, and the gradient
VeP of the microvariable eP.

2.4 Frame-indifference

A change in frame, at each fixed time t, is a transformation - defined by a rotation Q(t) and a
spatial point y(t) - which transforms spatial points x to spatial points

x* = F(x)

=y (t + Q (t)(x - o). (2.22)

The function F represents a rigid mapping of the observed space into itself, with o a fixed spatial
origin. By (2.22) the transformation law for the motion x = X(X, t) has the form

x*(X, t) = y(t) + Q(t)(x(X, t) - o). (2.23)

Then, under a change in observer, the deformation gradient transforms according to

F* = QF. (2.24)

The reference configuration and the intermediate structural space are independent of the choice
of such changes in frame; thus

FP is invariant under a change in frame, (2.25)

and, by (2.5),
LP and hence DP are invariant under a change in frame. (2.26)

Then, (2.2) and (2.24) yield the transformation law

(2.27)Fe* = QFe
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and
#e* - QEe+ QFe. (2.28)

Also, by (2.5)1 and (2.28)
Le* = QLeQ T + QQT  (2.29)

and hence

D'* = QDeQ T, and We* = QWeQ T + QQT. (2.30)

Further, by (2.9),
Fe* = QReUe (2.31)

and we may conclude from the uniqueness of the polar decomposition that

R'* = QR', and Ue is invariant, (2.32)

and on account of the definition (2.11)

Ce is invariant. (2.33)

Finally, the scalar microvariable eP is invariant, and VeP is also invariant since "V" represents

a gradient in the reference body.

2.5 Development of the theory based on the principle of virtual
power

Following Anand et al. (2012) and the virtual-power method of Gurtin (2000, 2002) and Gurtin

and Anand (2005, 2009) the theory presented here is based on the belief that

o the power expended by each independent "rate-like" kinematical descriport - , 6 eP, and

Ver - be expressible in terms of an associated force system consistent with its own balance.

However, it is not apparent what forms the associated force balances should take. For that reason

we determine these balances using the principle of virtual power. We note that the rates j,#F,
and P are not independent but are constrained through

(V)F-1 - NeFe-1+ v3/2PFeNPF e-1, (2.34)

which is reiterated from (2.21). Also, VP is simply the material gradient of eP.
We denote by P an arbitrary part (subregion) of the reference body B with na the outward

unit normal on the boundary OP of P. With each evolution of the body we associate macroscopic

and microscopic force systems. The macroscopic systems, which are standard, are defined by:

(a) a traction tR(nR) (for each unit vector nR) that expends power over the velocity j on the

boundary of the part;

(b) a body force boa that also expends power over i;3

3 We neglect any inertial effects in the development of this theory.
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(c) an elastic stress S' that expends power over the elastic distortion rate Fe.

The microscopic systems, which are nonstandard, are defined by:

(a) a scalar positive-valued microscopic stress 7r that expends power over the equivalent tensile

plastic strain rate P;

(b) a scalar microscopic stress p that expends power over the rate e& of the microvariable eP;

(c) a vector microscopic stress ( that expends power over the gradient VeP.

(d) a scalar microscopic traction X(nR) (for each unit vector nR) that expends power over eP on

the boundary of the part;

We characterize the force systems through the manner in which these forces expend power. Given

any part P, the power expended on P by material external to P is specified through Wext, and the

power expended within P is specified through Wint. Specifically,

Wext (P) = JtR(R) dAR, +IbOR dVR + RP dAR,

JxnnPPAR}(2.35)

Wintf(P) = (Se: e + 7rp + p + ( Vep) dVR,

P

where Se, r, p and ( are defined over the body for all time.

2.5.1 Principle of virtual power

Assume that, at some arbitrarily chosen but fixed time, the fields x, F' (and hence F and FP),
and NP are known, and consider the fields j, N', and P as virtual velocities to be specified

independently in a manner consistent with (2.34). That is, denoting the virtual fields by j, F,
and P to differentiate them from fields associated with the actual evolution of the body, we require

that
(V)F-' - NeFe- + 3/2PFeNPFe-l. (2.36)

Further, also considering eP to be a virtual velocity, and denoting its virtual counterpart by eP, we

define a generalized virtual velocity to be a list

V = F2 e, jp, ep), (2.37)

consistent with (2.36). Writing

Wext(P) = tR(fR) idAR J bOR -dVR R R,

P P P(2.38)

Wint (P) = J (Se: e + 7tP + Pe + ( -ve) dVR,

P
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respectively, for the external and internal expenditures of virtual power, the principle of virtual

power is the requirement that the external and internal powers be balanced. That is, given any
part P,

Wext (P, V) = Wint (P, V) for all generalized virtual velocities V. (2.39)

2.5.2 Frame-indifference of the internal power and its consequences

We assume that the internal power Wint(P, V) is invariant under a change in frame, and that the
virtual fields transform in a manner identical to their nonvirtual counterparts. Then given a change
in frame, invariance of the internal power requires that

W*(P, V*) = W(P, V), (2.40)

where V* is the generalized virtual velocity in the new frame. In the new frame S' transforms to
Se*, ( transforms to (*, and from (2.28) P' transforms to

ge* QFe + QFe.

Further,

r, P, p and eP are invariant,

since they are scalar fields, and because "V" represents a gradient in the reference body, the

transformation rule for VeP is

(V eP)* V eP.
Thus, under a change in frame Wint(P, V) transforms to

Wi*nt (P, V*) J {Se*: (Qe + QFe) + r + peP + .* V } dVR

P (2.41)

J{QTSe* (Pe+QTQFe) +7 + e +VeP}dV(

P

Then (2.40) implies that

QTSe*. (Fe + QTQFe) + 7P + pep +- VP} dVR

(2.42)

= (Se:-+e +rp+ pep + V~') dVR,

P

or equivalently, since the part P is arbitrary,

Q T Se*: (Pe + QTQFe) +* -V = Se:F e + (- Ve.
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Also, since the change in frame is arbitrary, if we choose it such that Q is an arbitrary time-

independent rotation, so that Q = 0, we find that

(Se (QTSe*)) -e +

Since this must hold for all P' and all VeP, we find that the stress Se transforms according to

Se* = QSe, (2.43)

and the microforce ( is invariant
(2.44)

Next, if we assume that Q = 1 at the time in question, so that Q is an arbitrary skew tensor,
we find that

(SeFe T):Q =0,

or that the stress (S'FIT) is symmetric,

Se Fe T = Fe SeT (2.45)

Next, to deduce the consequences of the principle of virtual power, assume that (2.39) is satisfied.
In applying the virtual balance (2.39) we are at liberty to choose any V consistent with the constraint
(2.36).

2.5.3 Macroscopic force balance

Consider a generalized virtual velocity with both ~P = 0 and
(Vj)FP-l - F. For this choice of V, (2.39) and (2.38) yield

6P = 0, so that according to (2.36)

J tR(fR) R dAR+f
aP P

bOR dVR J

P

Se:Pe dVR = I (SeFP-T): Vj dVR,
P

which, by defining

may be rewritten as

J tR(fR) - jdAR
aP

T_ fSeFp--

f (TR: V

P

- bORi dVR,

and using the divergence theorem we may conclude that

(tR(nR)- TRIR) R dAR + J (Div TR
P

+ boR) -dVR =0.

Since this relation must hold for all P and all j, standard variational arguments yield the macro-
scopic traction condition

(2.46)

I

(2.47)

(2.48)

(2.49)

- V*) Ve" = 0.

(2.50)tR(n1R - RnR,
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and the local macroscopic force balance

Div TR + bOR = 0, (2.51)

respectively. Furthermore, (2.45) and (2.47) imply that

TRF T = FT T (2.52)

Thus, TR represents the classical Piola stress, and (2.51) and (2.52) represent the local macroscopic

force and moment balances in the reference body.

2.5.4 Microscopic force balances

To discuss the microscopic counterparts of macroscopic force balance, consider first a generalized

virtual velocity with j 0 and 6P = 0, and choose the virtual field P arbitrarily. Then, (2.36)
yields

fe = - 32PFeNP (2.53)

so that
Se: e = P( 3/2(FeTSe): NP)). (2.54)

Next, define a Mandel stress by

Me de FeTSe (2.55)

and define an equivalent tensile stress a by the relation

0- = /2M': NP (2.56)

where in writing the last relation we have used the fact that NP is deviatoric. The power balance

(2.39) along with (2.38) yields

0 = Se: -5 + -rP) dV (2.57)

P

which using (2.54), (2.55), and (2.56) may be rewritten as

0 = ( - & P dV (2.58)

P

which must be satisfied for all P and all P. This yields the first microscopic force balance

S7r. (2.59)

Next, consider a generalized virtual velocity with y 0 and P = 0, and choose the virtual

The power balance (2.39) along with (2.38) yields the second microscopicfield eP arbitrarily.
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virtual-power relation

I x(nR) 6P R = J (P&P + WP) dVR (2-60)

aP P

to be satisfied for all eP and all P. Equivalently, using the divergence theorem,

J (x(nR) - flR) 6P dA R + J (Dive - p) eP dVR - 0, (2.61)

BP P

and a standard argument yields the microscopic traction condition

X(nR) nR, (2-62)

and the second microscopic force balance

Dive - p = 0. (2.63)

2.6 Balance law for the diffusion of hydrogen

Following Anand (2011), let C(X,t) denote the total number of moles of hydrogen atoms per unit
reference volume. Hydrogen is absorbed into the metal into normal interstitial lattice sites (NILS),
and into trapping sites associated with internal microstructural defects such as dislocation cores,
grain boundaries, and interfaces of second-phase particles with the matrix material. Accordingly,
we assume that C(X, t) is additively decomposable as

C(X, t) = CL (X, t) + Ca (X, t) (2.64)

where CL(X, t) denotes the number of moles of hydrogen atoms in normal interstitial lattice sites
per unit reference volume, Ca (X, t) represents the number of moles of hydrogen atoms in trapping
sites per unit reference volume, and a denotes the specific type of trap site in which the hydrogen
resides. For brevity we henceforth refer to hydrogen residing in NILS as lattice hydrogen and to
hydrogen residing in trapping sites as trapped hydrogen.

For convenience in mathematical modeling of the notion of trapping of a portion of hydrogen
content in the material at microstructural trapping sites we consider CL and Ca as different species
of solutes. Changes in CL and Ca in a part P are then brought about by diffusion of the species
across its boundary OP and by the transformation between latticed and trapped hydrogen.

As is standard, the rate of change of lattice and trapped hydrogen in P is given by

OL = -DivjL - )3 hL-a,

(2.65)

Ca = -Divja + hLa, Va,)

where jL(X, t) and ja (X, t) are the fluxes of lattice and trapped hydrogen measured as the number
of moles of solute atoms per unit area per unit time, and hLa is the transformation rate from
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lattice to trapped hydrogen measured as the number of moles of solute atoms per unit volume per
unit time. At this point in the development of the theory it is convenient to allow for non-zero

fluxes ja for the trapped hydrogen; later, we shall make specific assumptions which will result in

ja = 0.

2.7 Balance of energy. Entropy imbalance. Free-energy imbalance

Our discussion of thermodynamics follows Gurtin et al. (2010, Section 64), and involves the following

fields

ER the internal energy density per unit reference volume,

77R the entropy density per unit reference volume,

qR the heat flux per unit reference area,

qR the external heat supply per unit reference volume,

9 > 0 the absolute temperature,

pL the chemical potential for the lattice hydrogen,

ya the chemical potential for the a-th trapped hydrogen species.

The balance law for energy, is

EJRdVR JqR 'n dAR JqR dVR +)/Vext (P)JLiL -nR dAR -S JaanR dAR, (2-66)

P OP P aP a g

where the last two terms in (2.66) represents the energy contribution into P by the lattice and

trapped hydrogen (Gurtin, 1996). Since Wext(P) = Wint(P), using (2.35)2, and applying the

divergence theorem, we obtain

I 8
R dVR J (Se: - e - wr + pNP -±. Ver - Div q + qR

PP (2.67)

- PLDivjL - jL VPL +Y - paDivja - ja Vpa dVR.

Use of the balance laws (2.65) and the fact that (2.67) must hold for all parts P, gives the local

form of the energy balance as

9R = Se: Fe + 7 - Pe + -Ve - DivgR + qR

+ pLCL - L V/IL + (Paoa - a ' V/a + (PL - /ia)hL-*a (2.68)

Note that while the "elastic power" Se: N itself is invariant, neither the stress Se nor the elastic

distortion rate F' are invariant under a change in frame. Accordingly, as is standard, we express

this elastic power in terms of Ce and a power-conjugate stress measure. Let

Te f Fe-lSe (2.69)
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then, since SeFeT = FeTCFeT , (2.45) yields

Te T. (2.70)

Thus Se: e - Te:FeT Pe, and in view of (2.12),

1
Se:e Te:de (2.71)

2

Finally, using this result the local energy energy balance (2.68) may be rewritten as

1
R = -Te: Ce + 7rp + pp + . V - DivqR + qR

2 (2.72)
+ 2LUL - L V VL + S a a - ja ' V/a (PL - pa)hL -(27

The second law takes the form of an entropy imbalance

TRdR - J R RnR dAR + R (2.73)

P BP P

and the local entropy imbalance has the form of

/R > -Div q + (2.74)

Let

aRf ER OIR (2.75)

denote the (Hemholtz) free energy per unit volume of the reference body. Then use of (2.72), (2.74)
and (2.75) yields the local free-energy imbalance

1 .1~~PR ~ I -]R - T: i-P - p~P - .Ve~ -+-OR + IR79 -' -qR'2 
(2.76)

- MLCL +jL - VjL + -3 a a +/ a ' a - (AL - /Ia)hL-+a 0.

We use this inequality as a guide in developing a suitable constitutive theory.

For later use we define the dissipation density D > 0 per unit volume per unit time by

1 1
D = -Te~a + x# F- .S qR - So

2 0(2.77)
+ pLCL - L V VL + (/aeoa - ja ' ±a e (/IL - pa)hL-o) -R - 7R > 0-

In the preceding discussion we have introduced four stress measures: S', TR, M', and Te.

Before closing this section we note that since the Piola stress TR is related to the symmetric

Cauchy stress T in the deformed body by the standard relation

TR = JTF -T (2.78)
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the definitions (2.47), (2.69), and (2.55) yield
Se, Te, Me, and the Cauchy stress T:

Se = JTFe -T e" = JFe-1 TF e-T

the following relations between the stress-measures

and Me = JFeT TFe- T = CeTe. (2.79)

2.8 Constitutive theory

2.8.1 Basic constitutive equations

Guided by the free-energy imbalance (2.76), we first consider the following constitutive equations

for the free energy OR, the stress T', the entropy 77R, the chemical potentials pL and p, the scalar

microscopic stress ir, the scalar microscopic stress p, and the vector microscopic stress (:

Te - te(A),

7R =R(A),

pL = AL(A),

pa = a(A),

7 = -fr(A),

(2.80)

where A denotes the list
A = (Ce IP, eP, VeP, 19, CL, Ca). (2.81)

Further, we assume that the scalar and vector microscopic stresses -r, p, and ( can be decom-

posed into energetic and dissipative parts

7 = 7Ten + 7rdis,

P = Pen + Pdis,

= den + dis -

(2.82)
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2.8.2 Thermodynamic restrictions

Using (2.80)1 the local free-energy imbalance (2.76) may be rewritten as

( &'R(A) e
ace 2 )

+(a R(A)
( OV eP

'+ ( R(A)

Oa +jL -VOLp + ji Vpac - (AL
cc

- a)hLna + QR ' V7 <K 0-

We identify the energetic components of 7r, p and ( as

def O'V)R(A)
WFen IlE

def V)R (A)
Pen = eP (2.84)

def 8V'a(A)
sen l fee it

such that using (2.82) and (2.84) in (2.83) the local free-energy imbalance may be written as

O R(
+ y7R ) +

DbR (A)
ac,

aPR (A)

(ce 1Te :a~ (DCLf

- Aa )a -- 7disp - Pdise" - dis . P

- AL ) OL

(2.85)

+jL -VyL +I (ja VPa - (PL - Ial)hLaa) + I R V < 0.79

This inequality must hold for all values of A. Since e, de, OL, and Oa appear linearly, their
"coefficients" must vanish, for otherwise 0, Ce, CL, and Ca may be chosen to violate (2.85). We
are therefore led to the thermodynamic restriction that the free energy determines the stress T',

+ 77R ) +

(OeR(A)(9 eP- P,)

O R(A)

aCa
-ta)

- PL) CL (2.83)R a,,A- V ' + CL
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the entropy IR, and the chemical potentials PL and Mt, through the "state relations"

T' 2 OOR(A)
ace

O~bR(A)
7 9 > () ' 

(2.86)

M aCL

(90R Ac

and the dissipation density (2.77) reduces to

D = 7Tdis( -f- Odis-iIi('V L-jL1hVPL - - a' ea L- a) - V > 0. (2.8 7)

2.8.3 Dissipative constitutive equations

Next, guided by the dissipation inequality (2.87), and experience with existing plasticity theories,
we make the following constitutive assumptions:

(1) As is classical in finite deformation theories of isotropic plasticity (cf., Gurtin et al., 2010),
we assume that the direction of the plastic flow coincides with the direction of the deviatoric

Mandel stress, that is DP is codirectional with M8. The plastic flow direction (2.19) is then
given by

DP me
NP = = 0 (2.88)

|DP| |Me |

Thus, the equivalent tensile stress 6 = V3//2 Me: NP, defined in (2.56), is given by

v/ = 3/2Me |. (2.89)

Using (2.20), (2.88), and (2.89) the plastic stretching DP may be written as

DP = 3 . (2.90)
2

(2) A constitutive equation for 7tdis of the form

7dis = dis(A) with A = (EPeP, , CL, Ca), (2.91)

which for simplicity is independent of P and eP. Here

Ydis > 0, (2.92)

a positive-valued scalar with dimensions of stress, represents the classical flow resistance of

the material. The initial value at a reference temperature do and at reference concentrations



C and C., C

YO Zre dis(0,1 0, ino , Cste Cth) > 0,

represents the inial yield strength. Let

f(A) def fdis(A) + Yen(A) with Yen gren

represent the combined dissipative and energetic parts of the constitutive equation for r.
Then the microscopic force balance (2.59) requires that

u = Y when P>0. (2.95)

(3) Based on (2.95) we introduce a yield function

deff =&- Y(A) 0, (2.96)

which limits the admissible deviatoric stresses MI. Then, as is standard, a rate-independent
theory is based on the Kuhn-Tucker conditions

0P>, f 0, and Pf-=0, (2.97)

together with the consistency condition

when f = 0. (2.98)

(4) We assume further that the dissipative microscopic stresses Pdis and (dis are given by consti-
tutive equations

Pdis = $dis (E, P, 2 Jp P , Gep, V ", V, CL), Ca),
(2.99)

5) We assume that the transformation rates hLaa depend on the equivalent tensile plastic strain
2P, the temperature d, and the concentrations CL and Ca

hL-+a= hL-+(E,'0,dCL,Ca), Va. (2.100)

More generally, as discussed in Appendix A, the transformation rates hL a may depend on
the conjugate driving force (PL - A,); cf. eq. (2.87).
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(2.93)

(2.94)

(dis = dis('6, P, ep, er, Vep, Ver, o, CL, Ca).
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To the constitutive equations above we append a Fourier-type relation for the heat flux, and
Fick-type relations for the flux of the diffusing hydrogen, 4

qR=

jL = ~ML(A )VPL, (2.101)

ja = -a( A)V/a, J
where K is a thermal conductivity tensor, ML and Ma are mobility tensors, and A denotes the list

A = (C e, CP, 79, CL, Ca). (2.102)

Finally, the dissipation density (2.87) may be written as

1
D=7disP + Pdisep + (dis- VP + -VIW KVO

+ V/pL M LV/L + ( a- MaVa ± (,L - Ua)hLa) > 0. (2.103)

We also assume that the terms in (2.103) individually satisfy

?disP > 0 for P > 0, (2.104)

Pdis e > 0 for eP > 0, (2.105)

dis-Vep > 0 for VP# O, (2.106)

and

VO -KV9 > 0, (2.107)

VpL MLV/IL > 0, (2.108)

(AL - pa)hL-*a > 0, Va, (2.109)

Vya- MaV/a > 0, V a. (2.110)

Thus, note that the thermal conductivity tensor K and the mobility tensors ML and Ma are

positive-semidefinite.

2.8.4 Further consequences of thermodynamics

In view of (2.80)1, (2.84), and (2.86) we have the first Gibbs relation,

-1
R -+ 7en + Pen + en - LOL + aa t-(2.111)

4We neglect Soret-type coupling effects in which jL or ja are affected by VO, and qR by VpL and Vyi.
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which, with (2.75), yields the second Gibbs relation

1
iR = R + I Te: & + 7enP + Pene + en *V + ILOL + P-jaa-2

(2.112)

Using the balance of energy (2.72), the second Gibbs relation (2.112), the decomposition of the scalar
and vector microscopic stresses (2.82), and equations (2.101), we arrive at the entropy balance

'o7R = -DivqR qR + TdisP + Pdise + dis

+ VPL - MLVL a (Vp-. MaVPa + (ML - a)hL 4 a)-

Granted the thermodynamically-restricted constitutive relations (2.84) and (2.86), along with the
decomposition (2.82), this balance is equivalent to the balance of energy.

Next, from (2.75), the internal energy density is given by

SR(A) <R(A) + 7 R (A) (2.114)

and, as is standard, the specific heat is defined by

def O R(A)
C = 7 (2.115)

Hence, from (2.114)

c = (A)

and use of (2.86) gives

Next, using (2.80)3 and (2.117)

- a
2 (A)

8d 2 (A)
- 80C L

+ iR(A) + 79 4W ) (2.116)

(2.117)a2cR(A)C= -7) a?2

a 2  (A) P
-z eP82 (A)

-W&e

-za

- 89 a2 e (A) -I- C-99VeP~c

808ag Ca,

(2.118)

(2.113)

which using (2.84) and (2.86) yields

oIR &o :a en. e P O p
a9a79

19 L L- 0p 0 . (2.119)-9oe . V& +c -
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Then, using (2.119) in (2.113) gives the following partial differential equation for the temperature

c5=-Divqa+qa+disP+Pdis+dis' --+1 aT e +d ""7ren dPen
2 09 (9

+ O "en - V + 9 OL + VAL - MLVPL (2.120)

+ ( COa + Vy . MatVa + (PL - pa)hLa).-

2.9 Isotropy

The following definitions help to make precise our notion of an isotropic material (cf., Anand and
Gurtin, 2003):

(i) Orth+= the group of all rotations (the proper orthogonal group);

(ii) the symmetry group ga, is the group of all rotations of the reference configuration that leaves

the response of the material unaltered;

(iii) the symmetry group g, at each time t, is the group of all rotations of the intermediate space

that leaves the response of the material unaltered.

We now discuss the manner in which the basic fields transform under such transformations,
granted the physically natural requirement of invariance of the stress-power (2.71), or equivalently,
the requirement that

Se: e and Te: de be invariant. (2.121)

2.9.1 Isotropy of the reference configuration

Let Q be a time-independent rotation of the reference configuration. Then F -* FQ, and hence

FP -* FPQ, F' is invariant, and hence C' is invariant,

so that
Pe and de are invariant.

We may therefor use (2.121) to conclude that

Se and Te are invariant.

Thus

* The constitutive equations (2.80) are unaffected by such rotations of the reference configura-

tion.

Turning our attention next to the constitutive equation (2.101)1 for the heat flux, a standard

result from the theory of finite thermoelasticity is that under a symmetry transformation Q of the

(2.122)

(2.123)

(2.124)
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reference configuration, the temperature gradient V9 and the heat flux qR transform as (cf., Gurtin
et al., 2010, Section 57.8)

V?9 -+ QTV', qR- -R Q q.

Hence, from (2 .101)1 the thermal conductivity tensor K must obey

for all rotations Q E 9
R-

(2.125)

(2.126)

By an analogous argument, the mobility tensors ML and Ma must obey

ML (A) = QT ML ()Q and nc(A) = QTna(A)Q for all rotations Q E gR-

We refer to the material as initially isotropic (and to the reference configuration as undistorted)
if

9R = Orth+ (2.128)

so that the response of the material is invariant under arbitrary rotations of the reference space.
Henceforth we restrict attention to materials that are initially isotropic.

In this case, the thermal conductivity and the mobility tensors have the representation

K(A) = k (A)1,

with r, > 0 a scalar thermal conductivity, and

ML rnL(A)1 and Ma(A) =fia,(A)1,

with mL > 0 and ma > 0 scalar mobilities.

2.9.2 Isotropy of the intermediate structural space

Next, let Q, a time-independent rotation of the intermediate space, be a symmetry transformation.
Then F is unaltered by such a rotation, and hence

Fe -+ Fe Q and FP -+ QT FP,

and also
Ce -+ QTCeQ, de -_ QTaQ,

then (2.132) and (2.121) yield the transformation laws

Se -+ QTSeQ, Te - QTTeQ.

K(A) = QT k(A)Q

(2.127)

(2.129)

(2.130)

Fe - Q TFeQ

(2.131)

(2.132)

(2.133)
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Thus, with reference to the constitutive equations (2.80) together with (2.129) and (2.130) we

conclude that
'VR(A) = OQ AQ),

QTie(A)Q = Te(Q TAQ),

AL(A) = AL (QTAQ),

Aae(A) = JA(Q TAQ),

-(A) = f(QTAQ), (2.134)

b(A) = b(QT AQ),

(A) = (QT AQ),

k(A) = k(QTAQ),

rnL(A) = fnL(Q Q)

fn(X= rfna(Q TAQ),

with
QTAQ = (QTCeQ,0, e, Q TVepd, CL, Ca), (2.135)

QTXQ = (QT CeQ, p,, CL, Ca),

which must hold for all rotations Q in the symmetry group 9, at each time t.

We refer to the material as one which is continually isotropic, if in addition to the referential

isotropy discussed in the previous subsection,

91 = Orth+ (2.136)

so that the response of the material is also invariant under arbitrary rotations of the intermediate

space at each time t. Henceforth we restrict attention to materials that are not only initially, but

also continually, isotropic.

In this case, the response functions OR, T', rR, AL, Aa, ft , k, frL, and rh must also each

be isotropic.

2.9.3 Isotropic free energy

An immediate consequence of the isotropy of the free energy is that the free energy function has

the representation

PR(C, e e, Vep, 0, CL, CC) ='R(IC, P, eP, I 0, CL, Ca) (2.137)

where

Ice = (1 1(Ce),1 2 (Ce), 13 (Ce)) (2.138)
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is the list of principal invariants of Ce. Thus, from (2.86)1, it follows that

T' = 2 e , IVeP1, CLI Ca) (2.139)Te~2 ace

and that T' is an isotropic function of Ce. Then since the Mandel stress can be expressed by (cf.
(2.79))

Me = CeTe (2.140)

we find that Te and Ce commute,
CeTe TeCe (2.141)

and hence the Mandel stress Me is symmetric.

Next the spectral representation of Ce is

3

Ce e2(A)2 ri o ri (2.142)

where (ri, r', r') are the orthonormal eigenvectors of Ce and Ue, and (A', A', Ae) are the eigenvalues
of Ue. Instead of using the invariants Ice, the free energy @R for isotropic materials may be
alternatively expressed in terms of the principal stretches as

Then, by the chain-rule and (2.86)1, the stress T' is given by

ace
3

OO2 S&R(A', Ae,A', 0, eP, IV eP ,,CL, C,) aMx
1 e ace

3i OOR (Ae, Ae ~,e

__ ~') a ~. 2e(2.144)

Assume that the squared principal stretches (M )2 are distinct, so that the (M )2 and the principal
directions r may be considered as functions of Ce; then

9 (2.145)ace

and, granted this, (2.145) and (2.144) imply that

i=1 aOR(AeAe, AePePV
TMB r= 0r r. (2.146)
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Next, since Me = Cere, use of (2.142) and (2.146) gives the Mandel stress as

Me =3e O)R (A e A~ e , eP, ep, IV t9,),%C, C,,) (2.147)

i=1

Let
3

e dew vales

denote the logarithmic elastic strain with principal values

(2.148)

(2.149)

and consider a free energy of the form

'OR(A , Ae, Ae, 0, ep, IVLeP1,,d, CL, Cc,) OR (Ee, Ee, Ee, EP, eP, |V eP 1, CL, Ca) (2.150)

so that, using (2.147),

e R(Ee, Ee, Ege, 0, eP, |VeP 1, V, CL, Ca) e
m =E1 r e re (2.151)

With the logarithmic elastic strain defined by (2.148), and bearing (2.150) and (2.151), for isotropic
elastic materials we henceforth consider a free energy of the form

OR ='(IEe, 0, eP, IV eP, 0, CL, Ca) (2.152)

with 14e a list of principal invariants of E', or equivalently a list of principal values of E'. The

Mandel stress is finally given by

me - OOR (lEe, 0, eP, IVeP 10, CL, Ca) (2.153)
BEe

Further, using (2.146) in (2.79),

T = J- 1Fe TeFeT

_ J-1ReUeTeUeReT

ja 1R ~e(Ae, Ae, A , c'P, eP, IV eP 79 ,CL, Cc,)
- J-R e e 1 3 20 r) ReT (2.154)

and using (2.147) the Cauchy stress is given by

T = J-ReMeReT (2.155)

re (9 re
i
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2.10 Summary

In this section we summarize our isotropic chemo-thermo-mechanically coupled gradient theory.
The theory relates the following basic fields:

x = x(X, t)

F=Vx, J=detF>O

F =FeFP

Fe, Je detFe > 0

FP, J=1

Fe = ReUe

Ce = F eTFe = (Ue) 2

Ue = 3  0r
E = (In Ae) r (9 ri

T=T T

Te =JFe- TFe- T

me =CeTe

TR JTF -T

7r

'9ORnR

'd > 0

V79

qR

CL

Ca

hL+

p'L

Pa

VpL

jL

Vce

p

motion

deformation gradient

multiplicative decomposition of F

elastic distortion

plastic distortion

polar decomposition of F'

elastic right Cauchy-Green tensor

spectral decomposition of U

logarithmic elastic strain

Cauchy stress

elastic second Piola stress

Mandel stress

Piola stress

microscopic stress

free energy density per unit reference volume

entropy density per unit reference volume

absolute temperature

referential temperature gradient

referential heat flux vector

number of moles of lattice hydrogen per unit reference volume

number of moles of trapped hydrogen per unit reference volume

transformation rate between lattice and trapped hydrogen atoms

lattice hydrogen chemical potential

trapped hydrogen chemical potential

referential gradient of the lattice hydrogen chemical potential

referential gradient of the trapped hydrogen chemical potential

referential lattice hydrogen flux vector

referential trapped hydrogen flux vector

scalar internal microvariable

referential gradient of the scalar internal microvariable

scalar microscopic stress

vector microscopic stress
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2.10.1 Constitutive equations

1. Free energy

where Ie represents a list of the principal invariants of the logarithmic elastic strain E'.

2. Cauchy stress. Mandel stress

The Cauchy stress is given by
T = J--ReMeReT  (2.157)

where

Me - 9R(Ee, Ce, Ve ,) , CL, Ca) (2.158)

is the Mandel stress, which, on account of the isotropy of OR is symmetric. The Piola stress

is given by
TR = JTF-T (2.159)

3. Microscopic stresses 7r, p, and (

The microscopic stresses ir, p, and ( are additively decomposed into energetic and dissipative

parts

Tren = 4'R(IE , 0 , eP, IV eP , 79, C L, C a)

7 7en + 7Tdis

P Pen + Pdis with Pen

=en + (dis
en

(9*R (IEe, E, &, IVeP, 7, CL, Ca)

8eP

aV) (fEe, 0, eL, V Cz , a)

OV eP

(2.1

and with the dissipative parts of p and ( given by constitutive equations

pdis = jDdis (6 P iP p6,Ve 611CLI Ca), 2.

(dis = dis(c L p ,VP 6,7, IC),

and the dissipative part of -r given next.

4. Evolution equation for FE. Equation for the dissipative microscopic stress 7rdis

The evolution equation for FE is
P= DPFP, (2.1

where DP is given by

DP = P Mel (2.1
2 a

and according to the microscopic force balance (2.59) and the decomposition (2.160)

30)

31)

32)

33)

7 7en + 7Tdis. (2.164)
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The dissipative part of the microscopic stress 1rdis is given by a rate-independent constitutive
equation

7r Y d= di (, eP, i, CL, Ca) > 0 (2.165)

where Yds(6P, eP, '9, CL, Ca) is a positive-valued scalar with dimensions of stress representing
the rate-independent flow resistance of the material. The initial value

YO dis (0, 0, do, CO C0O) > 0, (2.166)

represents the initial yield strength of the material. Furthermore, let

y(EP, ep, 0, CL, Ca) = Ydis (EP, e",', CL, Ca) + Yen(0, e L, Ca), (2.167)

with Yen = rel, represents the combined dissipative and energetic parts of the constitutive
equation for -r. Then the microscopic force balance (2.59) requires that

Y (EP, eP,O, CL, Ca) when P > 0. (2.168)

def - YPf =orY (E , eP, 7, CL, Ca) < 0. (2.169)

Then, as is standard, a rate-independent theory is based on the Kuhn-Tucker conditions

P>0, f <0, and Pf=0, (2.170)

together with the consistency condition

Pf =0 when f = 0. (2.171)

D(90R (LTE, ,,, e", IV eP1 1, CLI Cce)

B9 R(IEe, E, e, e IV, CL, Ca)
9CL

aCa

(2.172)

respectively, represent the entropy, the chemical potential of the lattice hydrogen, and the
chemical potentials of the trapped hydrogen.

5. Yield function. Kuhn-Tucker and consistency condition

We introduce a yield function

6. Entropy. Chemical potentials

The partial derivatives of the free energy

rlR -

I-1L

(2.167)
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7. Rate of transformation between CL and Ca

The transformation rates hLa are assumed to obey constitutive relations of the form

hL-a = hL*a( P, 0, CL, Ca),

with (pL - pa)hLaa > 0 for all a.

8. Fourier's law

The heat flux qR is presumed to obey Fourier's law,

qR -

with (Ire, , , CL, Ca) > 0 the thermal conductivity.

9. Fick's law

The hydrogen fluxes jL and ja are presumed to obey Fick's law

jL = -mLVPL

ja = -maVya
(2.175)

with mL(Ie, C,1 9, CL, Ca) 0 and ma(IEe, ,P, CL, Ca) > 0 the lattice and trapped hy-
drogen mobilities.

2.10.2 Governing partial differential equations

The governing partial differential equations consist of:

1. The local macroscopic force balance (2.51), viz.

Div TR + bOR =, (2.176)

with TR given by (2.159) and boR the body force.

2. The local balance equations for the hydrogen concentration (2.65), which together with

(2.175), give

OL = Div(mL VPL) - hLa,

a =Div(maVpa) + hLC, J.
(2.177)

(2.173)

(2.174)
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3. The local balance of energy (2.120), which, together with (2.174) and (2.175), gives the
following partial differential equation for the temperature

1 BTe o
c5 =Div (nVV) + qR + 7 disP + Pdis 'b + dis 'V& + 1 e & + 3 &en

2 8& 8d

+ 9 e+ -_V&+ t9L L IL 1(2.178)

+ Oa + ma| r V/a|2 + (pL - pae)hLc)

in which
a2 Rc = -j72 (2.179)

is the specific heat.

4. The local microscopic force balance (2.63), viz.

Dive - p = 0. (2.180)
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2.11 Specialization of the constitutive equations

The theory presented thus far is quite general. We now introduce special constitutive equations

appropriate for situations in which the elastic strains are small, the temperature is closed to a

fixed reference temperature do, and the lattice hydrogen concentration CL is close to a reference
concentration 02.

Furthermore, we now restrict our attention to one kind of trap site, that is a = T (although we

restrict ourselves to one kind of trapping site, the theoretical framework laid forth in the previous

sections is general enough to account for multiple trapping sites of different kinds).

We begin with some definitions:

(i) Number of moles of lattice sites per unit reference volume, NL: This property of

the host metal is given by

Nde PM (mol/m 3 ) (2.181)
N MM

with <p the number of interstitial lattice sites per metal atom5 , pM the mass density of the

host metal (kg/m 3 ), and Mm the molar mass of the host metal (kg/mol).

(ii) Number of moles of trap sites per unit reference volume, NT: Experimental mea-

surements indicate that the trap density is a function of the history of the prior plastic
deformation, 6

NT = NT () (mol/m 3 ). (2.182)

(iii) Occupancy fraction 0 L and OT: Let

def CL
L d L O OL < 1, (2.183)

denote the occupancy fraction of the lattice sites, and

def CT
OT d NT <OT 1, (2.184)

NT'

denote the occupancy fraction of the trap sites.

2.11.1 Free energy

We consider a separable free energy of the form

R(Ee, e, e1|eP 1d, CL, CT) =/ 9(IEe, CL, CT) + mux(79, CL, CT) + grad(cP ep, e
(2.185)

Here:

'For example, for a BCC lattice and assuming tetrahedral occupancy of hydrogen the number of interstitial lattice

sites per metal atom p = 6, see Krom and Bakker (2000).
6It is possible that NT also depends on temperature, but for simplicity we neglect any such temperature dependence

here.
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(i) @'e is a thermo-chemo-elastic energy given by

"(IEe , ), CL, CT) = G|Ee| 2 + ' (K - 2G) (tr E )2

- (3Ka)(9 - do)(trEe) + c( - 'do) - co ln (2.186)

- (3K#)(CL - C)(tr Ee) - (3K#)(CT - CO)(tr Ee)

which is a simple generalization of the classical strain energy function of infinitesimal isotropic
elasticity combined with a thermal entropic contribution, and contributions due to the pres-
ence of lattice and trapped hydrogen in the material. Here G is the shear modulus, K the
bulk modulus, a the coefficient of thermal expansion, c the specific heat, # the coefficient of
chemical expansion, o is a reference temperature, and C2 and CS are reference lattice and
trapped hydrogen concentrations.

(ii) V@mix is a chemical free energy related to the mixing of hydrogen in the host metal, given by

,mix( 9 , CL, CT) = mixiatt (0, CL ) + Mixtrap (, CT), (2.187)

with

(a) @bmixiatt a chemical free energy
metal, given by

related to the mixing of lattice hydrogen in the host

omixlatt (, CL) = jL CL + R79NL (OL In OL + (1 - OL) In(1 - OL)), (2.188)

and

(b) nmixtraP a chemical free energy related to the mixing of trapped hydrogen in the host
metal, given by

anixaP(V, CT) = yIrCT + RdNT (OT In OT + (1 - OT) ln(1 - OT)).

Here so and po are reference chemical potentials, and R is the gas constant.

(2.189)

(iii) @1 grad introduces an energetic coupling between 6P and its mi
accounts for nonlocal effects, it is given by

grad =_B(P - eP )2 + |VeP 12grd 2 - 2

croscopic counterpart eP and

(2.190)

where B > 0 and y > 0 are constants.
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Thus, combining (2.186) through (2.190), the free energy is given by

R= G|Ee|2 + (K 2G) (trE) 2 - (3Ka)(9 - do)(trEe) + c(9 - ido) - ct ln (
- (3K#)(CL - C2)(tr Ee) - (3KO)(CT - CO)(tr Ee)

+ ICL + RONL (OL n OL + (1 - OL) In(1 - OL))

+-IT CT + RONT (OT In OT + (1 - OT) In(1
1

0 T)) + 1B( E - eP)2 +
2

Then, by (2.158) and (2.172), the Mandel stress, the entropy, and the chemical potentials are given
by

Me = 2GEe + K(trEe)1 - 3Ka(79 - do)1 - 3K#(C - C)1,

T7R c ( + 3Ka(trE) - RNL (OL in OL + (1 - OL) ln(1
'dolT (

- RNT (Or In Or + (1 - OT) In (1 - OT)) '

OL))

(2.192)

0
PL = PL + R9 In

PT = Pr + Rd in

L - 3K(trEe),
1 - L (

I --OO 3K#(tr Ee),

where in writing the Mandel stress Me we have defined

deL
C-= CL-+-CT and Co= C2O+CT.

Next, taking the trace of the stress relation (2.192)i and solving for tr Ee yields

tr Ee = (tr Me) + 3a(V - Oo) + 3#(C - C). (2.194)
3K

The last term in (2.194) justifies our terminology for 3 as a coefficient of chemical expansion. It is
related to the partial molar volume of hydrogen in solid solution, VH, through

1= 
(2.195)

3

2.11.2 Hydrogen trapping

We now make the assumption that trap sites are isolated, that is they do no form an extended

network, and thus assume that the mobility of trapped hydrogen is zero

MT = 0, and hence the flux of trapped hydrogen vanishes,

(2.191)

1I -ylVeP 12
2

(2.193)

jr = 0. (2.196)
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The local balance for the hydrogen concentrations (2.177) collapse into a single local balance equa-
tion

OL + OT = Div (mL VAL), (2.197)

where the time rate of change of trapped hydrogen is now identically equal to the transformation
rate

OT = hLr. (2.198)

From the dissipation inequality (2.103), and equations (2.109) and (2.198) we have that

(pL - pT)Or > 0 for OT 0. (2.199)

The term
def(220

F (L -1LT), (2-200)

represents a thermodynamic force conjugate to the time rate of change of hydrogen trapping,
and governs when hydrogen is captured or released from a trapping site. From (2.192)3,4 the
thermodynamic force F is given by

. = pO + Rd In (OL _ R- - In OT (2.201)

Equilibrium between lattice and trapped hydrogen

We assume that the chemical potentials of the lattice and trapped hydrogen species satisfy

pL = pT -+ F =0, (2.202)

so that they are always in equilibrium. Accordingly, (2.201) gives

P0 + Rd ln =OL Pi + Rd ln OT (2.203)

which can be simplified to read

1 OK OL (2.204)
1 - 1 - OL

where KT is an equilibrium factor given by

KT = exp (WB with WB = po - P0 (2.205)

the trap binding energy. This makes precise the classical and widely-used notion of balance
between lattice and trapped hydrogen of Oriani (1970).

The time rate of change of trapped hydrogen can now be determined through the equilibrium
equation (2.204). In what follows we essentially summarize the arguments of Sofronis and McMeek-
ing (1989) and Krom et al. (1999), except that we do not restrict ourselves to isothermal conditions.
Using (2.204), one finds that for low CL, that is 6 L < 1, the trapped hydrogen concentration CT
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may be expressed as

CT = N . (2.206)
1 + N

KTCL

The evolution of CT is then given by

= UL + + - (2.207)
9CL aC OV

Next from (2.204)
D9CT CT (1-OT) (2.208)
DCL CL

since 6 enters CT only through NT, using (2.182) yields

OCT OCT dNT dNT
- = rT (2.209)&P ONT dc- dEP'

and since V enters CT only through KT, using (2.204) and (2.205) yields

OCT _ OCT dKT CT(1 - OT)WB

S OKT d R02 (2.210)

Then, use of (2.208), (2.209), and (2.210) in (2.207) gives the following important estimate for the

time rate of change of CT:

CT( -C) O +O dNT. CT(1 - OT)WB(
CT = UCL d8 Y Rd- (2.211)

CL dcP R9 O

As stated above, in writing (2.206) we assume that 0 L < 1, the same assumption will be used
to modify the lattice themical potential (2.192)3 to

pL = AL + R' ln (L) 3K#(trE). (2.212)
N L

Note that it is not always necessary to model hydrogen trapping through the assumption of

equilibrium between lattice and trapped hydrogen (2.202). In Appendix A we illustrate how our

thermodynamic framework can be used to model non-equilibrium trapping of hydrogen.

2.11.3 Microscopic stresses. Microforce balance

The use of (2.191) in (2.160) yields the energetic portion of the microscopic stresses p and ( as

Pen -B(cP - eP), (2.213)

den =7VeP.

We assume further that

Pdis = 0 and (dis = 0, (2.214)
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such that

P = Pen + Pdis -B(EP - eP),

( = en + (dis =yVe. (2.215)

Finally, using the divergence of (2.215)2,

Dive =yAeP, (2.216)

these constitutive relations and the local microscopic force balance (2.180) yield

yA eP + B(6- - eP) = 0, (2.217)

or equivalently that

eP - l 2Aep = Ep (2.218)

which involves an energetic length parameter

(2.219)

As noted in Anand et al. (2012) in simulations of plastic softening which result in shear band
formation, the shear band widths are controlled not only by the energetic length parameter I but
also by the specific value of B as well as other parameters that govern the plastic softening of the
material.

2.11.4 Plastic flow resistance

The use of (2.191) in (2.160) yields the energetic portion of the microscopic stress -r as

&8@n dNT
7ren = B(cP - eP) + .NT (2.220)0 NT d P

Recall from (2.168) that
&=Y when EP >0, (2.221)

where
def def

Y Yds + Yen and Yen = 7en. (2.222)

As a simple specific form of the flow resistance Ydis we consider

Ydis (c, eP, 79 , CL, CT) = Yconv(E", t9 , CL, CT) + Z(0 - eP) (2.223)

such that using (2.220), we may rewrite (2.222) as

o9@O dNT
Y(cP, eP, 9, CL, CT) = cony (E, 0, CL, CT) + Z(EP - eP) + B(P - eP) + . (2.224)

ONT dE

At this point in time the contribution to the free energy @bR due to the number of available trapping
sites NT is not well understood. Accordingly, in our theoretical development we do not wish to
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consider the effect of the last term in (2.224) on the flow resistance of the material and thus neglect
it. The flow resistance of the material is then given by

Y (P, eP, '9, CL, CT) = conv (E, d, CL , CT) + Z(- eP) + B(0 - eP) (2.225)

Here Yconv(P,'d, CL, CT) represents a classical flow resistance which may depend on the equivalent

tensile plastic strain cP, the temperature V and the hydrogen concentrations CL and CT. The

term Z(c - eP) represents a dissipative nonlocal contribution to the flow resistance, with Z a

stress-dimensioned material parameter. The form of YconI(0,d, CL, CT) will be specified in later

Chapters.

Remark: On physical grounds we require that the stress-dimensioned material parameter

Z > 0 be much larger than the stress-dimensioned material parameter B > 0, so that the

dissipative term Z(cP - eP) in (2.225) is much greater in magnitude than the energetic term

B(cP - eP). Although these two terms are mathematically identical, only the dissipative portion

will contribute to thermal dissipation due to plastic working through equation (2.178).

2.11.5 Heat flux

From (2.174), we have that the heat flux is given by

qR -V, with t(IEe, P, 9, CL, CT) > 0 (2.226)

the thermal conductivity. At this point in time the dependance of the thermal conductivity on the

variables (IEe, 6P, CL, CT) is not well understood; if one ignores such dependance then ,(79) > 0 is

a temperature-dependent thermal conductivity which is tabulated for many metals.

2.11.6 Lattice hydrogen flux

From (2.175) we have that the lattice hydrogen flux jL is given by

jL = -mLVpL, with ML(IEe, ','O, CL, CT) > 0 (2.227)

the species mobility. Thus, with the chemical potential pL given by (2.212),

V Ri (CL\(228
VyL = RV VCL - (3K#)V(trEe) + Rln V7, (2.228)

CL \NL

the lattice hydrogen flux is given by

jL = -mL C (VCL - C(3K#3)V(tr Ee) + CfIn V ). (2.229)
CL R79 V N11

Defining a lattice hydrogen diffusivity DL by

def Rd
DL = mL CL (2.230)



54

the flux (2.229) may then be written as

jL = -DLVCL + DLCL (3K)V(trEe) - DLCL In Vo3. (2.231)
RV NL

Similar to the thermal conductivity, the dependance of the mobility mL on the variables (IEe, E, CL, CT)
is not well understood. In what follows, we adopt the classical approximation that the diffusivity
only depends on the temperature through

DL = DLo exp ( ), (2.232)

where DLO is the pre-exponential factor of the diffusivity and Q an activation energy.

2.11.7 Balance of lattice chemical potential pL

We may write the local balance equation for the concentration of hydrogen as a local balance
equation for the lattice chemical potential. First, the local balance equation for the concentration
of hydrogen atoms, reiterated from (2.197), is

OL + OT = Div (mLV 1 L) (2.233)

Further with OT estimated in (2.211), we obtain the following partial differential equation for OL

CL + CT(1 - OT) O = D(VY - dNT. CT(1 - OT)WB(.
CL )L = Div~mL IL} - ST eW R'. (2.234)CL dc- R79 Id

Taking the time rate of change of the constitutive equation for the lattice chemical potential (2.212)
yields

RetL CCRL/ 9TI
p t L + R ln - 3Kptrte. (2.235)
CL NL/

Finally, eliminating OL by combining (2.234) and (2.235) yields the following local balance for the
lattice hydrogen chemical potential

D* CL Div (mLVPL) - D* CL (3K )trZe -O dNT
RV RO dcY (2.236)

+(D*CLInCL + CT(1- 9 T)WB)
+NL Rd V

with

DCT( - OT) and ML L (2.237)
CL R
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Remark: Alternatively, combining (2.234) with (2.228) yields the following local balance
equation for the lattice hydrogen concentration

(CL + CT( - OT)) L Div(DLVCL)
CL

-Div DLCL (3K#3)V(trEe) + DL CL In (C) VL ) (2.238)
(Rq9 1 NL

dNT. CT(1 - OT)WB 9

In application it is advantageous to use the balance equation (2.236) for the lattice chemical
potential PL rather than the balance equation (2.238) for the lattice hydrogen concentration
CL, since it allows one to prescribe a chemical potential boundary condition. This is discussed
in detail in Chapter 3.

2.12 Governing partial differential equations for the specialized
constitutive equations. Boundary conditions

The governing partial differential equations consist of:

1. The macroscopic force balance (2.176), viz.

DivTR + bOR -0, (2.239)

where TR =JTF-T is the Piola stress, T = J-iReMeReT is the Cauchy stress, M' is the
Mandel stress given by (2.192)1, and boR is the body force.

2. The local balance equation for the lattice chemical potential (2.236), viz.

D* CL Div (mLV ML) - D* CL(3K/)trZe -O dT.
Rd R (2.240)

(D*CL nCL CT(1-OT)WB 9
+ Ln NL Rd }9

with
CT(1 - OT) DLCL

D = 1 + CL and mL R79 (2.241)

3. The local balance of energy (2.178), together with equations (2.192)4, (2.196), (2.212), (2.220),
and (2.223), yields the following partial differential equation for the temperature

1 DTe
co = Div (roV) + gn +(Ycon + Z(P - eP))P + 19 :Cae

2 ad

+ Rd In ( L gr. + Im|VpL 2 + RV In T . (2.242)
NL I - OT
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4. The microscopic force balance (2.180) together with the constitutive equations (2.215) yields
the following partial differential equation for the microscopic variable

with 1 dV//B, (2.243)

where quantity I represents an energetic length parameter in the theory.

We also need initial and boundary conditions to complete the theory. The following are com-
plementary subsurfaces of the boundary BB of the body B

S1 and 32

SIL and Sj L

S9 and SqR

Sep and SX

with OB = S1 u S2

with BB = SL U SiL

with BB = S U SqR

with OB = Sep U SX

and Si nS 2 = 0,

and SAL n SjL= 0

and Sv n SgR =0

and Sep n Sx 0.

Then for a time interval t E [0, T] we consider a pair of simple boundary conditions in which the
motion is specified on Si and the macroscopic surface traction on S2:

x = * on Si x [0, T], (2

TRnR tR on 32 x [0, T];

a pair of boundary conditions in which the lattice chemical potential is specified on S,, and the
lattice hydrogen flux on Sj

1IL = L on SLx[0,T]

-mL(VpL) ' na = IL on SjL x [0, T];
(2.245)

a pair of boundary conditions in which temperature is specified on Se and the heat flux on SqR

9 =9 on Se x [0, T],

- (V79) - nR R On SqRX [0, T];
(2.246)

and a final pair of boundary conditions in which the microvariable is specified on Sep and the vector
microscopic stress on Sg

ey(6PV

-7(VeP) - nR =k2

on Sep x [0, T ],

on SX x [0, T];
(2.247)

with X, tR, AL, L, 1, 4R, 6", and , prescribed functions of X and t. To these boundary conditions
we append the initial conditions

X (X, 0) = oX),N

PL (X, 0) = yLO(X),

e"(X,0) = 7o(X),

eP (X, 0) = ePO(X),

in B. (2.248)
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The coupled set of equations (2.239), (2.240), (2.242), and (2.243), together with equations (2.244)

through (2.248), yield an initial boundary-valued problem for the motion X(X, t), the lattice chem-
ical potential PL(X, t), the temperature d(X, t), and the microvariable eP(X, t).

Remark: Alternatively if one wishes to use the local balance of lattice hydrogen concentra-
tion (2.238) instead of the local balance of lattice chemical potential (2.240) to formulate the

boundary-valued problem, we define the following complementary subsurfaces

Sc and Sj, with 813 = Sc U SjL and SCL nsjL = 0,

and the boundary conditions (2.245) are replaced by a pair of boundary conditions in which

the lattice hydrogen concentration is specified on SCL and the lattice hydrogen flux on SjL

CL =L on ScLx[0,T], (2.249)

I - nR=L on SjL x [0, T];

with OL, and JL prescribed functions of X and t, and initial condition

CL (X, 0) = CLO(X) in B. (2.250)

2.13 Numerical implementation

We have implemented our theory in the commercial finite element software ABAQUS/Standard

(2011) through a user element subroutine (UEL) by writing four-noded isoparameteric quadrilat-

eral plane-strain (UPE4) and axisymmetric (UAX4) user-elements which couple mechanical de-

formation, hydrogen diffusion, heat conduction, and strain-gradient regularization. Details of the

numerical implementation are provided in Appendix B. In our numerical implementation we neglect

body forces and an external heat supply.

For the implementation of hydrogen diffusion we have chosen the lattice chemical poten-
tial as our solution variable and equation (2.240) as our balance equation for lattice chemical

potential. This choice is made for two reasons. First, it is easier to compute the balance equation

for the lattice chemical potential (2.240) since it does not require computing gradients of the trace

of the strain tensor (Vtr E') or gradients of the temperature (Vd) which are required by the balance

equation for the lattice hydrogen concentration (2.238). Secondly, it has important consequences in

the manner in which boundary conditions are prescribed, this will be discussed in detail in Chapter

3.

Although in this Chapter we have developed a thermodynamically-consistent theory which is

not restricted to isothermal conditions, in the numerical simulations performed in this work we have

restricted ourselves to isothermal conditions. We will consider non-isothermal simulations

in future work.
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2.14 Concluding remarks

In this Chapter we have developed a reasonably general thermodynamically-consistent theoreti-
cal framework for modeling the coupled problem of diffusion of hydrogen, trapping of hydrogen,
diffusion of heat, and large elastic-plastic deformation of metals. We have specialized our the-
ory with a set of constitutive equations which should be useful in application. We have placed the
widely-used notion of an "equilibrium" between hydrogen residing in normal interstitial lattice sites
and hydrogen trapped at microstructural effects of Oriani (1970), within a concise thermodynamic
framework. Furthermore, our theory is not derived based on Oriani's hypothesis, rather through
thermodynamically-consistent constitutive choices, we recover his argument as a special case of our
theory. Our theory is thus not restricted to modeling hydrogen trapping through the use of Oriani's
hypothesis.



Chapter 3

Hydrogen transport near a blunting
crack tip

3.1 Introduction

In this chapter we numerically study the problem of hydrogen transport near a blunting crack tip.

Our purpose here is to compare results from our numerical simulations with the classical results of

Sofronis and McMeeking (1989) and Krom et al. (1999), and illustrate the effect of using a lattice

chemical potential boundary condition as opposed to the lattice hydrogen concentration boundary

condition used by these authors.

3.2 Chemical potential boundary condition

In order to model the experimentally relevant boundary condition of a host metal exposed to a

hydrogen atmosphere at a given partial pressure PH2 and temperature ', we must consider the

equilibrium between the atomic hydrogen in the metal and hydrogen molecules in the gas (cf. e.g.

San Marchi et al., 2007 and Krom et al., 1997). At equilibrium, the chemical potential of dissolved

hydrogen in the solid must equal the chemical potential of the gas, that is

PH PH2 , (3-1)

where H denotes the atomic hydrogen dissolved in the solid. The chemical potential of the hydrogen

molecules in the gas may be expressed as

PH2 = + Rd ln (fIH2  (3.2)

where fH2 is the fugacity of the hydrogen molecules in the gas mixture, and p0 is a reference

pressure.

59
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Accordingly, we assume that on the boundary of interest the lattice chemical potential must be
equal to the chemical potential of dissolved hydrogen in the solid, then using (3.1) and (3.2)

L = p2 2 + Rd ln fH 2  (3.3)

where 'L denotes the prescribed lattice chemical potential on the boundary.

The reference state of the element hydrogen (at 298 K and 1 bar) is the a gas of H 2 molecules,
and the chemical potential of an element in its reference state is zero (cf. Arkins and de Paula
(2010), pp. 119,159):

p 2 =0 at PH2 =0.101 MPa, and 9 =298K. (3.4)

Using (3.4) in (3.3), the prescribed lattice chemical potential may be further simplified to

PL = RO In .o (3.5)

Equating the constitutive equation for the lattice chemical potential (2.212), for an unstrained
lattice (trEe = 0), with (3.5) yields

pn + Rd In L Rdln( . (3.6)

This may be simplified to 1

CL = K /fH2  (3.7)

with the solubility K given by

K = Koexp R , (3.8)
Rd

where

KO = NL and AH = p, (3.9)

are experimentally measurable constants.

The solubility K in (3.7) is typically obtained from experiments under conditions in which the
lattice is unstrained (tr E = 0). The experimental data is fit to an Arrhenius relation of the
form shown in (3.8), from where the pre-exponential coefficient KO and the energetic term AH are
experimentally determined (cf. San Marchi et al., 2007).

'For an ideal gas, fH2 = PH2 and (3.6) reduces to

CL - K p 2

which is Sieverts' law.
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With KO and AH determined experimentally, and NL known for a given crystal lattice, the

prescribed lattice chemical potential is given by (cf., eq. (3.5))

PL = RV ln ), with p = ) (3.10)

and the reference lattice chemical potential is given by

p A H. (3.11)

The fugacity fH 2 of the hydrogen molecules in the gas depends on the equation of state of

hydrogen. If this equation of state is taken in the simple Able-Noble form (cf. e.g., San Marchi

et al., 2007), then

fH2  PH 2 exp (3.12)

where b is an experimentally measurable constant. Finally, using (3.12) in (3.10) the prescribed

lattice chemical potential is given by

L=Ri In P exp( 2  with p .) (3.13)

Remark: If the chemical potential of the gas is constant (that is the hydrogen atmosphere in

contact with the boundary of interest does not change), the equilibrium relation (3.1) together

with iL = PH and the constitutive equation for lattice chemical potential (2.212) yields

p Rtln (CL) - (3KO)tr Ee IH = constant. (3.14)
(NL 2

Since the volumetric elastic strains tr Ee in (3.14) may change during the deformation of the

host metal, the lattice hydrogen concentration CL on the specimen surface is not
constant. Thus, in order to model the important boundary of a host metal exposed to a

hydrogen atmosphere at a constant partial pressure PH2 and constant temperature 0 we must

prescribe a constant lattice chemical potential, as in (3.13), and not a constant lattice

hydrogen concentration OL, as in (2.249), and as has been done previously in Sofronis and

McMeeking (1989) and Krom et al. (1999).

3.3 Effect of the chemical potential boundary condition on hydro-
gen transport near a blunting crack tip

In order to illustrate the effects of using the lattice chemical potential as a solution variable and

applying a lattice chemical potential boundary condition, we consider the problem of hydrogen

transport near a blunting crack tip and compare our results to the classical results of Krom et al.

(1999) and Sofronis and McMeeking (1989).
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The mesh used is approximately the same as that of Krom et al. (1999), a schematic of which
is shown in Figure 3-1. It consists of 3028 four-noded plane-strain elements. The initial crack tip
opening displacement bo is 10 pm. The radius of the semi-circular domain is 15, 000 bo.

In order to compare our simulation results to those published in the literature, in this section
we use the plastic flow resistance employed by Krom et al. (1999), where

Y = Yo - + ;1 and O (3.15)
(Eo E

The Young's modulus E is 207GPa, the Poisson's ratio v is 0.3, the yield stress Y is 250 MPa,
and the hardening exponent n is 0.2. Also, in these simulations we do not include strain gradient
effects and thus set

Z=0, and B=0.

The lattice diffusion coefficient DL is taken to be constant and equal to 1.27 x 10-8 m 2 /s. The
temperature of the system is held constant at 300K. Further, in accordance with Krom et al.
(1999), the number of lattice sites NL is 8.47 x 105 mol/m 3 , and the number of trap sites NT is
assumed to increase with an increase in the equivalent plastic strain eI according to

log NT = 23.26 - 2.33 exp(- 5.5P). (3.16)

On the symmetry axis we prescribe zero lattice hydrogen flux, and zero displacements in the
y-direction. On the crack face and the circular boundary we either prescribe a constant lattice
chemical potential L or a zero lattice hydrogen flux. The initial lattice chemical potential is

PLO. Both pL and pLO are computed using (3.13) with PH2 = 0.101 MPa, ) = 300 K, b = 0,2
Ko = 1040 mol/(m 3 v/MPa), and NL = 8.46 x 10 5 mol/m 3 , and are equal to

L = PLO = -19.576kJ/mol. (3.17)

The corresponding initial lattice hydrogen concentration may be computed from Sieverts' law, (3.7)
with fH 2 = PH2 , and is equal to CLO = 3.46 X 10 3 mol/m 3 which is the same initial concentration
used in Krom et al. (1999).

The displacements along the circular boundary are prescribed according to the mode-I elastic
solution and an imposed value of K 1 . A stress intensity factor of K = 89.2 MPay/m is applied at a
constant rate K1 = K1/tf where tf is the time to load, which is varied between simulations. After
loading (t > tf) the load is kept constant.

Note that the quantities shown in all Figures in this Chapter are computed and plotted in the
undeformed configuration as was done in Sofronis and McMeeking (1989) and Krom et al. (1999).

2In Sofronis and McMeeking (1989) the authors do not consider deviations from ideal gas behavior, thus b = 0.
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Figure 3-1: Schematic of the blunt-crack geometry and boundary conditions. On the outer surface and the
crack face we either prescribe a constant lattice chemical potential pL or a zero lattice hydrogen flux j = 0.
bo is the initial crack opening displacement.
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3.3.1 Results using a constant chemical potential boundary condition

In the following simulations we impose a constant lattice chemical potential pL at the crack face
and on the circular boundary. Fig. 3-2(a) shows the hydrostatic stress o-h = (1/3)tr T normalized
by the yield strength YO, ahead of the crack tip (0 = 00) at the end of loading for a load time of
tf = 130 s, the results of this study (solid line) are compared to those of Krom et al. (1999) Fig. 2
(A symbols). For later use Fig. 3-2(a) also shows the volumetric elastic strain trEe normalized by
the yield strain E0, ahead of the crack tip at the end of loading for a load time of tf = 130 s (dashed
line).

Fig. 3-2(b) shows the equivalent tensile plastic strain -, ahead of the crack tip at the end of
loading for a load time of tf = 130 s, the results of this study (solid line) are compared to those
of Sofronis and McMeeking (1989) Fig. 4 (A symbols). The results of Fig. 3-2 are essentially
identical to those of Krom et al. (1999) and Sofronis and McMeeking (1989), and this validates our
finite-element implementation.

Fig. 3-3 shows the lattice hydrogen concentration CL normalized by the initial lattice hydrogen
concentration CLO, ahead of the crack tip at t = 130 s and t = 1419 h, for a load time of tf = 130 s.
The results of this study (solid lines) are compared to the results of Krom et al. (1999) Fig. 6
(dashed lines). As noted by Sofronis and McMeeking (1989), integrating equation (2.229) along a
path ahead of the crack tip (9 = 00) for jL = 0, and under isothermal conditions, we obtain the
normalized steady state lattice hydrogen concentration concentration, along the same path, in a
stressed lattice as

CLSS _ 3KS3 e'C'S = exp 3Otr Ee (3.18)
CLO (R79

where CLO is the initial lattice hydrogen concentration. This normalized steady state concentration
is computed using the data shown in Fig. 3-2(a) and is plotted in Fig. 3-3 (A symbols).

As is clear from Fig. 3-3, the results obtained with a constant lattice chemical potential boundary
condition differ significantly from those obtained by Krom et al. (1999) using a constant lattice
hydrogen concentration boundary condition. Due to the hydrostatic stresses at the notch tip there
is an increase in CL at the notch tip, in our simulations which use a lattice chemical potential
boundary condition. Furthermore, our lattice hydrogen distribution (solid lines) matches well
with the steady-state concentration predicted by equation (3.18) (A symbols), whereas previous
simulations which use a prescribed lattice hydrogen concentration are unable to do so (dashed
lines).

In our implementation using the lattice chemical potential as our solution variable, steady-state
equilibrium is achieved when the chemical potential within the body is in equilibrium with the
chemical potential of the hydrogen gas surrounding the body. Fig. 3-4 shows the lattice chemical
potential ahead of the crack tip at different times for a load time of tf = 130 s, equilibrium is
reached within 500 hours after the load is applied.

Fig. 3-5 shows the normalized lattice hydrogen distribution ahead of the crack tip at the end
of loading (t = tf) for different loading times. The results of this study (solid lines) are compared
to those of Krom et al. (1999) Fig. 6 (dashed lines) for the same loading times. As can be seen in
Fig. 3-5, due to the constant chemical potential boundary condition there is a higher demand for
lattice hydrogen at the notch tip in our simulations (solid lines) when compared to those of Krom
et al. (1999) (dashed lines). At higher loading rates, hydrogen is depleted from lattice sites due
to trapping, and diffusion of lattice hydrogen does not have enough time to resupply the regions
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near the notch tip where trapping is highest due to plasticity. Fig. 3-5 shows that the depletion of
lattice hydrogen near the notch is greater in our simulations (solid lines) than in those of Krom et al.
(1999) (dashed lines) due to the enhanced demand for lattice hydrogen at the tip from the presence

of the hydrostatic stresses and the use of a constant chemical potential boundary condition.
The trapped hydrogen concentration CT normalized by the initial trapped hydrogen concentra-

tion CTO, ahead of the crack tip at the end of loading (t = tf) for different loading times is shown in

Fig. 3-6(a), the results of this study (solid lines) are compared to those of Krom et al. (1999) Fig. 7
(dashed lines). The trapped hydrogen distribution is not affected by the loading rate except at the

fastest load time of tf = 1.3s. At this load time the lattice hydrogen is completely depleted and
is still not sufficient to saturate all trapping sites. As discussed before, there is enhanced hydrogen

depletion in our simulations, and thus the region over which the hydrogen traps are unsaturated is
larger in our simulations (solid lines) when compared to those of Krom et al. (1999) (dashed lines).

The unsaturation of hydrogen traps, due lattice hydrogen depletion at faster loading rates, is
better visualized by plotting the site fraction of trapped hydrogen OT as shown in Fig. 3-6(b).
From Fig. 3-6(b) we see that at a load time of tf = 3.25 s there is also insufficient lattice hydrogen
to fully supply and saturate all available traps.

We have illustrated in this section the manner in which the use of a constant lattice chemical
potential boundary condition can affect the hydrogen distribution near a blunt-crack. This in turn
will affect any theory which seeks to couple the material response of a system with the hydrogen

distribution within it.
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Figure 3-2: (a) Normalized hydrostatic stress o-h/Y (left scale) and normalized volumetric elastic strain
trE/co (right scale), ahead of the crack tip (0 = 0-) at t = tf = 130 s compared to the result of Krom
et al. (1999) Fig. 2. (b) Equivalent tensile plastic strain ep ahead of the crack tip (0 = 0-) at t = tf = 130 s
compared with the result of Sofronis and McMeeking (1989) Fig 4. Y is the yield stress, co is the yield
strain, and b = 4.7bo is the deformed crack tip opening displacement.
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Figure 3-3: Normalized lattice hydrogen concentration CL/CLo ahead of the crack tip (0 0-) at t 130 s
and t = 1419 h for a load time of t = 130 s compared to the results of Krom et al. (1999) Fig. 3 and to
eq. (3.18). CLo is the initial lattice hydrogen concentration and b = 4.7b0 is the deformed crack tip opening
displacement.
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Figure 3-4: Lattice chemical potential pL ahead of the crack tip (0 = 00)

of tf = 130 s. b = 4.7b0 is the deformed crack tip opening displacement.
at different times for a load time
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Figure 3-5: Normalized lattice hydrogen concentration CL/CLO ahead of the crack tip (0 00) at the end
of loading (t = tf) for different load times compared to the results of Krom et al. (1999) Fig. 6 for the same
load times. CLO is the initial lattice hydrogen concentration and b = 4.7b0 is the deformed crack tip opening
displacement.
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Figure 3-6: (a) Normalized trapped hydrogen concentration CT/CTO ahead of the crack tip (0 00) at the
end of loading (t = tf) for different load times compared to the results of Krom et al. (1999) Fig. 7 for the
same load times. (b) Site fraction of trapped hydrogen OT ahead of the crack tip (0 = 00) after loading for
different load times. CTO is the initial trapped hydrogen concentration and b = 4.7bo is the deformed crack
tip opening displacement.
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3.3.2 Results using a zero flux boundary condition

In the following simulations we impose a zero lattice hydrogen flux jL = 0 at the crack face and
on the circular boundary. This boundary condition is equivalent to the one used in Krom et al.
(1999). Fig. 3-7 shows the normalized lattice hydrogen distribution ahead of the crack tip (0 = 00)
at the end of loading for different loading times, and at t = 1419 h for a load time of tf = 130 s.
The results of this study (solid lines) are compared to those of Krom et al. (1999) Fig. 8 (dashed
lines) and are essentially identical.

As shown in Fig. 3-8, steady-state is achieved within 500 hours after loading when the lattice
chemical potential within the body equilibrates. The evolution of the lattice chemical potential
from the end of loading to 500 hours of hold time is quite different in the case of a prescribed
lattice chemical potential boundary condition, Fig. 3-4, and the case of a zero lattice hydrogen
flux boundary condition, Fig. 3-8. In the case of a prescribed constant lattice chemical potential
boundary condition, equilibrium occurs when the lattice chemical potential of the host metal equi-
librates with the prescribed lattice chemical potential. In the case of a prescribed zero hydrogen
flux boundary condition, equilibrium occurs when the lattice chemical potential within the body
equilibrates to a new value. Due to the use of the lattice chemical potential as a solution variable
in our finite-element implementation we can accurately predict when the hydrogen concentration
has achieved steady-state.

Fig. 3-9(a) shows the normalized trapped hydrogen distribution ahead of the crack tip at the
end of loading (t = tf) for different load times. The results of this study (solid lines) are compared
to those of Krom et al. (1999) Fig. 9 (dashed lines). There is a small discrepancy in the normalized
trapped hydrogen concentration at the crack tip for the simulation with a loading time of tf = 1.3 s,
this is attributed to small difference in the equivalent tensile plastic strain at the tip caused by
differences in meshing. As shown in Fig. 3-9(b), at higher loading rates there is insufficient lattice
hydrogen available to saturate all the available traps. As expected, the area over which the trapping
sites are unsaturated is larger with the use of the zero flux boundary condition than with the use
of a constant lattice chemical potential boundary condition.
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Figure 3-7: Normalized lattice hydrogen concentration CL
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results of Krom et al. (1999) Fig. 8 for the same load times. C,
and b 4.7bo is the deformed crack tip opening displacement.
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Figure 3-8: Lattice chemical potential PL ahead of the crack tip ( =0 00)

of tf = 130 s. b = 4.7bo is the deformed crack tip opening displacement.
at different times for a load time
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Figure 3-9: (a) Normalized trapped hydrogen concentration CT/CTO ahead of the crack tip (0 = 0-) at the
end of loading (t = tf) for different load times, compared to the results of Krom et al. (1999) Fig. 9 for the
same load times. (b) Site fraction of trapped hydrogen OT ahead of the crack tip at the end of loading for
different load times. CTO is the initial trapped hydrogen concentration and b = 4.7bo is the deformed crack
tip opening displacement.
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3.4 Concluding remarks

In this Chapter we have numerically studied the problem of hydrogen transport near a blunting

crack tip. We have shown that our numerical simulations predict the same deformation response

as the simulations of Sofronis and McMeeking (1989) and Krom et al. (1999). For the case in
which we prescribe a zero flux boundary condition at the crack face and on the circular boundary

of our domain, our simulations also predict essentially the same distribution of lattice and trapped

hydrogen concentrations ahead of the crack tip as the simulations of Krom et al. (1999). This

serves as partial validation that our numerical implementation is correct.
More importantly we have shown the effect of using a constant lattice chemical potential, as op-

pose to a constant lattice hydrogen concentration, as a boundary condition. Our simulations, using

the lattice chemical potential boundary condition, predict higher lattice hydrogen concentrations
at the blunt crack tip due to the effect of the tensile volumetric strains at the same location. Our
steady-state lattice hydrogen concentration values agree well with the analytical prediction (3.18),
whereas the simulations of Sofronis and McMeeking (1989) and Krom et al. (1999) do not agree

due to the enforcement of a constant lattice hydrogen concentration at the boundary. Finally, at
high loading rates, our simulations predict larger regions in which the lattice hydrogen is entirely

depleted to satisfy the available trapping sites.
All of the aforementioned differences between our simulations and those of Sofronis and McMeek-

ing (1989) and Krom et al. (1999) are crucial if one is to construct a theory, and corresponding

numerical capability, to model the manner in which the mechanical behavior of a system is affected

by the hydrogen concentration within it.
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Chapter 4

Effects of hydrogen on the plastic
deformation of metals

4.1 Introduction

In this chapter we numerically study the effect of hydrogen on the isothermal plastic deformation of

metals. We first consider the effect of hydrogen on the plane-strain tensile deformation of a metal

specimen, and then we consider the effect of hydrogen on three-point bending of a U-notched metal

specimen. The results from the three-point bending simulations are qualitatively compared to the
results of Lee et al. (1979) in which the authors studied the same phenomenon experimentally.

Recall from equation (2.225) that the plastic flow resistance is given by

Y(-P, eP, 79 , CL, CT) conv(0, ,CL, CT) + Z(6P - eP) + B(cY - eP). (4.1)

In keeping with the isothermal nature of our simulations, in this
flow resistance iconv(C, CL, CT) which does not depend on the
evolution equation of the form

Hhard 1- Yconv

dcony = Ysat

Hhard (1- conv -Hsof't@
sat

Chapter we consider a conventional
temperature V and which obeys an

if C < C,

if C >Cc,

(4.2)

where
def

C - CL +F CT,

and subject to the initial condition

Yonv(O, CLO, CTO) = Yo.

(4-3)

(4.4)

Here, Yo is the initial flow resistance, CLO and CTO are the initial lattice and trapped hydrogen

concentrations, Hhard is a reference strain-hardening rate, Ysat is a saturation value for the plastic
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hardening. Also, Hson is a hydrogen triggered strain-softening rate, and Cc is the critical total

hydrogen concentration at which the material begins to soften. In summary, with the form of

Yo0 y chosen the material will harden if the total hydrogen concentration C is below the critical

concentration Ce and will soften if the total hydrogen concentration C is above the critical con-

centration Cc. We view this as a continuum-level description of the decrease in flow resistance due

to an increase in the hydrogen concentration and is meant to account for the hydrogen-enhanced

localized plasticity micromechanism.
We also introduce a positive-valued material parameter

Ymin > 0, (4.5)

and in our numerical simulations we restrict the values of the flow resistance such that Y(e-P, eP, CL, C)

Ymin-

4.2 Effects of hydrogen in plane strain tension

In this section we study the effect of hydrogen on the plane-strain tensile deformation of a BCC

Iron system. With reference to Fig. 4-1, we consider a metal specimen with a gauge length of initial

width wo = 5 mm and initial length lo = 7.5 mm. We make use of the symmetry of the problem

and mesh only a quarter of the geometry with 1347 four-noded plane-strain elements.

The material parameters are given in Table 4.2. For the gradient regularization parameters we

chose
Z =5GPa, B= 1Pa, and 1 =0.05mm (4.6)

which are chosen based on the work by Anand et al. (2012).

Throughout the simulation the nodes along the symmetry edge AB are prescribed to have

displacement component u2 = 0 and zero hydrogen flux, while the nodes along the symmetry edge

BC are prescribed to have displacement component ui = 0 and zero hydrogen flux. The simulation

is isothermal with all nodes held at a constant temperature do = 473 K; this high temperature of

200 C is chosen so that the lattice hydrogen diffusivity DL is increased and the effect of hydrogen

on the deformation is increased.
This simulation has two steps:

Step 1. Hydrogen charging: in this step we introduce hydrogen into the specimen. The step begins

with all nodes having an initial lattice chemical potential pL,i. The lattice chemical potential

on the surface AD is increased linearly from pL,i to pL,f in 100 seconds, and is then held

constant for 1 hour. All other surfaces have a zero hydrogen flux boundary condition. At the

end of the step the specimen is charged to a relatively uniform hydrogen concentration CO.

Step 2. Mechanical loading: in this step we deform the specimen in tension. The nodes along the

edge CD are prescribed to have displacement component ui = 0 and a constant velocity in

the e2 -direction corresponding to vo = 0.001 mm/sec, while the edge AD is traction free. The

lattice chemical potential on the surface AD is held constant at pL,f -

Step 1 of this numerical experiment simulates hydrogen-charging the metal specimen by increasing

the partial pressure PH2 to which the specimen is exposed from an initial value PH2,i to a final value

PH2 ,f . We perform three different simulations; first we consider a simulation in which hydrogen is not
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charged into the specimen prior to mechanical deformation, that is PH2 ,f= PH2,i and IL,f = pL,i,

and the hydrogen concentration remains at its initial value. Then we consider two simulations in

which hydrogen gas pressure is increased to PH2 ,f, resulting in a hydrogen concentration Co prior

to deformation. The specific values of pL,i and ptL,f are given in Table 4.1 and are computed using

(3.13) according to the hydrogen gas pressures PH2 also given in the Table 4.1.1

Table 4.1: Prescribed chemical potential yL and corresponding lattice, trapped, and total hydrogen con-

centrations.

PH2 ,i (kPa) pL,i (kJ/mol) 0
L,j (mol/m 3 ) CT,2 (mol/m 3 ) C, (mol/m 3 )

1 x 10- 3  -54.457 5.695 x 10-4 4.007 x 10-6 5.735 x 10-4

PH2 ,f (kPa) pL,f (kJ/mol) 0 LO (mOl/m 3 ) CTO (mOl/m 3 ) C0 (mol/m 3 )

1 x 10-3 -54.457 5.695 x 10-4 4.007 x 10-6 5.735 x 10-4

35 -33.882 0.106 4.908 x 10-4 0.107

50 -33.181 0.127 5.494 x 10-4 0.128

Fig. 4-2 show contours of total hydrogen concentration C prior to mechanical loading for (a)

the uncharged simulation, (b) the simulation charged to Co = 0.107 mol/m 3 and (c) the simulation

charged to Co = 0.128 mol/m 3 . Note from the contours that the charged simulations have an

essentially homogeneous hydrogen concentration prior to deformation.

Fig. 4-3 shows contours of (a) total hydrogen concentration C, (b) lattice hydrogen con-

centration CL, and (c) trapped hydrogen concentration CT at nominal end displacements of (1)

u = 0.6 mm and (2) u = 0.8 mm, for the simulation charged to Co = 0.107 mol/m 3 . At a nominal

end displacement of u = 0.6 mm, the total hydrogen concentration C is largest near the surface of

the specimen, see Fig. 4-3 (a.1), while at a nominal end displacement of u = 0.8 mm it is largest

near the center of the specimen, see Fig. 4-3 (a.2). It is important to understand what governs this

change in the behavior of the total hydrogen concentration as we deform the specimen.

Early in the deformation process the total hydrogen concentration C is governed by the lattice

hydrogen concentration CL while the trapped hydrogen concentration CT is insufficiently large to

significantly alter the total hydrogen concentration behavior, see Figs. 4-3 (a.1), (b.1), and (c.1).

As the deformation progresses, and the number of available trap sites increases due to plastic

deformation, hydrogen diffuses from the exterior of the specimen to fill those available trap sites

and the trapped hydrogen concentration CT increases, compare Figs. 4-3 (c.1) and (c.2) and note

the change in scale. Eventually the total hydrogen concentration C is governed by the trapped

hydrogen concentration CT, see Figs. 4-3 (a.2), (b.2), and (c.2).

It is important to note that as we deform the specimen plastically the total hydrogen concen-

tration C increases from its original charged value Co, due to (i) the effect of the volumetric elastic

strains on the lattice chemical potential, see eq. (2.212), which causes an increase in the lattice

hydrogen concentration CL and (ii) the increase in the number of available trap sites (with increas-

'The corresponding lattice hydrogen concentrations are computed from the hydrogen gas pressures PH2 using (3.7)
and with the fugacity given in (3.12). The trapped hydrogen concentrations are computed from the lattice hydrogen
concentration using (2.206). All other material properties necessary for computing these boundary conditions are
listed in Table 4.2.
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ing plastic deformation) which causes hydrogen to diffuse from the specimen surface to satisfy the
available trap sites and thus increases the trapped hydrogen concentration CT. We have illustrated
in Fig. 4-3 the manner in which the interplay between these two behaviors can affect the total
hydrogen concentration in a specimen subject to plane-strain tension.

As the specimen is deformed, the total hydrogen concentration C increases and eventually
reaches the critical concentration Cc, at which time the specimen begins to soften. Fig 4-4 shows
contours of equivalent tensile plastic strain e-P at a nominal end displacement of u = 1.2 mm for (a)
the uncharged simulation, (b) the simulation charged to Co = 0.107 mol/m 3 , and (c) the simulation
charged to Co = 0.128 mol/m 3

As the hydrogen concentration prior to mechanical loading Co is increased, the onset of shear
band formation is accelerated since the critical concentration Ce at which hydrogen induced soft-
ening occurs is reached earlier in the deformation process. In the case of the simulation charged to
Co = 0.107mol/m 3 , softening occurs when the maximum total hydrogen concentration is largest
at the center of the specimen and thus shear bands form at the center of the specimen, see Fig.
4-4 (b). For the simulation charged to Co = 0.128 mol/m 3 , softening occurs when the maximum
total hydrogen concentration is largest on the specimen surface and thus shear bands form at the
specimen surface, see Fig. 4-4 (c). As expected, in the uncharged simulation no shear bands form
since the critical concentration Cc is not reached.

With the model developed here, hydrogen charging causes the plastic deformation to localize
into shear bands. The location of the shear bands, as well as the time during the deformation
process when plastic localization occurs, is governed by the amount of hydrogen charged prior to
deformation. The time at which plastic localization occurs is further illustrated in the corresponding
engineering stress-strain curves shown in Fig. 4-5.

4.2.1 Mesh insensitivity

In order to illustrate that the above simulations are mesh-insensitive due to the strain gradient
effects included in our theory, we consider two additional meshes containing 401 and 3237 four-noded
plane-strain elements, see Fig. 4-6. The geometry and the boundary conditions are all identically
to the simulations performed above. For comparison to the above results here we simulate the case
were the specimens are charged to Co = 0.107 mol/m 3 prior to deformation.

Fig. 4-7 (a) shows contours of equivalent tensile plastic strain at a nominal end displacement
of u = 1.2 mm, and Fig. 4-7 (b) at a nominal end displacement of u = 1.4 mm. In all simulations
shown in Fig. 4-7 the width of the shear bands is finite and independent of the element size. Fig.
4-8 shows that the corresponding engineering stress-strain curves are converging to an essentially
identical result and are thus independent of the spatial discretization used. Our purpose in the
use of a strain-gradient theory is simply for numerical regularization and ease of computation,
for a more detailed study of the use of this form of gradient theory and its effect on shear band
regularization see Anand et al. (2012).
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Figure 4-1: Schematic of the geometry and finite element mesh used for plane-strain tension simulations.

es3



80

Table 4.2: Representative material properties for a BCC Iron system.

Variable Units Value Source Note

Elastic Parameters G GPa 80

K GPa 175

a 1/K 11.8 x 10-6 Gale and Totemeier (2004) (a)

Thermal Properties c J/(kg K) 449 Gale and Totemeier (2004) (a)
n W/(m K) 80.4 Gale and Totemeier (2004) (a)

R J/(mol K) 8.3145

Yo MPa 300

Ysat MPa 500

Plastic Parameters Hhard GPa 25

Hsoft GPa 22.5

ce mol/m 3  0.15

Ymin MPa 1

Ko mol/(m 3 V/MPa) 820 Krom et al. (1997) (a)
Solubility Parameters AH kJ/mol 28.6 Krom et al. (1997) (a)

b m 3 /mol 15.84 x 10-6 San Marchi et al. (2007)

p0 kJ/mol 28.6 (b)
DLo m 2/sec 2.76 x 10-7 Krom et al. (1997)

Diffusion Parameters Q kJ/mol 12.9 Krom et al. (1997)
# m 3 /mol 0.667 x 10-6 Hirth (1980)

6 Krom and Bakker (2000) (c)
NL mol/m 3  8.4624 x 10 5  Gale and Totemeier (2004) (d)

Trapping Parameters WB kJ/mol -60 Krom et al. (1999)

NT mol/m 3  Note (e) Krom et al. (1999)

(a) These values are for pure Iron.

(b) Recall from (3.11) that p = AH. The value of p, although unnecessary in our numerical implemen-
tation, can be computed from (2.205) and the value of WB.

(c) We assume tetrahedral occupancy of hydrogen on a BCC lattice, for which <O = 6.

(d) NL is computed from (2.181) with PM = 7870 kg/m 3 , MM = 55.8 x 10-3 kg/mol, and <p = 6.

(e) The evolution of trapping sites is taken from Krom et al. (1999) to be given by:
log NT = 23.26 - 2.33 exp(- 5.5eP).
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(a) (b) (c)

Figure 4-2: Contours of total hydrogen concentration C prior to mechanical loading for (a) the uncharged
simulation, (b) the simulation charged to Co = 0.107 (mol/m 3 ), and (c) the simulation charged to Co
0.128 (mol/m 3 ).
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Figure 4-3: Contours of (a) total hydrogen concentration C, (b) lattice hydrogen concentration CL, and (c)
trapped hydrogen concentration CT at a nominal end displacement of (1) u = 0.6 mm and (2) u = 0.8 mm,
for the simulation charged to CO = 0.107 mol/m 3 prior to deformation.
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Co = 0.107mol/m 3 CO = 0.128 mol/m 3

(a) (b) (c)

Figure 4-4: Contours of equivalent tensile plastic strain -P at a nominal end displacement of u = 1.2 mm
for (a) the uncharged simulation, (b) the simulation charged to Co = 0.107 mol/m 3, and (c) the simulation
charged to CO = 0.128 mol/m 3
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Figure 4-5: Engineering stress versus strain curves for uncharged and charged plane-strain tension simula-
tions.
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(a) (b)

Figure 4-6: Finite element meshes used for studying mesh sensitivity having (a) 401 elements and (b) 3237
elements.
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Figure 4-7: Contours of equivalent tensile plastic strain E" for plane-strain tension simulations with three
different meshes at a nominal end displacement of (a) 1.2 mm and (b) 1.4 mm.
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Figure 4-8: Engineering stress versus strain curves for three plane-strain tension simulations with different

meshes.
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4.3 Effects of hydrogen on three-point bending of a U-notched
specimen

In this section we study the effect of hydrogen on a U-notched metal specimen deformed in three-
point bending and provide a qualitative comparrison against the experimental results of Lee et al.
(1977, 1979).

Because of the symmetry of the problem we mesh only half of the U-Notched specimen with 4742
four-noded plane-strain elements, the geometry (which is identical to the experimental specimens
used in Lee et al. (1977, 1979)) and the mesh used are shown in Fig. 4-9. For ease of computation we
use deformable plane-strain elements to model the top and bottom rollers with an elastic modulus
of 1000 GPa, effectively making them rigid. The contact between the rollers and the specimen is
frictionless.

The material parameters are given in Table 4.2. For the gradient regularization parameters we
chose

Z =2.5 GPA, B= 1 Pa, and 1 =0.5 mm. (4.7)

The specific choice of these parameters is based on a brief study on the effects of the regularization
parameters 1 and Z on the simulations performed here which is provided in Section 4.3.1. In order
to simulate material imperfections we seed the elements in the simulation with a random variation
in the initial yield strength Yo. The variation is gaussian with a mean of 0 MPa and a standard
deviation of 5 MPa. A brief discussion on the effect of the variation in Yo is provided in Section
4.3.2.

This simulation has two steps, throughout both steps all nodes are held at a constant temper-
ature do = 298 K:

Step 1. Hydrogen charging: in this step we introduce hydrogen through the notch surface. The step
begins with all nodes having an initial lattice chemical potential puL,i. The lattice chemical
potential on the notch surface, edge DE, is increased linearly from pL,i to pLj in 100 seconds,
and is then held constant for 2000 seconds. All other surfaces have a zero hydrogen flux
boundary condition. Throughout this step all nodes are prescribed to have displacement
components 'i = 0 and U 2 = 0.

Step 2. Three-point bending: in this step we deform the specimen in three-point bending. Through-
out this step the nodes along the edge AE are prescribed to have displacement component
ui = 0, while the node on point A is prescribed to have displacement components nl = 0
and U 2 = 0. All nodes on the bottom roller are fixed in space, while all nodes on the top
roller are prescribed to have displacement component u1 = 0 and a constant velocity in the

e2 -direction corresponding to vo = 0.001 mm/sec. Throughout this step all surfaces have a
zero hydrogen flux boundary condition.

Step 1 of this simulation is meant to recreate the experimental procedures of Lee et al. (1977,
1979) in which hydrogen was charged electrolytically through the notch surface at a current density
of 100 A/m 2 for 2.5 hours, while all other surfaces were insulated with a non-conductive paint. Step
2 recreates the mechanical loading performed on the specimens by the same authors.

The initial lattice chemical potential pL,i is computed using (3.13) with a hydrogen gas pressure

of PH2 = 0.101 MPa, while the final lattice chemical potential pLJ is computed using (3.10) with a



88

hydrogen fugacity of fH2 = 1 GPa, see Table 4.3 2. In Lee et al. (1979), the authors estimate that

a current density of 100 A/m 2 corresponds to a stead-state hydrogen fugacity of 1 GPa.

Table 4.3: Prescribed chemical potential PL and corresponding lattice, trapped, and total hydrogen con-
centrations

PL (kJ/mol) CL (mol/m 3 ) CT (mOIl/m 3) C (mOl/m 3 )

PH2 = 0.101 MPa -20.033 2.530 x 10-3 1.399 x 10-3 3.929 x 10-3

fH2 =1 GPa -8.636 0.252 1.413 x 10-3 0.253

We refer to the above described simulation as the hydrogen-charged simulation, since hydrogen

is charged in the specimen prior to mechanical loading. We also perform a simulation, which we

refer to as the uncharged simulation, in which we do not charge hydrogen in the specimen prior to

deformation, that is pLLf = 1L,i-
Figs. 4-10 (a) and (b) show contours of total hydrogen concentration before loading for the

hydrogen-charged and uncharged simulations respectively. Fig. 4-11 shows the variation in yield

strength Yo before the start of the simulations at (a) near the notch and (b) for the entire specimen.

In Fig. 4-12 we qualitatively compare our results with the experiments of Lee et al. (1977).
Fig. 4-12 (a) shows the experimental results of Lee et al. (1977) for a specimen charged with

hydrogen before being mechanically loaded in three-point bending, while Fig. 4-12 (b) shows the

same result for a specimen which has not been charged. Figs. 4-12 (c) and (d) show contours of

equivalent tensile plastic strain at a mid-span deflection of 0.15mm for the hydrogen-charged and

uncharged simulations respectively. Due to the high hydrogen content of the hydrogen-charged

specimen prior to loading, see Fig. 4-10 (a), there is softening in the vicinity of the notch which

results in the formation of shear bands. In the uncharged simulation there is no localization and

plastic deformation occurs in a diffuse region around the notch tip. Our simulations are in good

qualitative agreement with the experimental results of Lee et al. (1977) in that pre-charging the

specimen with hydrogen induces plastic localization into multiple shear bands at the notch. Note

that no attempt is made here to match the quantitative force versus mid-span deflection results

from the experiments of Lee et al. (1977) with our numerical simulations.
For clarity, Fig. 4-13 shows a closer view of the contours of equivalent tensile plastic strain

near the notch tip. Finally, as one might expected, hydrogen-charging reduces the force required

to deform the U-notched specimen in three-point bending, see Fig. 4-14.

Multiple shear bands, as oppose to a single dominating shear band, form due to the gradient in

hydrogen concentration prior to deformation. Fig. 4-15 shows contours of equivalent plastic strain

near the notch tip at four times during loading: (a) 80 sec, (b) 100 sec, (c) 120 sec, and (d) 140 sec.

The first shear band forms, Fig. 4-15 (a), and grows until it reaches the region in which the total

hydrogen concentration is lower than the critical concentration for strain-softening to occur, that

is it grows until it hits the portion of the material in which C < Cc, see Fig. 4-15 (b). Once this

occurs a second shear band forms further away from the notch tip and grows until it reaches the

same region where C < Ce, see Figs. 4-15 (c) and (d). A third shear band also forms near the

2The corresponding lattice hydrogen concentrations are computed from (3.7) with the fugacity directly prescribed
or computed from the gas pressure pH2 through (3.12). The trapped hydrogen concentrations are computed from the
lattice hydrogen concentration using (2.206). All other material properties necessary for computing these boundary
conditions are listed in Table 4.2.
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symmetry line and grows until it reaches the symmetry line. Our experience with these simulations
is that if the hydrogen concentration prior to loading is high but uniform throughout the material,
only a single shear band forms, as oppose to multiple shear bands forming as shown in Fig. 4-13
(a).

4.3.1 Effect of the regularization parameters I and Z on the formation of shear
bands in the hydrogen-charged simulations

In this section we study the effects of the regularization parameters I and Z on the formation of
shear bands in the simulation of a hydrogen-charged U-notched specimen deformed in three point
bending. The simulations discussed in this section are identical to the hydrogen-charged simulation
described previously except that the parameters I and Z are varied. As discussed in Section 2.11.4,
on physical grounds we require that the parameter B be much smaller than Z, and thus do not
include variations in B in this study and set B = 1 Pa in all simulation.

Fig. 4-16 shows contours of equivalent tensile plastic strain cp at a mid-span deflection of
0.15 mm with (a) the energetic length scale 1 = 0.1 mm, (b) the energetic length scale 1 = 0.5 mm,
and for (1) the modulus Z = 1 GPa, (2) the modulus Z = 2.5 GPa and (3) the modulus Z = 5 GPa.
As can be seen in Fig. 4-16, higher values of the modulus Z result in wider shear bands and
plastic deformation which is diffused over a larger region of the material. Correspondingly, as we
increase Z, and plastic deformation occurs over a wider region of the material, the maximum value
of 0 is lower. It is also interesting to note that varying Z can affect the pattern and shape of the
shear bands that form, compare Figs. 4-16 (b.1) and (b.2). Higher values of the length scale 1
result in plastic deformation which is localized into narrower bands, and subsequently also results
in the formation of more shear bands. Based on this brief study we chose to use 1 = 0.5 mm and
Z = 2.5 GPa, see Fig. 4-16 (b.2), in the simulations presented previously in this Chapter.

4.3.2 Effect of the variation in initial yield strength Yo

In this section we study the effect of seeding the elements with a random variation in the initial
yield strength Y in order to simulate material imperfections. To study this effect we simulate a
hydrogen-charged U-notched specimen deformed in three point bending which has no variation in
the yield strength Y and compare to the hydrogen-charged simulation described previously which
has a variation in Yo, see Fig. 4-11. The two simulations are identical except for the difference in
the yield strength Yo.

Fig. 4-17 (a) shows the initial yield strength Y prior to mechanical loading, for (a.1) a simulation
having no variation in the initial yield strength and (a.2) a simulation having a gaussian variation
with a mean of 0 MPa and a standard deviation of 5 MPa. Fig. 4-17 (b) shows contours of
equivalent tensile plastic strain 0 at a mid-span deflection of 0.15 mm for (b.1) the simulations
with no variation in Yo and (b.2) the simulation with variation in Yo. As can be seen from Fig.
4-17 the introduction of a random variation in the initial yield strength Y enhances the formation
of multiple shear bands in the vicinity of the notch as well as produces better defined shear bands.
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Figure 4-9: Schematic and finite-element mesh used in the U-Notched three-point bending simulations.

(a) (b)

Figure 4-10: Contours of total hydrogen concentration before loading for (a) the hydrogen-charged simu-
lation and (b) the uncharged simulation.
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Figure 4-11: Yield strength Y prior to the start of the simulation (a) in the vicinity of the notch and (b)
throughout the entire specimen.
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(a) (b)

(c) (d)

Figure 4-12: Effect of hydrogen on three-point bending of a U-notched specimen. (a) and (b) are from Lee
et al. (1977) for a hydrogen-charged specimen and an uncharged specimen respectively. (c) and (d) show
contours of equivalent plastic strain 6P at a mid-span deflection of 0.15 mm for a hydrogen-charged and an
uncharged specimen respectively.
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Figure 4-13: Contours of equivalent plastic strain P at a mid-span deflection of 0.15 mm near the notch
for (a) a hydrogen-charged specimen and (b) an uncharged specimen.
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Figure 4-14: Force versus mid-span deflection curves for a hydrogen-charged and uncharged simulations of
a U-notched specimen in three-point bending.

94

4

3

2
0

0

1

0 w
0



95

+9.583e-02
+8.784e-02
+7.985e-02
+7.187e-02
+6.388e-02
+5.590e-02

-+4.791 e-02
+3.993e-02
+3.194e-02
+2.396e-02
+1.597e-02
+7.985e-03
+0.000e+00

(a) (b)

(c) (d)

Figure 4-15: Contours of equivalent tensile plastic strain cP for the hydrogen-charged simulation at (a) 80
seconds of loading, (b) 100 seconds of loading, (c) 120 seconds of loading, and (d) 140 seconds of loading.
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Figure 4-16: Contours of equivalent tensile plastic strain FP for the hydrogen-charged simulation at a mid-span deflection of 0.15 mm with
the energetic length scale (a) 1 = 0.1 mm, (b) l = 0.5 mm and the modulus (1) Z = 1 GPa, (2) Z = 2.5 GPa, and (3) Z = 5 GPa.
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Figure 4-17: Contours of (a) yield strength YO before mechanical loading and (b) equivalent tensile plastic
strain 6P at a mid-span deflection of 0. 15 mm for the hydrogen-charged simulation with (1) no variation in
the initial yield strength Yo and (2) a gaussian variation in the yield strength YO with a mean of 0 MPa and
a standard deviation of 5 MPa.
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4.4 Concluding remarks

In this Chapter we have numerically studied the effects of hydrogen on the plastic deformation of a

BCC Iron system. To do so we have employed a plastic flow rule which undergoes softening when

the hydrogen concentration reaches a critical value.

First, we studied the plane-strain tensile deformation of metal specimens that are either hydrogen-

charged or uncharged prior to being mechanically deformed. As the specimen is mechanically

deformed, while still exposed to hydrogen, we have showed that increases in the hydrogen concen-

tration of the specimen can be attributed to both increases in the hydrogen residing in lattice sites

as well as increases in the hydrogen residing in trap sites. We have showed that although the hy-

drogen atmosphere surrounding the specimen does not change, the lattice hydrogen concentration

within the specimen can experience a significant increase due to the presence of volumetric tensile

strains. Early in the deformation process the maximum hydrogen concentration within the speci-

men is governed by the hydrogen residing in lattice sites, while later in the deformation process it

is governed by the hydrogen residing in trapping sites. Our theory, and corresponding numerical

simulation, is capable of modeling the increase in hydrogen within a specimen as it is mechanically

deformed, while exposed to hydrogen, which is crucial in developing a theory which seeks to couple

the mechanical response of the material with the hydrogen distribution within it.

We have shown how the plastic deformation within the specimen localizes as the hydrogen

concentration reaches a critical value, and the material begins to soften. Simulations which have

been charged to different hydrogen concentrations have been compared in order to illustrate the

different patterns of localized plastic deformation that form. The patterns depend on wether the

total hydrogen concentration is governed by either the lattice hydrogen concentration or the trapped

hydrogen concentration, at the moment when the critical hydrogen concentration is reached.

Secondly, we studied a U-notched specimen deformed in three-point bending, and compared our

results qualitatively with those of Lee et al. (1977, 1979). As was done in the experimental work

of Lee et al., we study a specimen that is hydrogen-charged prior to mechanical deformation and

one that is uncharged. Our results are in good qualitative agreement with the experimental work

of Lee et al., in that hydrogen-charging results in localized plastic deformation near the notch in

the form of multiple shear bands.



Chapter 5

Conclusion

5.1 Summary

We have developed a reasonably general thermodynamically-consistent continuum-level theory to
model hydrogen diffusion, trapping of hydrogen, diffusion of heat, and large elastic-plastic defor-
mation of metals. We have specialized our theory with a set of constitutive equations which should
be useful in application. Within our specialization, we have placed the widely-used notion of an
"equilibrium" between hydrogen residing in normal interstitial lattice sites and hydrogen trapped
at microstructural sites of Oriani (1970), within a precise thermodynamic framework.

The specialized theory has been implemented in a finite element program, and the numerical
simulation capability has been used to study three important problems. First, we studied hydrogen
hydrogen transport near a blunting crack tip with the use of a lattice chemical potential boundary
condition, and compared our simulations with those of Sofronis and McMeeking (1989) and Krom
et al. (1999) where the authors used a lattice hydrogen concentration boundary condition. We
have argued that it is important to use a constant lattice chemical potential boundary condition,
as oppose to a constant lattice hydrogen concentration boundary condition, in modeling problems
involving a metal specimen exposed to a hydrogen atmosphere at a particular partial pressure and
temperature.

Secondly, we numerically studied the plane-strain tensile deformation of metal specimens that
are either hydrogen-charged or uncharged prior to being mechanically deformed. We have shown
that although the hydrogen atmosphere surrounding the specimen is not changing, the hydrogen
concentration within the specimen can significantly increase. This increase is driven both by an
increase in the lattice hydrogen concentration, due to the volumetric elastic strains, and an increase
in the trapped hydrogen concentration, due to the increase in the number of available trapping sites.
Understanding and modeling the increase of hydrogen within a specimen as it is mechanically
deformed, while exposed to hydrogen, is crucial in the future development of theories which seek
to couple the mechanical response of the material with the hydrogen distribution within it. These
numerical studies also illustrated the different patterns of localized plastic deformation that can
form when the hydrogen concentration within the material induces plastic softening.
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Thirdly, we numerically studied U-notched specimens deformed in three-point bending that are
either hydrogen-charged or uncharged prior to being mechanically deformed. Our results are in
good qualitative agreement with those of Lee et al. (1977, 1979), in that hydrogen-charging results
in localized plastic deformation near the north in the form of multiple shear bands.

5.2 Future work

While much has been accomplished towards the goal of being able to model hydrogen-embrittlement
related failures in metallic components, much more remains to be done. Some specific outstanding
issues which are left for future work are discussed below:

" The theory presented in this work does not involve a model for material damage. To achieve
the goal of modeling hydrogen-embrittlement related failure in metallic components the theory
presented thus far needs to be enhanced with a damage model which accounts for damage
due to the presence of hydrogen.

" Further work needs to be performed to address the microscopic-scale phenomena that might
be pertinent to modeling hydrogen-embrittlement related failures in metallic components.
Specifically, the theory can be enhanced to account for (i) crystal plasticity and localization
of plastic deformation within the grains, (ii) grain-boundary decohesion enhanced by the
presence of hydrogen; and (iii) cleavage within the grains promoted by hydrogen.

" Although our theoretical development, and numerical implementation, is not restricted to
isothermal conditions, we have thus far only considered isothermal numerical simulations.
Future work needs to consider the effect of thermal variations on the mechanical response of
metallic components as well as on the diffusion of hydrogen within the component.

" A complete set of macroscopic experiments is required in order to better understand the
effect of hydrogen on the plastic deformation and damage of a specific metal. Specifically,
we propose that tension experiments on round-bar specimens need to be performed within a
controlled hydrogen atmosphere at varying hydrogen pressures and temperatures, as well as
varying strain-rates. The experiments can then be used to calibrate the material parameters
of the model.

* Once the theory has been calibrated to a particular metal system, experiments need to be
performed to validate the predictive capability of the theoretical model and its corresponding
numerical implementation.
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Appendix A

Non-equilibrium trapping of hydrogen

The purpose of this appendix is to illustrate how our theory provides a framework in which to
model "non-equilibrium" trapping, that is we do not make the specific constitutive assumption
(2.202), and assume that

PL is not always equal to PT and hence F can be non-zero, (A.1)

and thus that the chemical potentials of the two species are not always in equilibrium.

Recall from Section 2.11.2, equation (2.199), that the time rate of change of trapped hydrogen
is constrained by

def
F OT > 0, with T -p rIT (A.2)

and we are left with the task of determining the specific constitutive form for OT. We assume a
simple relationship for CT which does not directly depend on F:

IZC if F > 0,

CT -ZR if F< 0, (A.3)

0 if F = 0,

where the capture rate RC > 0 is the rate at which hydrogen transforms from lattice sites to trapped
sites and the release rate R-R > 0 is the rate at which hydrogen transforms from trapped sites to
lattice sites. Note that (A.3) always satisfies (A.2).

Following McNabb and Foster (1963), we assume the capture rate RC is proportional to the
site fraction of lattice hydrogen (i.e. the availability of hydrogen) and to the molar number of trap
sites available (a greater number of traps should increase the probability that the random motion of
hydrogen within the lattice results in hydrogen being trapped). The release rate ZR is proportional
to the trapped hydrogen concentration and the site fraction of unfilled lattice sites.

Consider now the energy landscape shown in Fig. A-1, where Q is the activation energy for
jumping between normal interstitial lattice sites, and WB is the trap binding energy. We may
model trapping as an energy well, corresponding to a microstructural defect in the metal lattice,
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tc

Distance

Figure A-1: Schematic of the energy landscape for hydrogen trapping.

surrounded by a region of smaller wells, corresponding to the metal lattice, which govern the
standard diffusion process.

Combining the aforementioned ideas the capture and release rates RC and RR are assumed to
be given by

RC= OL (1 - OT)NT v exp )(A.4)
WB - (A.)

RR = OTNT(l - OL)v exp )(A5)
Rd

where v is the vibration frequency of the hydrogen atoms (presumed to be the same for hydrogen
residing in normal interstitial lattice sites and hydrogen residing in trapping sites). From (A.4) it is
clear that RC = 0 whenever the trap sites are saturated or all lattice hydrogen has been consumed
and from (A.5) that RR = 0 whenever the trap sites are empty or all lattice sites are saturated,
thus effectively modeling saturable trap sites as well as a saturable lattice.

Finally, combining equations (A.4) and (A.5) with (A.3), gives that the time rate of change of
trapped hydrogen is

6L(1 - OT)NTv exp (RQ)

T -OTNT(1 - OL)vexp WB Q) if T <0, (A.6)

0 if T =0.

If the thermodynamic force F is given by equation (2.201), hydrogen trapping will proceed until it
has reached the same equilibrium condition between lattice hydrogen and trapped hydrogen which
is used in Section 2.11.2, that is

KT, (A.7)
1 - O 1 - OL

however it will reach this equilibrium condition at a finite trapping rate. With the framework
presented here one may chose constitutive equations which result in a thermodynamic force T
different than that shown in (2.201), and thus may be used to model hydrogen traps which do not
obey the equilibrium relation (A.7), for example non-saturable traps.



Appendix B

Details on the numerical

implementation

Introduction

Following the framework developed by Chester (2011), in this Appendix we present the details of
our numerical implementation for the solution of the transient coupled mechanical deformation,
hydrogen diffusion, heat conduction, and strain-gradient regularization theory presented in the
previous chapters. ABAQUS requires the computation of a 'Residual' vector and a 'Stiffness'
matrix for each solution variable in the theory, in order to solve the coupled equations through a
Newton-Rhapson method.

In sections B.1 through B.4 we calculate the 'Residual' and 'Stiffness' for each of the solution
variables in our theory. In Section B.5 we present the time integration procedure used to update
the plastic distortion FP, and in section B.6 we complete the 'Stiffness' matrix for the displacement
solution variables which requires first a development of the time integration procedure for the plastic
distortion.

B.1 Variational formulation of the macroscopic force balance

The displacement solution variables are governed by the partial differential equation for the balance
of momentum (2.239), the strong form of which, in the current configuration, along with appropriate
boundary conditions is given by

divT+b=0 on Bt,

X= on Si, (B.1)

Tn=t on S 2 ,

where Bt denotes the body in the current deformed configuration, on the deformed surface Si we
prescribe displacements, and on the deformed surface S 2 we prescribe surface tractions. To find

107



108

the weak form of (B.1) we multiply by a test function w and integrate over the body

0=1 (wdivT+w.b)dV
J"t

(B.2)

which integrating by parts yields

0 = (-gradw: T + w -b) dV + I (w -Tn) dA, (B.3)

and using (B.1) 3 we have

0- = (-gradw:T+w-b)dV+
JBt

(w - ') dA. (B.4)

The body is approximated using finite elements Bt = B' and the trial solution for the displace-

ment vector is interpolated inside each element by

(B.5)u = f N AU^

A

with the index A = 1, 2, ... denoting the nodes of the element, uA denoting the nodal displacement

vector, and NA the shape functions. We employ a standard Galerking approach, in that the

weighting field is interpolated by the same shape functions, such that

(B.6)w = ZNAWA.
A

This yields the element-level relation

0 = f (wA. (Tgrad NA +W^ - bNA) dV
JBe

+ (N .A ) dA (B.7)

which must hold for all wA. Therefore, we define the element level displacement residual

= (NA b - Tgrad NA) dV +
JB t

(NAi) dA, (B.8)

which in index notation is

R A= N Abi
i B

- NTij A dV +
axj )

(NAli)dA.
S1

(B.9)

The element stiffness is given by

or in index notation&R^Ku =B - uR , (B.10)KAB - ._
UiUk O

'k
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Using the residual defined above we have

AB ON^ A T. -
KAB _ f3 dV -UiUk B xj 9UB

J k

N AN B dA.
S e OUk

Furthermore,
8Tij DTij OFmn
DUg DFmn DB

and since

F ~rnn NA AFmn = 6n + O UmA
O M

we arrive at
[NA DT DNB

KAB N dVK UiUk DBI Oj DFn OX

and DFmn - DN B' 5rk
and B = omk

uk Bo

NANB D{ dA.
DUk

In section B.6 we present a detail derivation on how to approximately compute the term DTij/DFkn
in the stiffness matrix.

B.2 Variational formulation for the balance of lattice chemical
potential

The lattice chemical potential solution variable, ML, is governed by the local balance of hydrogen
concentration (2.240), the strong form of which along with appropriate boundary conditions is
given by

D* CL. tL
R V

= Div (mLVpAL) - D* CL (3K)trte - OT dN.
Red dc-

in B

on SL

on SjL

(B.15)

(B.16)

/I (D CLLCT(1-T)WB)
+ (D*CL In L R C(IO) 9

N L L

-mL(VpL) * n JL

where
CT(1 - OT) DLCL

CL Radm

with DL (d) the lattice diffusivity, K the bulk modulus, # the coefficient of chemical expansion,
R the gas constant, WB the trap binding energy, NL the molar number of lattice sites per unit
reference volume, and NT = NT() the molar number of trap sites per unit reference volume.
Further, on the surface SAL we prescribe the lattice chemical potential, and on the surface SjL the
flux of lattice hydrogen. To find the weak form of (B.15) we multiply by a test function w and

(B.11)

(B.12)

(B.13)

(B.14)
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integrate over the body

0 C w D* #L - R In CL
-B RO NL

- wDiv (mLVPL) dVR
JB

+ (3Kr)tre ) dNT
d+T

CT(1 - OT)WB
RV d

then using the identity
aDiv (u) = Div (au) - Va - u

R In CL + (3K)tr$e)
NL

dNT.
+Od EP

CT(1 - OT)WB
- 9

+ j [Vw - mLVAL - Div (wmLVAL) dVR
JB

and using the divergence theorem

E *(CL ALD AL-- R In CL + (3KO)tr Ze
Ni

dNT
d T

CT(1 - OT)WB
--

+ Vw .m
J B

LVML dVR - W(mLVPL) ' nndAR.
JB

Finally, applying the definition of the prescribed flux boundary condition (B.15) 3 yields

Ojw [D*CL -

+ Vw -mLVML dVR
JB

R$1n CL + (3K/3)trte)

+ WJL dAR-
'JS

dNT CT (1 - OT)WB
d 0 RV

The body is approximated using finite elements B = E B' and the trial solution for the lattice
chemical potential is interpolated inside each element by

(B.22)A L = EN AM,
A

with the index A = 1, 2, ... denoting the nodes of the element, MA denoting the nodal lattice
chemical potential, and NA the shape functions. We employ a standard Galerkin approach, in that
the weighting field is interpolated by the same shape functions, such that

(B.23)w = ( NwAA.
A

we obtain

dVR

(B.17)

0 =

(B.18)

0 = Jw

dVR

(B.19)

dVR

(B.20)

dVR

(B.21)

w D* L -LRd (
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This yields the element-level relation

0 = w ANA D*
CL AL - R $1n __ + (3K)trZe

NL
- OT dNT

d 0
CT(1 - OT)WB 1

R~d 19
+ wA VNA -mLVLdV +f

JBe JS
WANAIL dAR

which must hold for all wA. Therefore, we define the element level residual for the lattice chemical
potential as

R^ N A D* (L - R9 In -+ (3K )trte) +-OT T
CT(1 - OT)WB 1

R'd 10

Sf
J~e

VN A . mLVML dVR +
'SL

N AIL dAR.

The element stiffness is defined by

ORA
KAB AL

which using the residual defined in (B.25) is given by

KAB =- ABijLtL -jBe
NA [IL 

DIp OML \(D*L) (L
RVf

- R 1n CL
NL

+ (3K)tr$e)

+ D*)CL
Rd

DIUL D
OMP DIL

(L- R In CL +
NL

(3K )trte)1 dV

NA I OCT OCL OL dNT
NT 9CL OL OIL dE-P

NA OL DjL dAR,
DP 1DPL

OCT

OCL
- 20T

09CL )

OCL DILL WB 1
LIdVI

DOlL DM E Ro

dVR

(B.24)

dVR

(B.25)

(B.26)

- Be

- fe' VNA
OmL IL VA VA-m LL 0 L] dVR
DILO AL + - ML OX

- S
(B.27)
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and can be further simplified to

KAB - N NANB [ D* C$) (L - R ln CL+ (3K)tr e) + D* R

where, using (B.16)

using (B.29), (2.206) and (2.212)

D* CL
RD

D (D*') ( 2

using (2.206) and (2.212)
O9CT D9CL

DCL DIL

and using (B.16) and (2.212)
omL

DML

CL + T(1 - OT)

Ri9

(1 +

CT( - OT),

DLCL

(Rt9)2

Finally using equations (B.29) through (B.32) the element stiffness (B.28) may be written as

K AB I- N ANB [ CL

(R?9) 2 1 CT (-20T) (1- OT)~CL' (L - Reln +(3Kp3)tr e

(CL + CT(1 - OT))

vAN B ( 1 (- OT) ) I dNT.
NT dE-"

-(1-20T) W 1 dVR

D LI NB VNA -VML + VNA. VNB dVR

NANB DjL dAR.
DIL

(0D9k-4d

- NA NB OCT-CL 1 dNT 20T)
JBe D9CL DILL [NT dcPRd7

-fe F 09NBVNA .VML + VNA -aLVNB ] VR

N ANB DjL dAR,
JL DL

dVR

(B.28)

(B.29)

(1 - 2 0 T)(1 - OT),
CL

(B.30)

(B.31)

(B.32)

DIL -4)]

- Be

- e

- JL

(B.33)
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The time rate of change of PL, 9, and tr Ee are computed through a backward-Euler method

such that

_ AL,n+1 - AL,n D9AL _ 1 on+1 - n and trNe = trEen+1 - trEen

AL 9 A ' /n LZeA (B34)

with time discretized as in+1 = in + At.

B.3 Variational formulation for the transient heat equation

The temperature solution variable is governed by the partial differential equation for the temper-
ature (2.242), the strong form of which along with corresponding boundary conditions is given

by
c = Div (kV) + qR in B

= on S0 (B.35)

-kV7. n, - q on Sq

with d the temperature, c(O) the specific heat, k(O) the thermal conductivity, and qR the scalar

heat generation terms. Also, on the surface S we prescribe temperature, and on the surface Sq
the heat flux. The term qR includes all scalar heat generation terms, from (2.242) it is given by

1 Te e
qR = R + (conv + (- p) 90 :(

)) (B.36)
+R'Oln ) CL L+mL VL 2 +R9n - OT-

NL 1 - OT)

In this numerical implementation we neglect all scalar heat generation terms expect those due to

plastic working such that

-a (Y=cony + Z(1'iP - ep))P. (B.37)

To find the weak form of (B.35) we multiply by a test function w and integrate over the body

0 j w [c - Div (kv) - qR dVR (B.38)

then using the identity
Div (au) = aDiv (u) + Va - u (B.39)

we obtain

0 = j [w(c - qR) - Div (wkVO) + Vw -kV9 dVR (B.40)

and using the divergence theorem

0 = [ w(cd - Q) + Vw - kV?9] dV - j w(kVd) nR) dAR. (B.41)
JB J B
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Recalling the prescribed heat flux boundary condition

-kV?9.nR - R

we finally arrive at

+ Vw kVd] dVR+ (B.43)Iq WqR dAR.

The body is approximated using finite elements B = B' and the trial solution for the tem-

perature is interpolated inside each element by

i = i o Nyt (B.44)
A

with the index A = 1, 2, ... denoting the node of the element, VA denoting the nodal temperature,
and NA the shape functions. We employ a standard Galerkin approach, in that the weighting field

is interpolated by the same shape functions, such that

(B.45)w = E N AWA.

A

This yields the element-level relation

S= j[WAN A - qR) +W AVNA - kVO] dV + isew^N Ay RdAR

which must hold for all wA. Therefore, we define the element level residual for the temperature as

I79 [NAC - q) + VN A - kV,] dVR +

Iq

N AyRdAR.

The element stiffness is defined by

aRA
w AB y

which using the residual defined above is given by

- is

+ C - -~3
&qR 

OV09, &o7 J
A~a o7 AA 9 a79~ 1991_

+ - ja7}VN-V79+kVN -08iOB-X] dV

N dAR(99a9

(B.42)

(B.46)

(B.47)

K, OAB =J - [NA ( 1Ca19

(B.48)

(B.49)

0 = B W(cd - Qn)
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which finally can be expressed as

K00=- ANANB
c. +

8R)
+ ANBVNA

ai~a
.V + kVNA

NANB dAR (B.50)

B.4 Variational formulation of the microscopic force balance

The microvariable solution variable is governed by the partial differential equation for the micro-
scopic force balance (2.243), the strong form of which with appropriate boundary conditions is
given by

eP - 12 A

-(VeP) .

eP = 6 on B

eP = eP on Sep

nR = x on S

(B.51)

with eP the microvariable strain and I an energetic length scale in the theory. Further, on the
surface Sep we prescribe the microscopic strain, and on the surface S. the microscopic traction.
To find the weak form of (B.51) we multiply by a test function w and integrate over the body

O=f w[e -l2Div (V e) - P] dVR

then using the identity
aDiv (u) = Div (au) - Va - u

we obtain

0 = [w(eP - 9) l2 Div (wVeP) + l 2VW . VeP] dVR

and using the divergence theorem

0 = [w(eP - -) + l2 VW. - P] dVR - 12 (wVeP)

Recalling the prescribed microscopic traction boundary condition

(VeP) - nR = X (B.56)

we finally arrive at

wl 2 dAR. (B.57)

- fsq

.VNB] dVR

(B.52)

(B.53)

(B.54)

nR dAR. (B.55)

0 = B [w(eP -P) + 12VW . Vep ] dVR
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The body is approximated using finite elements B = Be and the trial solution for the mi-

crovariable is interpolated inside each element by

ep = ( NAeP A (B.58)
A

with the index A = 1, 2, ... denoting the nodes of the element, eP A denoting the nodal microscopic

strain, and NA the shape functions. We employ a standard Galerking approach, in that the

weighting field is interpolated by the same shape functions, such that

W = NAWA. (B.59)
A

This yields the element-level relation

0 j [w^NA (eP - F ) IswAVNA - VeP] dV - j wAN Al 2 dA (B.60)
JBe fS e

which must hold for all wA. Therefore, we define the element level residual for the microvariable as

RAN(eJ (p) + 12 VN A -V e"] dV - NAl 2  dAR. (B.61)
JBe s e

The element stiffness is defined by

KleB = p (B.62)

which using the residual defined above is given by

KAB = - J NA OeB + 12VNA . 'eP NA1dVR N+ NAl 2  dAn (B.63)efe Be gop B epeB X s f o _e _epB

which finally can be expressed as

Ke - f N ANB _ 12 VN A -VNB] dV+ NANB1 2  dAn. (B.64)
e e DeP

B.5 Time integration procedure

In this section, following Weber and Anand (1990), we develop a semi-implicit time integration

procedure for the specialized theory presented in this paper. The evolution equation FP = DPFP,
reiterated from (2.162), is integrated by means of the exponential map as

n+1= exp (ntDn+1 ) F+, D+ 1  n , (B.65)

where the flow resistance Y is integrated as

(B.66)Yn+1 = Yonv,n+l + Z(6 n+1 - en 1 ) -B( 1 - en+)
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with

Ycony,n+1 Yonyv,n + cony,n+1,A t (B.67)

and

Hhard I Ycony,n n+1 if Cn+1 < Cc,
cov~+1sat (B.68)

Hhard 1 - coany Pn+1 - Hsoftn+1 if Cn+1 > Cc.

Using F' = FFP- 1 , the elastic distortion at the end of the step is given by

F+ = e trial exp(-AtDpn+1 ) (B.69)

where
Fetrial f Fn+ 1- (B.70)

is a trial value of the elastic deformation gradient. The tensors F'n 1 and Fetrial admit the polar

decompositions
e and Fetrial = Retrial Uetrial, (B.71)

then using (B.69) and (B.71) and rearranging, we obtain

Rn+ 1 U'+ 1 exp(AtDn+1 ) Re trial Ue trial. (B.72)

Since

Dn+1 =n$+1(Mn+1, n+1, 19, C) (.3

is an isotropic function of its arguments, the principal directions of Op are the same as those of

n+1 Further since the function

me+ = +1(U'1 (B.74)

is also isotropic, the principal directions of Me are the same as those of n Hence the principal

directions of the isotropic function OP 1 are the same as those of Un 1 and as a result,

Un+1 exp(AtDn+ 1 ) is symmetric. (B.75)

Then, because of the uniqueness of the polar decomposition theorem

Rn+1 = Re trial, (B.76)

U'n+ ex(t +) = Ue trial, xpAD (B.77)

equation (B.77) implies that Un 1 and Ue trial have the same principal directions. Thus taking the

logarithm on both sides and rearranging we have

E'n+1 = E etrial - AtDn+ 1, where Ee trial = ln Utrial, (B.78)
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which, since DP is deviatoric, yields that the trace of the elastic logarithmic strain is equal to that

of the trial elastic logarithmic strain

tr En+1 = tr Ee ra (B.79)

Using (B.79) we may update the lattice hydrogen concentration CL as

(p~L,n+1 - p1 + 3K3(trEetrial)

CL,n+l1 = NL exp . (B.80)
Ro9n+1

Recall from (2.192)1 that the stress strain relation is given by

Me = 2GE8 + K(trEe)1 - 3Ka(t) - do)1 - 3K#(C - Co)1, (B.81)

from (2.20) that the plastic stretching is given by

DP = 3/2 PNP, (B.82)

and from (2.88) and (2.89) that the direction of plastic flow is given by

NP = 3 / 2 (MO. (B.83)

Then, applying (B.78) to the deviatoric and trace parts of the stress strain relation (B.81) and

recalling that DP is deviatoric yields the important stress update equations

me, Me trial - 2GAtDP (B.84)
On+1 0 h n~l.f+1

tr MLn+ 1  tr Me trial (B.85)

with the deviatoric and trace parts of the trial Mandell stress define by

M0trial f 2GEOtrial (B.86)

trMe trial f 3K(trEetrial) - 9Ka(On+1 - do) - 9K#(Cn+1 - Co) (B.87)

Finally, using (B.82), the stress update (B.84) for the deviatoric Mandell stress may be written as

Me, M8trial - N/6(Pn+1 At)NP 1 , (B.88)

which may be rearranged as

( 2 / 3 n+1 + v G(Pn+ 1 At)) NP+ 1 = M8trial. (B.89)
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Let

(B.90)

(B.91)

-trial = a3l/ Metrial

Metrial
NP trial _ 0 .

|me trial

Then (B.89) may be written as

(v/2 / 3 a+I +v 6 G(P,+iAt)) NP 1
t2 3 -aal Ni trial

which yields

NP 1 = Np trial, (B.93)

n+1 = 7trial - 3G(Pn+1 At). (B.94)

Thus, equation (B.93) shows that the direction of plastic flow at the end of the step is determined

by the trial direction of plastic flow.

Next, the implicit form of the flow condition (2.221) is

Cn+1 = Yn+1(En+1, 1n+1, Cn+1), where 2n+1 = Cn + Pn+1At, (B.95)

and where Cn+1 = CL,n+1+ CT,n+l, the lattice hydrogen concentration at the end of the increment

CL,n+l1 is known, and trapped hydrogen concentration at the end of the increment CT,n+1 depends
on Pn+1 through (viz. (2.206))

(B.96)CT,n+1 NT,"1

1 NL

KT,n+1CL,n+1

WB
KT,n+1 = exp ( )

Ro9n+1
and NT,n+1 = NT,n+1(Cn+1). (B.97)

Finally, using (B.95) in (B.94) gives the following important implicit equation for Pn+1 :

(B.98)

Once a solution for Pn+1 has been found we can update all necessary quantities as follows.

The update for FP is obtained from

Fn = exp(AtDPn+ 1 )F , with DPn 1 = //PNp trial

where exp(AtDn+ 1 ) is computed by taking the exponential of the eigenvalues of AtDPn+ 1. Once
Fn+1 has been computed the elastic deformation gradient is simply given by

F e = Fn+ 1Fn-n+1 - -in+ 1' B. 0

(B.92)

with

(B.99)

g(Pn+1) =trial - 3G ( Pn+1IAt) - Yn+ 1 (Cn+ 1, ?9n+ 1, Cn+ 1) = 0

(B. 100)
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from which the logarithmic elastic strain E~n+ 1 can be updated. The total hydrogen concentration
is additively decomposable, viz. (2.64),

Cn+1 = CL,n+1 + CT,n+1, (B.101)

where, recalling the constitutive equation (2.212), the lattice hydrogen concentration has already
been update through

(/pL,n+l - 10 + 3K#3(tr Ee trial\
CL,n+1 = NL exp y ), (B.102)

and, recalling equation (2.206), the trapped hydrogen concentration is updated as

CT,n+1 NT'L (B.103)
1 + L

KT,n+1CL,n+1

with

KT,n+1 =exp ( R) and NT,n+1 =NT,n+1('En+1). (B.104)

Finally the Mandel stress can be updated as

n+1 = 2GEn+1 + K(trEn+1 ) - 3Ka(On+ 1 - do)1 - 3K3(Cn+1 - Co)1 (B.105)

and using (B.76) the Cauchy stress is given by

1
Tn+ det F 1 (Re trial ) (Me+1)(Re trial )T. (B.106)

B.5.1 Summary of time-integration procedure

Given: {Tn, Yn, Fp, On}, and {Fn+1, Fn, 9 n+1, 9 n, Pn+1, Pn} at time tn
Calculate: {Tn+1, Yn+1, Fn+1, En+1, Cn+1 , CL,n+1, CT,n+1} at time t n+1 tn + At

Step 1. Calculate the trial elastic deformation gradient

Fe trial = Fn+F 1  (B.107)

Step 2. Perform the polar decomposition

Fe trial = Re trial Ue trial (B.108)

Step 3. Perform the spectral decomposition of Uetrial and calculate the trial logarithmic elastic

strain

Eetrial = lnUetrial = n A trial re trial e r trial (B.109)
i=1
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Step 4. Calculate the lattice hydrogen concentration at the end of the increment

CL,n+l1 = NL exp (I1L~n±
AL + 3K (trEetrial

, (B.110)

Step 5. Calculate the deviatoric trial elastic stress

Metrial = 2GEetrial
0 _ 0

Step 6. Calculate the trial equivalent tensile stress, and the trial direction of plastic flow

-trial /5/ 1|metriall,

metrial
NP trial -

Me trial

Step 7. Calculate Pn+1 by solving

g(Pn+1) 0tria - 3G( Pn+iAt) - Y(-n+1, on+1, Cn+1) = 0

with EPn+1 = n + Pn+1At-

Step 8. Update FP

with Dn+ 1 = 3/2PNptrial

(B.111)

(B.112)

(B.113)

(B.114)

(B.115)

Step 9. Update the elastic deformation gradient, perform the polar decomposition of the elastic

deformation gradient, and calculate the elastic logarithmic strain

Fe+1 = Fn,+1FPf 1(B.116)

Fen+1 = Ren+Un+1 (B.117)

3

Ee+1 lnnA+r r

Step 10. Calculate the trapped and total hydrogen concentration

CT,n+ 1 = N T,'+,

1 
NL

KT,n+1CL,n+1

(B.118)

(B.119)

with KT,n+1 = exp ,
Rt-n+1

Cn+1 = CL,n+1 + CT,n+1.

and NT,n+1 = ]T,n+1(En+1)-

(B.120)

FPn+ = exp (AtDpn+1) FP,
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Step 11. Update the Mandel stress

n+1 = 2GEO n+ 1 + K(tr En+ 1) - 3Ka(n+ 1 - 79o)1 - 3K#3(Cn+1 - Co)1 (B.121)

Step 12. Update the Cauchy stress

Tn+1 = d (Re trial )(Mn+ 1)(Retrial )T. (B.122)
det F,+,

Step 13. Update the flow resistance

Yn+1 = Y(En+1, 7n+1, Cn+1) (B.123)

B.6 Jacobian matrix

As outlined in Section B.1, in order to compute the stiffness for the balance of momentum we are
required to compute

Cijkn = aFj (B.124)

which is often called the Jacobian matrix. In this section we obtain an estimate for the Jacobian
matrix. We note that Jacobian matrices are used only in the search for the global finite element
solution, and though an approximate Jacobian might affect the rate of convergence, it will not affect
the accuracy of our constitutive time-integration algorithm. We begin by approximating (B.124)
by a derivative of the elastic Mandel stress with respect to the trial elastic strain, such that

BTn+1 Bn+1C = ~ . (B.125)
8Fn+ B~en+1a

In a rate-independent theory we make use of different Jacobians for steps in which the deformation
is purely elastic and steps in which there is plastic deformation that is,

C = Celastic if &trial < 0,

C = Cpiastic if &trial > 0 and > 0. (B.126)

B.6.1 Elastic jacobian matrix

During elastic deformation En+ 1 = Ee'ta and we may write the stress strain relation (2.192)1 as

M = 2GE, a+ K(tr ial)1 - 3Ka(dn+1- 00d)1 - 3KO(Cn+1 - Co)l (B. 127)
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with

Cn+1 = CL,n+1 + CT,n+1,

(1L,n+1 - PL + 3K#(trEen+ 1 )'
CL,n+l1 = NL exp L

Ron+1

CT,n+1 = NT .nH-

1 
NL

KT,n+ICL,n+1

Since Eetiai enters CT,n+1 through CL,n+1 only

BCL,n+1
tEe trialn+-i

DCT,n+1 DCL,n+1

- CL,+1 -etrial

which, using equations (2.208) and (B.129), is given by

BCn+1
OEetrialnH-1

I CT,n+l(1 - OT,n+1))

CL,n+1

DCT,n+-1 \CL,n+1

BCL,n+1 ) M~etrial

3K#3
CL,n+1 1.

R'n+1

The elastic jacobian is then simply given by

Celastic = 2G [ -
1
-1 01 + (K - (CL

(3K#3) 2

-CT (1 - T) 101.RHO )

B.6.2 Plastic jacobian matrix

Recall from (B.93) in the time-integration procedure that

NPn+1 = Nptrial

which using the definition (B.83) and the definition of the deviator, leads to the update equation

Me (nn+ = M trial
0,n+. -trial + tr (me trial)

then deriving with respect to the trial elastic strain

-1 9Me trial

Cpiastic = -trial BEe trial

1 atr (Metrial)

3 Me trial

I o-n+1 @ Metrial _ 0 ~n+1 @ me trial
trial BMe trial 0 (trial)2 Me trial 0

Noting that Eetrial enters the update equations through &trial we may write

599n+1 _ Tn+1 &gtrial

Ee trial 8atrial Ee trial

(B.128)

(B.129)

(B.130)

OE e,trialn+1

=<(I (B.131)

(B. 132)

(B.133)

(B.134)

(B.135)

(B.136)

(B.137)
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Using (B.137) and the definition of the trial Mandel stress (B.111), the plastic Jacobian matrix
(B.136) may be rewritten as

Cpiastic 2G 0n 1 -
1-1 0
3

1) + (K - (CL,n+1 + CT,n+1(1 - OT,n+1)
R?9n+l ) 101

ran+l 9&trial metrial

(tra / B e trial Ogerial .

For conciseness we define

G f Ufl1 G and
Wt-rial

Celastic cf 20 (E - 1 + ( - (CL,n+I + CT,n+1(1 - OT,n+1)) (3Kn)2 101,

such that (B.138) may be written as

Cpiastic = Celastic + (ga trial n+l
- gerial )

atrial

BEetrial
metrial

&trial

Next using the definition of &trial, the chain-rule, and the fact that NP is deviatoric

&dgtrial 3 a (
=~ra - _ ( Me trial . me trial

BEe trial 2 &Ee trial 0 0

3 &M trial metrial

2 BEe trial |Metrial

= VI2G (I -- 1 l) NP trial

= 2GNptrial.

Using the result (B.141) and the fact that

3 me trial
N Ptrial ti ,0

2 wenrial

we may rewrite the plastic Jacobian matrix (B.140) as

Cpiastic = delastic + 2G (&t+a
- +1 Np trial 0 Np trial

&trial )

All that remains is to determine the derivative

&O-trial

+ an+1+a6.trial (B.138)

(B. 139)

(B.140)

(B.141)

(B.142)

(B.143)

(B.144)
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First, we define an equivalent plastic strain increment as

Ac,+1 = Pa+1At such that 0n+1 = 0n + Acn+1 (B.145)

and we rewrite the update equations for -n+1 and Ac-+1 as

Un+1 = Y(Cn + A~n+1, on+1, cn+1)

A~+1=-trial _ n1(B. 
146)

AE~n1 = 3G

respectively. Using the definitions

X i ±' } and Y {trial} (B.147)

the system of equations (B.146) may be written as

X = G(X; Y) (B.148)

where

G (Y(pn + A n+,'On+1, Cn+) (B.149)
(Wrial _ &n+1)/(3G)

Differentiating (B.148) with respect to Y (at the solution point) we obtain

OX _ DG(X; Y) +G(X; Y) OX (B.150)
+Y Y aX DY

from which'
DX F G(X; Y) -DG(X; Y)
aX[_ BY] (B.151)

Straightforward calculations show

aG (X ; Y ) 0 g 09 n+ OG+ , a d G(X , Y ) = 0 B 1 2Dy 11B
09X__ I 0DAgn~l EPn+i j and 09YX I)[ (B. 152)

-3G 0 _ .3G.

Let

BnI Y(C-n + AC-n+1, 19n+1, Cn+1) (.13
BACPn+1 Cn+1

then

Ox 1 1 1 (B.154)
Y + Hn+1 -- -- 1

1+3G . 3G ._3G..

'Here I is the second-order identity matrix.
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Finally, we obtain
an+1 ~8[X 1
Utrial laY 1

and the plastic Jacobian matrix is given by

Cpiastic = deiastic - 2G
Hn+1) NP trial 9 NP trial (B.156)

In the numerical implementation it might be useful to write (B.156 as

Cpiastic = Ueiastic - 2G ( 3G
3G + Hn+1

3GPn 1 AtN 9
S tria1 N trial N trial

Hn+1

3G + Hn+1
(B.155)

(B.157)


