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Abstract 
 
Pyriplatin, cis-diammine(pyridine)chloroplatinum(II), a platinum-based antitumor drug 

candidate, is a cationic compound with anticancer properties in mice and is a substrate 

for organic cation transporters that facilitate oxaliplatin uptake. Unlike cisplatin and 

oxaliplatin, which form DNA cross-links, pyriplatin binds DNA in a monofunctional 

manner. The antiproliferative effects of pyriplatin, alone and in combination with known 

anticancer drugs (paclitaxel, gemcitabine, SN38, cisplatin, 5-fluorouracil), were 

evaluated in a panel of epithelial cancer cell lines, with direct comparison to cisplatin 

and oxaliplatin. The effects of pyriplatin on gene expression and platinum-DNA adduct 

formation were also investigated. Pyriplatin exhibited cytotoxic effects against human 

cell lines after 24 h (IC50: 171 – 443 µM), with maximum cytotoxicity in HOP-62 non-

small cell lung cancer cells after 72 h (IC50: 24 µM). Pyriplatin caused a G2/M cell cycle 

block similar to that induced by cisplatin and oxaliplatin. Induction of apoptotsis and 

DNA damage response was supported by Annexin-V analysis and detection of 

phosphorylated Chk2 and H2AX. Treatment with pyriplatin increased CDKN1/p21 and 

decreased ERCC1 mRNA expression. On a platinum-per-nucleotide basis, pyriplatin DNA 

adducts are less cytotoxic than those of cisplatin and oxaliplatin. The mRNA levels of 

genes implicated in drug transport and DNA damage repair, including GSTP1 and MSH2, 

correlate with pyriplatin cellular activity in the panel of cell lines. Synergy occurred for 

combinations of pyriplatin with paclitaxel. Because its spectrum of activity differs 

significantly from those of cisplatin or oxaliplatin, pyriplatin is a lead compound for 
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developing novel drug candidates with cytotoxicity profiles unlike those of drugs 

currently in use. 

 

Introduction 
 

Three platinum compounds currently in use worldwide - cisplatin, carboplatin, 

and oxaliplatin (Figure 1) - have been developed with crucial support from the United 

States NCI, including screening by the NCI’s 60-cell line panel (NCI60 screen) (1). This 

process, together with the NCI COMPARE program, identified clear differences in 

activity profiles and mechanisms of action between platinum compounds, thus enabling 

the grouping of platinum compounds according to such characteristics (2). The cisplatin 

activity profile is similar to that of other diammineplatinum(II) compounds and to 

alkylating agents such as melphalan and camptothecin analogs. The oxaliplatin activity 

profile is similar to that of other platinum compounds containing the R,R-1,2-

diaminocyclohexane ligand, including the platinum(IV) drug tetraplatin, and is also 

similar to those of acridines, organic compounds currently being developed as 

anticancer drugs (2). 

Other classes of platinum compounds with activity different from cisplatin, 

oxaliplatin, or carboplatin have been defined on the basis of the NCI60 screen. The 

activity of the platinum-pyridines defines one group, into which some polyplatinum 

compounds including the clinically tested BBR3464 can be classified (3, 4). The 

platinum-silanes are another distinct group. Cells resistant to compounds from one 

group are commonly not cross-resistant to compounds from another. Similarly, because 
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of the different mechanisms of action for each type of compound, it is possible for 

compounds of different groups to be used in combination with synergistic results, an 

example being the synergistic effect of combining cisplatin and oxaliplatin (2). The 

development of platinum compounds with mechanisms of action different from those of 

platinum-based drugs already on the market should facilitate identification of candidate 

compounds that are active in cancers for which cisplatin, carboplatin, or oxaliplatin are 

inactive. Unique mechanisms of action may derive from the mode of cellular uptake of 

the compound (5), preferential localization of the platinum compound to a specific body 

organ or cell organelle (6), manipulation of the cellular response to enhance cytotoxicity 

(7), or the prevention or retardation of drug inactivation by biotransformation, as occurs 

for platinum(IV) prodrugs (8-10). 

Pyriplatin is a monofunctional, cationic platinum(II) compound that has 

previously shown antitumor activity in mice (11), and which forms only a single covalent 

bond with DNA, unlike cisplatin, carboplatin, or oxaliplatin, which bind in a bidentate 

manner. Besides of this non-traditional structure, there is also evidence for a unique 

cellular mode of pyriplatin uptake that differs from the uptake of cisplatin or oxaliplatin. 

Pyriplatin is an outstanding substrate for the organic cation transporters (OCT) 1 and 2 

(12, 13), which are associated with improved oxaliplatin uptake (14). Additionally, OCT1 

has been identified as important to the pharmacokinetics and tissue distribution of 

pyriplatin (12). The mechanism of RNA polymerase II inhibition by pyriplatin-DNA 

adducts is dramatically different from the inhibition seen with cisplatin-DNA adducts 

(15), and the low nucleotide excision repair rates of the pyriplatin-DNA adduct, coupled 
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with its inhibition of RNA polymerase II (13), are very likely important to the cytotoxic 

mechanism of action. The aim of the present study was to further characterize 

pyriplatin in vitro with direct comparison to cisplatin and oxaliplatin to gain insight into 

the mechanism of action and potential clinical applications for pyriplatin. We 

investigated cellular and molecular changes induced by pyriplatin in order to determine 

possible response biomarkers and predictive factors of pyriplatin activity. The effects of 

combining pyriplatin with several anticancer drugs in current clinical use were also 

investigated.  

 

Materials and Methods 
 
Cell lines 

All cell lines were obtained from the ATCC (Rockville, MD), and NCI cell collections. Cells 

were grown as monolayers in RPMI medium supplemented with 10% fetal calf serum 

(Invitrogen, Cergy-Pontoise, France), 2 mM glutamine, 100 units/ml penicillin and 100 

µg/ml streptomycin. Cells were split twice a week using trypsin/EDTA (0.25%/0.02%; 

Invitrogen, Cergy-Pontoise, France) and seeded at a concentration of 2.5 x 104 

cells/mL. All cell lines were tested regularly for Mycoplasma contamination by PCR using 

a Stratagene kit (La Jolla, CA). 

Single agent evaluation 

Pyriplatin was submitted to the National Cancer Institute (USA) for single agent, single 

dose testing in 2008. For evaluations performed in our laboratory, cells were seeded at 

2 x 103 cells/well in 96-well plates and treated 24 h later with increasing concentrations 
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of cisplatin, oxaliplatin, or pyriplatin. After 1, 2, 5, 24, or 72 h of incubation, the cells 

were washed and post-incubated in platinum-free medium for 72 h (after 1, 2, or 5 h) 

or 48 h (after 24 or 72 h). Growth inhibition was then determined by the MTT assay 

(16). Absorption at 560 nm of the control wells containing untreated cells was defined 

as 100% and the viability of treated samples was expressed as a percentage of the 

control.  

Cell cycle analysis 

Exponentially growing MCF7 or HCT-116 cells were treated for 24 h with cisplatin, 

oxaliplatin, or pyriplatin at the IC50 concentrations (Table 1). At the end of treatment 

and following the 24, 48, or 72 h drug-washout period, the cells were counted, fixed in 

70% cold ethanol, and kept at 4°C. The cells were washed with cold PBS and stained 

with 5 µg/mL propidium iodide in PBS and 12.5 µL/mL RNAse A. Flow cytometric cell 

cycle analysis was performed on a minimum of 2 x 104 cells per sample on a FACS 

Calibur instrument (Becton Dickinson, Sunnyvale, CA). A 488 nm laser and a dichroic 

mirror (570 nm) were used and fluorescence emission was detected using a filter for 

620 + 35 nm.  

Evaluation of apoptosis 

HCT-116 or MCF7 cells were harvested following 24 h treatment with platinum 

compounds at IC50 concentrations and 0, 24, 48, or 72 h of incubation in platinum-free 

medium. Cells were washed once with cold PBS, then pelleted and resuspended in 100 

µL of a staining buffer containing Annexin V-FITC and 0.5 µg propidium iodide. 
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Fluorescence analysis by flow cytometry was performed after 15-minute incubation in 

the dark and dilution of the sample to 500 µL.  

Western blotting 

HOP-62 cells were treated for 24 h at the IC50 concentrations of pyriplatin, oxaliplatin, 

or cisplatin. The platinum-containing medium was removed and cells were lysed either 

immediately or 24, 48, or 72 h after removal of the platinum-containing medium. 

Following protein concentration quantification by the Bradford assay, extracts were 

analyzed on SDS-PAGE, transferred to PVDF membranes, incubated with primary 

antibodies, and revealed by peroxidase-coupled secondary antibodies using enzymatic 

chemiluminescence. Antibodies were obtained from commercial sources and used at the 

following dilutions: Ser139 phospho-H2AX (γ-H2AX, 1:1000, mouse monoclonal, 

Millipore-Upstate), Thr68 phospho-Chk2 (1:1000, rabbit polyclonal, Cell Signaling 

Technology), α-tubulin (1:10,000, mouse monoclonal, Amersham Biosciences), β-actin 

(1:20,000, mouse monoclonal, Sigma-Aldrich). 

Combination evaluation 

Antiproliferative effects of pyriplatin, cisplatin or oxaliplatin in combination with 

paclitaxel, gemcitabine, SN38, cisplatin, or 5-fluorouracil were investigated in the 

ovarian cancer line OVCAR-3 and the colon cancer line HT29. Combination studies were 

performed as described (17, 18). Briefly, cells were seeded at 2 x 103 cells/well in 96-

well plates and incubated for 24 h prior to treatment. The combination experiments 

were performed on three different schedules. Cells were either treated with platinum 

for 24 h followed by the combination drug for 24 h, treated with the combination drug 
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for 24 h followed by platinum for 24 h, or treated for 24 h with pyriplatin and the 

combination drug simultaneously. Drug and platinum concentrations from IC20 to IC60 

were used. Antiproliferative effects were evaluated by the MTT assay and analyzed 

using the Chou and Talalay method which is based on the median-effect principle (19) 

and the concentration-effect analysis CalcuSyn software (Biosoft, Cambridge, UK). A 

combination index (CI) of <1 indicates synergy, a value of 1 indicates additive effects, 

and a value >1 indicates antagonism. 

Measurement of platinum content 

HCT-116 cells were incubated for 2 or 24 h with 10 µM cisplatin, oxaliplatin, or 

pyriplatin. A time course of 2 h platinum exposure followed by a 22 h incubation in 

platinum-free medium (2/22 schedule) was also evaluated. After trypsinization, cytosol 

and nuclei were separated in a hypotonic buffer. Cell lysis was performed in a buffer of 

100 mM Tris (pH 7.5) 1 mM EDTA, 1 mM EGTA, 0.5 mM Na3VO4, 10 mM sodium β-

glycerophosphate, 50 mM sodium fluoride, 5 mM sodium pyrophosphate and 1% Triton 

X-100. DNA was purified from nuclear extracts by phenol-chloroform extraction and 

ethanol precipitation. Cellular lysates, DNA samples and incubation medium were 

analyzed for platinum levels by inductively-coupled plasma mass spectrometry (ICP-

MS). 

Quantitative RT-PCR analysis 

HCT-116 cells were treated for 48 h with IC50 concentrations of drugs, followed by 

isolation of mRNA as described (20). Briefly, total RNA was reverse-transcribed before 

real-time quantitative PCR amplification using the ABI Prism 7900 Sequence Detection 
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System (Perkin-Elmer Applied Biosystems). The transcripts of the gene coding for the 

TATA box-binding protein (TBP; a component of the DNA-binding protein complex 

TFIID) were used as the endogenous control RNA for normalization. Results were 

expressed as N-fold differences in target gene expression relative to the TBP gene. The 

mRNA expression of ERCC1, XPA, XPC, PARP1, XRCC1, RAD50, BRCA1, DNA-PK-cs, 

XRCC6, MSH2, MLH1, BCL2, PUMA, COX2, CDKN1A/p21, ABCB1, ABCC1, GSTP1 was 

evaluated in a panel of 10 cancer cell lines. Thermal cycling was performed with an 

initial denaturation step at 95 °C for 10 min, and 50 cycles of 15 s at 95 °C and 1 min 

at 65 °C. Experiments were performed in duplicate.  

Statistical analysis 

Statistical analyses were performed with Instat and Prism software (GraphPad, San 

Diego, USA). Results are expressed as the mean ± standard deviation of at least three 

experiments performed in duplicate. Means and standard deviations were compared 

using the Student’s t-test (two-sided p value).  

 

Results 
 
Antiproliferative effects of single agent pyriplatin in a panel of human cancer 

cell lines 

The potential anticancer activity of pyriplatin was tested at the National Cancer 

Institute using the NCI-60 tumor cell line panel screen. Results are shown in 

Supplementary Figure S1. Analysis of these results using the online COMPARE algorithm 

revealed that the antiproliferative profile of pyriplatin was not similar to those of 
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cisplatin or oxaliplatin. The best correlation with a platinum compound in the NCI 

database was with “(carboxyphthalato) platinum” (NSC #S748451), with a correlation 

coefficient of 0.396. These data suggest that pyriplatin may have a mechanism of 

action that differs from classical platinum drugs. 

Pyriplatin was further evaluated in comparison with cisplatin and oxaliplatin using 

a well-characterized panel (21) of 10 cancer cell lines of different tissue origins 

(colorectal, breast, melanoma, ovarian, non-small cell lung). Cells were exposed for 24 

h to pyriplatin (0.46-1000 µM), cisplatin (0.1-160 µM), or oxaliplatin (0.1-160 µM) and 

assessed for cytotoxicity by the MTT assay. Cell counting and the sulforhodamine B 

assay (data not shown) confirmed the results of the MTT-based antiproliferative assays, 

shown in Table 1 as IC50 concentrations. The cytotoxicity profile for pyriplatin, shown in 

difference plots in Figure 2, was clearly different from those of both cisplatin and 

oxaliplatin. 

To study the effects of duration of pyriplatin exposure on cell proliferation, we 

used the cell line in which pyriplatin showed the greatest antiproliferative effect (Figure 

1). HOP-62 cells were treated for 1, 2, 5, 24, 48, or 72 h with pyriplatin, cisplatin or 

oxaliplatin, and then post-incubated for an additional 48 or 72 h period (as described 

above) in drug-free medium. Pyriplatin displayed dose- and time-dependent 

antiproliferative effects in HOP-62 cells, with a 72-h exposure producing the lowest IC50 

value obtained for pyriplatin (IC50 = 24.3, Figure 3). The IC50 of pyriplatin was only 15-

fold higher than that of cisplatin at 1 and 2 h, indicating that pyriplatin is clearly able to 

exert cytotoxicity after a short incubation period, unlike oxaliplatin. The difference 
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between pyriplatin and cisplatin increased at 5 h (IC50 of pyriplatin was 36-fold that of 

cisplatin) and at 24 h (53-fold difference), suggesting that pyriplatin loses efficacy over 

time relative to cisplatin. 

Pyriplatin mechanism of action 

To investigate the mechanism of pyriplatin cytotoxicity, cell cycle analyses were 

performed in HCT-116 and MCF7 cell lines. All three platinum compounds caused dose-

dependent progressive accumulation of cells in the G2/M phases (see Figure 4A and 

Supplementary Figure S2). This block was apparent in both cell lines after a 24 h 

exposure to any of the three compounds, although oxaliplatin and pyriplatin induced 

only a slight G2/M block in MCF7 cells. The cells were able to repair this block at 72 h 

after washout, except at high concentrations of platinum. In the case of pyriplatin in 

HCT-116 cells, the effect was reversible after treatment with 35 or 70 µM pyriplatin, but 

not after treatment with 140 µM.  

The implications of cell cycle disruption was explored by staining the cells with 

FITC-conjugated Annexin V for apoptosis detection and propidium iodide to detect 

necrosis prior to flow cytometric analysis. Annexin V binds to phosphatidylserine, a lipid 

that is present in the cell membrane of apoptotic cells. Cells were treated for 24 h with 

IC50 platinum concentrations (Table 1). Apoptosis was determined immediately 

following 24 h drug exposure (24hT) and at 24 h (24hR), 48 h (48hR), and 72 h (72hR) 

after drug washout. At 24hT drug exposure, the percentage of apoptotic cells in 

pyriplatin, cisplatin, and oxaliplatin-treated cells was approximately twice the control 

values (Table 2). The percentage of apoptotic cells peaked at 24 h after drug washout 
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for both cisplatin and pyriplatin-treated cells (24hR), and at 48h drug washout following 

oxaliplatin treatment (48hR). The detection of apoptosis 48 h after the start of exposure 

to cisplatin or 72 h after the beginning of incubation with oxaliplatin are in line with 

previously published results (22, 23). The peak of apoptosis in cells treated with 

pyriplatin corresponded to the maximal apoptotic response to cisplatin, suggesting that 

pyriplatin acts more quickly than oxaliplatin to induce cell death. 

The effects of pyriplatin treatment on DNA damage response pathways related to 

cell cycle disruption and induction of apoptosis were explored by measuring levels of 

H2AX and Chk2 phosphorylation, p21 expression, and poly (ADP-ribose) polymerase 

(PARP-1) cleavage in HOP-62 cells by Western blotting after treatment with platinum at 

the IC50 concentrations. As a downstream substrate of ATM (24) and ATR (25), Chk2 is 

phosphorylated as part of the cellular response to cisplatin-induced DNA double-strand 

breaks (24). Phosphorylated H2AX (γ-H2AX) forms part of the repair complex that 

assembles at the site of DNA double-strand breaks and serves as a marker of DNA 

damage signaling (26). Cleavage of PARP-1 is observed in cells undergoing apoptosis 

(27) and produces two fragments of 89 and 24 kDa. Multiple roles of p21 and PARP-1 

are also described in the context of DNA repair, regulation of cell cycle, apoptosis and 

gene transcription.  

As shown in Figure 4B, increases in p21 and PARP levels as well as slight PARP 

cleavage were seen after exposure to pyriplatin for 24 h. γ-H2AX and Chk2 

phosphorylation at Thr68 were detected following 24 h treatment with all three platinum 

compounds. Two bands were observed for γ-H2AX and persisted 72 h after removal of 
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the platinum-containing medium, corresponding to γ-H2AX at 15 kDa and ubiquitylated 

γ-H2AX at 25 kDa. The band at 25 kDa is shown in Figure 4B and both bands are 

presented in Figure S3. The high endogenous expression of phosphorylated H2AX in 

some tumor cell lines, including HOP-62, complicates the identification of induced DNA 

breaks using the band at 15 kDa (28, 29). The 25 kDa band is a ubiquitylated form of γ-

H2AX, which is induced by the recently identified E3 ubiquitin ligase RNF168 (30). The 

25 kDa band appears following cisplatin treatment of HCT-116 cells grown on 

fibronectin (31), and it is also induced upon cisplatin, oxaliplatin, or pyriplatin treatment 

of HOP-62 cells. Interestingly, ubiquitin-conjugated H2AX appear to accumulate at sites 

of DSBs, forming nuclear foci (30, 32). Ubiquitylation of histone H2AX is also critical for 

recruitment of important mediators of the DNA damage response, such as the MRN 

complex (MRE11, RAD50, and NBS1), the p53-binding protein 1 (53BP1) and BRCA1 

(32, 33). Following DNA damage, the chromatin modifier ubiquitin ligase RNF168 

colocalizes with γ-H2AX at DNA lesions and increases ubiquitylation of chromatin-

associated proteins at the lesion site, promoting a downstream response to the DNA 

damage (30). The phosphorylation of γ-H2AX and Chk2 suggests the formation of DNA 

double strand breaks and indicates apoptotic DNA fragmentation or early DNA damage 

signaling events in response to treatment with pyriplatin. The pyriplatin-induced DNA 

damage-dependent ubiquitination of H2AX that is described indicates induction of a 

downstream DNA damage response to cell treatment with pyriplatin. 
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Molecular determinants of pyriplatin activity 

Platinum levels on nuclear DNA were determined after exposure of HCT-116 cells 

to 10 µM pyriplatin for 2, 6, 24, and 48 h. Data were also obtained from cells exposed 

for 2h treatment followed by a 22-h incubation in platinum-free medium. Table 3 and 

Figure S4 show platinum content on DNA purified from these cells, as measured by ICP-

MS. After a 2-h exposure, pyriplatin induced 3.1- and 1.3-fold fewer DNA adducts than 

cisplatin and oxaliplatin, respectively, indicating that pyriplatin is binding DNA quickly 

and supporting the results of cytotoxicity studies showing cytotoxicity of pyriplatin after 

only 1 or 2 h of treatment. Differences in adduct formation increased at 24 h and again 

at 48 h, with cisplatin forming 4- and 25-fold more adducts than pyriplatin at 24 and 48 

h, respectively, and oxaliplatin forming 6- and 48-fold more adducts.  

Comparing the 2-h incubation with the 2/22 schedule, DNA platination induced 

by pyriplatin and oxaliplatin is decreased by 68-70% after the 22-h washout period, 

whereas DNA platination in cisplatin-treated cells decreased to only 40%. Comparing 

the 2/22 schedule with the 24-h incubation, only slightly more pyriplatin-DNA adducts 

are observed at the 24 h mark, whereas larger increases in both cisplatin-DNA and 

oxaliplatin-DNA adducts are observed. Pyriplatin may be inactivated in the cell at a 

greater rate than either cisplatin or oxaliplatin, rendering less pyriplatin available for 

binding over time. 

Overall, pyriplatin forms fewer DNA adducts than oxaliplatin and cisplatin, which 

may play a role in the reduced cytotoxicity of pyriplatin relative to the two established 

drugs. On the other hand, although pyriplatin is 66- to over 200-fold less potent than 
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cisplatin and oxaliplatin, respectively, at 24 h in HCT-116 cells, the difference in DNA 

adduct formation is not as stark, suggesting that each adduct of pyriplatin is less toxic 

than adducts of either cisplatin or oxaliplatin.  

It was recently shown that exposure of colon cancer cells to oxaliplatin and 

cisplatin induced significant changes in expression of several genes implicated in drug 

transport, DNA repair, and cell cycle regulation (34). We compared the genetic effects 

induced by pyriplatin with those of oxaliplatin and cisplatin in the HCT-116 cell line. The 

mRNA levels encoded by selected genes involved in nucleotide excision repair (ERCC1, 

XPA, XPC), base excision repair (PARP1, XRCC1), homologous recombination (RAD50, 

BRCA1), mismatch repair (MSH2, MLH1), apoptosis (PUMA, CDKN1A/p21, COX2), 

transport (MDR1/ABCB1, ABCC1, GSTP1) and TOP2A, Ki67, and NEK2 were evaluated 

by RT-PCR after a 48-h exposure to pyriplatin, cisplatin, or oxaliplatin at IC50 

concentrations. As shown in Figure 5 CDKN1/p21 mRNA expression was significantly 

induced following 48-h pyriplatin exposure (>3 fold). CDKN1/p21 mRNA levels were 

also induced after exposure to cisplatin and oxaliplatin, which is a well-characterized 

response to these drugs (35, 36). Additionally, induction of p21 is associated with 

cisplatin resistance in human testicular cancer (37). Pyriplatin also significantly 

decreased ERCC1 (2-fold decrease) expression. In contrast, exposure to cisplatin 

slightly increased the ERCC1 mRNA level (Figure 5), whereas exposure to oxaliplatin 

had little effect on ERCC1 mRNA. Pyriplatin-DNA adducts are repaired less efficiently by 

nucleotide excision repair than adducts of cisplatin with DNA (intrastrand d(GpG) 

crosslink) according to mammalian cell free extract-based assays (13). ERCC1 levels 
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may not be elevated in response to pyriplatin treatment because pyriplatin can largely 

evade repair by the ERCC1-associated nucleotide excision repair pathway The mRNA 

levels of other genes studied were not significantly affected (Figure 5 and data not shown).  

The potential predictive role of various genes associated with pyriplatin sensitivity 

or resistance was investigated by plotting mRNA expression levels of 21 genes in the 

panel of 10 cell lines as measured by RT-PCR against pyriplatin IC50 values (Figure 6). 

In this case, cells were not treated with platinum prior to RT-PCR analysis. Although low 

levels of ERCC1 mRNA, but not necessarily the ERCC1 protein, are correlated with 

favorable responses of patients to a modified FOLFOX (biweekly oxaliplatin plus 5-FU 

and folinic acid) regimen (38), levels of ERCC1 mRNA were not correlated with response 

to pyriplatin. Cells with high levels of RAD50 mRNA are more resistant to pyriplatin (r2 = 

0.35), suggesting that double-strand breaks may play a role in the cellular 

consequences of pyriplatin-DNA lesions. Cells with high levels of mRNA coding for 

GSTP1 are also more resistant to pyriplatin (r2 = 0.38), indicating possible cellular 

inactivation of pyriplatin by modification with glutathione. Genetic factors GSTP1 and 

RAD50 are slightly correlated with sensitivity to pyriplatin and may serve as predictive 

factors of response.  

Pyriplatin in combination with other anticancer agents 

The effect of administering pyriplatin prior to, subsequently to, and simultaneously with 

five commonly used anticancer agents in the HT29 and OVCAR-3 cell lines was 

evaluated after 24 h exposure and interpreted using the Chou and Talalay method. The 

colon adenocarcinoma HT29 and ovarian adenocarcinoma OVCAR-3 cell lines were 
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chosen because they represent two cancers for which platinum drugs are commonly 

effective; they have similar doubling times (20 h vs. 30 h) and relatively low sensitivity 

to pyriplatin (Table 1). Agents that had previously shown synergy in combination with 

platinum drugs were selected (17, 18) and combinatorial indices (CI) were calculated. A 

CI of less than 1, suggests that two drugs exert antiproliferative effects via separate 

mechanisms of action. Additive effects indicate that two drugs act via similar 

mechanisms of action.  

A summary of pyriplatin-based combinations is shown in Table 4. Paclitaxel 

showed synergy (CI<1) when administered prior to pyriplatin in both cell lines. Similar 

to results for oxaliplatin and cisplatin (2), effects suggestive of synergy between 

pyriplatin and cisplatin were observed upon simultaneous addition of pyriplatin and 

cisplatin to cells (Table 4). Gemcitabine had antagonistic effects in both cell lines and 

with all schedules other than simultaneous exposure in HT29 cells.  

 

Discussion  
 
 

Platinum complexes are widely used in cancer therapy. The successful clinical 

applications of cisplatin, carboplatin, and oxaliplatin have inspired the synthesis and 

investigation of numerous platinum compounds as drug candidates. Of these 

compounds, those that show the most promise for clinical use have improved 

cytotoxicity, reduced side effects, or different mechanisms of action when compared 

with cisplatin, carboplatin, or oxaliplatin. 
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The cellular and molecular effects of the platinum derivative pyriplatin were 

investigated and directly compared to cisplatin and oxaliplatin. Because many variables 

such as passage number or culture conditions can affect the characteristics of a 

particular cell line, we ran parallel experiments with pyriplatin, cisplatin, and oxaliplatin 

on cells plated at the same time from a single flask. This experimental design produced 

data showing the unique anticancer profile of pyriplatin as compared and contrasted 

with those of cisplatin and oxaliplatin. The focus on comparisons between the platinum 

drugs freed us somewhat in the choice of cell line for various experiments, which were 

then made on the basis of wt p53 status (for apoptosis and cell cycle studies), 

sensitivity to pyriplatin (protein assays and cytotoxicity over time), and relevance to 

potential clinical use (combination assays). 

The pyriplatin cytotoxicity profile is distinct from that of both cisplatin and 

oxaliplatin in a panel of 10 well-characterized cell lines and by the NCI single-dose 

screen. Although the IC50 values are 16 to 270 times higher for pyriplatin than for 

cisplatin or oxaliplatin, it is clear that the cell lines in which pyriplatin is most active 

(IGROV1, HOP-92, HOP-62, and COLO205) differ from those in which oxaliplatin is most 

active (HCT-116, OVCAR3, HOP-92, and MCF7) or those in which cisplatin is most active 

(HCT-116, HOP-92, HOP-62, and OVCAR3), as shown in the difference plots in Figure 2 

and in Table 1. As is the case for cisplatin, the first cytotoxic effects of pyriplatin are 

seen as soon as one hour after the start of treatment, at which point pyriplatin is only 

15-fold less toxic than cisplatin. Pyriplatin activity at 1 and 2 h contrasts with the 

relatively low activity of oxaliplatin, which must lose the oxalate prior to exerting 
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cytotoxic action and is significantly less active after 1 or 2 h than after 5 h or longer. 

Pyriplatin antiproliferative activity at 1 and 2 h is most likely related to the large number 

of platinum-DNA adducts observed by ICP-MS at the 2-h time point and the relatively 

swift induction of cell cycle arrest and apoptosis at only 48 h for pyriplatin, as opposed 

to 72 h for oxaliplatin. Measured IC50 values for pyriplatin decreased from 1 to 72 h, 

with efficacy peaking at an IC50 of 24 µM after 72 h in HOP-62 cells, the most sensitive 

cell line. Relative to cisplatin and based on IC50 values in HOP-62 cells, pyriplatin is 

about 15-fold less toxic than cisplatin after 1 or 2 h. This difference increases at 5 and 

24 h, possibly pointing to deactivation of pyriplatin over time by cellular and molecular 

mechanisms. The affinity of thiols, including glutathione for platinum centers, is one 

probable method of deactivation of pyriplatin in the culture medium, and the single 

chloride on pyriplatin makes it more susceptible to complete deactivation by thiol 

coordination than cisplatin or oxaliplatin, which have two leaving groups and can still 

coordinate DNA if a thiol replaces one chloride ligand.  

Cell cycle studies done in two cell lines with wt p53 status indicate that, similar to 

cisplatin and oxaliplatin, pyriplatin induces a G2/M block that suggests cell cycle delay 

for a DNA damage response, DNA repair and/or apoptosis. Likewise, Annexin V staining 

and Western blots showing activation of proteins related to the cell cycle, DNA damage 

response and apoptosis indicate that pyriplatin also displays an apoptotic mechanism of 

action, as occurs for cisplatin and oxaliplatin. The detection of Annexin V bound to 

early-apoptotic cellular membranes 48 h after initiating cisplatin exposure or 72 h after 

oxaliplatin exposure are in line with previously published results (22, 23). The peak of 
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apoptosis in cells treated with pyriplatin corresponded to the maximal apoptotic 

response to cisplatin occurring 48 h after beginning treatment, suggesting that 

pyriplatin acts more quickly than oxaliplatin to induce cell death. The induction of H2AX 

phosphorylation confirms an early DNA damage signaling response to treatment with 

pyriplatin or may indicate the formation of dsDNA breaks in cells due to apoptotic DNA 

fragmentation. 

When the effects of all three platinum compounds are compared at the same 

platinum concentration (10 µM), pyriplatin forms fewer DNA adducts than oxaliplatin or 

cisplatin after 24 h of treatment. However, after 2 h the levels of platinum per 

nucleotide are similar for pyriplatin and oxaliplatin. On the other hand, although 

pyriplatin is 66- to over 200-fold less potent than cisplatin and oxaliplatin respectively at 

24 h in HCT-116 cells, the difference in DNA adduct formation is not as obvious, 

suggesting that each pyriplatin-DNA adduct is less toxic than adducts of cisplatin or 

oxaliplatin. Although the number of pyriplatin-DNA adducts is relatively similar to the 

number of cisplatin-DNA and oxaliplatin-DNA adducts, the antiproliferative effect of 

each adduct is significantly reduced. A promising route for development of cationic 

platinum anticancer compounds may involve replacing pyridine with bulkier heterocyclic 

amines. The X-ray structure of transcribing RNA polymerase II stalled at a site-specific 

pyriplatin-DNA adduct (15) is valuable for the purpose of predicting which new 

compounds will improve the transcription inhibition aspect of pyriplatin, an activity that 

is crucial to DNA damage signaling and eventual triggering of apoptosis. A research 
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program based on pyriplatin as a lead compound has already yielded compounds with 

significantly improved cytotoxicity compared to pyriplatin as well as cisplatin (39). 

The cellular processing of platinum drugs involves a large number of cellular 

events that may play a role in the ultimate efficiency of these drugs: uptake and efflux, 

DNA adduct formation, recognition and repair of adducts, and signal transduction of 

DNA damage. In terms of molecular determinants of pyriplatin sensitivity, a slight 

correlation of pyriplatin IC50 with GSTP1 mRNA levels in untreated cells may indicate 

possible cellular inactivation of pyriplatin by glutathione modification. Levels of ERCC1 

mRNA in untreated cells were not correlated with pyriplatin IC50, which contrasts with 

the fact that low levels of ERCC1 mRNA are used to identify patients who are likely to 

respond well to a modified FOLFOX (biweekly oxaliplatin plus 5-FU and folinic acid) 

regimen (38).  

Previously it was shown (25) that exposure of colon cancer cells to cisplatin and 

oxaliplatin can induce expression of several genes implicated in drug transport, DNA 

repair, and cell cycle regulation. We compared the genetic effects induced by pyriplatin 

with those induced by cisplatin and oxaliplatin in HCT-116 cells. Significant increases in 

p21 expression were seen for all three platinum compounds whereas ERCC1 expression 

decreased in response to pyriplatin and increased in response to cisplatin exposure. 

Because a high amount of ERCC1 is associated with resistance to cisplatin (40-42), the 

decrease in ERCC1 mRNA upon treatment with pyriplatin indicates a difference in 

cellular resistance to the two compounds. The difference in ERCC1 expression, coupled 

with previous results showing that pyriplatin-DNA adducts evade repair by the 
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nucleotide excision repair pathway as compared with repair of cisplatin-DNA adducts 

(13), supports the case that differential repair of cisplatin and pyriplatin adducts 

contribute to the different activity in our cell line panel. 

The potential for use of pyriplatin in combination with other anti-cancer 

compounds was explored in terms of the antiproliferative potential of paclitaxel, 

gemcitabine, SN38, cisplatin, and 5-FU combinations. In both cell lines tested, pyriplatin 

was synergistic when administered simultaneously with cisplatin, as is seen when cells 

are treated with both cisplatin and oxaliplatin (2). Synergy implies a molecular 

mechanism of action distinct from that of cisplatin. 

In conclusion, although pyriplatin is not likely to be developed due to its low 

cytotoxicity, it remains a promising lead compound for the generation of novel drug 

candidates with different cytotoxicity profiles from those of platinum drugs currently in 

use. 
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Tables 

Table 1. Potency, expressed as IC50 concentrations, for pyriplatin, cisplatin, and 

oxaliplatin on cancer cell proliferation in a 10-cell line panel after 24-h incubation.  

Cell Line Cancer Type IC50  
  Pyriplatin Cisplatin Oxaliplatin 

HOP-92 Non-Small Cell Lung 171 + 56 µM 3.55 + 3.2 µM 2.70 + 0.60 µM 

HOP-62 Non-Small Cell Lung 190 + 36 µM 3.56 + 1.4 µM 6.86 + 0.39 µM 

IGROV1 Ovarian 230 + 33 µM 5.64 + 1.3 µM 8.08 + 2.9 µM 

COLO 205 Colorectal 266 + 57 µM 16.7 + 7.2 µM 2.84 + 0.64 µM 

HCT-116 Colorectal 281 + 50 µM 4.22 + 2.5 µM 1.10 + 0.28 µM 

OVCAR-3 Ovarian 328 + 128 µM 5.10 + 3.0 µM 1.24 + 0.30 µM 

MCF7 Breast 335 + 104 µM 15.6 + 6.4 µM 1.70 + 0.54 µM 

HCC-2998 Colorectal 381 + 103 µM 11.8 + 4.0 µM 7.27 + 2.3 µM 

MDA-435 Breast /Melanoma 401 + 156 µM 5.81 + 4.0 µM 12.7 + 5.6 µM 
HT29 Colorectal 443 + 255 µM 11.9 + 4.1 µM 6.65 + 1.0 µM 

Data are means +/- SEM from three separate experiments, each performed in triplicate. 
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Table 2: Apoptosis induction according to Annexin V staining in MCF7 cells treated with 

pyriplatin, cisplatin, or oxaliplatin for 24 h followed by incubation in drug-free medium 

for 24, 48, or 72 h.  

 Control Pyriplatin 
(25 µM) 

Cisplatin  
(2 µM) 

Oxaliplatin 
(0.4 µM) 

24hT 9.63% 16.84% 22.88% 18.02% 
24hR 21.40% 51.70% 48.70% 21.94% 
48hR 28.53% 32.57% 29.72% 35.42% 
72hR 22.26% 16.66% 13.98% 16.76% 

T=immediately after drug exposure, R=after wash-out. According to the experimental 
schedule, data are expressed as percentage of apoptotic cells. Corresponding data for 
HCT-116 cells are reported in the supporting information. 
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Table 3. DNA platinum content (ng Pt/mg DNA) of DNA extracted from HCT-116 cells 

after exposure to pyriplatin and analyzed by ICP-MS.  

 2 h platinum 2 h platinum, 
22 h washout 

24 h platinum 

pyriplatin 2.44 0.74 3.71 
cisplatin 7.49 4.48 15.31 
oxaliplatin 3.07 1.00 23.81 
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Table 4. Effects of pyriplatin in combination with various anticancer agents in HT29 

and OVCAR-3 cancer cell lines.  

 
Cell line 

 
Schedule 

 
Paclitaxel 

 
Gemcitabine 

 
SN38 

 
Cisplatin 

 
5-FU 

A 0.87 
(0.75-0.98) 

1.66 
(0.70-2.76) 

0.90 
(0.72-1.22) 

1.11 
(0.89-1.23) 

0.94 
(0.80-1.03) 

B 0.88 
(0.69-1.22) 

1.09 
(0.89-1.38) 

2.21 
(1.42-3.31) 

0.96 
(0.94-1.22) ND 

 
HT29 

C 0.96 
(0.55-1.21) 

0.86 
(0.45-1.49) 

0.81 
(0.62-1.34) 

0.84 
(0.83-0.85) 

1.02 
(0.87-1.20) 

A 0.89 
(0.63-0.99) 

1.13 
(0.69-1.91) 

1.08 
(1.51-0.77) 

1.09 
(0.96-1.19) 

0.99 
(0.89-1.22) 

B 1.06 
(0.63-1.55) 

1.31 
(0.60-7.22) 

0.95 
(0.94-0.97) 

0.84 
(0.72-1.10) ND 

 
OVCAR-3 

C 1.19 
(0.87-1.38) 

1.21 
(1.11-1.44) 

1.38 
(1.07-1.99) 

0.79 
(0.74-0.85) 

1.32 
(1.22-1.55) 

ND=not determined 
Data are presented as the median CI value and the 95% confidence interval. Schedule 
A: 24-h pyriplatin followed by the 24-h combination drug; Schedule B: 24-h combination 
drug followed by the 24-h pyriplatin; Schedule C: 24-h simultaneous exposure. 
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Figure legends 
 
Figure 1. Structures of cisplatin, carboplatin, oxaliplatin, and pyriplatin. 

Figure 2. Difference plot of antiproliferative effects of pyriplatin, cisplatin, and 

oxaliplatin in a panel of cancer cell lines. The indicated values are calculated as follows: 

log (IC50 individual cell line) – mean (log IC50). Negative values indicate that the cell line 

is more sensitive than the average, whereas positive values indicate that the cell line is 

more resistant than the average. 

Figure 3. Antiproliferative effects of pyriplatin, cisplatin, and oxaliplatin in HOP-62 cells 

over time. After 1, 2, 5, 24, or 72 h incubation, the cells were washed and post-

incubated in platinum-free medium for 72 h (after 1, 2, or 5 h) or 48 (after 24 or 72 h). 

Cell viability was determined by the MTT assay. IC50 concentrations for different 

incubation times are shown as mean ± SD from at least three separate experiments.  

Figure 4. Pyriplatin-induced cell cycle changes. A) Cell cycle analysis in HCT-116 cells 

treated with increasing pyriplatin concentrations; T=immediately after drug exposure, 

R=after washout. B) Western blot of DNA damage and apoptosis-related signaling 

protein expression in HOP-62 cells after a 24-h platinum treatment. β-actin was used as 

a loading control. Data are representative of 3 experiments. 

Figure 5. Effects of pyriplatin, oxaliplatin, and cisplatin on gene expression. HCT116 

cells were exposed to IC50 concentrations of pyriplatin, oxaliplatin and cisplatin for 48 

hours. Relative mRNA gene expression of CDKN1/p21, XPA, TOP2A, NEK2, PUMA, 

ERCC1 was evaluated using quantitative RT-PCR. Data are representative of 3 

experiments. 
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Figure 6. Correlation of pyriplatin cytotoxicity (IC50s) and mRNA expression levels of 

GSTP1, RAD50, MLH1 and MSH2 in a panel of 10 cancer cell lines.  
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