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Abstract
2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have
been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis.
However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms
besides cyanobacteria and their physiological functions are unknown. As a first step towards
understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and
intercellular localization of hopanoids in the three cell types of Nostoc punctiforme: vegetative
cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes
contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures
that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low
concentrations in heterocysts. Hopanoid production initially increased 3-fold in cells starved of
nitrogen but returned to levels consistent with vegetative cells within two weeks. Vegetative and
akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the
increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid
content in their outer membrane relative to vegetative cells. Akinetes formed in response either to
low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and
concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per
se. Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids
cannot be functionally linked to oxygenic photosyntheis in N. punctiforme.

INTRODUCTION
Hopanoids are bacterial products that occur pervasively in the geologic record (Ourisson &
Albrecht, 1992). One particular structural type, the 2-methylhopane hydrocarbons have been
interpreted as indicators of cyanobacteria in paleoenvironments, and by extension, oxygenic
photosynthesis (Summons et al., 1999). A recent report that bacteria growing under
anaerobic conditions can also produce these hopanoids has called into question the
hypothesis that 2-methylhopanoids are biomarkers for the latter (Rashby et al., 2007, Talbot
et al., 2007). Nevertheless, since hopanoid hydrocarbons retain significant potential to
contribute to our understanding of Earth’s previous environments and the organisms that
were present, a much more extensive understanding of their physiological role(s) in modern
organisms is needed. Hopanoid lipids have a pentacyclic triterpenoid core that may be
modified by the addition of methyl groups or unsaturation, together with a C5 ribose-derived
side chain with diverse structural modifications (Fleshe & Rohmer, 1988; Neunlist
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&Rohmer 1985; Talbot et al., 2008; Rhomer, 1993). The fossilized derivatives comprise
suites of C27–C36 hydrocarbons that preserve the methylation patterns of the core but not the
structural diversity of the side-chain.

Prior studies have attempted to link hopanoid production to membrane function and the
physiological status of bacteria (Kannenberg & Poralla, 1999; Joyeux et al., 2004; Jahnke et
al., 1992; Jahnke et al., 1999; Ourisson et al., 1987; Poralla et al., 2000; Simonin et al.,
1996). In this report, we describe our studies of the physiological role of hopanoids using the
cyanobacterium Nostoc punctiforme as a model organism. N. punctiforme is a filamentous
cyanobacterium that has served as a model of bacterial cellular differentiation (Meeks et al.,
2002). Under conditions of low nitrogen (N) availability, vegetative cells may undergo
differentiation into heterocysts which express nitrogenase that supplies adjacent vegetative
cells with fixed N. Alternatively, when cells are exposed to insufficient light to support
photoautotrophy or, when phosphorus, necessary for the synthesis of ATP becomes limited,
vegetative cells may undergo differentiation into akinetes (Meeks et al., 2002; Argueta &
Summers 2005). Akinetes are survival structures that protect the cell from cold and
desiccation (Meeks et al., 2002). Cyanobacterial heterocysts and akinetes have been
reported, as fossils, in rocks as old as 2100 million years (Tomitani et al., 2006).

Because our preliminary data indicated N. punctiforme produces hopanoid lipids as
membrane components, and changes in membrane architecture accompany its cellular
differentiation, we focused this study on the subcellular localization of hopanoids in N.
punctiforme. Although hopanoid localization has been addressed in a variety of bacteria,
including the cyanobacterium Synechocystis PCC6714 (Jürgens et al., 1992), we reasoned
that hopanoid localization was worth revisiting in the context of both a 2-methylhopanoid
producing organism and cellular differentiation. Knowing where hopanoids localize within
the cell provides a foundation upon which to generate hypotheses regarding their biological
function.

METHODS
Growth conditions and microscopic analysis of differentiated cells of N. punctiforme

Vegetative cells of N. punctiforme were grown in Allen and Arnon Medium at 25°C under
illumination from a cool fluorescent light (7 µM photons × m−2× sec−1), as described
previously (Meeks et al., 2002) except cultures were continuously bubbled with air supplied
at a rate of 100 cm3 × min−1 rather than shaken. Cultures were harvested by centrifugation
(1,000 × g for 20 min) from log phase when chlorophyll a concentration was approximately
1 µM chlorophyll a × ml−1 of culture medium and the presence of vegetative cells was
confirmed by light microscopy. For the induction of cell differentiation, vegetative cells
were washed three times in buffer consisting of 10 mM NaCl and 5 mM 3-
morpholinopropanesulfonic acid (pH 8) and resuspended in fresh medium (vegetative cell
control) or medium lacking P or N for the induction of akinetes and heterocysts,
respectively. Akinetes differentiation was also initiated by a decrease in the fluorescent light
intensity from 7 to 1 µM photons × m−2 × sec−1. Under low light conditions akinetes
formed within 5 weeks.

Lipid extractions and analysis
Cultures were harvested by centrifugation at 1,000 × g for 20 min and the cell pellets were
freeze dried for later analysis. Total membrane lipids were extracted by the Bligh-Dyer
solution as described previously (Bligh & Dyer, 1959; Rashby et al., 2007) with two
exceptions. First, all extractions were performed for 24 h rather than 45 min, so as to
maximize hopanoid recovery; additional extractions did not yield measurable increases in
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hopanoid content. Second, dichloromethane and aqueous phase separation of the mixture
was facilitated by the addition of 15 ml of a 0.1 M solution of NaCl in water as opposed to
water alone. Bacteriohopanepolyols were peracetylated by treatment with a mixture (1:1) of
pyridine and acetic anhydride incubated at 65°C for 30 min. Total lipid extracts were dried
and resuspended in dichloromethane to a concentration of 10 µg total lipid extract/ml.
Cholestanol (100 ng) was added to the freeze dried material prior to lipid extraction to serve
as a recovery standard and epiadrosterone (43.6 ng × µl−1) was added to the samples
immediately prior to derivatization to serve as an internal standard. Hopanoids were detected
and quantified by GC-MS using a HP 890 GC attached to an Agilent 5973 mass selective
detector equipped with a Gerstel PTV injector according to the protocol of Welander et al.
(2009). Hopanoids were quantified using epiadrosterone as a standard and should be
regarded as pseudoquantitative. Several of the hopanoids detected were tentatively identified
as desaturated hydrocarbons based upon previously published specra (Summons & Jahnke,
1992) and elution from silica gel columns in the hexane fraction. Because hopanoid
hydrocarbons were only present at low concentrations and they are proposed intermediates
in the synthesis of hopane polyols (Fliesch & Rohmer, 1988), we choose to focus the
remainder of the study on bacteriohopanepolyols (Figure 1). Based upon previously
published spectra and elution times, the hopanoid compounds bacteriohopanetetrol (1) and
2-methylbacteriohopanetetrol (2) were identified (Welander et al., 2009). 2-
methylbacteriohopanepentol was detected and its structure analyzed by treatment of total
lipid extracts with periodic acid as described by (Rashby et al., 2007). The periodic acid
cleavage product 2-methyl-31-baceriohopanol was detected confirming the presence of 2-
methyl-31,32,33,34,35 bacteriohopanepentol (3). We did not observe the 30, 32 diol
predicted to be produced from periodic acid treatment 2-methyl-30,32,33,34,35-
bacteriohopanepentol (Zhao et al., 1996). Further analysis of total lipid extract by LC/MS
indicated the presence of bacteriohopane cyclitol ether, however, the focus of our study was
on 2-methylhopanoids and this hopanoids was not methylated.

Light, fluorescence and electron microscopy of differentiated cell types of N. punctiforme
The progress of cell differentiation was followed with a fluorescence microscope, as
described previously (Meeks et al., 2002). For transmission electron micrographs, cultures
containing vegetative cells, vegetative cells and heterocysts, or akinetes were harvested by
centrifugation at 1000 × g for 20 min. Harvested cells were enrobed in 2% (wt/vol) noble
agar and placed in 2% glutaraldehyde for 2 h. Agar blocks were then washed twice in N-2-
hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) buffer and fixed in 2% OsO4 for
2 h, followed by 2% (wt/vol) uranyl acetate (UA) staining for 2 h. Blocks were then
dehydrated through a graded ethanol series (25%, 50%, 75%, 95%, and 3 × 100%) for 15
min in each solution. Blocks were suspended in a 50/50 ethanol/LR White resin solution for
30 min, followed by 100% LR White for 1 h. Samples were then embedded in gelation
capsules filled with fresh LR White resin and were allowed to polymerized at 60°C for 1 h.
Capsules were thin-sectioned on a Reichert-Jung Ultracut E ultramicrotome and ultra-thin
sections were mounted on Formvar carbon-coated copper grids. To improve contrast, grids
containing thin sections were post- stained in 2% (wt/vol) UA. Electron microscopy was
performed on a JEOL JEM-1200EXII transmission electron microscope.

Preparation of purified cytoplasmic, thylakoid, and outer membrane fractions from
differentiated cell types of N. punctiforme

Cultures of N. punctiforme were harvested by centrifugation at 1,000 × g for 20 min, washed
three times in ice-cold 5 mM sodium potassium phosphate buffer pH 7.8 (consisting of
0.44g × l−1 K2PO4 and 0.36g × l−1 NaHPO4), and then re-suspended in the same buffer used
to wash the cells. A pre-cooled French press and pressure cell were used in a refrigerated
room to ensure cells and membranes remained at 4°C. Differential lysis of vegetative and
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heterocyst cell types was accomplished using the procedure described by Fay & Lang
(1971). Membrane fractions were obtained by discontinuous sucrose gradient centrifugation
using the protocol described by Moslavac et al. (2005) except the digitonin, added to
facilitate the separation of TK and CM membrane fractions, was replaced by 0.1 %
Tween-20.

Immunodetection of specific antigens in the cytoplasmic, thylakoid, and outer membrane
fractions of N. punctiforme

Comparative analysis of the complete genome of N. punctiforme to sequences of
commercially available antibodies specific to membrane antigens indicated that N.
punctifrome has an outer membrane porin with 42% amino acid (AA) similarity to Toc75 of
Pisum sativum, and a PSII component PsbD with 90% AA similarity to the PsbD from
Arabidopsis thaliana. Rabbit anti-Toc75 and PSII polyclonal antibodies were purchased
from Agrisera. Goat anti-rabbit IgG conjugated to horse radish peroxidase served as the
secondary antibody and was purchased from Abcam. All antibiodies cross reacted as
expected with proteins from N. punctiforme. Western blots were performed according to
standard procedures. The CDP-star chemiluminesent detection kit (New England Biolabs
Inc. USA) was used for the detection and the radiograms were quantified with Quantity One
image analyzer (Biorad).

Effect of akinete germination on hopanoid localization in N. punctiforme
Akinetes formed in response to P-limitation were maintained for 6 months under the
conditions used to form the akinetes. Akinetes were harvested by centrifugation 1000 × g for
20 min and re-suspended in sterile water. To remove any remaining vegetative cells, the re-
suspended akinete culture was placed in a sonicating water bath for 20 min. Following
sonication, cells were washed three more times in sterile water to remove cell debris and
finally re-suspended in complete medium and separated into 5 ml aliquots. At time intervals
of 0, 5, 24, 48 h three replicate aliquots were visualized by light microscopy and then
harvested by centrifugation (1000 × g for 5 min). Cells were washed three times in complete
medium to ensure that any loose akinete envelopes were separated from the cells. To collect
akinete envelopes all supernatants were collected and subjected to ultracerifugation (50,000
× g for 12 h). Pelleted akinete envelopes were re-suspended in water and extracted by the
same method used to isolate hopanoids from intact cells, as described above.

RESULTS
Expression of bacteriohopanepolyols

Bisseret et al. (1985) and Zhao et al. (1996) described a variety of hopanoids in
cyanobacteria including 1, 2, and 3 in Nostoc species. Our work shows that the expression of
hopanoids is positively correlated to the depletion of P or N from the medium, but that N
and P deprivation affect hopanoid expression to different extents (Figure 2A–C). The
expression of 3 was significantly higher following one week of P or N deprivation, but in N-
deprived cultures, 3 decreased to values that were not significantly different than the
complete medium controls following four weeks of incubation (Figure 2C). In contrast, 3
expression continued to increase in cultures deprived of P. Furthermore, the expression of 1
and 2 only increased in response to P starvation and this effect occurred only after three
weeks of P-starvation (Figure 2 A & B). The 2-methylhopanoid index (2-methylhopanoid/
desmethylhopanoid +2-methylhopanoid) varied from an initial value of 2.1 in the inoculum
to 1 to 6.5 during the course of the experiment and the highest value for the 2-
methylhopanoid index was recorded in cultures containing heterocysts in which total
hopanoid concentrations had decreased from 2 ng/µg−1 TLE on week 1 to 1 ng/µg−1 total
lipid extract (TLE) on week 5 (Figure 3).
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Differentiation of N. punctiforme cells into heterocysts and akinetes
Cultures of N. punctiforme that had been grown in complete medium or medium lacking P
or N were examined by fluorescence and transmission electron microscopy. Because
heterocysts do not express phycobilisomes, which fluoresce red under illumination with a
Cy3 fluorescence filter, heterocyst frequency in filaments was detected by an absence of
fluorescence. Following one week of N starvation, approximately 10% of cells in N.
punctiforme filaments differentiated into heterocysts (Arrows on Figure 4 A & B). Filaments
consisting of akinetes, formed following the re-suspension of vegetative cells into medium
lacking P, were larger than vegetative filaments and divisions between the cells of the
filament were more pronounced, as described by Meeks et al. (2002) (Figure 4 C). Electron
micrographs of differentiated cells revealed structural changes in the membranes of
heterocysts and akinetes relative to vegetative cells. For example, a decrease in intercellular
thylakoid membrane in akinetes (Figure 4 E), as compared to vegetative cells (Figure 4 D).
Because cellular differentiation from vegetative cells into either heterocysts or akinetes in N.
punctiforme is accompanied by visible changes in membrane architecture and hopanoids are
components of lipid membranes, we sought to quantify the intracellular localization of
hopanoids in the differentiated cell types.

Membrane fractionation and immunological analysis of membrane fractions
Antibodies directed against PsbD and Toc75 served as markers for the thylakoid and outer
membrane, respectively. These membrane markers allowed for the development of a method
for the discrete separation of cytoplasmic, thylakoid and outer membranes. Furthermore, the
anti-Toc75 antibody specifically labeled the outer membrane fraction and anti-PsbD
specifically labeled the thylakoid membrane fraction, providing evidence that the outer
membrane and the thylakoid membrane were not cross contaminated (data not shown).
These data also indicated that the cytoplasmic membrane was not contaminated with the
outer or thylakoid membranes.

Intercellular localization of hopanoids in differentiated cell types of N. punctiforme
In vegetative cells the cytoplasmic, thylakoid and outer membrane consisted of 0, 0.44, and
0.12 % hopanoid by weight, respectively (lower limit of detection approximately 0.1%).
Vegetative cells from N-fixing cultures contained higher concentrations of hopanoids than
did cells grown in complete medium and the overall hopanoid concentrations of the
cytoplasmic, thylakoid and outer membranes were 0, 0.24, and 0.57 % hopanoid by weight,
respectively (Table 2). This increase in hopanoid content was most significant for 3 in the
outer membrane of vegetative cells. Hopanoids were not produced in sufficient amounts for
quantitative measurement in heterocysts (lower limit of detection 0.1% by weight).
However, by far the greatest concentration of hopanoids was found in the outer membranes
of akinetes which consisted of nearly 4% hopanoid by weight. Thylakoid and cytoplasmic
membrane fractions did not show significant changes in hopanoid content in akinetes.

The effect of light on hopanoid production during vegetative cell differentiation into
akinetes

Given that we had stimulated akinete formation by starving vegatative cells for P, our data
could not distinguish whether the increase in hopanoids associated with akinetes was a
specific response to decreased P availability or associated with the akinete cell type per se.
We thus explored hopanoid expression and localization in akinetes formed by a P-
independent mechanism: light deprivation. When visible light was supplied to vegetative
cultures below 1 µmole×(m2×min)−1 vegetative cells differentiated into akinetes. The outer
membrane of light-deprived akinetes contained 29-fold more hopanoids than the outer
membrane fraction of vegetative cells. This suggests that the increased expression of
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hopanoids in the outer membrane of akinetes is specific to the akinete cell type and not
simply a response to P-limitation.

Germination of N. punctiforme akinetes
We explored the effect of akinete germination on hopanoid localization. Mature akinetes
were harvested following six months of P-starvation, and germination was initiated by re-
suspending cells in complete medium. Hopanoid content was measured along the
germination time course. Several physiological changes were noted within 48 h (Figure 5A):
First, average cell size decreased from 7.5 +/−2.1 to 4.2 +/−0.9 µm within 48 h of re-
suspension in complete medium. Second, storage granules in akinetes decreased in size and
number. Third, cells appeared to break away from the akinete envelope eventually leaving
jettisoned envelopes in the medium (Figure 5A, arrow). Following 48 h of incubation in
complete medium, cells were harvested and separated from jettisoned envelopes. Analysis of
total lipid extracts indicated that germinated cells were strongly depleted in hopanoids
relative to the initial concentrations in the akinete (Figure 5B). In contrast, the jettisoned
akinete envelopes contained abundant BHP. Interestingly, the hopanoid content of the
jettisoned envelopes was only about 10% of the hopanoid associated with akinetes
suggesting that hopanoids were degraded or modified during the germination process. At
this time, pathways for hopanoid biosynthesis or degradation are unknown and the
identification of hopanoids with modified or novel structures remains to be explored in N.
punctiforme.

DISCUSSION
Previous membrane localization studies have indicated that hopanoids are components of the
outer and intercytoplasmic membranes in a variety of Gram negative and methanotrophic
bacteria (Jahnke et al., 1992; Jurgens et al., 1992; Simonin et al., 1996).

Here we extend these observations to show that 2-methylhopanoids localize to the outer
membrane of N. punctiforme, a cyanobacterium capable of cellular differentiation. Based on
our survey of differentiated cell types, several patterns emerge regarding hopanoid
methylation. First, 2-methylhopanoids are only minimally produced by either vegetative or
heterocyst cell-types, implying that 2-methylhopanoids are neither functionally linked to
oxygenic photosynthesis nor nitrogen fixation. Second, 2-methylhopanoids are maximally
expressed in the akinete outer membrane, which suggests a protective role for 2-
methylhopanoids, possibly by maintaining membrane fluidity during periods of cold or
desiccation. We discuss these findings in the context of 2-methylhopanoids as biomarkers
for cyanobacteria and oxygenic photosynthesis.

We found that both 2-methylhopanoids and their desmethyl equivalents were most abundant
in the outer membranes of akinetes, an environmentally recalcitrant structure in which
oxygenic photosynthesis has been down regulated (Argueta & Summers, 2005). Such
localization is thus inconsistent with a role for hopanoids in oxygenic photosynthesis in N.
punctiforme. More generally, it is important to consider that cyanobacteria are capable of
other types of metabolism besides oxygenic photosynthesis, such as fermentation, and some
strains, such as Oscillatoria limnetica, have been shown to engage in anoxygenic
photosynthesis (Cohen et al., 1975). Thus, even if 2-methylhopanoids prove to be reliable
biomarkers for cyanobacteria, without a functional link between oxygenic photosynthesis
and 2-methylhopanoids, the use of 2-methylhopanes as a proxy to date the evolutionary
origin of oxygenic photosynthesis can only be indirect.

The fact that N. punctiforme heterocysts do not contain hopanoids is noteworthy in light of
previously published work in which N-fixing Frankia were reported to contain hopanoids
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(Berry et al., 1993). The authors of this other study proposed that hopanoids limit the
diffusion of oxygen into the cell, thereby protecting the oxygen sensitive enzyme
nitrogenase, providing a biological rationale for the hypothesis that 2-methyl hopanes may
be a proxy for N-limitation in paleoenvironments (Kuypers et al., 2004). However,
hopanoids have also been proposed to be a response to extremes in pH, dessication and
alcohols (Moreau et al., 1997; Porella et al., 2000; Welander et al., 2009), in all cases by
limiting the diffusion of substances into or out of the cell. Although the absence of
hopanoids in heterocysts suggests there is no functional link between N-fixation and
hopanoids, hopanoids may well serve a general function to stabilize membranes and limit
diffusion through membranes.

Alternatively, because hopanoids are produced by akinetes formed in response to different
environmental stresses, our data indicate that 2-methyl hopanoids could be a developmental
marker for the spore-like akinete cell type per se. Fossilized akinetes have been dated back
to 2.1 Ga in marine sediments and molecular analyses of modern cyanobacterial genes
suggest that the capacity for cellular differentiation into the heterocyst and akinete cell types
arose once between 2.1 and 2.45 Ga when heterocysts evolved to cope with increasing
oxygen concentrations, with akinetes later evolving from heterocysts (Knoll et al., 2007;
Tomitani et al., 2006). Because the akinetes of N. punctiforme are abundant sources of 2-
methylhopanoids, it seems reasonable that at least one important source of 2-methylhopanes
in the rock record may have been cyanobacteria capable of cellular differentiation. We note
that other 2-methylhopanoid-producing cyanobacteria, such as Phormidium luridum (a
member of the Oscillatoriales), do not make akinetes; moreover, other 2-methylhopanoid
producers such as Rhodopseudomonas palustris (a member of the Rhizobacteriales) do not
make akinetes either (Rashby et al., 2007). Accordingly, while it is interesting to speculate
on the contribution of akinetes to the 2-methylhopane fossil record, we are unable to
constrain how significant this contribution might have been without additional information
that would speak to the probable ecological distribution of these different sources.

Vegetative cell differentiation into akinetes is accompanied by the development of a
thickened cell envelope that protects cells from cold or desiccation (Argueta & Summers,
2005); the presence of 2-methylhopanoids in the akinete envelope could therefore indicate a
protective role for 2-methylhopanoids. A similar role for unmethylated hopanoids was
proposed in the Gram positive species Streptomyces coelicolor in which sporulation and the
production of aerial hyphae corresponded to the production of hopanoids (Poralla et al.,
2000). While our focus has been on the biological function of 2-methylhopanoids because of
their geological significance, hopanoid diversity is primarily defined by different polar
headgroups. Much remains to be learned about the specific function of any given type of
hopanoid, and whether methylation makes a difference. Previous researchers have suggested
that hopanoids are bacterial equivalents of eukaryotic sterols that contribute to membrane
stability, and that the ratio of 2-methylhopanoids to desmethylhopanoids could regulate
membrane fluidity (Bisseret et al., 1985). Hopanoid methylation would likely destabilize the
chair conformation of the A-ring of the hopanoid through steric interactions between the
methyl groups at C2, C4, and C10, resulting in the A-ring adopting a boat confirmation
(Bisseret et al., 1985). Could a conformational change in the A-ring affect hydrophobic
interactions between hopanoids and other membrane components? As we gain greater
insight into the functional distinction between 2-methylhopanoids and their unmethylated
counterparts and their associations with other membrane constituents, we will be able to
better interpret the 2-methylhopanoid index from paleo-environments.

In summary, we explored the physiological role of 2-methylhopanoids in the
cyanobacterium N. punctiforme. While it will be important to confirm these findings in other
cyanobacteria to determine how general they are, our results suggest that 2-methylhopanoids
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are components of resting cell types. Given the pattern of distribution we observed in N.
punctiforme, the fact that not all cyanobacteria produce 2-methylhopanoids, and their
presence in the Rhizobiales, it seems clear that they do not have a direct role in the
machinery of oxygenic photosynthesis. We have also demonstrated that 2-methylhopanoids
may be shed with the envelope during the germination of akinetes, providing a mechanism
for the entry of hopanoids into the sediment. The total hopanoid content of akinetes could
not be accounted for following germination, suggesting that N. punctiforme has a previously
unrecognized ability to degrade hopanoids. Because hopanoid biosynthesis and degradation
appear to be up-regulated by the process of akinete formation and germination, we can now
move forward with molecular analyses to gain a better understanding of the metabolic
pathways involved in hopanoid processing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scheme showing the structures of bacteriohopanetetrol (1), 2-methylbacteriohopaneterol (2)
and 2-methylbacteriohopanepentol (3) found in N. punctiforme
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Figure 2.
Time course of the effects of N or P limitation on the expression of 1, 2, and 3 in N.
punctiforme. At time zero vegetative cells of N. punctiforme were inoculated into fresh
medium. Following 7 days of growth, at the time indicated by the arrow, cells were
harvested, washed and resuspened in either complete medium (△) or medium lacking either
P (□) or N (○). Data points are the means of three replicates and error bars represent the
standard deviation of the means.
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Figure 3.
Time course of N or P limitation on the ratio of 2-methylhopanoid to desmethylhopanoids
(i.e. 2-methylhopanoid index). At time zero, vegetative cells of N. punctiforme were
inoculated into fresh medium. Following one week (arrow), cells were harvested, washed
and resuspened in either complete medium (△) or medium lacking either P (□) or N (○).
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Figure 4.
Images of differentiated cell types of N. punctiforme. Vegetative filaments containing
heterocysts are shown under light (A) and fluorescence (B) microscopy. The white arrow
indicates the position of heterocyst. Akinete cell morphology is shown under light
microscopy (C). Electron micrographs of vegetative and akinete cell types are shown in
panels D and E, respectively.
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Figure 5.
The effect of Nostoc punctiforme akinete germination on hopanoid localization. A.
Physiological changes in membrane architecture that accompany the germination process.
The white arrow indicates cell envelopes that have been jettisoned from cells. B.
Chromatograms of the 205 Da ion from the total lipid extracts of 6-month-old akinetes, cells
collected 48 hours after germination was initiated, and jettisoned akintete envelope as
indicated. Lipid analysis was performed on a DB-XLB column as indicated in the methods
and hopanoid structures are identified in the figure by their respective numbers (see Figure
1).

Doughty et al. Page 14

Geobiology. Author manuscript; available in PMC 2010 June 1.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript

Doughty et al. Page 15

Table 1

Summary of hopanoids detected by high-temperature GC-MS and their identifying fragment ions.

Hopanoid Molecular
ion

Side-chain
Loss

A+B ring
fragment ion

D+E ring
+ side chain

acetate of 1 714 369 191 493

acetate of 2 728 383 205 493

acetate of 3 786 383 205 551

Geobiology. Author manuscript; available in PMC 2010 June 1.



H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript

Doughty et al. Page 16

Table 2

Hopanoid composition of membrane fractions. Numbers represent the mean value of three replicates (µg/mg
of total lipid extract). Typical standard deviation of the means were 25%, and the lower limit of detection was
approximately 1 µg/mg.

Cell Type
Membrane

Fraction

Hopanoid Structure

1 2 3

Vegetative

Cytoplasmic 0 0 0

Thylakoid 1.7 1.7 1

Outer 1.2 0 0

Vegetative from
N-fixing culture

Cytoplasmic 0 0 0

Thylakoid 0 0 2.4

Outer 1.2 0 4.5

Heterocyst

Cytoplasmic 0 0 0

Thylakoid 0 0 0

Outer 0 0 2

Akinete

Cytoplasmic 0 0 0

Thylakoid 2 2.1 0

Outer 10.4 0 29.9
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