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To the Editor
Rapid improvements in sequencing and array-based platforms are resulting in a flood of
diverse genome-wide data, including data from exome and whole genome sequencing,
epigenetic surveys, expression profiling of coding and non-coding RNAs, SNP and copy
number profiling, and functional assays. Analysis of these large, diverse datasets holds the
promise of a more comprehensive understanding of the genome and its relation to human
disease. Experienced and knowledgeable human review is an essential component of this
process, complementing computational approaches. This calls for efficient and intuitive
visualization tools able to scale to very large datasets and to flexibly integrate multiple data
types, including clinical data. However, the sheer volume and scope of data poses a
significant challenge to the development of such tools.

To address this challenge we developed the Integrative Genomics Viewer (IGV), a
lightweight visualization tool that enables intuitive real-time exploration of diverse, large-
scale genomic datasets on standard desktop computers. It supports flexible integration of a
wide range of genomic data types including aligned sequence reads, mutations, copy
number, RNAi screens, gene expression, methylation, and genomic annotations (Figure S1).
The IGV makes use of efficient, multi-resolution file formats to enable real-time exploration
of arbitrarily large datasets over all resolution scales, while consuming minimal resources on
the client computer (see Supplementary Text). Navigation through a dataset is similar to
Google Maps, allowing the user to zoom and pan seamlessly across the genome at any level
of detail from whole-genome to base pair (Figure S2). Datasets can be loaded from local or
remote sources, including cloud-based resources, enabling investigators to view their own
genomic datasets alongside publicly available data from, for example, The Cancer Genome
Atlas (TCGA)1, 1000 Genomes (www.1000genomes.org/), and ENCODE2

(www.genome.gov/10005107) projects. In addition, IGV allows collaborators to load and
share data locally or remotely over the Web.

IGV supports concurrent visualization of diverse data types across hundreds, and up to
thousands of samples, and correlation of these integrated datasets with clinical and
phenotypic variables. A researcher can define arbitrary sample annotations and associate
them with data tracks using a simple tab-delimited file format (see Supplementary Text).
These might include, for example, sample identifier (used to link different types of data for
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the same patient or tissue sample), phenotype, outcome, cluster membership, or any other
clinical or experimental label. Annotations are displayed as a heatmap but more importantly
are used for grouping, sorting, filtering, and overlaying diverse data types to yield a
comprehensive picture of the integrated dataset. This is illustrated in Figure 1, a view of
copy number, expression, mutation, and clinical data from 202 glioblastoma samples from
the TCGA project in a 3 kb region around the EGFR locus1, 3. The investigator first grouped
samples by tumor subtype, then by data type (copy number and expression), and finally
sorted them by median copy number over the EGFR locus. A shared sample identifier links
the copy number and expression tracks, maintaining their relative sort order within the
subtypes. Mutation data is overlaid on corresponding copy number and expression tracks,
based on shared participant identifier annotations. Several trends in the data stand out, such
as a strong correlation between copy number and expression and an overrepresentation of
EGFR amplified samples in the Classical subtype.

IGV’s scalable architecture makes it well suited for genome-wide exploration of next-
generation sequencing (NGS) datasets, including both basic aligned read data as well as
derived results, such as read coverage. NGS datasets can approach terabytes in size, so
careful management of data is necessary to conserve compute resources and to prevent
information overload. IGV varies the displayed level of detail according to resolution scale.
At very wide views, such as the whole genome, IGV represents NGS data by a simple
coverage plot. Coverage data is often useful for assessing overall quality and diagnosing
technical issues in sequencing runs (Figure S3), as well as analysis of ChIP-Seq4 and RNA-
Seq5 experiments (Figures S4 and S5).

As the user zooms below the ~50 kb range, individual aligned reads become visible (Figure
2) and putative SNPs are highlighted as allele counts in the coverage plot. Alignment details
for each read are available in popup windows (Figures S6 and S7). Zooming further,
individual base mismatches become visible, highlighted by color and intensity according to
base call and quality. At this level, the investigator may sort reads by base, quality, strand,
sample and other attributes to assess the evidence of a variant. This type of visual inspection
can be an efficient and powerful tool for variant call validation, eliminating many false
positives and aiding in confirmation of true findings (Figures S6 and S7).

Many sequencing protocols produce reads from both ends (“paired ends”) of genomic
fragments of known size distribution. IGV uses this information to color-code paired ends if
their insert sizes are larger than expected, fall on different chromosomes, or have unexpected
pair orientations. Such pairs, when consistent across multiple reads, can be indicative of a
genomic rearrangement. When coloring aberrant paired ends, each chromosome is assigned
a unique color, so that intra- (same color) and inter- (different color) chromosomal events
are readily distinguished (Figures 2 and S8). We note that misalignments, particularly in
repeat regions, can also yield unexpected insert sizes, and can be diagnosed with the IGV
(Figure S9).

There are a number of stand-alone, desktop genome browsers available today6 including
Artemis7, EagleView8, MapView9, Tablet10, Savant11, Apollo12, and the Integrated Genome
Browser13. Many of them have features that overlap with IGV, particularly for NGS
sequence alignment and genome annotation viewing. The Integrated Genome Browser also
supports viewing array-based data. See Supplementary Table 1 and Supplementary Text for
more detail. IGV focuses on the emerging integrative nature of genomic studies, placing
equal emphasis on array-based platforms, such as expression and copy-number arrays, next-
generation sequencing, as well as clinical and other sample metadata. Indeed, an important
and unique feature of IGV is the ability to view all these different data types together and to
use the sample metadata to dynamically group, sort, and filter datasets (Figure 1 above).
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Another important characteristic of IGV is fast data loading and real-time pan and zoom – at
all scales of genome resolution and all dataset sizes, including datasets comprising hundreds
of samples. Finally, we have placed great emphasis on the ease of installation and use of
IGV, with the goal of making both the viewing and sharing of their data accessible to non-
informatics end users.

IGV is open source software and freely available at http://www.broadinstitute.org/igv/,
including full documentation on use of the software.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Copy number, expression, and mutation data grouped by tumor subtype
This figure illustrates an integrated, multi-modal view of 202 glioblastoma multiforme
TCGA samples. Copy number data is segmented values from Affymetrix SNP 6.0 arrays.
Expression data is limited to genes represented on all TCGA employed platforms and
displayed across the entire gene locus. Red shading indicates relative up-regulation of a gene
and the degree of copy gain of a region; blue shading indicates relative down-regulation and
copy loss. Small black squares indicate the position of point missense mutations. Samples
are grouped by tumor subtype (2nd annotation column) and data type (1st sample annotation
column), and sorted by copy number of the EGFR locus. Linking via sample attributes
insures that the order of sample tracks is consistent across data types within their respective
tumor subtypes.
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Figure 2. View of aligned reads at 20kb resolution
Coverage plot and alignments from paired-end reads for a matched tumor/normal pair.
Sequencing was performed on an Illumina GA2 platform and aligned with Maq. Alignments
are represented as gray polygons with reads mismatching the reference indicated by color.
Loci with a large percentage of mismatches relative to the reference are flagged in the
coverage plot as color-coded bars. Alignments with unexpected inferred insert sizes are
indicated by color. There is evidence for an approximately 10kb deletion (removing 2 exons
of AIDA) in the tumor sample not present in the normal.
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