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Abstract

In the aftermath of the destructive 1994 Northridge Earthquake in Southern
California, the earthquake engineering industry experienced a shift towards
expanding seismic requirements beyond surviving global collapse to include
performance criteria. As a part of this effort, the Pacific Earthquake Engineering
Research Center has developed a performance-based earthquake engineering
(PBEE) procedure that outputs relevant non-technical data to aid major building
stakeholders in making important decisions.

While PBEE has made great strides in the last decade, its current standing as a
verification tool has prevented it from being fully adopted by the seismic design
industry. In order for PBEE to be fully integrated into the seismic design process, a
method that circumvents the problems associated with the preferred method of
nonlinear analysis must be developed.

The following study compares interstory drift results from linear and nonlinear
analysis to gain insight into their relationship and determine conditions for which
linear analysis is an appropriate substitute, yielding a much faster and
computationally cheaper procedure. It is hoped that this study will contribute to the
adoption of linear analysis in the early seismic design stages, allowing for an optimal
structural system selection procedure that integrates performance metrics from the
beginning.
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1. Introduction

1.1 Traditional Seismic Design Methods

In earthquake engineering, technological developments and higher performance

requirements are shifting the seismic design landscape from traditional methods to

newer ones. Traditionally, engineers have adhered to a strength-based approach,

which prescribes that a building be safe for rare ground shaking demands and

remain safe for significant aftershocks.1 The first widely used set of design codes

against seismic loads in the United States was the Structural Engineers Associate of

California's (SEAOC) Recommended Lateral Force Requirements and Commentary in

1960, commonly known as the "Blue Book." By following Blue Book provisions,

structures should be able to: 2

- Resist minor earthquakes without damage;

- Resist moderate earthquakes without structural damage, but with some

nonstructural damage; and

- Resist major earthquakes, of the intensity of severity of the strongest

experience in California, without collapse, but with some structural as

well as nonstructural damage.

The magnitudes of earthquakes noted above are simply referred to as ground

motions in design, and their definitions have also evolved as the seismic codes

evolved. While a design basis earthquake (DBE), expressed as a 10% probability of

exceedance in 50 years was used for nearly three decades, a more stringent

parameter called the maximum considered earthquake ground motion (MCE) was

later adopted (2%/50 years). The code design philosophy was then to provide a

1 Moehle, "Performance-Based Seismic Design of Tall Buildings in the U.S.," 2.
2 SEAOC.
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uniform margin against collapse for the MCE, implemented by traditional means for

motions of 2/3 of the MCE. 3

While seismic events can be expressed as a probability of exceedance over a period

of time (e.g., 2%/50 years), they can inversely be expressed as a return period,

which is an estimate of the period of time between a specific magnitude of

earthquake. In the strength-based scenario, the capacities of individual structural

elements are designed to be greater than the demand associated with the

earthquake, with some damage permitted.

In 1994, the 6.7-magnitude Northridge Earthquake in Southern California caused

significant structural and nonstructural damage to many buildings in the area.

According to reports, hospitals and health care facilities experienced these damages

as well, which "impaired their ability to protect occupants during the earthquake

and to treat earthquake victims afterwards. Eleven hospitals were completely or

partially closed, and their patients evacuated, due to earthquake damage."4 This

devastating event forced structural engineers to reconsider the current strength-

based method of structural design and include serviceability after an earthquake

into design, so that predictable performance can be provided.

SEAOC's response to these concerns was a document called Vision 2000 that

signaled the advent of performance-based earthquake engineering (PBEE). Within

this document, performance levels for buildings in the aftermath of an earthquake

are defined, as well as ground motion design levels and performance objectives for

the structures.5 This improved method allows for the seismic design of a building

according to its importance and desired performance level. For instance, a hospital

is in a high importance category, since it must allow for immediate occupancy and

minimal component damage following a strong earthquake. Consequently, the

7

3Holmes, Kircher and Petak, 11.
4 Lin, v.
s Holmes, Kircher and Petak, 13.



stricter performance requirements of a hospital dictate a stronger design with a

higher associated cost than a typical building.

SEAOC's chart of seismic performance objectives, which balance performance levels

of buildings with ground motion levels to represent a specific design performance

objective, can be seen in Figure 1. In this chart, structures are organized into three

categories based on function and importance: ordinary buildings, essential

buildings, and hazardous facilities. These categories are represented as lines on a

chart that balance varying levels of earthquakes with building performance levels,

whose description can be seen in Table 1. Vision 2000 was a giant step in improving

the way buildings are designed against seismic loads. While designing against

collapse is certainly the priority in any structural design, post-seismic serviceability

was a strong and overlooked need that was exposed in the Northridge Earthquake.

VISION 2000 PERFORMANCE OBJECTIVES
Building Performance Levels

Fuly U16 Nw

I Eaale
(50% - 50years)

Rare

(1O% -We

M0Z

Figure 1: SEAOC's Vision 2000 Chart6
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Table 1: Vision 2000 Performance Objectives 7

Performance Level Description

No significant damage has occurred to structural and
Fully Functional nonstructural components. Building is suitable for

normal intended occupancy and use.

No significant damage has occurred to structure, which
retains nearly all of its pre-earthquake strength and

Operational stiffness. Nonstructural components are secure and most
would function, if utilities available. Building may be used
for intended purpose, albeit in an impaired mode.

Significant damage to structural elements, with
substantial reduction in stiffness, however, margin

Life Safe remains against collapse. Nonstructural elements are
secured but may not function. Occupancy may be
prevented until repairs can be instituted

Substantial structural and nonstructural damage.
Structural strength and stiffness substantially degraded.

Near Collapse Little margin against collapse. Some falling debris
hazards may have occurred.

While Vision 2000's conception in the mid-1990s was a groundbreaking

advancement in seismic design, a shortcoming in its definitions of performance

levels prevented it from being a completely useful and adopted tool. In Table 1, it

can be seen that performance levels are defined in non-quantitive descriptions,

which are not particularly useful in design. Consequently, performance targets are

vague and it is hard to say whether a design meets these vague criteria or not.

Additionally, building owners, who sometimes provide specific performance criteria

and assume the costs of both the initial structural and repairs after an earthquake,

are not as involved in the decisions within the design process as they should be.

9

7 Hamburger.



1.2 Next-Generation Seismic Design

While Vision 2000 provided a significant step in earthquake engineering by setting

design requirements beyond global structural collapse, the lack of quantitative and

descriptive measures of damage remained a hurdle to making PBEE a widely

adopted and useful process. A better design process would include damage

estimates under seismic events that major stakeholders of the building can evaluate

before making decisions or approvals. This loss is not limited to the costs of repairs

and replacements to damaged components, but can also extend to downtime during

these repairs and other nonmonetary losses.

Recently, earthquake engineering experts have been developing an improvement to

the PBEE process that focuses on setting performance criteria and quantifying the

aforementioned losses in order that all important decision makers be involved in

the design process. These developments and their implementation in seismic design

have become an increasingly popular research field over the past decade.

Professionals in the earthquake engineering field are improving the PBEE process

by developing design and performance assessment methods that express building

design options in terms that the major stakeholders, including building owners and

insurance companies, will find most applicable to them. Performance criteria such

as damage to building components and downtime of building activities after an

earthquake can be specified during design, allowing for a more informed design

process that includes all the important decision makers and their needs. As a result,

buildings will not only be designed against collapse, but also adhere to stricter

performance criteria.

10



1.3 Pacific Earthquake Engineering Research Center

The primary promoting entity for PBEE, the Pacific Earthquake Engineering

Research Center (PEER), was established as a consortium of nine West Coast

Universities in 1996 and has since grown to include investigators from over twenty

universities, several consulting companies, and researchers at various government

agencies that work on developing PBEE technology. PEER's mission is to "develop,

validate, and disseminate performance-based seismic design technologies for

buildings and infrastructure to meet the diverse economic and safety needs of

owners and society. [Their] research defines appropriate performance targets, and

develops engineering tools and criteria that can be used by practicing professionals

to achieve those targets, such as safety, cost, and post-earthquake functionality."8

In developing the PBEE approach, PEER is pursuing a method that is much more

scientifically based than the current code-based design method and whose results

are more meaningful to those who must make decisions for structures and networks

of structures. They recognize the need to formulate a consistent and reliable

approach to balance the relationship between engineering demands and member

performance. As research and design methods develop further, it is PEER's hope

that PBEE will be formalized into a widely accepted method in practice, replacing

first-generation methods of seismic design. An overview for the PBEE methodology

is outlined in the next chapter.

8 http://peer.berkeley.edu/about/what-is-peer.html
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2. Performance-Based Earthquake Engineering

2.1 Framework for Performance-Based Earthquake Engineering Methodology

In evaluating the previous earthquake engineering approaches, PEER noted that

finding a better method to determine the relationship between a seismic event and

damage incurred by the structure was a critical and necessary improvement.

Furthermore, they hoped to quantify this "damage" in more descriptive and useful

terms, each with significance to different parties. They hoped, for instance, that an

engineer could determine the probable downtime that the facility would incur given

a seismic event of a certain intensity. These outputs, rather than traditional

technical parameters such as floor accelerations and interstory drift ratios, are of

much more significance and interest to facility stakeholders. With this knowledge, a

balance between initial monetary investment of the design and projected loss over

the life of the building, with other performance metrics in mind, can be made by the

appropriate people.

As mentioned in the preceding chapter, seismic design is done in a probabilistic

manner. That is, the inherent uncertainty and variability in seismic response

prevents an engineer from designing a structure that will undoubtedly withstand an

earthquake. It is impossible to know with absolutely certainty whether an

earthquake of a specific intensity will ever hit a certain geographical region.

Compounding this uncertainty is the fact that the behaviors of earthquakes of the

same intensity are not identical, resulting in differing building responses between

these events. Therefore, all variables associated with PEER's framework for PBEE,

which was introduced in its final form in 2005, are expressed as probabilities of

exceedance.

In PEER's framework for PBEE, earthquake intensity measures, such as peak ground

accelerations, are more directly translated into meaningful terms of damage. From

12



these non-technical descriptions of damage, appropriate parties are able to make

informed design decisions. A diagram for this framework can be seen in Figure 2.9

Figure 2: PEER Framework for Performance-Based Earthquake Engineering

2.2 Current Performance-Based Methodology

Figure 2 shows that PEER's methodology for seismic performance evaluation yields

pertinent decision-making information after taking baseline facility information

through four separate analyses: a hazard analysis, structural analysis, damage

analysis, and loss analysis.

The first step of the framework, hazard analysis, involves evaluating a selected

Intensity Measure (IM), which is a characteristic of a specific earthquake. While

PEER has been working in close coordination with leaders in the earth science,

geotechnical engineering, and engineering seismology fields to develop alternative

IM variables, conventional variables currently being used in PBEE include peak

ground acceleration (PGA) and spectral acceleration at the period for the nth mode

9 Moehle and Deierlein, "A Framework Methodology for Performance-Based Earthquake

Engineering."
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of the structure (Sa(Tn)). 10 From this step, a specific value for the IM variable is

selected to reflect the intensity of the earthquake and governs the resulting building

behavior and damage. Within this probabilistic procedure, IM is typically described

as a mean annual probability of exceedance, p[IM].

In the structural analysis stage, a series of nonlinear dynamic analyses are executed

to determine engineering demand parameters (EDP) resulting from the selected

IMs.11 The nonlinear dynamic analyses output EDP values that express the structural

response of a building given an earthquake event; these results are given in terms of

deformations, accelerations, induced forces, or other quantities. A response function

can show the variation of building response to earthquakes of the same intensity.

Determining an appropriate EDP variable depends on the desired final damage

measurement, though the most commonly used variables are maximum interstory

drift ratios and peak floor accelerations. An EDP value can be quantified by finding

the probabilistic relationship between IM and EDP, p(EDPIIM), which can then be

integrated with the IM probability of exceedance to calculate the mean annual

probabilities of exceeding the desired EDP.

The next stage in the PBEE process is to relate EDPs to quantifiable damage

measures (DM) in a damage analysis stage. In this step, components in the structure

are organized into "performance groups" according to similar characteristics.

Performance groups can be arranged by location (within a story or by story),

structural significance (drift-sensitive structural or acceleration-sensitive

nonstructural elements), more discrete groups including a combination of the two,

or other divisions. In order to get a meaningful description of damage, performance

groups are arranged so that components within a group possess the same general

damage conditions as others within the group; this allows for damage to be

quantified and checked for both the global structural system and individual

10 Moehle and Deierlein, "A Framework Methodology for Performance-Based Earthquake

Engineering."
11 Moehle, "An Application of PEER PBEE Methodology."
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components of the building. For instance, nonstructural performance groups

(partitions or mechanical equipment) can be arranged by floor, with peak floor

accelerations governing their damage. With these performance groups, engineers

will more easily quantify the repair, safety, and monetary implications for various

EDP values. This quantification is done by calculating the mean annual probability of

exceedance for the DM, p(DM), by integrating the conditional probability p(DMIEDP)

with p(EDP).

The final step in the PEER's framework is to calculate decision variables (DV), which

are the key connections between raw data of a seismic event to the decision makers

of the building. DVs are descriptive terms of damage that are easily understood by

stakeholders in order to make informed design decisions. DVs can be quantified in

direct dollar losses, repair time, or casualties. As with the other three variables, the

mean annual probability of exceedance for DV, p(DV), is calculated by integrating the

DM probability with the conditional probability relating DV to DM. Equation 1 shows

the entire probabilistic result for the PBEE method expressed in a triple integral,

where A(DV) is the desired realization of the DV, and G is the complementary

cumulative distribution function.12

(DV)= J G(DVIDM) dG(DMEDP) dG(EDPIIM) dA(IM)

Equation 1: Formulation for Evaluating Decision Variables in the PBEE Method

There are several ways to communicate decision variables, such as repair costs, to

the building owners. One such option is to express DVs as a distribution associated

with levels of IMs, as seen in Figure 3. In this situation, the owner can make an

informed decision on the level of earthquake that will cause a certain amount of

damage. Balancing the associated damage costs with initial investment, along with

12 Krawinkler, Zareian and Medina, 116.

15



other performance requirements, a level of earthquake against which a building will

be designed can be selected.
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3. Linear vs. Nonlinear Considerations in Seismic Design

3.1 Description of Nonlinear Structural Analysis

Due to the significantly larger computational cost and detail associated with

nonlinear structural analysis, many buildings are designed for seismic resistance

using elastic analysis. However, in highly seismic areas, it is not economically

feasible to design a building to remain fully elastic under extreme ground motions.13

For this reason, enabled by advancing computational capabilities, the earthquake

engineering field is increasingly using nonlinear analysis procedures, which allow

for structural response calculations into the plastic range.

As opposed to the limitations of linear analysis, nonlinear analysis "provides the

means for calculating structural response beyond the elastic range, including

strength and stiffness deterioration associated with inelastic materials behavior and

large displacements."14 This method takes into account a structural member's

abrupt transition from elastic to plastic behavior under extreme loading, requiring

the structure to redistribute load capacity among other members.

In addition to the loss of strength due to the onset of plastic behavior in structural

members, geometric nonlinear effects also contribute to lateral structural

instability. These effects are caused by gravity loading on the deformed

configuration of the structure, leading to an increase of internal forces in members

and connections.15 When classifying the effects, those associated with deformations

within a member (P-a effect) are differentiated from those on a global scale (P-A

effect) that are exacerbated by interstory drifts. In the analysis of a structure under

a large event, the latter is more of a concern due to the magnification of internal

13 Moehle, "Performance-Based Seismic Design of Tall Buildings in the U.S.," 2.
14 Deierlein, Reinhorn and Willford, 1.
is Deierlein, Reinhorn and Willford, 9.
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forces and moments throughout the building due to the nonlinearity; consequently,

the structure loses lateral stiffness and thus lateral strength.

3.2 Implementation of Nonlinear Analysis

While many undefined aspects of nonlinear analysis procedures have yet to be

determined, guidelines (FEMA 356, 2000) and code requirements (ASCE 7, 2002;

IBC, 2003; UBC, 1997) for these procedures exist.16 With code-based procedures,

seismic ground shaking levels for PBEE are typically based on approved contour

maps or response spectrum shapes provided. However, a more thorough and

accurate method would be to undergo the site-specific seismic hazard analysis as

described in Chapter 2. In this analysis, representative ground motion records for

site-specific conditions are selected for the building.

In current practice, it is typical to select and manipulate earthquake records from

databases and apply them to the structure after manipulating them to represent

target intensity measures. This manipulation can be done by either scaling or

spectrum matching. Scaling involves applying a constant factor to the earthquake

record in order to make the peak response match the design spectrum at a target

period(s). An advantage of this method is that the earthquake records maintain

their time-dependent characteristics, such as the peaks and valleys in the record, as

scaling only affects the magnitude; an example of scaling for two earthquake records

to an acceleration of 1 g can be seen in Figure 4. In spectrum matching, "individual

ground motion records are manipulated (usually in the time domain by addition of

wave packets) to adjust the linear response spectrum of the motion so it matches

the target design response spectrum."' 7

16 Moehle, "Nonlinear Analysis for Performance-Based Earthquake Engineering," 385.
17 Moehle, "Performance-Based Seismic Design of Tall Buildings in the U.S.," 4.
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San Fernando Earthquake Record Scaled to an Acceleration of g
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Figure 4: Scaling of the San Fernando and Loma Prieta Earthquakes to a Peak Intensity of g

After the appropriate selection and manipulation of ground motion records,

building response under these loads are studied. Taking into account nonlinear

action, analysis can be done to estimate the internal forces associated with the

nonlinear response from the earthquakes, including the P-A effects and formation of

19



plastic hinges. Additionally, records can be scaled to different values to observe the

nonlinear response of the structure under varying earthquake intensities as well.

3.3 Reasons for Using Nonlinear Analysis

Due to its more precise description of a structure's behavior under extensive

loading, nonlinear analysis has become increasingly popular in PBEE.1 8 Linear

analysis procedures, while computationally cheaper, generally provide poor

indications both of the level of axial load and the degree of nonlinear action

required. 19 Implemented properly, nonlinear dynamic analysis specific to the

structural system and seismic environment is the best way to identify nonlinear

dynamic response characteristic, including yield mechanisms, associated internal

forces, deformation demands, and detailing requirements.20

Another important factor favoring the use of nonlinear analysis is the fact that

"internal actions cannot be scaled directly from linear results; similarly, nonlinear

behavior at one hazard level cannot be scaled from nonlinear results at another

hazard level."21 Therefore, using linear analysis for a seismic event does not create a

general building performance envelope that can accurately be scaled for other

earthquakes; individual seismic load cases must be run. As noted in a previous

chapter, every earthquake record has unique characteristics that may have different

effects on a building, such as the formation of plastic hinges in different structural

members. In order to fully capture these effects, nonlinear analysis should be

performed for each seismic load case.

18 Moehle, "Performance-Based Seismic Design of Tall Buildings in the U.S.," 1.
19 Moehle, "Nonlinear Analysis for Performance-Based Earthquake Engineering," 385.
20 Moehle, "Performance-Based Seismic Design of Tall Buildings in the U.S.," 7.
21 Moehle, "Nonlinear Analysis for Performance-Based Earthquake Engineering," 394.
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4. Shortcomings of Performance-Based Earthquake Engineering

While PBEE has rapidly increased in development over the last decade, there still

remain many undefined aspects of the process that require further research before

full implementation in the structural engineering industry. At this point, PBEE's

strongest application in the professional industry is in performance assessment, and

it is currently being used for design improvements and retrofits. Unfortunately,

PBEE currently lacks design strategies, which prevent it from having a significant

role in the building design process. PEER hopes that further research will change

this, however, and believes that the methodology can eventually "be used as a

means of calibrating simplified procedures that might be used for the advancement

of building codes."22 Until a formalized procedure for PBEE in structural design is

developed, its role in the structural engineering industry will be incomplete.

Since PBEE's implementation currently lies in performance assessment, building

design is completed separately from this stage. Consequently, the selection of a

structural system is governed by the strength requirements of the building; only

after making this selection and a subsequent full design is seismic performance

evaluated. The selected structure will typically require adjustments in order to meet

prescribed performance criteria, though these adjustments are made to the fully

designed structure and not the structural system.

Separating design and performance assessment is a suboptimal process, as "a poor

initial conceptual design may be tuned to an extent that it fulfills the performance

targets, but it likely will never become a good design."23 Implementing performance

criteria into the early design stages will likely yield optimal results, as subsequent

performance assessment can serve as verification of the structural system. Rather

than serviceability adjustments to smaller components of the structure after the

22 Moehle and Deierlein, "A Framework Methodology for Performance-Based Earthquake

Engineering," 10.
23 Krawinkler, Zareian and Medina, 116.
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system is selected, iterations on a larger scale with performance targets in mind can

yield an efficient structural system. Unfortunately, this iteration is impractical under

current PBEE methods for a few reasons.

As noted in Chapter 3, the occurrence of structural damage is more directly related

to deformation than lateral force level for a yielding building.24 Therefore, under

seismic loads, nonlinear analysis is the preferred (and still developing) analytical

tool as it more clearly and accurately captures the behavior of a building under large

and varying forces. This procedure brings a building beyond elastic behavior and

takes into account deterioration of structural elements and P-A effects, resulting in

redistribution of forces throughout the structure.

While nonlinear analysis is a more accurate method for capturing a building's

behavior, its implementation in current PBEE procedures makes selecting a

structural system in the early design stages very difficult. Nonlinear analysis is

computationally costly due to the many changes and iterations performed at

different stages of loading. As a result, significant time is required to perform the

nonlinear analysis for an entire building model. Since several iterations are likely

required in order to develop an optimal structural system that meets all strength

and performance requirements, implementing nonlinear analysis, while preferred,

is very inefficient.

Compounding the issue of significant time associated with nonlinear analysis is that

this duration of time is dependent on the size of the finite element model. In many

cases, building models will have thousands of nodes and members, requiring very

long iteration times. Additionally, the large number of model components makes

determining which members have a significant effect on performance very difficult.

Altering members and load distributions without fully knowing their effects on the

system, and then running a computationally costly nonlinear analysis, makes for a

24 Moehle, "Nonlinear Analysis for Performance-Based Earthquake Engineering," 385.
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very frustrating process. Until this issue is resolved, implementing performance

metrics in the early design stages is impractical.
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5. Study Overview

Though formal PBEE design procedures have yet to be developed, this study hopes

to contribute to this effort by addressing some of the problems listed in Chapter 4.

As noted, one potential improvement in seismic design optimization is to integrate

performance criteria consideration into the early design stages, allowing the

selection of a structural system to be based on both strength and performance.

However, this goal can only be attained through a solution that circumvents the

problems associated with nonlinear analysis.

While nonlinear analysis is the more accurate and preferred method to measure

structural performance under large seismic events, this study seeks to determine

whether linear analysis is an adequate substitute for the initial stages of design.

Should this be the case, structural system iteration would be a very realistic

possibility due to the significant time savings associated with switching from

complex computations to simpler ones due to the assumption of elastic behavior. In

this scenario, nonlinear analysis for a full description of the building's performance

can be executed after the initial and optimal structural system is selected.

The following study will be focused on the optimization of the structural systems of

steel buildings. In determining whether utilizing linear analysis in the initial design

stage is appropriate, two variables will be studied to see their effects in comparing

linear and nonlinear analysis: building damping and earthquake intensity. By

studying these parameters, it will become more apparent whether each has a

significant effect, if any, on the comparison.
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6. Analysis Procedure

6.1 The Model

6.1.1 Analysis Overview

In this study, a comparison of linear and nonlinear seismic performance is executed

for a two-dimensional steel building. While a three-dimensional model would more

accurately measure the behavior of a real building, the author seeks to determine

whether a close relationship between linear and nonlinear analysis exists on the

most rudimentary level. Should a relationship exist, a more complex and

computationally intensive three-dimensional building can be studied.

To determine whether linear analysis is a suitable substitute for nonlinear analysis

in the beginning stages of PBEE design, the percent error between linear and

nonlinear analysis results will be calculated and evaluated. Additionally, results with

varying parameters will also be compared to determine whether these parameters

have an effect on the results, which will assist in developing future design

recommendations.

6.1.2 Details of the Building Model

In this study, a 90-foot six-story steel frame building with three 20-foot bays and

fixed base supports will be considered, modeled, and analyzed in SAP2000. An

unfactored superimposed dead load of 20 psf and live load of 100 psf are applied on

each beam, assuming a beam tributary depth of 20 feet. Upon application of gravity

loads, a typical linear analysis was performed. Then, member sizes for the beams

and columns were automatically designed by SAP2000 according to conventional

code design procedures to reflect an appropriate building design. The building

model with labeled member sizes can be seen in Figure 5.
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Figure 5: 2-D Building Model with Steel Member Labels

In addition to dimension, fixities, and typical member selection, a couple of

additional details were added to the model to improve accuracy in modeling linear

and nonlinear models. First, each floor was modeled as a rigid diaphragm by floor;

this will be helpful in determining maximum interstory drift ratios, as the drift of

every node per floor displaces the same amount. Second, plastic hinges were applied

at both extremities of each steel member, which does not affect linear analysis and

allows for nonlinear action under extreme loading in a nonlinear analysis. A photo

of the model with plastic hinges can be seen in Figure 6.
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Figure 6: 2-D Building Model with Plastic Hinges

6.2 Earthquake Records

Due to the probabilistic nature of a building's response to a given earthquake

intensity, three time-history records of California earthquakes were run through the

SAP2000 building model: the San Fernando Earthquake of 1971, Loma Prieta

Earthquake of 1989, and Northridge Earthquake of 1994. These records can be seen

in Figure 7-Figure 9. In order to properly compare the building behavior under

these different records, the earthquake records were scaled prior to each analysis so

that all peak ground accelerations matched while keeping individual time-

dependent characteristics. As this study seeks to determine the relationship
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between linear and nonlinear analyses under various seismic conditions, some

records were scaled to unlikely intensities in order to see whether this relationship

was intensity-dependent.

San Fernando Earthquake

5 10 15 20 2
Time (s)

Figure 7: Record of San Fernando Earthquake

Lorna Prieta Earthquake in Waho

15
Time (s)

Figure 8: Record of Loma Prieta Earthquake
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Northridge Earthquake in Leona Valley
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Figure 9: Record of Northridge Earthquake

6.3 Design Parameters

The overlying hope of this study is to determine whether linear analysis is an

appropriate substitute for nonlinear analysis in the initial stages of design in order

to achieve an optimal structural system. Within this general goal, the building's

behavior under two variables was also observed in order to see whether the

relationship between linear and nonlinear analysis depends on either. These

variables are the damping of the structure and the earthquake intensity. It is the

author's hope that, should these variables have a significant effect, design

recommendations can be made from these relationships to advance PBEE's effort to

have a larger role in building design.

Typically, concrete buildings have damping properties at around five percent of

critical damping, while steel buildings commonly have damping in the range of two
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to three percent of critical damping.25 By varying damping between two, five, and

ten percent of critical damping in this study, it will be determined whether there is

an optimal damping level for the purposes of using linear models in the early stages

of design. In addition to varying damping, the intensity of the earthquakes will also

be varied in order to see whether this has an effect on the linear-nonlinear

relationship. Intensities will vary between 0.167g, 0.33g, 0.5g, 0.6g, 0.9g, g, 1.5g, 2g,

and 3g. While an earthquake with a peak acceleration of 3g is rare, this value was

chosen to see if a very severe earthquake has an effect on the observed relationship.

While several engineering demand parameters exist in PBEE, this study focused on

the peak interstory drift ratio between all floors as the EDP. Due to the behavior of

each floor as a diaphragm, it was only necessary to monitor one node per floor. EDP

values for the linear and nonlinear analyses were compared for each set of

variables.

6.4 Analysis Methods

When running an earthquake record through a structure in SAP2000, several linear

and nonlinear analysis options exist. In this study, a linear time-history analysis was

performed using the modal analysis procedure provided by SAP2000. This is the

simplest and fastest way to perform a time-history seismic analysis. The nonlinear

analysis was performed through means of direct integration. This method is more

time-consuming than the modal "time-history type." However, due to the more

intense computation completed in the direct integration case, results are more

accurate and the data more reliable. The earthquake loads began with initial

conditions after applying the gravity loads; this initial condition takes into account

P-A effects. Figure 10 shows these options in a SAP2000 window.

25 Moehle, "Performance-Based Seismic Design of Tall Buildings in the U.S.", 5.
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6.5 Results

Results of the comparisons between linear and nonlinear analyses for the three

earthquakes by varying both the building damping and earthquake intensities can

be seen in Table 2Table 4; a full record of displacements and interstory drift ratios

can be seen in the Appendix. In the tables, earthquake cases in which the building

was unable to complete the analysis due to low damping and an overwhelming

earthquake are denoted in black. While there are several interesting conclusions

that can be drawn from the results, the fact that the errors for lower-level

earthquake intensities are relatively small is one that is most relevant. For

earthquake load cases in which the building does not form plastic hinges, noted in

pink in the tables, linear and nonlinear results should be identical. This is not the

case for the results, though this error can be attributed to the way the analysis was

defined. For this SAP2000 model, building damping is specified only for the first two

modes of the structure, and follows the "proportional damping" specification in the

program. Had the damping been consistent for all modes, the results for linear and

nonlinear analysis might converge, as it should.
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Table 2: Percent Errors for Linear and Nonlinear Analyses for the San Fernando Earthquake

2% 5% 10%
0.167g 35.22% 16.55% 7.41%
0.33g 32.93% 16.86% 7.41%

0.5g 42.60% 19.73% 8.34%
0.6g 91.87% 18.45% 4.82%
0.9g 64.14% 94.58% 5.76%

99.82%1 99.53% 97.80%

74.81%
on

Table 3: Percent Errors for Linear and Nonlinear Analyses for the Loma Prieta Earthquake

2% 5% 10%
0.167g 22.73% 16.50% 11.93%
0.33g 22.73% 16.50% 11.93%
0.5g 22.73% 16.50% 11.93%

0.6g 36.55% 24.26% 11.93%
0.9g 43.58% 27.28% 11.93%

g
1.5g
2g

3g
Ni

50.88% 27.12% 14.55%

12.92%

4.49%

99.39%

For earthquake intensities that create plastic hinges in the structure, it seems that

the disparity between linear and nonlinear analysis remains relatively small until

significantly larger earthquake intensities are experienced. In the case of the Loma

Prieta Earthquake, the percent error between linear and nonlinear results remain at

11.93% through an intensity of 0.9g even though plastic hinges form beginning at an

intensity of 0.5g. All three earthquakes show the same general behavior of the

percent error only slightly increasing as the earthquake intensity increases until a

certain magnitude, when the error increases dramatically. This is due to the fact that
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while plastic hinges form in the structure, there is not a large disparity in the linear

and nonlinear analyses until the plastic hinges are fully developed in the structure,

at which point the structure becomes unstable. Figure 9 shows the formation of

plastic hinges for 10% building damping, when the percent error jumps from

12.32% for a g-level earthquake to 99.17% error for a 2g-level earthquake.

Table 4: Percent Errors for Linear and Nonlinear Analyses for the Northridge Earthquake

2% 5% 10%

0.167g 11.16% 5.05% 6.87%

0.33g 11.16% 5.04% 6.87%
0.5g 10.82% 5.05% 6.87%

0.6g 9.10% 5.32% 7.28%

0.9g 2.91% 7.86% 8.64%

g
1.5g

2g

3g
N<

Figure 11: Plastic Hinges for a g-level.(left) and 2g-level (right) Northridge Earthquake
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In addition to earthquake intensity, the structure's damping was also studied in

order to see if there is a correlation between error associated with both linear and

nonlinear analyses and this parameter. While earthquake intensity may be the

primary driver for diverging results, damping does have an effect due to the fact that

plastic hinges form later in highly damped structures. Therefore, linear results will

remain valid for a longer period of time with high damping.

While evaluating percent error is a good quantitative comparison of linear and

nonlinear results, qualitatively seeing their comparison in a fragility function is also

useful. A table of peak interstory drift ratios (story drift/story height) for the

building in the Northridge Earthquake in Waho with 2% damping can be seen in

Table 5. The linear and nonlinear results for each case can be plotted on the fragility

function for a commercial building, seen in Figure 12. In the figure, the linear and

nonlinear peak interstory drift ratios are close enough that damage estimates can

approximately be found by using linear results in lieu of nonlinear ones. However,

values will follow the same trend as the percent error trends, where higher damping

and lower earthquake intensities yield a closer relationship between the two

analyses.

Table 5: Peak Interstory Drift Ratio of Northridge Earthquake

Linear (in/in) Nonlinear (in/in)

g/6, 2% Waho 0.035 0.027

g/3, 2% Waho 0.069 0.055

g/2, 2% Waho 0.103 0.082

0.60g, 2% Waho 0.124 0.084

0.9g, 2% Waho 0.186 0.120

1g, 2% Waho 0.207 0.129
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Figure 12: Fragility Function for a Commercial Building with Results from the Northridge Earthquake26
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7. Conclusion

Recent developments in earthquake engineering have the industry trending

towards procedures that involve performance requirements in addition to

traditional collapse prevention. This emphasis began in earnest when the

Northridge Earthquake hit Southern California in 1994, causing severe structural

damage in many of the structures in the area. The latest iteration of performance-

based earthquake engineering, championed by PEER, has been developed over the

last decade.

While PEER's current PBEE methodology is a good tool for verifying that a building

meets building performance criteria developed by the engineers and stakeholders, it

currently lacks a significant presence in the early design stages of structural design.

Rather than driving the structural system design, current practice involves selecting

a structural system for strength requirements and then checking and tuning the

structure for serviceability afterwards. This usually results in a suboptimal design

compared to one where performance is integrated into the design process and

system selection from the beginning.

The biggest obstacle to creating an optimal design procedure in which the structural

system is evaluated and iterated with performance criteria in mind is the fact that

nonlinear analysis, the preferred and more accurate method in seismic analysis, is

computationally costly. Due to the computational cost, running a nonlinear analysis

takes a lot of time, and iterations using this analysis would be highly inefficient.

However, this study shows that it is possible to use linear analysis in lieu of

nonlinear analysis in the early design stages in order to get relatively accurate

results, depending on the building and earthquake properties. Results from this

study show that highly damped structures are more optimal in the structural system

iteration procedure due to the fact that large earthquakes are required in order for

plastic hinges to form in the steel members. As the error associated with using
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linear analysis instead of nonlinear analysis depends on plastic hinge formation in

the structure, having a highly damped structure will allow for the use of linear

analysis for a larger range of earthquake intensities. As nonlinear analysis is a better

procedure in accurately predicting a building's performance, it should still be used

on the building after the structural system is chosen and the entire building is

detailed.
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Summary of Percent Errors for San Fernando Earthquake

2% 5% 10%

g/6 35.22% 15% 7.41%
g/3 32.93% 16.86% 7.41%

g/2 42.60% 19.73% 8.34%
0.6g 91.87% 18.45% 4.82%
0.9g 64.14% 94.58% 5.76%

g
1.5g

99.82% 99.53% 97.80%
74.81%
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Peak Interstory Drift Ratios for San Fernando Earthquake

Linear (in/in) Nonlinear (in/in)

g/6, 2% SAN FERNANDO 90d 0.083 0.069
g/3, 2% SAN FERNANDO 90d 0.166 0.137
g/2, 2% SAN FERNANDO 90d 0.249 0.191
0.6g, 2% SAN FERNANDO 90d 0.299 48.838
0.9g, 2% SAN FERNANDO 90d 0.448 15.800

1g, 2% SAN FERNANDO 90d 0.498 610.167

Linear (in/in) Nonlinear (in/in)
g/6, 5% SAN FERNANDO 90d 0.055 0.054
g/3, 5% SAN FERNANDO 90d 0.111 0.108
g/2, 5% SAN FERNANDO 90d 0.166 0.157
0.6g, 5% SAN FERNANDO 0.200 0.191
0.9g, 5% SAN FERNANDO 0.300 172.003
1g, 5% SAN FERNANDO 90d 0.332 634.505

Linear (in/in) Nonlinear (in/in)
g/6, 10% SAN FERNANDO 90 0.033 0.039
g/3, 10% SAN FERNANDO 90 0.067 0.079
g/2, 10% SAN FERNANDO 90 0.100 0.118
0.6g, 10% SAN FERNANDO 0.137 0.138
0.9g, 10% SAN FERNANDO 0.205 0.212
g, 10% SAN FERNANDO 0.228 225.767

1.5g, 10% SAN FERNANDO 0.341 10.996
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Percent Error for 2% Damping for San Fernando Earthquake

Linear (in) Nonlinear (in) Percent Error
12 Translation g/6, 2% SAN FERNANDO 90d 1.09 0.74 47.82%
23 Translation g/6, 2% SAN FERNANDO 90d 3.85 2.66 44.52%
34 Translation g/6, 2% SAN FERNANDO 90d 7.07 5.09 39.12%
45 Translation g/6, 2% SAN FERNANDO 90d 10.15 7.65 32.75%
56 Translation g/6, 2% SAN FERNANDO 90d 12.97 10.25 26.54%

67 Translation g/6, 2% SAN FERNANDO 90d 14.94 12.39 20.58%
Average 35.22%

Linear (in) Nonlinear (in) Percent Error

12 Translation g/3, 2% SAN FERNANDO 90d 2.19 1.48 48.18%
23 Translation g/3, 2% SAN FERNANDO 90d 7.70 5.48 40.56%

34 Translation g/3, 2% SAN FERNANDO 90d 14.15 10.53 34.34%
45 Translation g/3, 2% SAN FERNANDO 90d 20.30 15.76 28.81%
56 Translation g/3, 2% SAN FERNANDO 90d 25.94 20.80 24.73%
67 Translation g/3, 2% SAN FERNANDO 90d 29.87 24.70 20.94%

Average 32.93%

Linear (in) Nonlinear (in) Percent Error

12 Translation g/2, 2% SAN FERNANDO 90d 3.28 2.03 61.43%
23 Translation g/2, 2% SAN FERNANDO 90d 11.55 7.60 51.89%
34 Translation g/2, 2% SAN FERNANDO 90d 21.22 14.85 42.89%
45 Translation g/2, 2% SAN FERNANDO 90d 30.45 22.32 36.43%
56 Translation g/2, 2% SAN FERNANDO 90d 38.91 29.31 32.75%
67 Translation g/2, 2% SAN FERNANDO 90d 44.81 34.41 30.22%

Average 42.60%

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.6g, 2% SAN FERNANDO 90d 3.94 119.32 96.70%
23 Translation 0.6g, 2% SAN FERNANDO 90d 13.86 4393.94 99.68%
34 Translation 0.6g, 2% SAN FERNANDO 90d 25.48 100.70 74.70%
45 Translation 0.6g, 2% SAN FERNANDO 90d 36.56 8790.85 99.58%
56 Translation 0.6g, 2% SAN FERNANDO 90d 46.72 254.48 81.64%

67 Translation 0.6g, 2% SAN FERNANDO 90d 53.80 5032.73 98.93%
Average 91.87%
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Percent Error for 2% Damping for San Fernando Earthquake

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.9g, 2% SAN FERNANDO 90d 5.91 8.13 27.27%

23 Translation 0.9g, 2% SAN FERNANDO 90d 20.79 51.54 59.67%

34 Translation 0.9g, 2% SAN FERNANDO 90d 38.21 42.19 9.44%

45 Translation 0.9g, 2% SAN FERNANDO 90d 54.82 2632.48 97.92%

56 Translation 0.9g, 2% SAN FERNANDO 90d 70.05 1053.81 93.35%

67 Translation 0.9g, 2% SAN FERNANDO 90d 80.67 2843.99 97.16%

Average 64.14%

Linear (in) Nonlinear (in) Percent Error

12 Translation 1g, 2% SAN FERNANDO 90d 6.57 33257.28 99.98%

23 Translation ig, 2% SAN FERNANDO 90d 23.09 17333.19 99.87%

34 Translation 1g, 2% SAN FERNANDO 90d 42.45 7236.83 99.41%

45 Translation 1g, 2% SAN FERNANDO 90d 60.90 109830.00 99.94%

56 Translation 1g, 2% SAN FERNANDO 90d 77.82 104873.10 99.93%

67 Translation 1g, 2% SAN FERNANDO 90d 89.62 40043.17 99.78%

Average 99.82%
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Percent Error for 5% Damping for San Fernando Earthquake

Linear (in) Nonlinear (in) Percent Error
12 Translation g/6, 5% SAN FERNANDO 90d 0.72 0.54 32.77%
23 Translation g/6, 5% SAN FERNANDO 90d 2.52 2.00 26.06%
34 Translation g/6, 5% SAN FERNANDO 90d 4.64 3.91 18.75%
45 Translation g/6, 5% SAN FERNANDO 90d 6.67 5.93 12.46%

56 Translation g/6, 5% SAN FERNANDO 90d 8.57 8.01 6.97%
67 Translation g/6, 5% SAN FERNANDO 90d 9.95 9.73 2.27%

Average 16.55%

Linear (in) Nonlinear (in) Percent Error

12 Translation g/3, 5% SAN FERNANDO 90d 1.44 1.07 34.09%

23 Translation g/3, 5% SAN FERNANDO 90d 5.05 3.96 27.32%
34 Translation g/3, 5% SAN FERNANDO 90d 9.28 7.83 18.53%
45 Translation g/3, 5% SAN FERNANDO 90d 13.34 11.90 12.08%
56 Translation g/3, 5% SAN FERNANDO 90d 17.14 16.04 6.88%
67 Translation g/3, 5% SAN FERNANDO 90d 19.90 19.46 2.27%

Average 16.86%

Linear (in) Nonlinear (in) Percent Error

12 Translation g/2, 5% SAN FERNANDO 90d 2.15 1.53 40.97%

23 Translation g/2, 5% SAN FERNANDO 90d 7.57 5.73 32.14%

34 Translation g/2, 5% SAN FERNANDO 90d 13.92 11.60 20.04%

45 Translation g/2, 5% SAN FERNANDO 90d 20.01 17.90 11.79%
56 Translation g/2, 5% SAN FERNANDO 90d 25.71 23.81 7.98%
67 Translation g/2, 5% SAN FERNANDO 90d 29.85 28.30 5.46%

Average 19.73%

12 Translation 0.6g, 5% SAN FERNANDO 2.58 1.82 41.65%

23 Translation 0.6g, 5% SAN FERNANDO 9.09 6.93 31.18%
34 Translation 0.6g, 5% SAN FERNANDO 16.71 14.17 17.96%
45 Translation 0.6g, 5% SAN FERNANDO 24.03 21.97 9.36%
56 Translation 0.6g, 5% SAN FERNANDO 30.87 29.15 5.90%
67 Translation 0.6g, 5% SAN FERNANDO 35.97 34.37 4.66%

Average 18.45%

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.9g, 5% SAN FERNANDO 3.88 13.03 70.25%

23 Translation 0.9g, 5% SAN FERNANDO 13.63 76.83 82.26%

34 Translation 0.9g, 5% SAN FERNANDO 25.06 14621.20 99.83%

45 Translation 0.9g, 5% SAN FERNANDO 36.03 895.17 95.98%

56 Translation 0.9g, 5% SAN FERNANDO 46.29 30960.50 99.85%

67 Translation 0.9g, 5% SAN FERNANDO 53.93 327.60 83.54%

Average 88.62%
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Percent Error for 5% Damping for San Fernando Earthquake

Linear (in) Nonlinear (in) Percent Error
12 Translation 1g, 5% SAN FERNANDO 90d 4.31 1365.87 99.68%
23 Translation 1g, 5% SAN FERNANDO 90d 15.14 114210.88 99.99%
34 Translation 1g, 5% SAN FERNANDO 90d 27.84 99426.79 99.97%
45 Translation 1g, 5% SAN FERNANDO 90d 40.02 9079.56 99.56%
56 Translation 1g, 5% SAN FERNANDO 90d 51.42 7928.11 99.35%
67 Translation 1g, 5% SAN FERNANDO 90d 59.70 4409.08 98.65%

Average 99.53%
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Percent Error for 10% Damping for San Fernando Earthquake

Linear (in) Nonlinear (in) Percent Error
12 Translation g/6, 10% SAN FERNANDO 90 0.43 0.40 7.56%
23 Translation g/6, 10% SAN FERNANDO 90 1.52 1.46 3.78%
34 Translation g/6, 10% SAN FERNANDO 90 2.78 2.80 0.82%
45 Translation g/6, 10% SAN FERNANDO 90 4.00 4.24 5.66%
56 Translation g/6, 10% SAN FERNANDO 90 5.14 5.79 11.15%
67 Translation g/6, 10% SAN FERNANDO 90 5.99 7.09 15.51%

Average 7.41%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/3, 10% SAN FERNANDO 90 0.86 0.80 7.56%
23 Translation g/3, 10% SAN FERNANDO 90 3.03 2.92 3.78%
34 Translation g/3, 10% SAN FERNANDO 90 5.56 5.61 0.82%
45 Translation g/3, 10% SAN FERNANDO 90 7.99 8.47 5.66%
56 Translation g/3, 10% SAN FERNANDO 90 10.29 11.58 11.15%
67 Translation g/3, 10% SAN FERNANDO 90 11.97 14.17 15.51%

Average 7.41%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/2, 10% SAN FERNANDO 90 1.30 1.18 10.03%
23 Translation g/2, 10% SAN FERNANDO 90 4.55 4.33 4.94%
34 Translation g/2, 10% SAN FERNANDO 90 8.34 8.46 1.33%
45 Translation g/2, 10% SAN FERNANDO 90 11.99 12.84 6.63%
56 Translation g/2, 10% SAN FERNANDO 90 15.43 17.46 11.58%
67 Translation g/2, 10% SAN FERNANDO 90 17.96 21.27 15.55%

Average 8.34%

Linear (in) Nonlinear (in) Percent Error
12 Translation 0.6g, 10% SAN FERNANDO 1.56 1.36 14.54%
23 Translation 0.6g, 10% SAN FERNANDO 5.46 5.01 8.94%
34 Translation 0.6g, 10% SAN FERNANDO 10.09 9.91 1.86%
45 Translation 0.6g, 10% SAN FERNANDO 15.03 15.17 0.92%
56 Translation 0.6g, 10% SAN FERNANDO 20.25 20.56 1.53%
67 Translation 0.6g, 10% SAN FERNANDO 24.60 24.88 1.13%

Average 4.82%
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Percent Error for 10% Damping for San Fernando Earthquake

Linear (in) Nonlinear (in) Percent Error
12 Translation 0.9g, 10% SAN FERNANDO 2.34 2.09 11.76%
23 Translation 0.9g, 10% SAN FERNANDO 8.18 7.85 4.25%
34 Translation 0.9g, 10% SAN FERNANDO 15.14 15.65 3.29%
45 Translation 0.9g, 10% SAN FERNANDO 22.54 24.03 6.21%
56 Translation 0.9g, 10% SAN FERNANDO 30.36 32.20 5.72%
67 Translation 0.9g, 10% SAN FERNANDO 36.88 38.16 3.34%

Average 5.76%

Linear (in) Nonlinear (in) Percent Error
12 Translation g, 10% SAN FERNANDO 2.59 49.63 94.77%
23 Translation g, 10% SAN FERNANDO 9.09 212.85 95.73%
34 Translation g, 10% SAN FERNANDO 16.81 17955.67 99.91%
45 Translation g, 10% SAN FERNANDO 25.04 2028.34 98.77%
56 Translation g, 10% SAN FERNANDO 33.73 40638.03 99.92%
67 Translation g, 10% SAN FERNANDO 40.98 1805.05 97.73%

Average 97.80%

Linear (in) Nonlinear (in) Percent Error
12 Translation 1.5g, 10% SAN FERNANDO 3.89 3.62 7.62%
23 Translation 1.5g, 10% SAN FERNANDO 13.64 28.99 52.96%
34 Translation 1.5g, 10% SAN FERNANDO 25.22 763.04 96.69%
45 Translation 1.5g, 10% SAN FERNANDO 37.55 1754.57 97.86%
56 Translation 1.5g, 10% SAN FERNANDO 50.58 1599.23 96.84%
67 Translation 1.5g, 10% SAN FERNANDO 61.46 1979.32 96.90%

Average 74.81%
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Summary of Percent Errors for Loma Prieta Earthquake in Waho

2% 5% 10%
g/6 22.73% 16.50% 11.93%

g/3 22.73% 16.50% 11.93%
g/2 22.73% 16.50% 11.93%

0.6g 36.55% 24.26% 11.93%
0.9g 43.58% 27.28% 11.93%

g
1.5g
2g

3g

50.88% 27.12% 14.55%
12.92%
4.49%

99.39%
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Peak Interstory Drift Ratios for Loma Prieta Earthquake in Waho

Linear (in/in) Nonlinear (in/in)
g/6, 2% Waho 0.035 0.027
g/3, 2% Waho 0.069 0.055
g/2, 2% Waho 0.103 0.082
0.60g, 2% Waho 0.124 0.084
0.9g, 2% Waho 0.186 0.120

1g, 2% Waho 0.207 0.129

Linear (in/in) Nonlinear (in/in)

g/6, 5% Waho 0.027 0.022
g/3, 5% Waho 0.055 0.044
g/2, 5% Waho 0.082 0.066
0.6g, 5% Waho 0.132 0.100
0.9g, 5% Waho 0.148 0.106
1g, 5% Waho 0.164 0.118

1.5g, 5% Waho 0.247 0.188

Linear (in/in) Nonlinear (in/in)

g/6, 10% Waho 0.020 0.017
g/3, 10% Waho 0.040 0.033
g/2, 10% Waho 0.060 0.050
0.6g, 10% Waho 0.072 0.060
0.9g, 10% Waho 0.109 0.089
1g, 10% Waho 0.120 0.097
1.5g, 10% Waho 0.181 0.148
2g, 10% Waho 0.241 0.221
3g, 10% Waho 0.362 143.757
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Percent Error for 2% Damping for Loma Prieta Earthquake in Waho

Linear (in) Nonlinear (in) Percent Error
12 Translation g/6, 2% Waho 0.44 0.36 23.89%
23 Translation g/6, 2% Waho 1.46 1.22 19.75%
34 Translation g/6, 2% Waho 2.64 2.19 20.50%
45 Translation g/6, 2% Waho 3.82 3.11 22.90%
56 Translation g/6, 2% Waho 5.02 4.09 22.83%
67 Translation g/6, 2% Waho 6.22 4.92 26.50%

Average 22.73%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/3, 2% Waho 0.88 0.71 23.89%
23 Translation g/3, 2% Waho 2.92 2.44 19.75%
34 Translation g/3, 2% Waho 5.27 4.37 20.50%
45 Translation g/3, 2% Waho 7.65 6.22 22.90%
56 Translation g/3, 2% Waho 10.04 8.17 22.83%
67 Translation g/3, 2% Waho 12.44 9.83 26.50%

Average 22.73%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/2, 2% Waho 1.32 1.06 23.89%
23 Translation g/2, 2% Waho 4.37 3.65 19.75%
34 Translation g/2, 2% Waho 7.89 6.55 20.50%
45 Translation g/2, 2% Waho 11.44 9.31 22.90%
56 Translation g/2, 2% Waho 15.02 12.23 22.83%
67 Translation g/2, 2% Waho 18.61 14.72 26.50%

Average 22.73%

Linear (in) Nonlinear (in) Percent Error
12 Translation 0.60g, 2% Waho 1.58 1.13 40.20%
23 Translation 0.60g, 2% Waho 5.25 4.02 30.42%
34 Translation 0.60g, 2% Waho 9.47 7.27 30.31%
45 Translation 0.60g, 2% Waho 13.73 10.14 35.46%
56 Translation 0.60g, 2% Waho 18.03 13.35 35.02%
67 Translation 0.60g, 2% Waho 22.35 15.11 47.89%

Average 36.55%
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Percent Error for 2% Damping for Loma Prieta Earthquake in Waho

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.9g, 2% Waho 2.37 1.56 52.50%
23 Translation 0.9g, 2% Waho 7.88 5.64 39.67%
34 Translation 0.9g, 2% Waho 14.21 10.31 37.87%
45 Translation 0.9g, 2% Waho 20.61 15.17 35.85%
56 Translation 0.9g, 2% Waho 27.07 19.33 40.00%
67 Translation 0.9g, 2% Waho 33.54 21.56 55.55%

Average 43.58%

Linear (in) Nonlinear (in) Percent Error

12 Translation 1g, 2% Waho 2.63 1.61 63.49%
23 Translation 1g, 2% Waho 8.74 5.85 49.56%
34 Translation 1g, 2% Waho 15.77 10.71 47.31%
45 Translation 1g, 2% Waho 22.88 16.30 40.35%
56 Translation 1g, 2% Waho 30.04 20.79 44.52%
67 Translation 1g, 2% Waho 37.23 23.26 60.02%

Average 50.88%
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Percent Error for 5% Damping for Loma Prieta Earthquake in Waho

Linear (in) Nonlinear (in) Percent Error

12 Translation g/6, 5% Waho 0.32 0.28 12.70%
23 Translation g/6, 5% Waho 1.12 0.98 13.94%
34 Translation g/6, 5% Waho 2.08 1.80 15.53%
45 Translation g/6, 5% Waho 3.01 2.59 16.09%
56 Translation g/6, 5% Waho 3.95 3.38 16.84%
67 Translation g/6, 5% Waho 4.94 3.99 23.87%

Average 16.50%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/3, 5% Waho 0.63 0.56 12.70%
23 Translation g/3, 5% Waho 2.24 1.97 13.94%
34 Translation g/3, 5% Waho 4.16 3.60 15.53%
45 Translation g/3, 5% Waho 6.02 5.19 16.09%
56 Translation g/3, 5% Waho 7.89 6.75 16.84%
67 Translation g/3, 5% Waho 9.88 7.98 23.87%

Average 16.50%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/2, 5% Waho 0.95 0.84 12.70%
23 Translation g/2, 5% Waho 3.35 2.94 13.94%
34 Translation g/2, 5% Waho 6.23 5.39 15.53%
45 Translation g/2, 5% Waho 9.01 7.76 16.09%
56 Translation g/2, 5% Waho 11.81 10.10 16.84%
67 Translation g/2, 5% Waho 14.79 11.94 23.87%

Average 16.50%

Linear (in) Nonlinear (in) Percent Error
12 Translation 0.6g, 5% Waho 1.51 1.26 20.27%
23 Translation 0.6g, 5% Waho 5.37 4.43 21.21%
34 Translation 0.6g, 5% Waho 9.97 8.04 24.01%
45 Translation 0.6g, 5% Waho 14.43 11.60 24.36%
56 Translation 0.6g, 5% Waho 18.91 15.19 24.47%

67 Translation 0.6g, 5% Waho 23.69 18.05 31.26%
Average 24.26%
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Percent Error for 5% Damping for Loma Prieta Earthquake in Waho

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.9g, 5% Waho 1.70 1.42 20.22%
23 Translation 0.9g, 5% Waho 6.04 5.00 20.92%
34 Translation 0.9g, 5% Waho 11.22 9.06 23.80%
45 Translation 0.9g, 5% Waho 16.24 12.65 28.34%
56 Translation 0.9g, 5% Waho 21.27 16.29 30.57%
67 Translation 0.9g, 5% Waho 26.65 19.06 39.81%

Average 27.28%

Linear (in) Nonlinear (in) Percent Error
12 Translation 1g, 5% Waho 1.89 1.55 21.98%
23 Translation 1g, 5% Waho 6.70 5.49 22.14%
34 Translation 1g, 5% Waho 12.45 9.99 24.65%
45 Translation 1g, 5% Waho 18.02 14.34 25.65%
56 Translation 1g, 5% Waho 23.61 18.32 28.92%
67 Translation 1g, 5% Waho 29.58 21.22 39.37%

Average 27.12%

Linear (in) Nonlinear (in) Percent Error
12 Translation 1.5g,. 5% Waho 2.84 2.20 28.96%
23 Translation 1.5g, 5% Waho 10.06 7.93 26.90%
34 Translation 1.5g, 5% Waho 18.69 14.91 25.33%
45 Translation 1.5g, 5% Waho 27.06 22.41 20.73%
56 Translation 1.5g, 5% Waho 35.45 28.93 22.51%
67 Translation 1.5g, 5% Waho 44.41 33.84 31.23%

Average 25.94%
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Percent Error for 10% Damping for Loma Prieta Earthquake in Waho

Linear (in) Nonlinear (in) Percent Error

12 Translation g/6, 10% Waho 0.23 0.20 12.63%
23 Translation g/6, 10% Waho 0.80 0.72 10.59%
34 Translation g/6, 10% Waho 1.47 1.35 8.87%
45 Translation g/6, 10% Waho 2.12 1.97 7.56%
56 Translation g/6, 10% Waho 2.83 2.56 10.65%
67 Translation g/6, 10% Waho 3.62 2.99 21.28%

Average 11.93%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/3, 10% Waho 0.46 0.41 12.63%
23 Translation g/3, 10% Waho 1.60 1.45 10.59%
34 Translation g/3, 10% Waho 2.95 2.71 8.87%
45 Translation g/3, 10% Waho 4.24 3.94 7.56%
56 Translation g/3, 10% Waho 5.66 5.12 10.65%
67 Translation g/3, 10% Waho 7.24 5.97 2 1.29%

Average 11.93%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/2, 10% Waho 0.69 0.61 12.63%
23 Translation g/2, 10% Waho 2.40 2.17 10.59%
34 Translation g/2, 10% Waho 4.41 4.05 8.87%
45 Translation g/2, 10% Waho 6.34 5.90 7.56%
56 Translation g/2, 10% Waho 8.47 7.65 10.65%
67 Translation g/2, 10% Waho 10.84 8.94 21.29%

Average 11.93%

Linear (in) Nonlinear (in) Percent Error
12 Translation 0.6g, 10% Waho 0.83 0.74 12.63%
23 Translation 0.6g, 10% Waho 2.88 2.60 10.59%
34 Translation 0.6g, 10% Waho 5.29 4.86 8.87%
45 Translation 0.6g, 10% Waho 7.62 7.08 7.56%
56 Translation 0.6g, 10% Waho 10.17 9.19 10.65%
67 Translation 0.6g, 10% Waho 13.01 10.73 21.29%

Average 11.93%
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Percent Error for 10% Damping for Loma Prieta Earthquake in Waho

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.9g, 10% Waho 1.24 1.10 12.63%
23 Translation 0.9g, 10% Waho 4.32 3.91 10.60%
34 Translation 0.9g, 10% Waho 7.94 7.30 8.87%
45 Translation 0.9g, 10% Waho 11.43 10.63 7.55%
56 Translation 0.9g, 10% Waho 15.26 13.79 10.64%
67 Translation 0.9g, 10% Waho 19.53 16.11 21.29%

Average 11.93%

Linear (in) Nonlinear (in) Percent Error
12 Translation 1g, 10% Waho 1.38 1.23 12.62%
23 Translation 1g, 10% Waho 4.79 4.24 13.06%
34 Translation 1g, 10% Waho 8.82 7.85 12.28%
45 Translation 1g, 10% Waho 12.69 11.44 10.87%
56 Translation 1g, 10% Waho 16.94 14.88 13.87%
67 Translation 1g, 10% Waho 21.68 17.40 24.59%

Average 14.55%

Linear (in) Nonlinear (in) Percent Error
12 Translation 1.5g, 10% Waho 2.07 1.87 10.64%
23 Translation 1.5g, 10% Waho 7.20 6.60 9.15%
34 Translation 1.5g, 10% Waho 13.23 11.99 10.34%
45 Translation 1.5g, 10% Waho 19.05 17.14 11.15%
56 Translation 1.5g, 10% Waho 25.43 22.30 14.02%
67 Translation 1.5g, 10% Waho 32.55 26.63 22.22%

Average 12.92%

Linear (in) Nonlinear (in) Percent Error
12 Translation 2g, 10% Waho 2.76 2.58 7.06%
23 Translation 2g, 10% Waho 9.60 9.25 3.75%
34 Translation 2g, 10% Waho 17.64 17.07 3.38%
45 Translation 2g, 10% Waho 25.39 25.03 1.43%
56 Translation 2g, 10% Waho 33.90 33.19 2.14%
67 Translation 2g, 10% Waho 43.39 39.73 9.21%

Average 4.49%
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Percent Error for 10% Damping for Loma Prieta Earthquake in Waho

Linear (in) Nonlinear (in) Percent Error

12 Translation 3g, 10% Waho 4.14 8089.06 99.95%
23 Translation 3g, 10% Waho 14.39 4472.80 99.68%
34 Translation 3g., 10% Waho 26.46 23625.68 99.89%
45 Translation 3g, 10% Waho 38.08 25876.28 99.85%
56 Translation 3g, 10% Waho 50.84 1906.96 97.33%
67 Translation 3g, 10% Waho 65.07 17872.16 99.64%

Average 99.39

57



Summary of Percent Errors of Interstory Drifts for Northridge Earthquake in Leona Valley

2% 5% 10%
g/6 11.16% 5.05% 6.87%

g/3 11.16% 5.04% 6.87%

g/2 10.82% 5.05% 6.87%

0.6g 9.10% 5.32% 7.28%

0.9g 2.91% 7.86% 8.64%1

g
1.5g
2g

3g

5.10%
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Peak Interstory Drift Ratios for Northridge Earthquake in Leona Valley

Linear (in/in) Nonlinear (in/in)

g/6, 2% NR Leona 0.030 0.031
g/3, 2% NR Leona 0.061 0.062
g/2, 2% NR Leona 0.091 0.093
0.6g, 2% NR Leona 0.109 0.110
0.9g, 2% NR Leona 0.164 0.151
1g, 2% NR Leona 0.182 0.182

Linear (in/in) Nonlinear (in/in)

g/6, 5% NR Leona 0.024 0.022
g/3, 5% NR Leona 0.048 0.044
g/2, 5% NR Leona 0.072 0.066
0.6g, 5% NR Leona 0.087 0.079
0.9g, 5% NR Leona 0.130 0.114

1g, 5% NR Leona 0.144 0.125

1.5g, 5% NR Leona 0.216 51.901

Linear (in/in) Nonlinear (in/in)
g/6, 10% NR Leona 0.021 0.020
g/3, 10% NR Leona 0.042 0.040
g/2, 10% NR Leona 0.064 0.059
0.6g, 10% NR Leona 0.076 0.071
0.9g, 10% NR Leona 0.115 0.106
1g, 10% NR Leona 0.127 0.114
1.5g, 10% NR Leona 0.191 0.175
2g, 10% NR Leona 0.255 54.724

3g, 10% NR Leon a 0.382 43.496
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Percent Error of Interstory Drifts for 2% Damping for Northridge Earthquake in Leona Valley

Linear (in) Nonlinear (in) Percent Error
12 Translation g/6, 2% NR Leona 0.32 0.38 14.89%

23 Translation g/6, 2% NR Leona 1.15 1.36 15.31%
34 Translation g/6, 2% NR Leona 2.14 2.52 14.85%

45 Translation g/6, 2% NR Leona 3.19 3.65 12.76%
56 Translation g/6, 2% NR Leona 4.40 4.75 7.38%
67 Translation g/6, 2% NR Leona 5.47 5.57 1.79%

Average 11.16%

Linear (in) Nonlinear (in) Percent Error

12 Translation g/3, 2% NR Leona 0.65 0.76 14.89%

23 Translation g/3, 2% NR Leona 2.31 2.73 15.31%
34 Translation g/3, 2% NR Leona 4.29 5.04 14.85%

45 Translation g/3, 2% NR Leona 6.37 7.30 12.76%
56 Translation g/3, 2% NR Leona 8.80 9.50 7.38%
67 Translation g/3, 2% NR Leona 10.93 11.13 1.79%

Average 11.16%

Linear (in) Nonlinear (in) Percent Error

12 Translation g/2, 2% NR Leona 0.97 1.13 13.88%
23 Translation g/2, 2% NR Leona 3.46 4.04 14.36%

34 Translation g/2, 2% NR Leona 6.43 7.54 14.72%
45 Translation g/2, 2% NR Leona 9.56 10.96 12.79%

56 Translation g/2, 2% NR Leona 13.20 14.25 7.38%
67 Translation g/2, 2% NR Leona 16.40 16.70 1.79%

Average 10.82%

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.6g, 2% NR Leona 1.16 1.31 11.55%
23 Translation 0.6g, 2% NR Leona 4.11 4.73 13.06%
34 Translation 0.6g, 2% NR Leona 7.69 8.87 13.32%
45 Translation 0.6g, 2% NR Leona 11.49 12.89 10.90%
56 Translation 0.6g, 2% NR Leona 15.85 16.79 5.60%
67 Translation 0.6g, 2% NR Leona 19.69 19.72 0.19%

Average 9.10%
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Percent Error of Interstory Drifts for 2% Damping for Northridge Earthquake in Leona Valley

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.9g, 2% NR Leona 1.73 1.72 0.69%
23 Translation 0.9g, 2% NR Leona 6.16 6.15 0.19%
34 Translation 0.9g, 2% NR Leona 11.53 11.41 0.99%

45 Translation 0.9g, 2% NR Leona 17.23 16.82 2.44%

56 Translation 0.9g, 2% NR Leona 23.78 22.69 4.76%

67 Translation 0.9g, 2% NR Leona 29.52 27.23 8.41%

Average 2.91%

Linear (in) Nonlinear (in) Percent Error

12 Translation 1g. 2% NR Leona 1.95 2.03 4.35%

23 Translation 1g, 2% NR Leona 6.93 7.42 6.65%
34 Translation 1g, 2% NR Leona 12.87 14.01 8.15%
45 Translation 1g, 2% NR Leona 19.11 20.59 7.15%
56 Translation 1g, 2% NR Leona 26.40 27.53 4.11%

67 Translation ig, 2% NR Leona 32.80 32.74 0.18%
Average 5.10%
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Percent Error of Interstory Drifts for 5% Damping for Northridge Earthquake in Leona Valley

Linear (in) Nonlinear (in) Percent Error
12 Translation g/6, 5% NR Leona 0.25 0.24 4.61%
23 Translation g/6, 5% NR Leona 0.93 0.91 2.48%
34 Translation g/6, 5% NR Leona 1.81 1.76 2.56%
45 Translation g/6, 5% NR Leona 2.73 2.62 4.30%
56 Translation g/6, 5% NR Leona 3.67 3.42 7.32%
67 Translation g/6, 5% NR Leona 4.33 3.97 9.05%

Average 5.05%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/3, 5% NR Leona 0.51 0.49 4.59%
23 Translation g/3, 5% NR Leona 1.86 1.82 2.47%
34 Translation g/3, 5% NR Leona 3.62 3.53 2.56%
45 Translation g/3, 5% NR Leona 5.47 5.24 4.29%
56 Translation g/3, 5% NR Leona 7.34 6.84 7.31%
67 Translation g/3, 5% NR Leona 8.66 7.94 9.04%

Average 5.04%

Linear (in) Nonlinear (in) Percent Error

12 Translation g/2, 5% NR Leona 0.76 0.73 4.60%
23 Translation g/2, 5% NR Leona 2.79 2.73 2.47%
34 Translation g/2, 5% NR Leona 5.43 5.29 2.56%
45 Translation g/2, 5% NR Leona 8.20 7.87 4.29%
56 Translation g/2, 5% NR Leona 11.01 10.26 7.31%
67 Translation g/2, 5% NR Leona 12.99 11.91 9.05%

Average 5.05%

Linear (in) Nonlinear (in) Percent Error
12 Translation 0.6g, 5% NR Leona 0.92 0.87 5.58%
23 Translation 0.6g, 5% NR Leona 3.38 3.27 3.28%
34 Translation 0.6g, 5% NR Leona 6.53 6.35 2.80%
45 Translation 0.6g, 5% NR Leona 9.84 9.44 4.24%

56 Translation 0.6g, 5% NR Leona 13.17 12.31 6.96%
67 Translation 0.6g, 5% NR Leona 15.59 14.30 9.05%

Average 5.32%

62



Percent Error of Interstory Drifts for 5% Damping for Northridge Earthquake in Leona Valley

Linear (in) Nonlinear (in) Percent Error

12 Translation 0.9g, 5% NR Leona 1.38 1.32 4.91%

23 Translation 0.9g, 5% NR Leona 5.07 4.90 3.40%

34 Translation 0.9g, 5% NR Leona 9.79 9.36 4.59%

45 Translation 0.9g, 5% NR Leona 14.76 13.69 7.80%

56 Translation 0.9g, 5% NR Leona 19.75 17.61 12.14%

67 Translation 0.9g, 5% NR Leona 23.39 20.46 14.33%

Average 7.86%

Linear (in) Nonlinear (in) Percent Error

12 Translation 1g, 5% NR Leona 1.52 1.40 8.99%

23 Translation 1g, 5% NR Leona 5.59 5.14 8.71%
34 Translation 1g, 5% NR Leona 10.86 9.73 11.56%

45 Translation 1g, 5% NR Leona 16.41 14.21 15.47%

56 Translation 1g, 5% NR Leona 22.01 18.24 20.70%
67 Translation 1g, 5% NR Leona 25.99 22.49 15.57%

Average 13.50%

Linear (in) Nonlinear (in) Percent Error

12 Translation 1.5g, 5% NR Leona 2.3 159.4 98.55%

23 Translation 1.5g, 5% NR Leona 8.4 799.5 98.94%

34 Translation 1.5g, 5% NR Leona 16.3 4580.7 99.64%

45 Translation 1.5g, 5% NR Leona 24.6 1069.3 97.70%

56 Translation 1.5g, 5% NR Leona 32.9 9342.2 99.65%

67 Translation 1.5g, 5% NR Leona 39.0 197.2 80.24%

Average 95.79%
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Linear (in) Nonlinear (in) Percent Error

12 Translation g/6, 10% NR Leona 0.21 0.19 8.7%
23 Translation g/6, 10% NR Leona 0.78 0.73 6.7%
34 Translation g/6, 10% NR Leona 1.51 1.43 5.8%
45 Translation g/6, 10% NR Leona 2.31 2.18 6.0%
56 Translation g/6, 10% NR Leona 3.16 2.95 6.9%
67 Translation g/6, 10% NR Leona 3.82 3.57 7.1%

Average 6.9%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/3, 10% NR Leona 0.42 0.39 8.7%
23 Translation g/3, 10% NR Leona 1.55 1.45 6.7%
34 Translation g/3, 10% NR Leona 3.03 2.86 5.8%
45 Translation g/3, 10% NR Leona 4.62 4.36 6.0%
56 Translation g/3, 10% NR Leona 6.32 5.91 6.9%
67 Translation g/3, 10% NR Leona 7.64 7.13 7.1%

Average 6.9%

Linear (in) Nonlinear (in) Percent Error
12 Translation g/2, 10% NR Leona 0.63 0.58 8.7%
23 Translation g/2, 10% NR Leona 2.33 2.18 6.7%
34 Translation g/2, 10% NR Leona 4.54 4.29 5.8%
45 Translation g/2, 10% NR Leona 6.94 6.54 6.0%
56 Translation g/2, 10% NR Leona 9.47 8.86 6.9%
67 Translation g/2, 10% NR Leona 11.46 10.70 7.1%

Average 6.9%

Linear (in) Nonlinear (in) Percent Error
12 Translation 0.6g, 10% NR Leona 0.77 0.69 10.40%
23 Translation 0.6g, 10% NR Leona 2.81 2.62 7.55%
34 Translation 0.6g, 10% NR Leona 5.46 5.15 5.95%
45 Translation 0.6g, 10% NR Leona 8.32 7.85 5.88%
56 Translation 0.6g, 10% NR Leona 11.35 10.64 6.69%
67 Translation 0.6g, 10% NR Leona 13.77 12.84 7.22%

Average 7.28%
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Linear (in) Nonlinear (in) Percent Error
12 Translation 0.9g, 10% NR Leona 1.15 1.02 12.49%
23 Translation 0.9g, 10% NR Leona 4.22 3.87 9.06%
34 Translation 0.9g, 10% NR Leona 8.19 7.66 6.95%
45 Translation 0.9g, 10% NR Leona 12.47 11.66 6.96%
56 Translation 0.9g, 10% NR Leona 17.02 15.76 7.98%
67 Translation 0.9g, 10% NR Leona 20.64 19.05 8.40%

Average 8.64%

Linear (in) Nonlinear (in) Percent Error
12 Translation 1g, 10% NR Leona 1.28 1.09 17.6%
23 Translation ig, 10% NR Leona 4.69 4.14 13.2%
34 Translation 1g, 10% NR Leona 9.10 8.27 10.1%
45 Translation 1g, 10% NR Leona 13.86 12.59 10.0%
56 Translation 1g, 10% NR Leona 18.91 16.98 11.4%
67 Translation 1g, 10% NR Leona 22.94 20.55 11.6%

Average 12.3%

Linear (in) Nonlinear (in) Percent Error
12 Translation 1.5g, 10% NR Leona 1.9 1.7 9.70%
23 Translation 1.5g, 10% NR Leona 7.0 6.5 7.65%
34 Translation 1.5g, 10% NR Leona 13.6 12.9 6.05%
45 Translation 1.5g, 10% NR Leona 20.8 19.6 5.75%
56 Translation 1.5g, 10% NR Leona 28.4 26.4 7.43%
67 Translation 1.5g, 10% NR Leona 34.4 31.5 9.20%

Average 7.63%

Linear (in) Nonlinear (in) Percent Error
12 Translation 2g, 10% NR Leona 2.55 181.64 98.59%
23 Translation 2g, 10% NR Leona 9.38 915.10 98.97%
34 Translation 2g. 10% NR Leona 18.20 2040.13 99.11%
45 Translation 2g, 10% NR Leona 27.72 8667.32 99.68%
56 Translation 2g, 10% NR Leona 37.83 4223.47 99.10%
67 Translation 2g, 10% NR Leona 45.88 9850.29 99.53%

Average 99.17%

Linear (in) Nonlinear (in) Percent Error

12 Translation 3g, 10% NR Leona 3.83 5.03 23.88%
23 Translation 3g, 10% NR Leona 14.07 12.99 8.33%
34 Translation 3g, 10% NR Leona 27.28 7829.27 99.65%
45 Translation 3g, 10% NR Leona 41.56 4498.85 99.08%
56 Translation 3g, 10% NR Leona 56.72 1315.19 95.69%
67 Translation 3g, 10% NR Leona 68.79 5229.93 98.68%

Average 70.88%
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