
COMPUTER-GENERATED PRELIMINARY DESIGN

OF ROOM AND CORRIDOR ARRANGEMENTS

UNDER GEOMETRIC CONSTRAINTS

by

ULRICH JOHANNES WALTER FLEMMING

Dipl. Ing., Technische Universitat Berlin
(1968)

submitted in partial fulfillment
of the requirements for the degree of

Master of Architecture

at the

Massachusetts Institute of Technology
(January, 1972)

Signature of Author .
Department of Architecture, January l 1, 1972

Certified by

NC)

Accepted by . . .

Thesis Supervisor

Cha ran, Departmental Committee
on Graduate Students

2

Abstract

COMPUTER-GENERATED PRELIMINARY DESIGN

OF ROOM AND CORRIDOR ARRANGEMENTS

UNDER GEOMETRIC CONSTRAINTS

by

ULRICH JOHANNES WALTER FLEMMING

Submitted to the Department of Architecture on January 21, 1972,
in partial fulfillment of the requirements for the degree of
Master of Architecture at the Massachusetts Institute of Technology.

This paper outlines a computer program for the preliminary design
of floorplans of rectangular shape in which all spaces are allocated along
or around a common circulation area such that each space is accessible
from this area. The program consists of a sequence of steps in which the
global geometric constraints imposed on the floorplans are satisfied first
on the basis of the global significance of the constraints specified for each
of the required spaces in the problem at hand. Some of these constraints
are then considered a second time, but now with respect to their local
significance: the program tests whether there are local configurations of
constraints which render a globally feasible floorplan infeasible. A solu-
tion is found when all constraints are satisfied.

Due to the specific order in which the constraints are considered,
the number of possibilities to be tried during each step in the sequence is
limited, except for certain cases which will be described that make a
revision of the present version of the program necessary. The sequence
of operations, furthermore, is 'tight': the order of operations is pre-
determined; and it is a 'single thread' sequence: there are no branches.

The program is specialized. More complicated floorplans can be
handled if they can be decomposed into parts to which the sequence of
operations is sequentially applicable. Entirely different floorplans cannot
be introduced.

It is proposed to view the floorplans that can be generated by the
described program as representations of a common building type, or of
a model of an 'environmental system', and to implement programs of this
kind in an experimental environment in which these models are considered
hypotheses that can be tested with respect to the class of problems to
which they are applicable, with respect to their performance, and with
respect to effective design procedures. The results of these tests are
considered relevant outside the field of computer-generated design: they
might increase the knowledge about the properties and implications of
specific models, or suggest generalizations useful during the generation
of new models.

Thesis Supervisor: Timothy E. Johnson

Title: Assistant Professor of Architecture

3

Acknowledgements

The support for this thesis came from a 2-year research grant

awarded to the Massachusetts Institute of Technology by the National

Science Foundation.

I am grateful to Professor Timothy Johnson and Professor William

Porter for their interest in this work and their support.

4

Contents

Title Page
Abstract
Acknowledg
Contents

Chapter I.

Chapter II.

Chapter III.

Chapter IV.

Chapter V.

Chapter VI.

Chapter VII

References

ements

Introduction

Program Description: Problem Statement

Program Description: Sequence of Operations

Discussion: Basic Characteristics of
the Program

Discussion: Revisions and Extensions of
the Program

Discussion: The Program Within an
Experimental Environment

Summary

1
2
3
4

5

11

22

44

50

56

62

64

5

I. Introduction

T. Markus suggests a model for the relations between a building

and its use which consists of four parts (Markus, 1969):L-(1) the building system as a combination technical sub-systems

(constructional system, services system, contents system);

(2) the environmental system as a combination of two sub-systems:

the spatial system (geometry of spaces and overalllayout),

and the physical system (visual, thermal characteristics etc.);

(3) the activity system as generated by the occupants;

(4) the objectives of the organization which initiates and sustains

the activity system.

Relations exist between pairs of systems as indicated by the arrows, and

each of these relations becomes a topic at some phase in the design

process: the relations between (4) and (3) are analyzed during the pro-

gramming phase; the relations between (1) and (2) are defined, at various

levels or detail, during the stages of the design development, and at

each stage and for each solution under consideration, the relations be-

tween (2) and (3) have to be anticipated and evaluated. Due to the inter-

relation between these parts, the design problem becomes constrained

from two sides: the activity system and the building system. Its goal is

to define, within these limits, a satisfactory or optimum environmental

sys tem.

Markus distinguishes between the "design morphology" and the

6

"design process": The design morphology consists of the sequence

of operations and decisions which contribute to the development of a

project over time, and the design process consists of a series of problem-

solving procedures which are applied during each phase in the design

morphology. In the following, the term preliminary design refers to a

particular phase in the design morphology in which the general shape

and layout of a building are defined on the basis of information collected

in the previous programming phase. The term design process refers

to the methods used in order to achieve this goal.

Consider now the layout for a part of a hospital as suggested by

an early preliminary design program and shown in figure 1(a) (Whitehead

and Eldars, 1964). It is based on an analysis of the activity system the

characteristics of which are represented as a set of required areas and

the frequency of traffic between these areas. The layout is generated by

a sequential allocation routine which tries to minimize the total cost of

traffic.

As Whitehead and Eldars observe, this arrangement, in order to

become usable, has to be converted into a "practicable form". Two

stages of the conversion process, as suggested by the authors, are shown

in figure 1(b) and 1(c). One of the main criteria that govern the con-

version is stated explicitly: the problem requires a certain circulation

pattern which groups the spaces around two circulation areas one of

which has to be introduced into the layout. Other criteria can be deduced

from the drawings: there is a strong interest in regular shapes both for

the single areas and the overall layout. This interest might reflect

structural considerations, functional requirements connected with the

u - U U am -

male staff changing
and rest room

44 r43
nurses
station

41

anaesthetic room
no 2

37 36

work room and
clean supply

46 147

sterile
supply rm

35 45

anaesthetic room
no I

33 34

48

nurses' changing
and rest room

49 SO

sisters' changing
and rest room

51 !52

18 17 2 3 11 12 53

qeneral theatre -I ante- space general theatre-2

15 13 4 7 9

scrub - up

16 14 6 5 8 10 32

sterilisinq room sink room emergency theatre

24 22 19 20 25 28 30

small theatre

_23 21 27 26 29 31

1(a)

suite entrance

1(c)

Figure 1: Layout for a part of a hospital

7

superinten-
dent room

54

entrance

42

imedical
staff rest

139

-r

medical
store

55

[medical
staff chang

[40.

suite entrance

1(b)

IF
138

8

use of the areas, a formal interest, or most likely, all of them. The

circulation pattern and the overall shape appear as global constraints:

they influence the dimensions and relations of almost all the areas, and

it seems indeed difficult to consider them in a sequential allocation

procedure. More local constraints, like area shape, were perhaps

excluded from the program for simplicity reasons. Local and global,

functional, formal and technical constraints, as well as the optimization

criterion, interact, and the final combination of relations and dimensions

reflects this interaction in a specific way. The authors are sceptical

of the possibility of writing a computer program which considers all of

these constraints simultaneously. In light of the computer programs I

know, this scepticism seems to be well founded.

The problem seems to be less difficult for cases where the shape

and the dimensions of an area within which the spaces have to be allocated

are given. But the preliminary design process is characterized pre-

cisely through the absence of such an area. Neglecting exceptional cases,

the definition of such an area is one of the main tasks of this phase.

Even if, at the present time, it is not possible to design a computer

program which generates floorplans as shown in figure l(c), it might

nevertheless be worthwhile to write a program which solves simpler

problems. On the basis of this experience, it might be possible to sug-

gest extensions of the simple problems or reductions of the more complex

ones. At the same time, the set of examples is enlarged against which

different approaches can be evaluated and compared. Finally, the results

might contribute to an understanding of the constraints under which the

design process takes place and the methods that can be used. To conduct

9

such a study on the basis of a computer program has an immediate

advantage: all relevant assumptions have to be completely explicit and

can subsequently be tested through a series of examples. This, in

fact is the main interest behind this paper.

More specifically, I try to achieve two objectives:

(1) to outline a computer program for the preliminary design of

a certain class of floorplans;

(2) to draw conclusions both for the problem at hand and the design

process in general.

The selected floorplans are simpler versions of the floorplan shown

in figure 1(c). They are characterized by the following properties:

(1) The overall shape is rectangular. In the present program, this

assumption appears as a purely formal constraint. It should be

noted, however, that it has implications for the technical sub-

systems which can be used.

(2) Each required space is adjacent to a common circulation area

such that all spaces form a "chain" along or around its sides.

(3) The dimensions of adjacent spaces are equal along shared walls,

except in corners.

Properties 1 and 2 are global constraints on the problems which can be

solved by the program. Furthermore, they are used, together with

property 3, as important means for directing the search for a solution

and cutting down the possible number of combinations of spaces. They

are not treated as external constraints in a trial-and-error procedure.

The relations between global and local constraints will be dealt with expli-

10

citly, and to arrive at an understanding of these relations is the main

purpose for the program's implementation.

Aside from these global constraints, the program depends on

local constraints which (a) must be specified by the user for each space:

min. dimension, min. area, max. area, daylight required or not;

(b) can be specified by the user: adjacency relations between pairs of

spaces, clusters of spaces. They are necessary if the program is to

be applied to realistic cases.

The buildings which can be designed under these constraints belong

to a certain class which, in the terminology of this paper, represents

a model of an environmental system, although in a crude way. It is

applicable to apartments, office buildings, schools and the like. I se-

lected this particular model for two reasons:

(1) It seems easy enough to define and program the way in which

global and local, functional and formal constraints interact.

(2) The program can be applied to realistic cases such that the

validity of the assumptions on which it is based can be tested.

The program was programmed in LISP which turned out to be a

very convenient language for the problem at hand; yet the possibilities

provided by the language were not fully utilized. The program is, at

the present time, only partially implemented.

11

II. Program Description: Problem Statement

A problem statement consisting of the following parts is sufficient

for the class of problems the program is intended to solve:

(1) names of required spaces

(2) attributes of the required spaces

(3) relations between the required spaces

(4) external constraints

In the following, each of these parts will be discussed in turn.

Spaces and their attributes

The values of the following attributes have to be specified for each

space:

(1) minimum dimension (in meters)

(2) minimum area (in square meters)

(3) maximum area (in square meters)

(4) daylight required (yes/no)

Exceptions are circulation spaces for which only the value of attribute 1

has to be specified. For all other spaces, it is in addition assumed that

they should be of rectangular shape.

Attributes 1 and 2 specify lower bounds below which a space becomes

inappropriate for its intended use; attribute 3 indicates an upper bound

above which the allocation of areas becomes wasteful. Maximum dimen-

sions are computed as the quotients of maximum areas and minimum

12

dimensions. Neither of the two dimensions implies a particular orienta-

tion of the space for which it is specified. Attributes 1, 2 and 3 are

quantitative attributes: their values are expressed as numbers. Attribute

4 is a qualitative attribute. A space for which its value is "yes" must

be placed along an external wall; if the value is "no", the space can be

placed in the inner core of a building or along an external wall.

Table 1 shows a subset of the spaces required for a university

building as listed by Bareither and Schillinger which will function as an

example throughout the paper (Bareither and Schillinger, 1968). The

table shows also the assumed values of the attributes for the required

spaces. Among those, only the minimum areas are explicitly given by

the authors. Plausible values for the other attributes were assumed in

a rather ad-hoc way. Table 2 lists the required spaces and the values of

their attributes for a 1-bedroom apartment which will serve as a second

example in the following chapters.

Table 1 also shows that some spaces occur repeatedly, and that

for others the values of their attributes are identical. In both cases, the

attributes do not have to be specified more than once The input routine,

therefore, expects two lists of spaces: a list of space types containing

their code names and the values of their attributes, and a list of required

spaces containing their code names, the code names of the space types

to which they belong, and, if appropriate, an integer number which indi-

cates how often they occur in the problem at hand. Required spaces of

the same type which differ in their relations to other spaces have to be

listed separately in order to avoid ambiguities.

These spaces and their attributes are part of the data base to which

TABLE 1: Example 1 - Attributes of Spaces

Name

Classroom

Seminar Room

Phonetics Classroom

Obs ervation Room

Meeting Room

Duplicating Room

Office

Office

Office

Office

Conference Room

Library

Storage

Office

Office

Public Corridor

No. Min.
Area

4 39

3 26

1 39

1 39

1 93

1 37

1 22

1 17

2 11

1 11

1 17

1 22

1 11

12 11

4 11

1 -

Max.
Area

43

29

43

43

103

41

25

19

13

13

19

25

13

13

13

Min.
Dimension

4.

3.

4.

4.

7.

4.

3.

2.

2.

2.

2.

3.

2.

2.

2.

2.

50

60

50

50

80

35

30

90

25

25

90

30

25

25

25

25

TABLE 2: Example 2 - Attributes of Spaces

Name

Livingroom

Kitchen

Bedroom

Bathroom

Private Corridor

No. Min.
Area

1 20

1

1

1

1

7

12

Max.
Area

30

10

16

4 5

Min.
Dim ens ion

4.00

2. 25

3.00

1. 75

1. 25

13

A-i

A- 2

A-3

A-4

A-5

A-6

B-1

B-2

B-3

B-4

B-5

B-6

B-7

B-8

B-9

COR

Daylight

no

no

no

no

no

no

yes

yes

yes

yes

no

no

no

yes

ye s

LIV

KIT

BED

BAT

COR

Daylight

yes

no

yes

no

14

the program refers at various stages. In its present version, the

program represents this part of the data base as a set of "property

lists". Property lists are a standard feature of LISP. They are associ-

ated with each literal atom and structured as lists in which "indicators"

(names) and values alternate (Weissman, 1967). An example is shown

in figure 2.

A property list is set up for each space type and each required

space; it contains, in the first case, the names and values of all attributes,

and in the second case, a pointer to the appropriate space type. The

property list for the space type "classroom" is shown in figure 2 as an

example. Since the elements of a list can be numbers, literal atoms,

A-1

EA 39.00 AE 43.00

4. 50 DA-NO0

Figure 2: Property list

or themselves lists, this set of property lists represents a general, and,

as it turns out, very handy way of storing information of this kind.

Relations between Spaces

Bareither and Schillinger represent the "functional relationships"

between the subset of spaces in example 1 through graphs which are

shown in figure 3. A decomposition into 3 non-overlapping clusters suggests

15

Figure 3: Example 1 - Clusters

16

itself and is indicated through dotted lines. In this example, the clusters

represent the departments and sub-departments within a university, a

way of grouping which occurs frequently in design problems. For cases

which exhibit more complex interrelationships between spaces, one

might use one of the available clustering routines in order to arrive at

a similar decomposition (Miller et al., 1969).

Once the clusters are established, they can be incorporated into

the problem statement by appropriate parentheses in the list of re-

quired spaces. Spaces of the same type which occur in different clusters

have to be listed under different names in each cluster where they occur.

This representation of clusters neglects the relations within a cluster.

It will be indicated below how they could be added without changing the

framework of the program.

A stronger functional relationship between spaces can be expressed

by a required adjacency relation. In the present program, two spaces

are considered adjacent if they are allocated at the opposite sides of a

wall-segment the length of which is at least equal to the width of a door.

In example 1, adjacency relations are required between the public

corridor and all other spaces. In the terminology of this paper, these

spaces form a chain of spaces. The same holds for example 2: the

private corridor has to be adjacent to all other spaces.

Definition:

A chain of spaces is a set of spaces all of which have to be adjacent to

the same circulation space.

The present program handles only chains of this kind. All other

17

patterns of adjacency relations are considered as nets and, once

they are discovered, cause the program to terminate. Under this re-

striction, the space allocation procedure becomes extremely simple as

will be shown below.

Adjacency relations can be specified also between the members of

a chain. In example 1, the observation room has to be adjacent to a

classroom and a seminar room. They form, in the terminology of this

paper, a strong chain. All members of a chain which do not belong to a

strong chain form a weak chain. Two restrictions hold for adjacency

relations between the members of a chain:

(1) No member of a chain can be adjacent to more than two mem-

bers of the same chain; otherwise, the shape of these spaces

cannot be rectangular.

(2) Except for cases where four spaces form a strong chain, no

two members of a chain can be adjacent to the same two spaces

in the same chain.

Adjacency relations between pairs of spaces are specified in the

problem statement as lists and stored redundantly in the property lists

of the required spaces for which they are specified. Again, required

spaces of the same type, but with different adjacency relations, have to

be listed separately.

In figure 4(a), the adjacency relations specified for example 1 are

indicated by arrows, clusters by dotted lines. The graph for example 2

is shown in figure 4(b). In both cases, the spaces are either circula-

tion spaces or members of the same chain, The program in its present

18

version handles only simple chains of this type.

Figure 5, on the other hand, shows the adjacency relations in an

apartment-building which contains a series of apartments as specified

in example 2. The whole set of relations can be viewed as a hierarchical

structure of chains: the spaces within an apartment form a chain in

relation to the private corridors, and the apartments form a chain in

relation to the public corridor. The program, in a slightly extended

version, could handle such a case by applying sequentially the procedures

for simple chains.

Figure 6, finally, shows a possible interpretation of the floorplan

shown in figure 1(c) in terms of adjacency relations (slightly simplified).

The air lock is a member of two distinct chains: both chains overlap.

The program in its present version cannot handle this case.

External constraints

The program, in its present form, can handle only restrictions of

the overall dimensions of a building as external constraints.

19

I

'I

>3/

Figure 4: Simple chains

I

/
//

///
/

D
~

:
/

C
)

/
(~:,

/
/

0C
J

'-4C
-)

02

z1-I

.,
=

.=
.=

=

= =
Z

' -
-

-
-:,

21

Figure 6: Overlapping chains

I

I

I

Figure 6: Overlapping chains

22

III. Program Description: Sequence of Operations

Figure 7 shows a first class of floorplan schemes which the pro-

gram is able to generate. They all contain a circulation area (CA) and

one or more zones, labelled from A to D, within which spaces can be

allocated. Since it is required that plans have to be of rectangular

shape, certain combinations of zones have to be complemented by corner

zones, numbered from 1 to 4 in figure 7. Zones and corner zones are

assumed to be of rectangular shape, a restriction which does not neces-

sarily hold for circulation areas, as will be shown later. I shall also

explain how the procedures that handle these schemes can be extended

to a second class of floorplans which contain an inner core of spaces.

Zones, corner zones and circulation areas are the components out

of which legal floorplans can be formed. The possible combinations of

these components are known, as well as a condition under which these

combinations can be realized: components can only be adjacent to each

other along sides of equal dimensions. The dimensions themselves are

undefined. It is the task of the program to find possible combinations

of these components, to define their dimensions, and to allocate the

required spaces into zones and corner zones such that the constraints

specified in the problem statement are satisfied. This is done in a se-

quence of steps. A flow chart for this sequence is shown in figure 8.

It has to be kept in mind during the following chapters that this sequence

depends on the assumed representation of the floorplans. It would have

a different structure if the floorplans were represented differently.

1A 2

1 D CAB

4 C 3

A

2 C- CrA

2 B

I A 2
3

C C A B

1 A

CA

5 CA

6

Figure 7: Floorplan schemes

23

A

ICA

24

READ PROBLEM STATEMENT

PATTERN
'CHAIN' REQUIRED?

NO

DECOMPOSE SET OF REQUIRED
SPACES INTO PACKAGES.
DEFINE WIDTH OF ZONES

FEASIBLE DECOMPOSITION FOUND

ERM -
NATE

ASSIGN PACKAGES TO
ZONES AND CORNER ZONES.
COMPUTE LENGTH OF ZONES

FEASIBLE ASSIGNMENTS FOUND ?
ALL

ASS I GNMENTS
TRIED?

NO ISELECT PREFERRED ASSIGNMENTI

YES CONFLICTS WITH EXTERNAL
CONSTRAINTS ?

ALLOCATE SPLIT STRONG CHAINS
INTO ZONES AND CORNER ZONES

FEASIBLE ALLOCATION FOUND

ALLOCATE ALL OTHER SPACES
INTO ZONES AND CORNER ZONES

NO
FEASIBLE ALLOCATION FOUND ?

GRAPHICAL OUTPUT

Figure 8: Program flow chart

ii

.i

I I

j

25

Step 1: Decomposition of Spaces into Packages

It was assumed that spaces form a simple chain around a circula-

tion area, that they have to be allocated in zones and corner zones, and

that these zones are rectangular. It follows that the dimensions of two

spaces X and Y which are allocated in the same zone must be compatible

with each other such that

max. (min. dim. of X, min. dim. of Y) (

min. (max. dim. of X, max. dim. of Y).

The maximum of the minimum values and the minimum of the maximum

values define a range for the width of a zone in which X and Y can be

allocated, where the width is measured at right angles to the circulation

area (cf. figure 7).

The compatibility of dimensions provides a criterion for a second

decomposition of the set of required spaces into subsets which will be

called packages in the following. Figure 9 shows the dimensions of the

spaces required for example 1 in increasing order. If, for example,

(B-3, . . ., B-6) and (A-5) are regarded as two packages, the remaining

package (A-2, . ., A-4) is compatible with either one, but not with both

at the same time The compatibility criterion, therefore, does not

necessarily partition a set of spaces uniquely, and due to the way in

which the packages are used in the next step, it might be necessary to

consider more than one partition. For the present examples, I was

content with a single partition into packages which is generated by the

following rule: order the set of spaces as shown in figure 9; group spaces

into packages starting with the biggest space; after each space which is

M I N. D I M.
SPACE
MAX, D I M

B-3

B-4

B-7

B-8

B-9

B-2

B-5

B-1

B-6

A-2

A-6

A-1

A-3

A-4

A-5

0 m 2 m 4 m

Figure 9: Example 1 - Minimum and maximum dimensions

26

27

compatible with the last one, re-compute the range of compatible

dimensions; start a new package if the dimensions are incompatible.

The resulting decompositions for examples 1 and 2 are shown in tables 3

and 4. Spaces which must be adjacent to each other or belong to the

same cluster can belong to different packages. The decomposition into

packages neglects these relations; the reason will be explained below.

By definition, the maximum number of zones is 4 for the first

class of floorplans. Since the spaces in different packages have to be

allocated in different zones, the maximum number of packages is also 4.

Decompositions which yield more than 4 packages are infeasible. In

this case, a different decomposition for the first or a second class of

floorplans has to be tried.

Step 2: Assignment of Packages to Zones

A different zone is needed for each package. For each of the present

examples two packages are found during step 1. A possible combination

of zones and corner zones, therefore, must consist of at least two zones.

There are two ways in which two zones can be combined under the con-

ditions introduced at the beginning of this chapter. They are shown in

the first row of columns 1 and 2 in figure lo. Row 2 shows how two

packages A and B can be assigned to these zones. These diagrams should

be considered as schemes: rotations and exchanges of packages are

omitted, but have to be considered during step 2. Combination 2 has to

be complemented by a corner zone. Spaces can extend into this corner

zone from either zone and can, therefore, belong to either package. The

possible assignments of packages to zones and corner zones are shown

28

TABLE 3

Example 1-Decomposition into packages

package zone width spaces

A 3. 30 - 5. 77 B-1 B-2 B-3

B-4 B-5 B-6

B-7 B-8 B-9

B 7.80 -8.05 A-1 A-2 A-3

A-5 A-6 A-4

TABLE 4

Example 2 - Decomposition into packages

package zone width spaces

A 4. 00-4. 44 LIV KIT BED

B 1.75 - 2.85 BAT

TABLE 5

Example 2 - Second decomposition into packages

package zone width spaces

A 2. 25 - 2. 85 KIT BAT

B 4.00 - 5. 33 LIV BED

TABLE 6

Example 1 - Second decomposition into packages

package daylight zone width spaces

A yes 3. 30 - 5. 77 B-1 B-2 B-3

B-4 B-8 B-9

B no 3. 30 - 5. 77 B-4 B-5 B-6

C no 7.80 -8.05 A-1 ... A-6

ROW 1
COMB I NATIONS
OF ZONES AND
CORNER ZONES

COL.1 ' COL. 2 COLUMN 3
t I * *1

CA

CO LUMN. 4

CA.

ROW 2 1.1 2.1 3.1 3.2 4.1 4.2
ASS I GNMENTS IA A _ A
OF PACKAGES B B C A A C B C
TO ZONES* B B

ROW 3
ASSIGNMENTS
OF PACKAGES
TO CORNER
ZONES

1.1.1

LU

2.1.1
A

2

2.1.2
A B I
ICAB I

3.1.1
mA A JA I

3.1.2
B A IA I

3.2.1
B B IB I

3.2.2
B

3.2.3

A B
A C"

4.1.1
A A
B C
B Bi

4.1.2
B A JAI
B C I I

4.1.3
B

B

4.2.1
A A Al
A C
B B B

4.2.2
A A A
A CAA
A B B

4.2.3
A A A1
A CI I

AB IA I

Figure 10: Assignments of packages to zones

29

4.3.1
A A IAI
B_ CA B
AAA

4.3.2
A A A
B CA B
A- A B,

4.3.3
A A A
B CAB
B A B_

4.3.4
A A BI

B CM B
AJB

4.3.5

H
B I

B IA A

4.3.6

A B

4.3.7
B A B

CAB
B A B

* SOME ASSIGNMENTS TO CORNER ZONES ARE IMPLIED.

30

in row 3 of figure 10.

The range within which the width of these zones can vary is known

after the packages are assigned. The length of the zones can be com-

puted, where the length is measured parallel to the circulation area.

This area has a long and a short side. The minimum dimension of the

short side is specified in the problem statement; its maximum dimension

is assumed to be the sum of the minimum dimension and some constant

(1 m for the present examples). These dimensions, at the same time,

define a range within which the length of the zones at the short sides of

the circulation area can vary. For each assignment, therefore, the

minimum and maximum dimensions for the width of all zones, for the

length of the zones at the smaller sides of the circulation area, and

consequently, for the sides of the corner zones are known. The areas

of the smaller zones and the corner zones can be computed. The pro-

gram tests whether there is a length x for the longer zones such that

(1) the total area which can be allocated for each package equals

the total area required for the spaces in these packages;

(2) the dimensions of all zones and corner zones are compatible

with each other.

Each assignment which passes this test is tentatively considered a

feasible assignment. The length x is again defined within a range: it

is a function of the area required for the zone under consideration and

its width, where both can vary; the length of the zone can vary accord-

ingly. Whenever I refer to dimensions in the following paragraphs, it

is implicitly assumed that these dimensions can vary between a minimum

31

and a maximum value.

I assumed for the present version of the program that packages

can be split and the pieces assigned to different zones. As a result,

the number of possible combinations of zones and corner zones and

consequently the number of possible assignments increases. The num-

ber of ways in which this can be done depends on both the number of

packages and the number of desired zones. Once packages are assigned

to zones, it has again to be decided how the corner zones are to be filled.

The principal possibilities for two packages are shown in row 3 of col-

umns 3 and 4 in figure 10. The total number of possible assignments

for two packages is 21. I counted 4 assignments for 1 package, 28 for

3 packages, and 16 for 4 packages.

For most of the assignments, the program has to consider rota-

tions such that packages which were assigned to small sides become

assigned to long sides and vice-versa. Also, packages might have to

be exchanged in an assignment. Thus, the number of possibilities

that have to be considered increases; I counted, for example, 52 pos-

sibilities for two packages. On the other hand, the assignments can

be considered in an order which reduces the number of possibilities which

actually have to be tested: some assignments can be skipped if previous

ones failed. In any case, the combinatorial problem remains manage-

able: the number of possible assignments of packages to zones and

corner zones is known and limited, and the number of feasible assign-

ments which have to be considered in the following steps is much smaller.

The total number of feasible assignments is 7 for example 1, and 2 for

example 2.

32

A further simplification is possible, if the feasible assignments

are considered in an order of preference according to some heuristic

rule such that the search terminates if solutions for the preferred assign-

ments are found. The rule adopted for the present version of the pro-

gram is based on an implicit efficiency criterion and favours compact

floorplans. The program always tries the combinations 1 and 4. For

each feasible assignment within combination 4, the overall dimensions

are computed and the assignment with the smallest overall length

is tried first; only if conflicts occur at later stages, the next best

assignments are tried. If both combination 1 and combination 4 fail,

combination 3 is tried, and if it fails, combination 2. Since for each

feasible assignment only one solution will be generated, the maximum

number of solutions for the first class of floorplans is 2. According to

this rule, the program considers, within the first class of floorplans,

two feasible assignments for example 1: assignment 1. 1. 1 and assign-

ment 4. 1. Z. For example 2, assignment 3. 1. 1. succeeds.

Feasible assignments are represented in the following way: an

internal name is generated for each zone and corner zone, and a property

list is associated with each of these names containing the appropriate

dimensions and pointers to the names of the adjacent areas and to the

appropriate packages. During the following steps, the program tests

whether the required spaces can be allocated in these areas such that

the constraints specified in the problem statement are satisfied.

Step 3: Comparison of Overall Dimension and External Constraints

At the end of step 2, the overall dimensions of the assignment under

consideration are known or can be computed. The program tests whether

33

they are in conflict with the external constraints specified in the

problem statement. If a conflict occurs, a different assignment has

to be tried.

Step 4: Allocation of Split Strong Chains

So far, relations between spaces were neglected. But the decom-

position into packages might split strong chains, and they can only be re-

combined at corners where these packages meet. The program generates

a list of split strong chains and tests whether there is, within the assign-

ment under consideration, a sufficient number of corner zones where

the appropriate packages meet. If the test fails, a different assignment

has to be tried. Otherwise, the spaces in the list of split strong chains

are allocated in the appropriate corner zones and adjacent zones such

that two conditions are fulfilled:

(1) Spaces in a corner zone have to extend far enough into one of

the adjacent zones such that they share a wall segment of at

least door-width with the circulation area; otherwise, the re-

quired adjacency relations cannot be satisfied. In case of

failure, a different assignment has to be tried.

(2) Spaces in the same strong chain can be allocated in a corner

zone and its adjacent zones only if the areas available in these

zones are not exhausted before all spaces are allocated: strong

chains cannot be split and allocated in distant zones. If a zone

is adjacent to two corner zones, its area can be exhausted even

faster: both corner zones might be needed, and spaces can be

allocated in the same zone from two directions. On the other

34

hand, strong chains can be exchanged. Again, a limited number

of possibilities has to be tried, depending on the number of

split strong chains, which is never larger than 4, and the num-

ber of appropriate corner zones. An assignment fails if all

possibilities are exhausted.

Some back-up mechanism is needed which tries the different pos-

sibilities in turn. This mechanism has not been implemented since it

is not needed for the present examples: the list of split strong chains is

empty in both cases, and step 4 can be skipped.

The allocation procedure itself is extremely simple. For each zone

and corner zone, the spaces are listed in the order of allocation as re-

quired by the adjacency relations; two lists are needed for zones in

which spaces are allocated from two directions. After each allocated

space, the length of the remaining area is re-computed. At the end of

the allocation procedure, the lists of allocated spaces and the length

of the remaining areas are added to the property lists of the zones and

corner zones under consideration.

Step 5: Allocation of All Other Spaces

The remaining spaces have now to be allocated in the remaining

areas. For example 1 and assignment 1. 1. 1 the allocation procedure is

especially simple. There are two packages and two zones, and the zones

are still empty since step 4 was skipped. The spaces are allocated

linearly in the appropriate zones as described above: they are listed

in the order of allocation and the length of the remaining areas is re-

computed; the results are stored in the appropriate property lists. A

35

floorplan which represents the generated solution is shown in figure 11.

In this floorplan and the following ones, arabic numbers refer back to

figure 7 and indicate the floorplan scheme on which the floorplan under

consideration is based.

The order in which spaces are allocated is based on the clusters

which were specified in the problem statement: spaces in the same

cluster are kept together, unless a stronger constraint makes a splitting

of clusters necessary. Split clusters can occur if strong chains were

allocated at distant corners during step 4 such that the zones between

these corners have to be filled with spaces from different clusters, or

if spaces have to be exchanged due to local conflicts as will be shown in

the next paragraphs. In general, clusters are treated as rather weak

constraints: they are realized only by default. The order of allocation

within a cluster is arbitrary and depends on the order in which the re-

quired spaces are listed in the problem statement.

The space allocation procedure is less simple if corner zones are

part of an assignment. When a space has to be allocated in a corner

zone, the program has to test, as in step 4, whether this space extends

far enough into an adjacent zone. If the test fails, two possibilities can

be tried:

(1) The critical space can be exchanged for a bigger space in the

same package;

(2) if this is impossible, the program can try to utilize the tolerances

within the dimensions of a zone and insert a piece of circulation

area between zone and corner zone such that the corner zone

becomes directly accessible.

5 B-8

B-8

B-9

B-9

B-1

B-2

B-3

B-3
B-4

B-5

B-6

B-7

A-1

A-1

A-1

A-2

A-2

A-3

A-5

A-1

A-4

A-2

A-6

_______ '_ 'I~.

Figure 11: Example 1 - Solution 1

36

CA

10 m

5 m

0 m

37

Neither of the two procedures is implemented; but it can easily be

done for assignments in which no packages are aplit. In these cases,

the necessity for an exchange can only occur for the first or last

spaces in a package. The critical spaces are either put back into the

list of spaces not yet allocated and a better space is used, or the better

space is taken out of the list of spaces already allocated and put at the

end of the same list. The addition of a circulation space is equally

simple: its name has to be added to the front or the end of the list of

spaces allocated in the appropriate zone.

Both procedures are needed for assignment 4. 1.2 and example 1.

Figure 12 shows a simulated version of the resulting floorplan. Circula-

tion spaces are added in the two lower corners; space A-5 is taken out

of its original position (cf. figure 11) and placed in the upper right corner.

But in this assignment, both packages are split and assigned to two

different zones. In these cases, spaces in the same package can easily

be exchanged only if the better space is not yet allocated or allocated in

the same zone in which the critical space is to be allocated. If the better

space is allocated in a different zone, it has to be exchanged for a group

of spaces which require the same area; and in order to find such a group,

combinations of spaces might have to be tried among all spaces which

are not yet allocated or allocated in the critical zone. This problem

remains unresolved in the present version of the program.

As a consequence, the order of allocation is important whenever

corner zones are part of an assignment. But this order can be easily

reversed only if all spaces in a package have to be allocated in the same

1

10 m

m

0 m

A-1

B-8

B-8

B-9

B-9

B-1

B-2

B-3

CA

A-5

A-1

A-1

A- 2

A-2

A-3

A-

A-4

A-2

A-6

CA

Figure 12: Example 1 - Infeasible Solution

38

5

'-39-4 - 1 B-6 B3-7

CA

I

38 a

zone. If packages are split, combinatorial difficulties might occur.

In the latter case, an additional problem arises which renders

the floorplan shown in figure 11 infeasible. During the generation of

feasible assignments it was implicitly assumed that packages can be

split in a continuous way, neglecting the fact that spaces are discrete

units and that for each sequence of spaces within a package, this package

can be split only between spaces. Adjustments are nevertheless possible

since the dimensions of a space and the length of a zone are variable

within limits.

In general, the problem seems to become more significant as the

zones become shorter and/or the spaces become bigger. This is the

case in the present example: space A-1 is the last space to be allocated

in the upper zone and upper left corner zone as shown in figure 12; but

it is not big enough to fill both areas. Different assignments consisting

of four zones and four corner zones in which package B is not split

would succeed. But the program is very close to a feasible solution

based on the present assignment, yet does not discover it due to a flaw

in its set up. The minimum width of the zone in which the critical space

is to be allocated depends on space A-5 which is allocated in a different

zone. A re-computation of the width of the critical zone would render

the order of allocation as shown in figure 12 feasible. But these re-

computations depend also on the order in which spaces are allocated: if

space A-5 is allocated in the upper short zone, the width of the long

zone at the right side of the floorplan has to be re-computed. In any

case, it seems unreasonable to determine the width of a zone with

respect to a space which is allocated elsewhere. It is a mistake to split

39

packages indiscriminately.

No problems occur during the space allocation procedure for

example 2. A floorplan which represents the generated solution is

shown in figure 13.

Figure 14, on the other hand, shows an equally feasible solu-

tion for example 2 which will not be generated since it is based on a

different decomposition into packages which starts with the smallest

space as shown in table 5. From this decomposition, the solution

shown in figure 14 can be found on the basis of assignment 3. 2,3 which

splits package A into two parts. This example emphasizes points which

have been discussed before: (a) different decompositions have to be

tried in order to generate a representative set of solutions; (b) the odd

proportions of the floorplan stem from the mistake mentioned before:

the width of the zone in which the space BED is allocated is determined

by the space LIV allocated in the opposite zone; both spaces belong to

a package which was split during step 2.

Figure 15 shows a floorplan based on an assignment which is

tried before the succeeding one. It fails for the same reason which

made assignment 4. 1.2 fail for example 1: an essentially feasible con-

figuration of spaces is not discovered due to unreasonable restrictions

imposed on the dimensions of zones through spaces which are allocated

elsewhere. The floorplan shown in figure 15 can be produced by a de-

composition in which each space is treated as a package in itself. But

the resulting solution is nevertheless infeasible in a practical sense since

the circulation area is not accessible from the outside. The program

considers at the present time only internal circulation patterns. A set

40

3 I I3
I I

BED LI V
I I

BAT CA KIT

Figure 13: Example 2 - Solution

3
BMT KIT

-BED L IV
CA

Figure 14: Example 2 - Solution

1

4 m

2 m

0 m

Figure 15: Example 2 - Infeasible solution

B ED
I LIV

BAT CA

K I:T

41

of rules is needed which assure their proper connection with external

patterns.

In any case, it seems to be extremely inefficient to combine few

spaces into packages if these packages have to be split in later steps

as illustrated by the last examples. There might be some threshold for

the number of required spaces below which the sequence of steps which

was described above can be circumvented and the possible combinations

of spaces tried directly.

These points indicate loose ends which have to be pursued further.

I shall return to the problem of split packages in the next chapter.

At the end of step 5, feasible solutions are represented as a struc-

ture of inter-connected property lists. The representation of the solu-

tion generated for example 2 is shown in figure 16. Indicators are

represented by labelled arrows pointing to the appropriate values which

can be numbers, literal atoms with associated property lists, or lists

themselves. The width of the zones is re-computed; the range within

which these dimensions can vary becomes narrower due to the inter-

relations between all dimensions.

Step 6: Graphical Output

The internal representation of a feasible solution is difficult to

interpret if printed out literally. In a last step, the program translates

the internal representation into a set of 2-dimensional coordinates

which can be passed to a plotting or display routine This step is not

implemented at all. The floorplans shown in figures 11-15 were drawn

by hand.

During this translation, a last decision has to be made At the end

42

of step 5, dimensions are still defined within a range; but for the output

routines, these dimensions have to assume single values. In the absence

of any additional rule, the program might again select the most compact

floorplan such that its overall length is defined by the smallest possible

value. The floorplans which were shown above are based on this rule.

43

Figure 16: Example 2. - Internal representation of solutiofi

44

IV. Discussion: Basic Characteristics of the Program

The problems which can be handled by a complete version of the

present program are constraint from two sides:

(1) by the constraints specified in the problem statement: attributes

of single spaces, relations between pairs or groups of spaces,

external constraints;

(2) by the constraints which restrict the class of problems to which

the problem can be applied in general: the floorplans are always

of rectangular shape and are appropriate only for "chains" of

spaces.

A class of legal floorplans was introduced within which constraints of

the second kind can be satisfied provided that specific configurations of

constraints in the problem statement do not render these floorplans in-

feasible. The floorplans were represented by a limited number of com-

binations of zones and corner zones in which spaces can be allocated and

which can be grouped around a circulation area such that the pattern

"chain" is satisfied, and which can be adjacent to each other only at

sides of equal dimensions such that the overall shape of the floorplan is

rectangular. The dimensions themselves are undefined, and their defini-

tion depends on the constraints specified in the problem statement at hand.

These two sets of constraints cannot be satisfied independently. On

the one hand, the range of the possible dimensions and combinations of

zones and corner zones is restricted with respect to the constraints

specified in the problem statement; on the other hand, the range of the

possible combinations and dimensions of the required spaces is restricted

45

with respect to the global constraints imposed on the floorplans.

The first characteristic feature of the sequence of operations

described in the last chapter is the order in which these constraints

are considered. In figure 17, the sequence of operations is drawn verti-

cally as a single pass without loops, and the constraints specified in the

problem statement are listed horizontally. Arrows indicate where these

constraints enter the sequence, and short comments are added which

explain the aspects under which the constraints are considered in a

particular step.

There is, first of all, a preliminary test which checks whether all

spaces have to be adjacent to the circulation area. These relations,

taken together, form the circulation pattern "chain", and this pattern

represents the global significance of the adjacency relations. On the

basis of the existence or non-existence of this pattern, the program de-

cides whether an allocation of spaces in zones and corner zones around

a circulation area is appropriate, i. e. whether the class of floorplans

which can be generated is adequate for the problem at hand.

In step 1, the dimensional constraints for all spaces are compared

with respect to their compatibility, and this compatibility represents

the global significance of the dimensional constraints: it determines a

range for the width of the zones; those constraints which define the

limits of these ranges assume global significance. In addition, the mini-

mum number of required zones can be defined which makes certain

possible combinations of zones and corner zones infeasible. The number

of possible combinations can be enlarged if the daylight constraints

46

CIRCULATION
PATTERN

''CHAIN''

STEP 2:
SELECTION OF
ASS I GNMENTS;
DEF.OF LENGTI
OF ZONES

EQUALITY OF
DAYLIGHT RE

COMPATIBILITY
OF DIMENSIONS

SUM OF

STEP 3:
COMPARISON
OF OVERALL
DIMENSIONS

STEP 4:
ALLOCATION
OF SPLIT
STRONG CHAINS

STEP 5:
ALLOCATION
OF ALL OTHER
SPACES

T

LOCAL CONSTRAINTS
OX SPLIT STRONG CHAINS I

\ I

LOCAL CONSTRAI NTS
ON ALL OTHER SPACES

Figure 17: Global and local significance of constraints

STEP 1:
SELECTION OF CLASS
OF FLOORPLANS;
DEF.OF WIDTH
OF ZONES

47

which have been neglected so far are considered together with the

dimensional constraints, as will be shown in the next chapter. The

daylight constraints, again, will be considered with respect to their

global significance: they will be used in order to determine whether a

second class of floorplans can be introduced.

In step 2, the length of the zones is determined on the basis of

their width and the sum of the area constraints specified for each space.

This sum, again, represents the global significance of the area con-

straints. As a result, feasible combinations of zones and corner zones

can be found such that the global geometric constraints imposed on the

class of floorplans are satisfied.

Their overall dimensions can be computed and, in step 3, compared

with the external constraints specified in the problem statement which

are global by definition.

During each of these steps, only few of the constraints in the prob-

lem statement are considered, and they are considered solely with

respect to their global significance. Each step, furthermore, depends

on the results of the previous step: the global implications of particular

constraints can only be determined if the implications of other con-

straints were considered before.

In the last two steps, the program tests whether there are certain

configurations between the various constraints in the problem statement

which are incompatible with these global constraints. Some of the con-

straints specified in the problem statement are considered a second

time, but now solely with respect to their local significance.

If no packages are aplit, the program can concentrate exclusively

on adjacency relations. It has to test whether pairs of spaces that have

48

to be adjacent can be adjacent in a given assignment. The areas and

dimensions of each zone are adequate for the spaces which have to be

allocated in these zones due to the way in which they are determined

in the previous steps.

If, on the other hand, packages are split, dimensional and area

constraints have to be considered a second time together with the

adjacency relations. As shown above, this might introduce problems

which are not resolved in the present version of the program.

The distinction between the global and the local significance of

the constraints specified in the problem statement is the principle

on which the sequence of steps is based. The order in which these con-

straints are considered, however, does not imply a weighting of the

constraints: assignments can fail totally due to global or local conflicts.

The order is purely operational: as the sequence is set up, local con-

flicts can only be detected after the global constraints are known.

The second characteristic of the sequence follows from this

order. Except in cases where packages are split, the number of pos-

sibilities that have to be considered during each step is small, and the

combinatorial problem remains manageable. Furthermore, the number

of feasible combinations that have to be considered in the following steps

is much smaller, and can be further reduced by heuristic rules.

The operations themselves consist of simple computations, com-

parisons of numbers, and list operations. This operational simplicity

is caused by three factors: (a) the restrictions imposed on the problem

make (b) a representation of the space arrangements through linear lists

possible which (c) can easily be handled with the help of a language

49

like LISP.

Finally, the number of steps which are necessary in order to

generate a solution is known: the sequence of steps is limited and

actually very short.

To use S. A. Gregory's terminology (Gregory, 1969): the sequence

is "tight" since the order of operations is pre-determined, as opposed

to a "slack" sequence in which operations can be exchanged; and it is

a "single thread" sequence since there is only one type of operation that

can be performed at each step, as opposed to a "multiple thread" sequence

which contains branches. The sequence is, furthermore, specialized

since its application is restricted to a very narrowly defined class of

problems. The latter characteristic is, in fact, a prerequisite for the

former ones. The sequence can be simply structured because the con-

straints which can be expected and their interrelations are explicitly

known. These interrelations are represented by the sequence in an

operational way which is summarized in figure 17.

I do not know, however, whether this is the only sequence of

operations that can be found for the present problem. It depends largely

on the way in which legal floorplans are represented. These floorplans

do not have to be interpreted as combinations of zones and corner zones;

and the sequence changes as this interpretation changes.

50

V. Discussion: Revisions and Extensions of the Program

Revisions of the program are necessary. First of all, packages

should not be split indiscriminately. A rule is needed, for example,

which prevents in step 2 packages from being split if the width of the

zones to which they can be assigned is determined by single spaces.

Rather than splitting packages, different decompositions should be tried.

I propose as a general directive for these revisions to keep the

operations in steps 4 and 5 simple, to resolve problems as early as

possible, and not to postpone their resolution to the very last step.

These revisions should concentrate on the rules which govern the decom-

position in step 1 and the assignments of packages to zones in step 2.

I expect these rules to have a distinctly heuristic character: they will

work in certain cases and fail in others.

These rules, furthermore, can be found in a heuristic way and de-

termined in a series of experiments, provided steps 4 and 5 are com-

pletely implemented. I suggest, in fact, such an experimental approach

for the necessary revisions since programs like the present one do not

have to consider all logically possible cases and difficulties as long as

they work for a sufficiently large number of realistic design problems.

I have to mention here a feature of the program which has not been

discussed before. The program terminates if all constraints are satis-

fied. But at this point, the dimensions are still defined within a range,

and within this range they can be suboptimized. The floorplans suggest

certain constructional, service and contents systems; if it is possible

to specify a set of preferred dimensions or dimensional modules for

51

these systems, the final dimensions of zones, corner zones and

spaces can be determined accordingly In addition, it might be possible

to utilize such technical background information already during step 1

as a basis for the decomposition of the set of required spaces into

packages . Those decompositions which yield preferred dimensions for

the width of zones can be generated and tested first. The introduction

and appropriate utilization of information of this kind seems to indicate

a possible starting point for the revision of step 1.

There remains, as mentioned briefly in the last chapter, an addi-

tional inconsistency: clusters can be specified in the problem statement,

but are realized only by default. They have certainly a more global sig-

nificance than the local constraints considered during steps 4 and 5,

but, as a look at figure 17 shows, they enter the sequence of operations

too late. They are not only over-ridden by more local constraints; in

certain assignments and under certain circumstances, they cannot be

realized in the first place, for example, when packages containing only

spaces which belong to the same cluster are split and allocated at

distant ends in an assignment. The problem was caused by a first re-

vision of the initial version of the present program. I started with a

decomposition of the required spaces into subsets which reflected both

clusters and strong chains on the one hand, and dimensional compati-

bilities on the other hand, and ended with an unknown number of elements

that had to be combined. This introduced immediately the possibility of

a combinatorial explosion, and it was an important decision to treat

the constraints in the problem statement separately as described in

the last chapter. During the following revisions, clusters were neglected.

52

Looking back at figure 17, I suggest considering clusters right after

step 2, or in this step, as an additional criterion for the selection of

an assignment, although I do not know at the present time how this

could be programmed.

The heuristic rule used in step 2 to further reduce the number of

assignments that have to be considered was introduced for simplicity

reasons in an ad-hoc way. The rule implies that all feasible assign-

ments are generated and compared before the preferred assignments

can be passed to the following steps. I suggest turning such a "breadth-

first-search" during step 2 into a characteristic feature of the program

such that feasible assignments are ordered according to the likelihood

that clusters are kept together, and tested in that order

In the present version of the program, the final dimensions and

relations of spaces are determined in an arbitrary way. It was shown

above how the final dimensions can be suboptimized provided the

appropriate background information is available. A similar procedure

can be applied to the relations of spaces within a cluster. Once an initial

arrangement is known, the relations of spaces can be improved through

successive exchanges until the total cost of traffic reaches a suboptimum

(Pack et al., 1966), provided the frequency of traffic between spaces is

known. It is consistent with the present approach to use clusters first

with respect to their global significance for a selection of feasible

assignments and to improve the relations of spaces within a cluster

during a later step.

Given the suggested revisions of steps 1 and 2 can be implemented,

it seems possible to regard the entire sequence of steps as a basic set

53

of operations which can be executed sequentially such that the class

of solvable problems extends.

A second class of floorplans provides an example for such an

extension. The decompositions shown in tables 3 and 4, as well as

the floorplans based on them, neglect attribute 4 (daylight required or

not). The resulting solutions are nevertheless feasible due to a loose

interpretation of the daylight requirement. Yet the specification of this

attribute suggests a very common second class of floorplans which com-

bine the spaces for which no daylight is required in an inner core. A

decomposition reflecting both dimensions and attribute 4 is shown in

table 6 for example 1.

If now the circulation area is first collapsed into an area of zero

width, the procedures outlined above can be applied to packages B and

C alone. For the present example, assignment 4. 2. 1 succeeds. The

dimensions of the circulation area plus core can then be re-computed

and the same procedures applied to the remaining package A. An assign-

ment similar to assignment 1.1. I for one package succeeds. The resulting

floorplan is shown in figure 18. The short supervisory routine which

is needed to control these operations is not implemented at the present

time; the operations and the resulting solutions were simulated.

A second possible extension was mentioned in Chapter 2. Figure 5

shows a chain of apartments consisting of chains of spaces. The sequence

can be applied first to the spaces in an apartment as demonstrated for

example 2; these apartments can then be regarded as larger spatial units

which again can be allocated in zones around a corridor. In this case,

however, the spatial units are oriented: they can be adjacent to the public

Figure 18: Example 1 - Solution

54

5

10 m

5 m

0 m

55

corridor only along one side which necessitates the introduction of

a new constraint.

I also think, but this is not more than a speculation, that the

problem shown in figure 6 could be handled, provided that the pattern

"overlapping chains" can be recognized by the program and a third

class of floorplans together with new decomposition rules are introduced.

But these extensions are based on the reduction of a given problem

to a set of sub-problems which can be solved by a basic routine. They

represent no generalization of the approach. The sequence, as it stands,

cannot be generalized to models of completely different environmental

systems: model representation and program execution are inseparable.

I even do not know whether the sequence is a good paradigm for a study

of different models since I tried only one model which, in addition, is

perhaps the simplest model one can think of. But I do suggest that the

basic principles which characterize the present approach: to distinguish

between the global and the local significance of constraints, to consider

these constraints separately, and to use the order in which they are

considered as means of reducing the combinatorial difficulties of the

problem, point into directions worthy of further investigations.

56

VI. Discussion: The Program Within an Experimental Environment

The question arises whether the considerations of the last chapter

are only a matter of internal program organization, performance and

efficiency, or whether programs possessing the described character-

istics, provided they work for a sufficiently large class of problems,

can have some importance outside the field of computer-generated

design. In this chapter, I shall offer some speculations which suggest

the latter possibility.

Amos Rapoport emphasizes the fact that design problems are not

always "started from scratch" (Rapoport, 1969). As design problems

occur repeatedly, a body of standard solutions and partial solutions

emerges; building types, or models of environmental systems, belong

to this body of knowledge.

He furthermore proposes to view the design process as a hypothesis-

formation (design generation) and testing (design evaluation) sequence.

T. Markus makes the same suggestion (Markus, 1969). Within this

framework, models of environmental systems can be regarded as hypoth-

eses which have been generated in the past.

Each of these models represents a specific way in which an activity

system interacts with a building system. The global properties in which

these models can be described reflect simultaneously general character-

istics of the activity system and general characteristics of the building

system, and they indicate how the constraints imposed by both systems

can be reconciled.

If the interactions between both systems in a model are known, the

57

model's adequacy for a given design task can be evaluated before

the design process starts. On the basis of this evaluation, a model

can be rejected or accepted. In both cases, an understanding of the

interactions is essential: adequate models should be considered, inade-

quate models should not be accepted.

To take the simple model represented by the floorplans that can

be generated by the present program as an example: It is applicable

to a certain class of problems (characterized by the circulation pattern

"chain"); among all possible combinations of spaces that fit into this

pattern, it specifies a particular arrangement (in rectangular zones and

corner zones) which results in a floorplan of rectangular shape. For

floorplans of this kind, certain combinations of constructional, service

and contents systems are adequate, others are excluded. Knowing

these properties, a designer who is confronted with a particular task

can first decide whether the model is applicable. He can then evaluate

whether a linear allocation of spaces in zones around a circulation area

is in conflict with other requirements of the task. He can evaluate

whether the overall shape which results from this allocation is desirable.

And he can decide whether the appropriate technical subsystems are

available and can be used efficiently. Aside from these global implica-

tions, he can furthermore evaluate specific side-effects of the global

properties for the activity system under consideration. In the first

class of floorplans, for example, all spaces are allocated at external

walls. For spaces which do not require daylight, the designer has a

choice: he can omit windows in the external wall or provide adequate

means of covering them. In the latter case, the use of the spaces is less

58

restricted. The resulting flexibility is an implication of this class of

floorplans which can be anticipated and compared with the implications

of different classes of floorplans.

The acceptance of a model not only pre-determines the global

properties of the resulting design; it has implications for the design

process itself (Rapoport, 1969). During this process, the global prop-

erties of the model appear as global constraints which reduce the search

space considerably: large numbers of possible configurations of areas

and combinations of technical sub-systems are excluded from the

beginning and do not have to be explored.

Furthermore, if the relations between the global constraints im-

posed by the model and the specific constraints imposed by the problem

at hand are well understood, a decomposition of the design problem into

sub-problems can be found which is process-oriented and specifies

which sub-problems should be solved at which state in the design process

or the design morphology. Such a decomposition is efficient only if

unresolvable conflicts are detected as early as possible. It depends

indeed on a precise knowledge of the interactions of constraints.

I consider a study of these models worthwhile under three aspects:

(1) the applicability of the models to specific tasks can be studied;

this might lead to a set of criteria for the initial selection of

appropriate models;

(2) the implications of the models can be studied, and this might

lead to a set of criteria for an initial evaluation of the models;

(3) the relations between various constraints can be analyzed, and

59

this might lead (a) to the discovery of particular regularities

on which a model-specific decomposition of a problem into sub-

problems can be based, and (b) to generalizations which are

relevant even for new models since some types of constraints

can be found in almost any design problem.

These considerations are based on a general interest in the systematic

organization of past experience.

I suggest considering these models as hypotheses of environmental

systems which can be tested. I furthermore propose to carry out these

tests in an experimental environment in which computers play an im-

portant part. Computer programs require a level of complete explicit-

ness as regards assumptions which underlie the problem representa-

tions and the solution procedures. These assumptions, as well as the

models themselves, can then be tested in a series of experiments.

During these tests, initial problem classifications can be changed.

The present program, for example, is assumed to be applicable to prob-

lems characterized by the circulation pattern "chain". A series of tests,

on the other hand, would demonstrate that certain configurations of local

constraints prevent feasible solutions, for example, if there are too

many spaces the dimensions of which are incompatible, although all

spaces belong to the same chain. Thus, classification criteria can be

found which determine more precisely when a model is applicable to

certain tasks.

These results can be used outside the field of computer-generated

design. They will be model-specific and different for the different models

under consideration.

60

Once solutions are generated, they can be evaluated provided

the appropriate criteria are specified. Although the problem of design

evaluation falls outside the scope of this paper, I mention briefly some

known procedures which can assist in these evaluations. If the programs

produce solutions of a certain "practicability", floorplans, for example,

which do not have to be substantially re-designed, the geometric prop-

erties of these solutions can be passed to routines which simulate the

construction process (Daniels et al. , 1968), or a "traffic history"

(Souder et al., 1964), i. e. the movement of occupants or the transport

of material in a given time period, or to routines which estimate con-

struction costs (Barnett, 1967), or maintenance costs (heating costs for

example).

A systematic documentation of the relations between the global

properties of a model and its implications can be of general use.

The results, again, will first of all be model-specific. But as

certain configurations of constraints occur repeatedly in different

models and different tasks, a comparison of the results might lead to

the discovery of regularities which can be generalized and used even in

design processes where new hypotheses, i. e. new models of environ-

mental systems, are generated.

Finally, the solution methods for different models can be compared.

These comparisons, again, might lead to generalizations which are first

of all important for the programs themselves. But once generalized pro-

cedures are available, they might suggest ways of describing the global

properties of new models which then can be included in the series of

experiments. The distinction between new and old models disappears

61

within the experimental context as soon as both can be programmed

and tested. The tests of new models, again, are of general interest.

A close look at the way in which global and local constraints are

interrelated in each model might even suggest process-oriented decom-

positions of design problems into sub-problems. A first hint for such

a decomposition, for example, was found for the first class of floorplans:

the daylight requirements can be neglected during the design phase proper.

The order in which all other constraints are considered in the

present program, on the other hand, has primarily internal significance.

It depends on the way in which floorplans are represented; the results

demonstrate that these constraints actually have to be considered together

in the same design phase. Global and local dimensional constraints and

global and local relations between spaces are interrelated. Taken to-

gether, they define a single sub-problem, and the program can be con-

sidered an operational unit which tries to solve it. It has to be seen in

which cases and to which degree this sub-problem is independent of

sub-problems introduced by constraints which are not considered in the

present program. A general process-oriented decomposition for the

present model can be outlined only after such an analysis.

62

VII. Summary

The floorplans that can be generated by the program described

in Chapter 3 are represented as combinations of zones, corner zones

and circulation areas. Spaces are allocated in the zones and corner

zones which are grouped around the circulation area such that the cir-

culation pattern "chain" can be satisfied; and the zones and corner zones

can be adjacent only at sides of equal dimensions such that the overall

shape of the floorplan is rectangular. These are global constraints

imposed on the floorplans, and it is the task of the program to reconcile

these constraints with the specific constraints imposed on the required

spaces in a problem at hand.

The suggested solution procedure reflects the chosen representa-

tion of the floorplans and depends on it. It consists of a sequence of

operations in which the global geometric constraints imposed on the

floorplans are satisfied first on the basis of the global significance of

the specific constraints imposed on each of the required spaces. The

program then tests whether there are local configurations of constraints

which render a globally feasible combination of zones and corner zones

unfeasible. The interrelations between all constraints are expressed

through the sequence of steps in an operational way.

There are inconsistencies in the present version of the program

which have to be eliminated. Except for these cases, the number of pos-

sibilities to be tried during each step is limited. The sequence itself

is "tight' and follows a "single thread". It is, furthermore, specialized:

extensions, but no generalizations, are possible.

63

It is proposed to view the floorplans that can be generated by the

program as a representation of a model of an environmental system,

and to implement programs of this kind in an experimental environment

in which these models are considered hypotheses that can be tested

with respect to the class of problems to which they are applicable, with

respect to their performance, and with respect to effective design pro-

cedures. The results of these tests are considered relevant outside

the field of computer-generated design: they might increase the knowledge

about the properties and implications of specific models, or suggest

generalizations useful during the generation of new models.

64

References

Bareither, Harlan D., and Jerry L. Schillinger, University Space
Planning, Chicago: University of Illinois Press, 1968.

Barnett, Jonathan, "Computerized Cost Estimating", Architectural
Record (March, 1967), 163-166.

Daniels, Robert L., et al., ICES PROJECT-I: Engineering User's
Manual, Cambridge: M. I. T , Dep. of Civil Engineering, 1968.

Gregory, S. A. , "Morphological Analysis: Some Simple Explorations",
Design Methods in Architecture, eds. Geoffrey Broadbent and

Anthony Ward, London: Lund Humphries, 1969.

Markus, Thomas A., "The Role of Building Performance Measurement
and Appraisal in Design Method", Design Methods in Architecture,
eds. Geoffrey Broadbent and Anthony Ward, London: Lund
Humphries, 1969,

Miller, William R., et al., "Matrix Method for Grouping an Inter-
related Set of Elements", Proceedings of the First Annual
Environmental Design Research Association Conference, Chapel
Hill, N. C., 1969.

Pack, Ludwig, et al., "Space-Allocation and Lay-Out", Management
International (October, 1966), 24-35.

Rapoport, Amos, "Facts and Models", Design Methods in Architecture,
eds. Geoffrey Broadbent and Anthony Ward, London: Lund
Humphries, 1969.

Souder, James J., et al., Planning for Hospitals: A Systems Approach

Using Computer-Aided Techniques, Chicago: American Hospital
Association, 1964.

Weissman, Clark, LISP 1. 5 Primer, Belmont, Calif : Dickenson, 1967.

Whitehead, B., and M. 7. Eldars, " An Approach to the Optimum Layout

of Single-Storey Buildings", The Architects' Journal (June 17, 1964)

1373-1380.

