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Abstract 

Photoluminescent energy transfer was investigated in conjugated polymer-fluorophore 

blended thin films. A pentiptycene-containing poly(phenyleneethynylene) was used as 

the energy donor, and 13 fluorophores were used as energy acceptors. The efficiency of 

energy transfer was measured by monitoring both the quenching of the polymer emission 
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and the enhancement of the fluorophore emission. Near-infrared emitting squaraines and 

terrylenes were identified as excellent energy acceptors. These results, where a new 

fluorescent signal occurs in the near-infrared region on a completely dark background, 

offer substantial possibilities for designing highly sensitive turn-on sensors. 

Introduction 

The highly efficient energy transfer
1
 and exciton migration processes

2
 in conjugated 

polymers can be exploited in various electronic applications
3-11

 and in amplifying sensor 

responses.
12-19

 Highly sensitive, amplified quenching of polymer emission has been 

accomplished with various quenchers in solution as well as in the solid state.
20-25

 

Applications of this amplified quenching include the detection of chemical and biological 

analytes,
26-38

 and explosives.
39

  

In contrast to turn-off sensors based on amplified polymer quenching, turn-on sensors 

have the advantage of potentially being even more sensitive and selective,
40-41

 especially 

if the new signal can be generated on a completely dark background. Some examples of 

turn-on sensors have been developed previously.
42-45

 In many of these sensors, the 

emission spectrum of the donor overlaps with the emission spectrum of the acceptor. This 

overlap leads to decreased sensitivity in turn-on sensory applications, as even in the 

absence of the acceptor there is background donor emission in the same spectral region, 

and hence not the desired completely dark background.  

Recent results from our group have demonstrated superior energy transfer with reduced 

spectral overlap between the absorption spectra of the streptavidin-functionalized 

fluorophore acceptors and the emission spectrum of the biotin-functionalized 
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poly(phenyleneethynylene) (PPE) donor.
46

 Sensors with completely separated donor and 

acceptor emissions, which rely on electronic exchange mechanisms, have the potential to 

exhibit significantly enhanced sensitivity, as the emission of the acceptor occurs on a 

dark background, without interfering donor emission. 

Additionally, turn-on sensors that display a new fluorescence emission in the near-

infrared (NIR) region (650-900 nm) are highly desirable for biological applications.
47-48

 

Biological chromophores exhibit low absorption and auto-fluorescence in this spectral 

region, which allows photons to penetrate biological tissue.
49

 Some applications of NIR 

fluorophores in biological imaging have been reported;
50-55

 however, the use of 

conjugated polymers as energy donors in combination with NIR energy acceptors allows 

for highly amplified fluorescence emission in a spectral region that is free of interfering 

signals (neither the polymer donor nor biological analytes fluoresce in this region). 

We report herein a thorough investigation of the energy transfer between a conjugated 

PPE and 13 commercially available and readily-synthesized fluorophores. These 

compounds have absorption maxima ranging from 537 nm to 686 nm, with many of the 

compounds absorbing and fluorescing in the NIR region. We show highly efficient 

energy transfer from the PPE to the fluorophores, with nearly 100-fold fluorescence 

amplification in the NIR region from exciting the PPE compared to exciting a squaraine 

chromophore directly. 

 Experimental 

Spectral grade chloroform and n-butanol were obtained from Mallinckrodt Company. 

Anhydrous toluene, benzene, and diisopropylamine were purchased from Aldrich 
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Chemical Company, Inc and were used as received. Ethanol was obtained from Pharmo-

Aaper Company. 1,4-diethynylbenzene purchased from Alfa Aesar was purified by 

chromatography on silica gel before polymerization. Rhodamine 6G (2a), 1,1',3,3,3',3'-

hexamethylindodicarbocyanine iodide (3b), and Nile Red (4) were purchased from 

Aldrich. Sulforhodamine 101 (2b) and rhodamine 800 (2c) were obtained from Molecular 

Probes
TM

. 1,1'-Diethyl-3,3,3',3'-tetramethylindocarbocyanine iodide (3a) was obtained 

from Fluka. Oxazine 170 (5) was obtained from Acros. 3-Benzyloxyaniline and 1,8-

bis(dimethylamino)naphthalene were obtained from Sigma-Aldrich. tert-Butyl 

bromoacetate, cyclohexene, and 3,4-dihydroxycyclobut-3-ene-1,2-dione were obtained 

from Alfa Aesar. 10% palladium on carbon was obtained from Acros. Trifluoroacetic 

acid was obtained from Oakwood Products.  

Polymer 1 (Mn= 88,400, PDI = 2.3)
56

 and polymer 9
57

 were synthesized according to 

previously reported procedures. 

The synthesis of two squaraine fluorophores, 1,3-bis[4-(dimethylamino)phenyl]-2,4-

dihydroxycyclobutenediylium dihydroxide (6a) and 1,3-bis[4-[bis(2-methylpropyl) 

amino]-2,6-dihydroxyphenyl]-2,4-dihydroxy cyclobutenediylium (6b) was adapted from 

literature procedures,
58

 and purified further by column separation after recrystallization. 

Compound 6c was synthesized according to literature procedures.
59-60

 

The synthesis of terrylene compounds 7 was accomplished according to literature 

procedures.
61

 Known compounds 7b and 7c were synthesized from compound 7a using 

procedures that were developed by Müllen and coworkers.
62
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Results and Discussion 

Materials 

The photophysical spectra and properties of polymer 1 are summarized in Figure 1. All 

of the properties and responses of polymers 1a and 1b are identical (absorption and 

emission spectra, quantum yields, lifetimes, etc.) and these polymers are therefore 

utilized interchangeably. The fact that the results described in this paper are not 

dependent upon the minor spatial perturbations that will exist between these polymers is 

evidence for the robustness of our conclusions.  

The molecular structures of the fluorophores used are shown in Chart 1, and their 

photophysical properties are summarized in Table 1. The wide variety of fluorophores 

investigated includes near-infrared emitting squaraine compounds 6 and terrylene 

compounds 7. Squaraines compounds have characteristic narrow absorption and emission 

bands with high extinction coefficients.
63-64

 They have been utilized in a variety of 

applications, including as chemosensors for metal ions
65-68

 and thiols,
69

 as indicators of 

membrane polarity,
70

 and as guests encapsulated in aromatic macrocycles.
71-73

 Squaraines 

have also been utilized extensively for biological imaging.
74-75

 

Table 1   

The absorption and fluorescence maxima of fluorophores in spin-cast PMMA films and 

their extinction coefficients
a
 at their absorption maxima. 

Fluorophore λmax abs.  

(nm) 

λmax em. 

(nm) 

extinction coefficient 

ε (cm
-1

M
-1

) x 10
4
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2a 552 575 8.75 

2b 579 592 6.07 

2c 686 707 6.02 

3a 556 577 14.00 

3b 652 680 20.90 

4 537 612 4.76 

5 620 638 2.94 

6a 635 647 12.30 

6b 648 667 27.30 

6c 638 645 3.27  

7a 671 675 1.22  

7b 630, 674 687 0.98 

7c 630, 679 760 2.89 

a
 The extinction coefficients were measured in chloroform. 

The synthesis of terrylenediimide fluorophores 7 is shown in Scheme 1. Terrylene, which 

was first crystallized by Clar in 1958,
76

 demonstrates a substantial bathochromic shift in 

its absorption and emission maxima compared to its lower homologues, naphthalene and 

perylene.
77

 This bathochromic shift has been investigated theoretically.
78

 Terrylene 

diimides show remarkable photostability,
79

 and have been utilized for a variety of 

biological applications.
80-82
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Energy Transfer Studies 

Blended thin films of conjugated polymer 1 and the fluorophores were fabricated at a 

variety of fluorophore concentrations. Efficient energy transfer from the polymer to the 

fluorophores was observed for NIR-emitting fluorophores, i.e. exciting the film at the 

absorption maximum of the polymer resulted in a new fluorescence emission in the NIR 

region. The efficiency of the energy transfer from the conjugated polymer to the 

fluorophores in thin film blends was quantified by two methods. First, the comparison 

between the fluorophore emission intensity obtained by the excitation of the polymer 

(IAD) to the emission intensity observed by direct excitation of the fluorophore (IA) 

demonstrates photoluminescent energy transfer from the polymer donor to the 

fluorophore acceptors.  

 Second, the energy transfer between the conjugated polymer and the fluorophores was 

quantified by measuring the fractional quenching of donor emission (Eexp) as in Equation 

1: 

Eexp = 1 – FDA/FD 

 

where FDA and FD are the integrated emission of the donor in the presence and absence of 

acceptors, respectively. We investigated all of the acceptor fluorophores at 5 weight % 

and 0.5 weight % (Table 2). For some of the more interesting NIR acceptors, we 

examined films with extended compositional ranges (Table 3). 
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Table 2   

Energy transfer efficiencies measured by the decrease in polymer emission (Eexp) and the 

increase of fluorophore emission (IAD/IA) in thin films of polymer 1 with the fluorophores 

at 0.5 wt % and 5 wt % doping concentration 

 5 wt % 0.5 wt % 

Fluorophore Eexp IAD/IA Eexp IAD/IA 

2a 0.91 76.0 0.99 118.0 

2b 0.82 64.2 0.77 84.5 

2c 0.97 10.1 0.78 61.7 

3a 0.99 6.0 0.89 88.3 

3b 0.95 5.4 0.62 66.8 

4 0.99 8.4 0.95 64.4 

5 0.85 18.7 0.66 a 

6a 0.98 20.5 0.87 98.6 

6b 0.99 6.3 0.81 69.5 

6c 0.40 53.8 0.09 50.9 

7a 0.86 20.6 0.70 41.2 

7b b 46.6 b 40.6 

7c 0.62 15.0 b 38.3 

a 
Fluorophore is not emissive at this concentration. 
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b
 Polymer emission is not quenched at this concentration. 

 

Table 3   

Energy transfer efficiencies measured by the decrease in polymer emission (Eexp) and the 

increase of fluorophore emission (IAD/IA) in thin films of polymer 1 with fluorophores 6c-

7c at various concentrations 

 1 wt % 0.1 wt % 

Fluorophore Eexp IAD/IA Eexp IAD/IA 

6c 0.19 46.8 b a 

7a 0.79 35.8 0.21 46.3 

7b b 47.2 b 26.0 

7c 0.16 31.7 b 33.8 

a 
Fluorophore is not emissive at this concentration. 

b
 Polymer emission is not quenched at this concentration. 

The fluorophore emission observed for rhodamine compounds 2 decreases as the 

absorption maximum of the compounds increases (Figure 2A-C). Compound 2a, which 

has the shortest wavelength absorption maximum, displays the greatest fluorescence 

enhancement. This result is in accord with Förster energy transfer theory,
83

 which dictates 

that the efficiency of energy transfer depends on the spectral overlap between the donor 

emission and acceptor absorption spectra. 
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The cyanine compounds 3 show reduced sensitized fluorophore emissions, especially for 

compound 3b (Figure 2D-E). Although thin films with Nile Red 4 show efficient energy 

transfer (Figure 2F), its cationic analogue oxazine 5 does not function as an efficient 

energy acceptor (Figure 2G). The charged nature of compound 5, as well as its decreased 

spectral overlap, likely affect the efficiency of energy transfer.  

Remarkably, squaraine compounds 6a and 6b display a significant amplification of 

fluorescence from polymer excitation compared to direct fluorophore excitation, with 99-

fold and 70-fold increase in the fluorophore emission (IAD/IA) for compounds 6a and 6b, 

respectively (Figure 2H-I). This highly efficient energy transfer occurs despite the 

limited spectral overlap between the polymer emission and the fluorophore absorption 

spectra. The functionalized squaraine compound 6c also exhibits substantially enhanced 

emission from polymer excitation, with up to a 54-fold increase in the fluorophore’s 

emission (Figure 2J). This NIR-emitting compound is particularly intriguing, as the ester 

moiety can be readily functionalized
84-85

 and utilized for biological applications such as 

protein labeling.
75

 

Similarly, NIR terrylene fluorophores function as efficient energy acceptors in thin film 

blends with polymer 1 (Figure 2K-M). Unsubstituted terrylene diimide 7a displays a 46-

fold amplification of fluorescence from polymer excitation compared to direct 

fluorophore excitation, which is similar to the amplification observed for the substituted 

compounds 7b and 7c.  

The degree of spectral overlap between the polymer’s emission spectrum and the 

fluorophores’ absorption spectra is illustrated in Figure 3. This figure illustrates that 
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neither the squaraines (compounds 6) nor the terrylenes (compounds 7) exhibit 

appreciable spectral overlap between their absorption spectra and the polymer’s emission 

spectrum, which is in stark contrast to several other fluorophores (compounds 2a, 2b, 3a, 

4, and 5) which exhibit substantial overlap. Nonetheless, highly efficient energy transfer 

is observed for all the NIR fluorophores investigated. 

These results reveal that both squaraine and terrylene compounds are excellent candidates 

as energy acceptors with PPE types of donors. The rigid and compact size of squaraines 

allow them to interact well with the planar polymer backbones. The fluorophores can 

stack close to the polymers, causing more efficient energy transfer through orbital 

overlap. Moreover, the internal free volumes associated with the pentiptycene in polymer 

1 may work as a guiding frame to locate fluorophores close to the polymer backbone. 

Squaraines have already been shown to interact efficiently with π systems, as well as with 

iptycene-containing frameworks.
86

 The ability of terrylene fluorophores to function as 

excellent energy acceptors is likely a result of their ability to π-stack efficiently with the 

conjugated polymer backbone.
81

 The fact that both squaraines and terrylenes display 

highly amplified NIR emission opens the possibility of using these systems for turn-on 

biological sensors. 

Comparison to a Simple PPE 

The performance of pentiptycene-containing polymer 1 was compared to that of a simple 

PPE, compound 9.
57

 The photophysical spectra and properties of polymer 9 are 

summarized in Figure 4. The broad excimer emission (510 nm) in the fluorescence 
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spectrum of polymer 9 in thin films indicates that aggregation has occurred (this band is 

absent in the emission spectra of the polymer in chloroform solution). 

When compared to polymer 1, polymer 9 shows less efficient energy transfer in terms of 

both donor quenching and amplified acceptor emission (Table 4, Figure 5). The only 

exceptions are compounds 4 and 6b, which accomplish comparable energy transfer in 

blends with both 1 and 9. The quenching of the emission of polymer 9 with added 

fluorophore is substantially less than the quenching observed with polymer 1. One 

possible reason for the limited quenching in blends of 9 is that phase separation occurs 

between the polymer and the fluorophores in spin-cast films. The dense packing of the 

polymer chains in 9 likely makes it hard to incorporate fluorophores into the polymer 

matrix. Hence, the fluorophores tend to self-aggregate, and the incorporated fluorophore 

content decreases. On the other hand, polymer 1, with the porous internal structure 

derived from the pentiptycene moieties, prevents phase separation in the spin-casting 

process and facilitates the entrapment of the fluorophores in close proximity to the 

polymer backbone. 

Table 4   

Energy transfer efficiencies between polymer 9 and fluorophores 2-6b measured by the 

decrease in polymer emission (Eexp) and the increase in fluorophore emission (IAD/IA) 

 

 5 wt % 0.5 wt% 

 Eexp IAD/IA Eexp IAD/IA 
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2a 0.73 14.7 0.52 42.2 

2b 0.79 13.5 0.14 47.3 

2c 0.37 21.9 b a 

3a 0.84 9.0 0.54 43.0 

3b b 36.9 b a 

4 0.93 16.0 0.53 86.8 

5 0.22 56.6 b a 

6a 0.10 a b a 

6b 0.64 48.1 0.22 91.9 

a
 Fluorophores were not emissive at this concentration. 

b 
The polymer emission was not quenched at this concentration. 

Electrochemistry 

Recent studies have emphasized that photoinduced electron transfer (PET) can compete 

with energy transfer, and that the relative position of the donor and acceptor frontier 

orbitals is critical in favoring energy transfer over PET.
87-89

 When both the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) energy levels of an acceptor are located within the energy range defined by the 

donor’s HOMO-LUMO gap, energy transfer dominates. Alternatively, if the HOMO or 

the LUMO of the acceptor is outside the donor’s HOMO-LUMO gap, photoinduced 

electron transfer between the donor and the acceptor can occur followed by non-radiative 
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relaxation.
90-92

 Therefore, the HOMO-LUMO energy levels of the donor should bracket 

those of the acceptor to minimize the non-radiative loss of excited donor energy.  

To estimate HOMO and LUMO levels, the oxidation and reduction potential of 

fluorophores were obtained by cyclic voltammetry, and the energy levels obtained from 

the potential differences
93-94

 (electrochemical band gap) were compared to the onset 

wavelengths of the absorption spectra (optical band gap) (Table 5). The HOMO and 

LUMO energies of polymer 1 are estimated from the oxidation potential and the optical 

band gaps. Based on the optical bandgap of polymer 1, and the HOMO-LUMO levels 

obtained for the fluorophores, it is likely that the HOMO-LUMO energy levels of the 

acceptors are located between those of the donor polymer. Therefore, all the polymer-

fluorophore pairs satisfy the above-mentioned requirements, and are expected to be 

reasonable candidates for efficient energy transfer without competing PET. 

Table 5   

HOMO and LUMO levels of polymer 1 and fluorophores 2-7 measured from their 

oxidation (Eox) and reduction (Ere) potentials, and their calculated band gaps.
d
 

 HOMO LUMO bandgap (eV) 

compound Eox (V)
a
 Ere (V)

a
 electrochemical optical 

1 -5.74 -3.07
b
 - 2.67 

2a
95

 -5.66 -3.47 2.19 2.07 

2b
96

 -5.40 -3.30 2.08 1.89 
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2c -5.46 -3.86 1.60 1.67 

3a -5.47 -3.31 2.16 2.08 

3b -5.08 -3.53 1.54 1.75 

4
97

 -5.25 -3.29 1.96 1.98 

5 -5.61 -3.97 1.64 1.88 

6a
98-99

 -5.03 -3.46 1.57 1.85 

6b -5.18 -3.51 1.68 1.82 

6c -5.38
b
 -3.58 - 1.80 

7a
100

 -5.17
c
 -3.23

c
 1.75 1.75 

a 
Measured vs. Fc/Fc

+
.
 

b
 Calculated based on optical band gap. 

c
 The reference measured potentials vs. SCE; they have been converted to potentials vs. 

Fc/Fc
+
. 

d 
The CVs of compounds 7b and 7c did not provide well-defined oxidation and reduction 

peaks. Their optical band gaps are similar to the analogous terrylene compound 7a.  
 

 

Conclusion 

Highly efficient photoluminescent energy transfer was achieved in polymer-fluorophore 

blend films with PPE donors and squaraine or terrylene acceptors. The exceptionally high 

photosensitized emission for compound 6a, with an increase of two orders of magnitude 
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relative to that obtained by direct fluorophore excitation, suggests that multiple 

mechanisms of energy transfer may be operative in these systems. Efficient energy 

transfer depends on a number of factors that influence intrinsic fluorophore emission and 

the interaction between polymers and fluorophores. The compact and rigid structure of 

squaraines and their affinity for the polymer allow intimate interaction and orbital 

overlap. Similarly, the affinity of terrylene compounds 7 for the polymer allows for 

significant orbital overlap. The internal free volume imparted by the pentiptycene 

moieties in the host polymer matrix also contributes to competent energy transfer.
12

 

Our results offer substantial possibilities for designing turn-on fluorescent sensors. In 

such sensory schemes, the polymer emission does not overlap the acceptor’s emission. 

Moreover, both squaraines and terrylenes fluoresce in the NIR region, an optimal spectral 

area for biological imaging.
47

 Thus, the new emission will occur on a completely dark 

background (free of both polymer emission and interfering biological analytes), leading 

to even greater sensitivity in the turn-on sensors. 

Acknowledgements 

The project described was supported by Award Number F32GM086044 from the 

National Institute of General Medical Sciences and the U.S. Army through the Institute 

for Soldier Nanotechnologies (DAAD-19-02-0002). 

Supplementary Information 

Details of spectroscopic and thin film experiments, Y-axis expanded spectra of direct 

fluorophore excitations, qualitative mechanistic calculations, spectra of fluorophores with 

Page 16 of 57

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Polymer Science Part A: Polymer Chemistry



For Peer Review

  17 

polymers at various concentrations, lifetimes of polymers and fluorophores in thin films. 

This material is available free of charge. 

Figure Legends 

 

Figure 1   

The absorption (solid line) and emission (dashed line) spectra of polymer 1a in spin-cast 

films (Thin films: λmax abs. = 446 nm, λmax em. = 460 nm, ΦF = 0.33, n (633 nm) = 1.66; 

chloroform solution: λmax abs. = 427 nm, λmax em. = 453 nm, ΦF = 0.50). 

 

Figure 2   

Fluorescence spectra of polymer-fluorophore blends in thin films with polymer excitation 

at 410 nm (solid line). (Y-axis expanded spectra of direct excitation of fluorophores is 

provided in the Supporting Information). 

 

Figure 3   

Overlaid spectra of the emission of polymer 1 with the absorbance of the fluorophores. 

The hatched area represents the emission band of the pristine polymer. 

 

Figure 4   

The absorption (solid line) and emission (dashed line) spectra of polymer 9 in spin-cast 

films (Thin films: λmax abs. = 449 nm, λmax em. = 463 nm, 511 nm, ΦF = 0.04, n (633 nm) 

= 1.57; chloroform solution: λmax abs. = 413 nm, λmax em. = 447 nm, ΦF = 0.41). 
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Figure 5   

 Fluorescence spectra of polymer 9-fluorophore blends in thin films with polymer 

excitation at 410 nm (solid line). (Y-axis expanded spectra of direct fluorophore 

excitation are provided in the Supporting Information).  

 

Scheme 1   

Synthesis of terrylene fluorophores 7 

 

Chart 1   

Organic fluorophores used in the energy transfer studies. 
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Graphical Abstract 

Blended thin films were fabricated which contain conjugated fluorescent polymers and 

near-infrared emitting fluorophores. Highly efficient energy transfer was observed from 

the polymer to the fluorophore, with nearly two orders of magnitude amplified 

fluorophore emission observed in the near-infrared spectral region. This amplified 

emission does not require appreciable spectral overlap between the polymer emission and 

fluorophore absorption spectra. Our results offer substantial possibilities in the design of 

highly sensitive turn-on fluorescent sensors with negligible background polymer emission 

in the spectral region of interest. 
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Figure 1. The absorption (solid line) and emission (dashed line) spectra of polymer 1a in spin-cast 
films (Thin films: λmax abs. = 446 nm, λmax em. = 460 nm, ΦF = 0.33, n (633 nm) = 1.66; 

chloroform solution: λmax abs. = 427 nm, λmax em. = 453 nm, ΦF = 0.50).  
77x97mm (300 x 300 DPI)  
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Figure 2. Fluorescence spectra of polymer-fluorophore blends in thin films with polymer excitation at 
410 nm (solid line). (Y-axis expanded spectra of direct excitation of fluorophores is provided in the 

Supporting Information).  
165x126mm (600 x 600 DPI)  
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Figure 3. Overlaid spectra of the emission of polymer 1 with the absorbance of the fluorophores. 
The hatched area represents the emission band of the pristine polymer.  

165x126mm (600 x 600 DPI)  
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Figure 4. The absorption (solid line) and emission (dashed line) spectra of polymer 9 in spin-cast 
films (Thin films: λmax abs. = 449 nm, λmax em. = 463 nm, 511 nm, ΦF = 0.04, n (633 nm) = 

1.57; chloroform solution: λmax abs. = 413 nm, λmax em. = 447 nm, ΦF = 0.41).  
75x82mm (300 x 300 DPI)  

 

Page 32 of 57

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Polymer Science Part A: Polymer Chemistry



For Peer Review

 
  

 

 

Figure 5. Fluorescence spectra of polymer 9-fluorophore blends in thin films with polymer excitation 
at 410 nm (solid line). (Y-axis expanded spectra of direct fluorophore excitation are provided in the 

Supporting Information).  
165x126mm (600 x 600 DPI)  
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Scheme 1. Synthesis of terrylene fluorophores 7  
147x110mm (600 x 600 DPI)  
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Chart 1. Organic fluorophores used in the energy transfer studies.  
166x240mm (600 x 600 DPI)  
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Exciton Diffusion to an Emissive Trap  
513x201mm (72 x 72 DPI)  
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Table 1 

The absorption and fluorescence maxima of fluorophores in spin-cast PMMA films and 

their extinction coefficients
a
 at their absorption maxima. 

Fluorophore λmax abs.  

(nm) 

λmax em. 

(nm) 

extinction coefficient 

ε (cm
-1

M
-1

) x 10
4
 

2a 552 575 8.75 

2b 579 592 6.07 

2c 686 707 6.02 

3a 556 577 14.00 

3b 652 680 20.90 

4 537 612 4.76 

5 620 638 2.94 

6a 635 647 12.30 

6b 648 667 27.30 

6c 638 645 3.27  

7a 671 675 1.22  

7b 630, 674 687 0.98 

7c 630, 679 760 2.89 

a
 The extinction coefficients were measured in chloroform. 
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Table 2 

Energy transfer efficiencies measured by the decrease in polymer emission (Eexp) and the 

increase of fluorophore emission (IAD/IA) in thin films of polymer 1 with the fluorophores 

at 0.5 wt % and 5 wt % doping concentration 

 5 wt % 0.5 wt % 

Fluorophore Eexp IAD/IA Eexp IAD/IA 

2a 0.91 76.0 0.99 118.0 

2b 0.82 64.2 0.77 84.5 

2c 0.97 10.1 0.78 61.7 

3a 0.99 6.0 0.89 88.3 

3b 0.95 5.4 0.62 66.8 

4 0.99 8.4 0.95 64.4 

5 0.85 18.7 0.66 a 

6a 0.98 20.5 0.87 98.6 

6b 0.99 6.3 0.81 69.5 

6c 0.40 53.8 0.09 50.9 

7a 0.86 20.6 0.70 41.2 

7b b 46.6 b 40.6 

7c 0.62 15.0 b 38.3 

a 
Fluorophore is not emissive at this concentration. 
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b
 Polymer emission is not quenched at this concentration. 
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Table 3   

Energy transfer efficiencies measured by the decrease in polymer emission (Eexp) and the 

increase of fluorophore emission (IAD/IA) in thin films of polymer 1 with fluorophores 6c-

7c at various concentrations 

 1 wt % 0.1 wt % 

Fluorophore Eexp IAD/IA Eexp IAD/IA 

6c 0.19 46.8 b a 

7a 0.79 35.8 0.21 46.3 

7b b 47.2 b 26.0 

7c 0.16 31.7 b 33.8 

a 
Fluorophore is not emissive at this concentration. 

b
 Polymer emission is not quenched at this concentration. 
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Table 4 

Energy transfer efficiencies between polymer 9 and fluorophores 2-6b measured by the 

decrease in polymer emission (Eexp) and the increase in fluorophore emission (IAD/IA) 

 

 5 wt % 0.5 wt% 

 Eexp IAD/IA Eexp IAD/IA 

2a 0.73 14.7 0.52 42.2 

2b 0.79 13.5 0.14 47.3 

2c 0.37 21.9 b a 

3a 0.84 9.0 0.54 43.0 

3b b 36.9 b a 

4 0.93 16.0 0.53 86.8 

5 0.22 56.6 b a 

6a 0.10 a b a 

6b 0.64 48.1 0.22 91.9 

a
 Fluorophores were not emissive at this concentration. 

b 
The polymer emission was not quenched at this concentration. 
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Table 5 

HOMO and LUMO levels of polymer 1 and fluorophores 2-7 measured from their 

oxidation (Eox) and reduction (Ere) potentials, and their calculated band gaps.
d
 

 HOMO LUMO bandgap (eV) 

compound Eox (V)
a
 Ere (V)

a
 electrochemical optical 

1 -5.74 -3.07
b
 - 2.67 

2a
95

 -5.66 -3.47 2.19 2.07 

2b
96

 -5.40 -3.30 2.08 1.89 

2c -5.46 -3.86 1.60 1.67 

3a -5.47 -3.31 2.16 2.08 

3b -5.08 -3.53 1.54 1.75 

4
97

 -5.25 -3.29 1.96 1.98 

5 -5.61 -3.97 1.64 1.88 

6a
98-99

 -5.03 -3.46 1.57 1.85 

6b -5.18 -3.51 1.68 1.82 

6c -5.38
b
 -3.58 - 1.80 

7a
100

 -5.17
c
 -3.23

c
 1.75 1.75 

a 
Measured vs. Fc/Fc

+
.
 

b
 Calculated based on optical band gap. 
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c
 The reference measured potentials vs. SCE; they have been converted to potentials vs. 

Fc/Fc
+
. 

d 
The CVs of compounds 7b and 7c did not provide well-defined oxidation and reduction 

peaks. Their optical band gaps are similar to the analogous terrylene compound 7a.   

--------------------------------------------------------------------------------------------------
 

95
 Gould, I. R.; Shukla, D.; Giesen, D.; Farid, S. Helv Chim Acta 2001, 84, 2796-2812. 

96
 Torimura, M.; Kurata, S.; Yamada, K.; Yokomaku, T.; Kamagata, Y.; Kanagawa, T.; 

Kurane, R. Anal Sci 2001, 17, 155-160. 

97
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Lelj, F. Dalton Trans 2008, 6563-6572. 

98
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Thin film experiments: 

The thin films used in these experiments were fabricated from chloroform solutions. 

Stock solutions of 1.0 mg/mL of polymers 1a and 1b, and 0.5 mg/mL of polymer 9 in 

chloroform were mixed with the corresponding amount of fluorophore stock solutions. 

The films were spin-cast at a spin rate of 1000 rpm from chloroform solutions on glass 

substrates for 1 minute. UV-Vis spectra were obtained on an Agilent 8453 UV-visible 

spectrophotometer. Fluorescence spectra were measured on a SPEX Fluorolog-τ3 

fluorimeter (model FL-321, 450 W Xenon lamp). Polymer thin film spectra were 

recorded by front-face detection. The slit widths on the fluorimeter were 3 nm excitation 

slit width and 5 nm emission slit width.  

 

Fluorescence quantum yields of the polymers in chloroform were determined relative to 

solutions of quinine sulfate (~10
-6

 M in 0.1 N sulfuric acid) (ΦF = 0.55).
1
 The solid state 

quantum yields were obtained relative to 1 weight % 9,10-diphenylanthracene in 

poly(methyl methacrylate) (PMMA) (ΦF = 0.83) as a standard.
2
  

 
To determine the fractional quenching of the polymer’s emission in the presence of the 

acceptor fluorophores, at least six individual measurements of pristine polymer thin films 

(made from 0.5-1.5 mg/mL of polymer solutions in chloroform) were used to derive a 

linear relationship between the integrated emission of the polymer and its optical density 

at the excitation wavelength. The standard curve of the integrated fluorescence intensity 

versus the corresponding optical density values was obtained by excitation of the pristine 

polymer thin films at 370 nm for polymers 1a and 9. Thin films of polymer 1b were 

excited at 410 nm. The integrated donor emission in polymer-fluorophore blended films 

was obtained under the same conditions, and its corresponding unquenched integrated 

polymer emission was then derived from the standard curve versus the absorption of the 

blend film. These values were used for the calculation of donor quenching. 

 

The amplification of fluorophore emission was determined from the ratio of integrated 

emission of fluorophore with excitation of polymer (IAD) at 410 nm to that obtained upon 

direct excitation of the fluorophore (IA). IAD was obtained after deconvolution of any 

overlapping polymer emission. Direct excitation of fluorophores to obtain IA is ideally 

measured by the excitaiton at the fluorophore’s absorption maximum to get the highest 

emission intensity. However, due to the small Stokes shifts of the fluorophores, excitation 

at the absorption maximum of fluorophores does not yield the complete fluorophore 

emission spectra. Therefore, we excited the fluorophores at the 30 nm blue-shifted 

absorption maximum (λmax abs. of fluorophore – 30 nm). For this reason, IAD/IA is larger 

than it would be if we excited the fluorophore at its absorption maximum.  

 

We examined the direct excitation of fluorophores 6c and 7a (one example of each class 

of near-infrared emitting fluorophores) at three different wavelengths: the absorption 

maximum of the fluorophore in thin films with polymer 1, 15 nm less than the absorption 

maximum, and 30 nm less than the absorption maximum.  In all cases, we observed a 

substantial amplification of fluorophore emission from exciting the polymer at 410 nm 

compared to exciting the fluorophore directly (at any of the three wavelengths).  
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For squaraine compound 6c, exciting blended thin films with 5 weight % fluorophore at 

604 nm (30 nm blue-shifted, 43-fold amplification) resulted in a slightly increased 

amplification compared to exciting the fluorophore at 619 nm (15 nm blue-shifted, 36-

fold amplification). When the same film was excited directly at the absorption maximum 

of fluorophore 6c (634 nm), the observed amplification (IAD/IA) decreased to 29. This 

decreased amplification is expected based on the increased optical density of the 

fluorophore at wavelengths close to its absorption maximum.  

 

For terrylene compound 7a, we observe decreased amplification at most concentrations 

from exciting the fluorophore at 654 nm (15 nm blue-shifted from the absorption 

maximum) compared to exciting it at 639 nm (30 nm blue-shifted) (Table S1). Exciting 

the fluorophore directly at its absorption maximum (669 nm) resulted in truncating too 

much of the fluorophore emission spectrum.  

 
Table S1: IAD/IA of thin films of polymer 1 and fluorophore 7a  
Fluorophore concentration IAD/IA (639 nm excitation) IAD/IA (654 nm excitation) 

25 weight % 3.8 4.0 

10 weight % 11.8 9.8 

5 weight % 23.3 16.5 

1 weight % 31.0 24.2 

0.5 weight % 48.8 36.3 

0.1 weight % 24.0 25.5 

 

For both of the near-infrared emitting fluorophores that we investigated, good to 

excellent amplification of the fluorophore’s emission was still observed, even at the 

lower IAD/IA values that were obtained from excitation of the fluorophore at or closer to 

the absorption maximum. 
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Y-axis expanded spectra of polymer 1 and polymer 9 in thin films with fluorophores: 

 
Figure S1: Y-axis expanded fluorescence spectra of polymer 1-fluorophore blends in thin films with direct 

excitation of the fluorophores. 

 
Figure S2: Y-axis expanded fluorescence spectra of polymer 9-fluorophore blends in thin films with direct 

excitation of the fluorophores. 
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Qualitative mechanistic calculations: 

If dipolar coupling (Förster energy transfer) is the predominant mechanism of energy 

transfer, then the rate of energy transfer should be directly proportional to the spectral 

overlap between the polymer’s emission spectrum and the fluorophore’s absorption 

spectrum. We calculated the spectral overlap using PhotoChemCAD for all fluorophores 

and the results are summarized in Table S2. 

 
Table S2: Spectral overlap integrals (J) of fluorophores with polymer 1 

Fluorophore J (Å6mol-1) 
2a 1.1 x 10

35
 

2b 5.4 x 10
34

 

2c 2.2 x 10
34

 

3a 1.7 x 10
35

 

3b 5.0 x 10
34

 

4 1.3 x 10
35

 

5 4.6 x 10
34

 

6a 1.8 x 10
34

 

6b 3.9 x 10
34

 

6c 1.5 x 10
34

 

7a 8.9 x 10
33

 

7b 5.9 x 10
33

 

7c 1.4 x 10
34

 

 

The ratio of the fluorophore’s emission from polymer excitation divided by the spectral 

overlap integral J was calculated for all fluorophores and is summarized in Table S3. 

These non-rigorous calculations support the qualitative conclusion that the energy 

transfer from polymer 1 to small-molecule fluorophores is particularly efficient for near-

infrared emitting squaraines and terrylenes (as evidenced by the large values of 

fluorophore emission divided by the spectral overlap integral observed for these 

fluorophores), beyond what would be expected based on Förster theory alone. 

 
Table S3: Fluorophore emission intensity divided by spectral overlap integral J 
Fluorophore Polymer 1 
2a 0.095 

2b 0.038 

2c 0.019 

3a 0.076 

3b 0.012 

4 0.15 

5 0.011 

6a 0.51 

6b 0.17 

6c 0.24 

7a 0.25 

7b 1.00 

7c 0.24 
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The same calculations were performed for polymer 9 and the results are summarized in 

Tables S4 and S5. In the case of polymer 9, substantially different ratios of fluorophore 

emission divided by the spectral overlap integral indicate that non-Förster energy transfer 

mechanisms are likely operative in these systems.  

 
Table S4: Spectral overlap integrals (J) and Forster radii (Ro) of fluorophores with polymer 9 

Fluorophore J (Å6mol-1)a 
2a 3.4 x 10

35
 

2b 3.2 x 10
35

 

2c 1.2 x 10
35

 

3a 4.8 x 10
35

 

3b  4.5 x 10
35

 

4 2.4 x 10
35

 

5 2.0 x 10
35

 

6a 2.1 x 10
35

 

6b 3.7 x 10
35

 

 
Table S5: Fluorophore emission intensity divided by spectral overlap integral J 
Fluorophore Polymer 9 
2a 0.38 

2b 0.080 

2c 0.046 

3a 0.33 

3b 0.017 

4 1.00 

5 0.032 

6b 0.23 
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High fluorophore concentrations: 

Thin films were fabricated at 100 weight %, 50 weight %, 25 weight %, and 10 weight % 

of fluorophores 6c-7c in polymer 1 (Table S6). While multiple complicated processes 

may be occuring in these films, we nonetheless observe some amplification of the 

fluorophore emission, as well as excellent to moderate quenching of the polymer’s 

emission. 

 
Table S6: Energy transfer efficiencies measured by the decrease in polymer emission (Eexp) and the 

increase of fluorophore emission (IAD/IA) in thin films of polymer 1 with the fluorophores at high 

fluorophore concentrations: 
 100 wt % 50 wt % 25 wt % 10 wt % 

Fluorophore Eexp IAD/IA Eexp IAD/IA Eexp IAD/IA Eexp IAD/IA 

6c 0.87 18.7 0.87 12.1 0.67 29.4 0.43 49.0 

7a 0.97 a 0.97 4.2 0.95 7.3 0.92 10.9 

7b 0.67 5.3 0.46 9.3 0.11 19.7 b 38.0 

7c 0.96 1.6 0.93 2.6 0.85 4.9 0.72 11.3 
a 
Fluorophore is not emissive at this concentration 

b
 Polymer emission is not quenched at this concentration 
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All spectra of fluorophores 6c-7c in thin films with polymer 1b at various concentrations: 

The emission from exciting polymer 1b is represented by the solid line. Y-axis expanded 

spectra of direct fluorophore excitation are provided in subsequent figures. 

  
Figure S3: Thin films of polymer 1b and fluorophore 6c at various fluorophore concentrations. 

 
Figure S4: Thin films of polymer 1b and fluorophore 7a at various fluorophore concentrations. 
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Figure S5: Thin films of polymer 1b and fluorophore 7b at various fluorophore concentrations. 

 
Figure S6: Thin films of polymer 1b and fluorophore 7c at various fluorophore concentrations. 
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Y-axis expanded spectra of fluorophores 6c-7c in thin films with polymer 1b at various 

concentrations with direct fluorophore excitation: 

 

 
Figure S7: Thin films of polymer 1b and fluorophore 6c at various fluorophore concentrations. 
  

 
Figure S8: Thin films of polymer 1b and fluorophore 7a at various fluorophore concentrations. 
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Figure S9: Thin films of polymer 1b and fluorophore 7b at various fluorophore concentrations. 

 

 
Figure S10: Thin films of polymer 1b and fluorophore 7c at various fluorophore concentrations. 
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Lifetime data tables 
 
To obtain more information on the mechanism of energy transfer in the thin film blends, 

the excited state lifetimes of both the polymer and the fluorophore were measured and fit 

using either mono- or bi-exponential decay profiles (Table S7 and Table S8).  With one 

exception (vide infra) the lifetimes of the polymer measured at low fluorophore 

concentration (0.1 weight %) and high fluorophore concentration (25 weight %) were 

constant. This invariance of lifetime with fluorophore concentration is indicative of a 

static quenching mechanism that occurs between two fluorophores in a self-quenching 

process.
3
  

 

The exception to this trend was compound 7a, and the lifetime of polymer 1b at low 

fluorophore concentrations was substantially lower than its lifetime at high fluorophore 

concentration. This trend in fluorescence lifetime correlates with the efficiency of energy 

transfer in the films – i.e. more facile energy transfer at 0.1 weight % fluorophore (46.3-

fold amplification compared to 7.3-fold at 25 weight %) provides an additional 

deactivation method for the polymer, leading to the shorter observed lifetime.  

  
Table S7: Lifetimes of the excited state of polymer 1b in thin film blends

a
 and the values in parentheses are 

the percentages of each lifetime used to fit the experimental data. 

Fluorophore 25 weight % 0.1 weight % 

6c 0.80 ns (95.5 %) 

4.92 ns (4.5 %) 

0.70 ns (96.3 %) 

2.41 ns (3.7 %) 

7a 1.22 ns (100 %) 0.79 ns (92.2 %) 

3.02 ns (7.8 %) 

7b 0.71 ns (96.1 %) 

3.56 ns (3.9 %) 

0.93 ns (93.4 %) 

3.73 ns (6.6 %) 

7c 0.78 ns (100 %) 0.77 ns (93.5 %) 

3.11 ns (6.5 %) 
a
These values are averages of lifetimes measured at three different spots in the same thin film. 

 
 
Table S8: Lifetime of fluorophores in thin films with polymer 1ba 

Fluorophore 25 wt % 0.1 wt % 

6c 1.39 ns (66.5 %) 

4.45 ns (33.5 %) 

1.54 ns (100 %) 

7a 0.99 ns (93.4 %) 

3.00 ns (6.6 %) 

3.00 ns (100 %) 

7b 1.19 ns (90.2 %) 

3.72 ns (9.8 %) 

2.95 ns (100 %) 

7c 0.69 ns (84.3 %) 

2.65 ns (15.7 %) 

1.96 ns (82.9 %) 

3.84 ns (17.1 %) 
a
 These values are averages of lifetimes measured at three different spots in the same thin film. 
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Supplementary tables: 

 
Table S9: Absorption and emission of fluorophores in chloroform solution 
Fluorophore λmax abs. (nm) λmax em. (nm) 

6c 626 641 

7a 555, 600, 655 674, 725 

7b 619, 674 699 

7c 626, 682 712 

 
Table S10: Absorption and emission of fluorophores in thin films with polymer 1b 

Fluorophore λmax abs. (nm) λmax em. (nm) 

6c 634 650 

7a 615, 669 679 

7b 629, 678 701 

7c 631, 682 725 
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