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Abstract: On the verge of conclusive checks on the Standard Model by

the LHC, we discuss some of the basic assumptions. The reason for this analysis

stems from a recent proposal of an Electroweak Model based on a nonlinearly

realized gauge group SU(2)⊗U(1), where, in the perturbative approximation,

there is no Higgs boson. The model enjoys the Slavnov-Taylor identities and

therefore the perturbative unitarity. On the other hand, it is commonly be-

lieved that the existence of the Higgs boson is entangled with the property of

unitarity, when high energy processes are considered. The argument is based

mostly on the Froissart bound and on the Equivalence Theorem. In this talk

we briefly review some of our objections on the validity of such arguments.

Some open questions are pointed out, in particular on the limit of zero mass

for the vector mesons and on the fate of the longitudinal polarizations.
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1 Introduction

The main assumptions for the construction of a massive Yang-Mills (YM) local quantum

field theory are

1. Renormalizability

2. Unitarity

3. Spontaneous Breakdown of Symmetry.

The mass is derived from the interaction with the Higgs field

SSSB = SYM +
ΛD−4

g2

∫
dDx

1

4
Tr

{∣∣∣∂µΩ− iAµΩ
∣∣∣
2
}

+ SBS , (1)

where SBS is the pure boson part of the action responsible for the nonzero vacuum

expection value of the Higgs boson field. For SU(2) the matrix Ω may be parametrized

by the real fields

Ω = φ0 + iτiφi, φ0 = h+ 2v, 〈h〉 = 0, M = gv (2)

In this talk we focus mainly on the issue of unitarity and on its connection with the

presence of a physical Higgs boson in the perturbative spectrum. In part one we consider

a brief statement of the problem on general grounds, i.e. on the perturbative unitarity

and its relationship with the optical theorem. In part two we derive relations between

the amplitudes involving the scalar part of the vector mesons on the one hand and the

Goldstone bosons on the other. These relations are somehow related to the so-called

Equivalence Theorem in gauge theories. In part three we flash some of the work we did

on the nonlinear sigma model and on the massive Yang-Mills theory in order to put on a

subtraction procedure for these nonrenormalized theories.

2 Part One: Unitarity

The attention has been focused on the WLWL elastic scattering process for different rea-

sons. At high energy (s, t >> M2
W ) some anomalous behavior is expected for the longi-

tudinal polarization. The idea is to entangle the presence of the Higgs boson with the

requirement of unitarity. The calculations often make use of the so called Equivalence

Theorem [1]-[5].

2.1 Unitarity:

It is worth stressing the conceptual difference between the Optical Theorem for the S-

matrix

S = II − iT, S†S = II, =⇒ ImTii ∼ σiT (3)
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and Perturbative Unitarity

k∑

j=0

S(j)†S(k−j) = 0, ∀k > 0, (4)

where

S =
∞∑

k=0

S(k), S(0) = II. (5)

For any finite order calculation Sin =
∑k

j=0 S
(j)
in

∑

n

∣∣∣∣∣

k∑

j=0

S
(j)
in

∣∣∣∣∣

2

=
∑

n

k∑

l=0

k∑

j=0

S
(j)∗
in S

(l−j)
in +

∑

n

2k∑

l=k+1

k∑

j=0

S
(j+l)∗
in S

(l−j)
in

= 1 +
∑

n

2k∑

l=k+1

k∑

j=l−k

S
(j)∗
in S

(l−j)
in (6)

There is always a violation of the Optical Theorem of order O(k + 1).

The Optical Theorem has a meaning only if an operative definition of forward scattering

exists. If long range interactions are present, then the forward amplitude is an elusive

object. Only eq. (4) has a meaning.

3 Part Two: Equivalence Theorem

This part is devoted to the discussion of some aspects of the massive YM theory in the

linear representation of the gauge group of local transformations (Higgs mechanism). Most

of the results are also valid for the case in which the representation is nonlinear (Stückelberg

mass).

3.1 BRST Transformations:

The BRST differential s is obtained in the usual way by promoting the gauge parameters

to the ghost fields ca and by introducing the antighosts c̄a coupled in a BRST doublet to

the Nakanishi-Lautrup fields ba:

sφa =
1

2
φ0ca +

1

2
ǫabcφbcc , sφ0 = −

1

2
φaca

sAaµ = (Dµ[A]c)a , sc̄a = ba, sba = 0 . (7)

In the above equation Dµ[A] denotes the covariant derivative w.r.t. Aaµ:

(Dµ[A])ac = δac∂µ + ǫabcAbµ . (8)

The BRST transformation of ca then follows by nilpotency,

sca = −
1

2
ǫabccbcc . (9)
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The tree-level vertex functional is

Γ(0) = SSSB +
Λ(D−4)

g2
s

∫
dDx (c̄a∂Aa)

+
Λ(D−4)

g2

∫
dDx (A∗

aµsA
µ
a + φ∗

asφa + φ∗
0sφ0 + c∗asca)

= SYM +
Λ(D−4)

g2

∫
dDx

(
ba∂Aa − c̄a∂µ(D

µ[A]c)a

)

+
Λ(D−4)

g2

∫
dDx (A∗

aµsA
µ
a + φ∗

0sφ0 + φ∗
asφa + c∗asca) . (10)

In Γ(0) we have also included the antifields A∗
aµ, φ

∗
0, φ

∗
a and c∗a coupled to the nonlinear

BRST variations of the quantized fields.

3.2 Slavnov-Taylor Identity (STI):

To simplify notations, we perform the substitution ba → g2

Λ(D−4) ba. The STI are for the

1-PI functional (ZJ renormalization of composite operators) is

∫
dDx

(
ΓA∗

aµ
ΓA

µ
a
+ Γφ∗

a
Γφa

+ Γφ∗

0
Γφ0 + Γc∗aΓca + baΓc̄a

)
= 0 , (11)

where we use the notation

ΓX ≡
δΓ

δX
, (12)

while for the generating functional of the connected amplitudes one has

∫
dDx

(
−WA∗

aµ
Jaµ −Wφ∗

a
Ka −Wφ∗

0
K0 +Wc∗a η̄a −Wbaηa

)
= 0 (13)

We use the notations

WA∗
aµ... ≡

δnW

δA∗
aµ . . .

= in−1〈0|T ((Dµ[A]c)a . . .)|0〉C (14)

for composite fields, while for elementary fields

Wba . . .︸ ︷︷ ︸
n

≡ in−1〈0|T (ba . . .)|0〉C . (15)

The external field sources are
∫

dDx
(
JaµA

µ
a +Kaφa +K0φ0 + c̄aηa + η̄aca + Jbaba

)
. (16)

Landau Gauge Equation

The equation associated to the gauge fixing gives

Γba = ∂νA
ν
a (17)
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− Jba = ∂µWA
µ
a
. (18)

The antighost equations can be derived from eqs. (11), (13), (17) and (18):

Γc̄a = ∂νΓA∗aν (19)

η = ∂νWA∗ν
a
. (20)

From eqs. (13) and (20) one gets

Wφ∗c̄ = Wφb

WA∗
µ c̄ = WAµb = −i

pµ

p2
. (21)

Some Basic Results

By a straightforward use of the above equations and of

ΓW = −II, (22)

one gets

Wφb = i
pνΓφAν

Γφφ

1

p2
(23)

(pνΓAνφ)
2 + p2ΓLΓφφ = 0 (24)

WAµφ = 0, WL = 0, Wφφ = −
1

Γφφ
. (25)

Free Fields

The 2-point 1-PI functions are given by

ΓAνφ = iMpν , Γbb = 0, ΓAνb = ipν ,

Γφφ = p2, Γφb = 0, ΓL = M2. (26)

Then

WAµφ = 0 (27)

and

WAµb = −i
pµ

p2
, Wφb =

M

p2

WL = 0, Wφφ = −
1

p2
. (28)
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Theorem For m ≥ 1

Wbx1 ···bxm
= 0 ,

Wbx1 ···bxmφ∗
z1

c̄y1 ···φ
∗
zk

c̄yk
= 0 ,

Wbxbx1 ···bxmφw1 ···φwn
=

n∑

i=1

W
φ∗
wi

c̄xb1···bmφw1 ···
∨

φwi
···φwn

,

k∑

j=1

(−1)j W
byj bx1 ···bxmφ∗

z1
···φ∗

zk−1
c̄y1 ···

∨

c̄yj ···c̄ykφw1 ···φwn

+

n∑

i=1

W
bx1 ···bxmφ∗

z1
···φ∗

zk−1
φ∗
wi

c̄y1 ···c̄ykφw1 ···
∨

φwi
···φwn

= 0 (29)

where ∨ marks omitted symbols. Proof: just use the STI.

Eq. (29) is easily generalized to the case where any number of external physical legs are

added (via the reduction formulae formalism).

3.3 b-insertions

The quantity

R ≡ i
pνΓφAν

MΓφφ

∣∣∣
p2=0

=
p2

M
Wbφ

∣∣∣
p2=0

(30)

will appear all over again (at the tree level R = 1). The pole contribution gives

lim
p2=0

p2Wb(p)··· =

(
i
pνΓφAν

Γφφ
W

φ̂(p)···
+ ipµW

Âµ(p)···

)∣∣∣
p2=0

=

(
−MRΓφφWφ(p)··· + ipµW

Âµ(p)···

)∣∣∣
p2=0

. (31)

Then one b-insertion on a physical amplitude yields

lim
p2=0

p2Wb(p)∗∗∗ =

(
i
pνΓφAν

Γφφ
W

φ̂(p)∗∗∗
+ ipµW

Âµ(p)∗∗∗

)∣∣∣
p2=0

=

(
−MRΓφφWφ(p)∗∗∗ + ipµW

Âµ(p)∗∗∗

)∣∣∣
p2=0

= 0, (32)

where the ∗∗∗ indicates all the other physical states obtained via reduction formulas.

The ̂ indicates that the external line (for instance, attached to an Aµ) has been

removed. According to this notation

WA(p)BC... =
∑

X

WA(p)XW
X̂(p)BC...

. (33)

The Longitudinal Polarization

The relation with the longitudinal polarization

ǫL =
E

M |~p|

(~p 2

E
, ~p
)
, E =

√
M2 + ~p 2 (34)
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can be obtained by considering

ǫL =
E

M |~p|

(
|~p|, ~p

)
−

M

E + |~p|
(1,~0). (35)

It is usually assumed that

ǫL =
1

M

(
|~p|, ~p

)
+O(

M

E
) (36)

gives the correct order of magnitude in the amplitudes

ǫ
µ
LWÂµ(p)∗∗∗

∣∣∣∣
p2=M2

=
1

M
pµW

Âµ(p)∗∗∗

∣∣∣∣
p2=0

+O(
M

E
) . (37)

Then eq. (31) reads

ǫ
µ
LWÂµ(p)∗∗∗

∣∣∣∣
p2=M2

= iRW
φ̂(p)∗∗∗

∣∣∣∣
p2=0

+O(
M

E
) , (38)

which is the statement of Lee, Quigg, Thacker (1977)[2], Weldon (84)[3], Chanowitz,

Gaillard (1985)[4], Gounaris, Kögerler, Neufeld (1986)[5].

Unfortunately, it will appear that the evaluation of the order of magnitude given in eq.

(36) cannot always be transfered to the amplitudes as indicated by eq.(37). In particular,

there is a clear evidence that the limit M = 0 does not commute with the on-shell limit

(reduction formula) as shown by the example with two b−insertions below.

Two b-insertions

This is a very clear example of the singular behavior of the limit M = 0. The situation

is somewhat different if we use eq. (31) or (37). We use first eq. (31) and subsequently

we discuss the approach by exploiting eq. (37). Note that the insertion of a second ba

line is much simpler in the Landau gauge where WAφ = 0 remains valid beyond the tree

approximation. In generic ’t Hooft gauge there is a non-trivial mixing in the φ − ∂µA
µ

space, which causes some important technical complexities.

One has

lim
p21,p

2
2=0

i2p
µ
1p

ν
2WÂµ(p1)Âν(p2)∗∗∗

= lim
p21,p

2
2=0

p21p
2
2

(
Wb1b2∗∗∗

+
ipν1ΓφAν

p21
Wφ1b2∗∗∗ +

ip
µ
2ΓφAµ

p22
Wb1φ2∗∗∗ +

(ipν1ΓφAν )

p21

(ipµ2ΓφAµ)

p22
Wφ1φ2∗∗∗

)

(39)

The first term is zero as in eq. (29). The mixed terms can be obtained by performing the

functional derivatives of the STI in eq. (13) with respect to η and K,

Wb1φ2∗∗∗ = Wφ∗

2 c̄1∗∗∗
. (40)
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Thus we get (with the use of Wφ∗c̄1 = Wbφ)

lim
p21,p

2
2=0

i2p
µ
1p

ν
2WÂµ(p1)Âν(p2)∗∗∗

= M2R2 lim
p21,p

2
2=0

(
Γφ1φ1

p21
p22Wc̄2c2Ŵ̄c1 ĉ2∗∗∗

+
Γφ2φ2

p22
p21Wc̄1c1Ŵ̄c2 ĉ1∗∗∗

+W
φ̂1φ̂2∗∗∗

)

= M2R2 lim
p21,p

2
2=0

(
R̄Ŵ̄c1 ĉ2∗∗∗

+ R̄Ŵ̄c2 ĉ1∗∗∗
+W

φ̂1φ̂2∗∗∗

)
, (41)

where

R̄ = lim
p21,p

2
2=0

Γφ2φ2

p22
p21Wc̄1c1 . (42)

On the other hand, if we consider multi b-field insertions by using eq. (31), where the

scalar mode is replaced by the longitudinal mode according to eq. (37),

RW
φ̂(p)∗∗∗

= lim
p2=0

p2

M
Wb(p)∗∗∗ − iǫ

µ
LWÂµ(p)∗∗∗

∣∣∣
p2=M2

+O(
M

E
), (43)

we get

R2W
φ̂(p1)φ̂(p2)∗∗∗

= lim
p21,p

2
2=0

p21p
2
2

M2
Wb(p1)b(p2)∗∗∗ + i lim

p21=0

p21
M

ǫ
µ2

L W
b(p1) ̂Aµ2 (p2)∗∗∗

∣∣∣
p22=M2

+i lim
p22=0

p22
M

ǫ
µ1

L W ̂Aµ1 (p1)b(p2)∗∗∗

∣∣∣
p21=M2

+ i2ǫ
µ1

L ǫ
µ2

L W ̂Aµ1 (p1) ̂Aµ2 (p2)∗∗∗

∣∣∣
p21,p

2
2=M2

+O(
M

E
)

= −ǫ
µ1

L ǫ
µ2

L W ̂Aµ1 (p1) ̂Aµ2 (p2)∗∗∗

∣∣∣
p21,p

2
2=M2

+O(
M

E
), (44)

where the mixed terms and the double b-insertion are zero as required by eq. (29). By

replacing the scalar mode (unphysical) with the longitudinal polarization state, the value

of the b-insertions changes in a substantial way.

We can conclude that the use of the substitution in eq. (31) brings in a contradiction

between the results in eqs. (41) and (44). This fact has been pointed out in Ref. [4].

Three b-insertions

We consider three b-insertions, which can be relevant in processes like V +V → l++l−+V .

We use once again the eq. (31) as in eq. (39):

lim
p21,p

2
2,p

2
3=0

i3

M3
p
µ
1p

ν
2p

ρ
3WÂµ(p1)Âν(p2)Âρ(p3)∗∗∗

(45)

= lim
p21,p

2
2,p

2
3=0

p21p
2
2p

2
3

(
1

M3
Wb1b2b3∗∗∗ +

RΓφ1φ1

M2p21
Wφ1b2b3∗∗∗

+
RΓφ2φ2

M2p22
Wb1φ2b3∗∗∗ +

RΓφ3φ3

M2p23
Wb1b2φ3∗∗∗

8



+
1

M

RΓφ1φ1

p21

RΓφ2φ2

p22
Wφ1φ2b3∗∗∗ +

1

M

RΓφ2φ2

p22

RΓφ3φ3

p23
Wb1φ2φ3∗∗∗

+
1

M

RΓφ3φ3

p23

RΓφ1φ1

p21
Wφ1b2φ3∗∗∗ +

RΓφ1φ1

p21

RΓφ2φ2

p22

RΓφ3φ3

p23
Wφ1φ2φ3∗∗∗

)

(46)

The mixed terms in eq. (46) are evaluated by using eq. (29):

lim
p21,p

2
2,p

2
3=0

i3

M3
p
µ
1p

ν
2p

ρ
3WÂµ(p1)Âν(p2)Âρ(p3)∗∗∗

= lim
p21,p

2
2,p

2
3=0

p21p
2
2p

2
3

(
1

M

RΓφφ

p21

RΓφφ

p22
Wφ1φ2b3∗∗∗ +

1

M

RΓφφ

p22

RΓφφ

p23
Wb1φ2φ3∗∗∗

+
1

M

RΓφφ

p23

RΓφφ

p21
Wφ1b2φ3∗∗∗ +

RΓφφ

p21

RΓφφ

p22

RΓφφ

p23
Wφ1φ2φ3∗∗∗

)

= −R3

(
R̄W

φ̂1 ̂̄c2 ĉ3∗∗∗
+ R̄W

̂̄c1φ̂2 ĉ3∗∗∗
+ R̄W

̂̄c2φ̂3 ĉ1∗∗∗

+R̄W
φ̂2 ̂̄c3 ĉ1∗∗∗

+ R̄W
̂̄c3φ̂1 ĉ2∗∗∗

+ R̄W
φ̂3 ̂̄c1 ĉ2∗∗∗

+W
φ̂1φ̂2φ̂3∗∗∗

)

(47)

Four b-insertions

There is a surprising cancellation in the case of four b-insertions.

lim
p21...p

2
4=0

p
µ
1p

ν
2p

σ
3p

ρ
4WÂµÂν ÂσÂρ

= lim
p21...p

2
4=0

p21p
2
2p

2
3p

2
4

(
Wb1b2b3b4 +MR

∑

j

Γφjφj

p2j
Wbj+1bj+2bj+3φj

+
1

2
M2R2

∑

i 6=j

Γφkφk

p2k

Γφlφl

p2l
Wbibj φk φl

+M3R3
∑

j

Γφj+1φj+1

p2j+1

Γφj+2φj+2

p2j+2

Γφj+3φj+3

p2j+3

Wbj φj+1 φj+2 φj+3

)

+M4R4 lim
p21...p

2
4=0

W
φ̂1 φ̂2 φ̂3 φ̂4

(48)

Now according to the eq. (29) we have

Wb1b2b3b4 = 0 (49)

and

Wbcbbbaφ1 = Wbcbbφ
∗

1 c̄a
. (50)

Further use of eq. (29) tells that

Wbcbbbaφ1 = Wbcbbφ
∗

1 c̄a
= 0. (51)
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We deal with the term with one b-insertion before considering the most difficult term. We

have again from eq. (29)

Wbj φj+1 φj+2 φj+3
=

∑

k=1,2,3

Wφ∗

j+k
c̄j φj+k+1 φj+k+2

(52)

Thus the relevant term in eq. (48) becomes

lim
p21...p

2
4=0

p21p
2
2p

2
3p

2
4M

3R3
∑

j

Γφj+1φj+1

p2j+1

Γφj+2φj+2

p2j+2

Γφj+3φj+3

p2j+3

Wbj φj+1 φj+2 φj+3

= lim
p21...p

2
4=0

p21p
2
2p

2
3p

2
4M

3R3
∑

j

Γφj+1φj+1

p2j+1

Γφj+2φj+2

p2j+2

Γφj+3φj+3

p2j+3
∑

k=1,2,3

Wφ∗

j+k
c̄j φj+k+1 φj+k+2

= lim
p21...p

2
4=0

p21p
2
2p

2
3p

2
4M

3R3
∑

j

Γφj+1φj+1

p2j+1

Γφj+2φj+2

p2j+2

Γφj+3φj+3

p2j+3
∑

k=1,2,3

Wφ∗ c̄(pj+k)Wc̄c(pj)Wφφ(pj+k+1)Wφφ(pj+k+2)Ŵ̄cj+k ĉj φ̂j+k+1 φ̂j+k+2

= M4R4R̄
∑

j

∑

k=1,2,3

W
̂̄cj+k ĉj φ̂j+k+1 φ̂j+k+2

(53)

Now we consider the most critical term in eq. (48). By using eq. (29) we get

Wbibj φk φl
= Wφ∗

k
c̄ibj φl

+Wφ∗

l
c̄ibj φk

(54)

Unfortunately, one cannot remove further the b-insertion by using eq. (29). In the on-shell

limit we re-express b in terms of φ and ∂µAµ as in the single pole contribution of eq. (31).

On-shell we have from eq. (54)

lim
p2j=0

p2jWbibj φk φl
= lim

p2j=0

[
MR

(
W

φ∗

k
c̄i φ̂j φl

+W
φ∗

l
c̄i φ̂j φk

)

+ig2p
µ
j

(
W

φ∗

k
c̄i

̂A
µ
j φl

+W
φ∗

l
c̄i

̂A
µ
j φk

)]
(55)

Thus the relevant terms in eq. (48) yield

lim
p21...p

2
4=0

p21p
2
2p

2
3p

2
4

1

2
M2R2

∑

i 6=j

Γφkφk

p2k

Γφlφl

p2l
Wbibj φk φl

= lim
p21...p

2
4=0

1

2
M2R2

∑

i 6=j

p2i

(
Γφkφk

Γφlφl

[

MR

(
W

φ∗

k
c̄i φ̂j φl

+W
φ∗

l
c̄i φ̂j φk

)

+ig2p
µ
j

(
W

φ∗

k
c̄i Â

µ
j φl

+W
φ∗

l
c̄i Â

µ
j φk

)]
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v

Figure 1: One-loop box diagram contributing to the second term in the r.h.s. of eq.(58)

= lim
p21...p

2
4=0

1

2
M2R2

∑

i 6=j

p2iWcic̄i

[
−MR

(
Γφkφk

Wbkφk
W

̂̄ck ĉi φ̂j φ̂l

+Γφlφl
Wblφl

W
̂̄cl ĉi φ̂j φ̂k

)
− ig2p

µ
j

(
Γφkφk

Wbkφk
W

̂̄ck ĉi
̂A
µ
j φ̂l

+Γφlφl
Wb1φl

W
̂̄cl ĉi Â

µ
j φ̂k

)]
(56)

= lim
p21...p

2
4=0

1

2
R̄
∑

i 6=j

[
−M4R4

(
W

̂̄ck ĉi φ̂j φ̂l
+W

̂̄cl ĉi φ̂j φ̂k

)

−ig2M3R3p
µ
j

(
W

̂̄ck ĉi Â
µ
j φ̂l

+W
̂̄cl ĉi Â

µ
j φ̂k

)]
. (57)

The final result is then (eqs. (48), (49), (51), (53) and (56))

1

M4
lim

p21...p
2
4=0

p
µ
1p

ν
2p

σ
3p

ρ
4WÂµÂν ÂσÂρ

= R4 lim
p21...p

2
4=0

W
φ̂1 φ̂2 φ̂3 φ̂4

−i
g2

2
lim

p21...p
2
4=0

R3R̄
∑

i 6=j

1

M
p
µ
j

(
W

̂̄ck ĉi Â
µ
j φ̂l

+W
̂̄cl ĉi Â

µ
j φ̂k

)
. (58)

The second term in the RHS of eq. (58) is zero in the tree approximation (this is valid

in the Landau gauge, while in the ’t Hooft gauge there are tree level diagrams thanks

to the direct coupling of the Higgs boson and the Goldstone boson with the Faddeev-

Popov ghosts). The dominant term at one loop is the box with two gauge, one Faddeev-

Popov and one Higgs boson propagators shown in Figure 1. Three vertexes carry a single

derivative. Then at high energy the behavior is p′µvO(1
s
). Thus the total box contribution

is ∼ pµp′µ
v
M
O(1

s
), i.e. of the same order as the first term on the RHS (∼ 1).

3.4 Open Problems

• What is the limit theory for M = 0, if any?

11



• In such a limit can we use v as the order parameter?

• How does the reshuffling of the physical modes occur? In particular, does the Gold-

stone boson become a physical mode?

• The longitudinal mode ǫL is expected to become unphysical. How?

We should give a second thought to results of Lee, Quigg, Thacker, Weldon, Chanowitz,

Gaillard, Gounaris, Kögerler, Neufeld, Denner, Dittmaier, Hahn et al. [6], [7] and look

if there is some clue concerning the above listed questions. Maybe lattice simulations

can help in the study of the transition to M = 0. These questions might be of great

phenomenological significance.

As a conclusion we would dare to say that the above mentioned very distinguished

physicists have extended too much the validity of their approximations. In fact, in order

to study the very high energy, they use the set of limiting Feynman rules, that are those

of the massless YM theory, where the longitudinal polarization is an unphysical mode.

4 Part Three: Nonlinearly Realized Gauge

In this part we flash our contribution to the foundation of a quantum gauge theory, where

the group of transformations is realized nonlinearly.

4.1 Introduction

A common structure is present in the nonlinear sigma model (NLSM), in the massive

Yang-Mills (YM) model and in the Higgsless Electroweak model (EW). For SU(2) one

has the action structures: NLSM action (Ref. [8]-[13])

SNLSM = ΛD−4M
2

4

∫
dDx Tr

{
∂µΩ†∂µΩ

}
(59)

the Stückelberg mass for the YM model (Ref. [14]-[15])

SYM ∼ ΛD−4M2

∫
dDx Tr

{[
Aµ − iΩ∂µΩ

†
]2
}

(60)

and EW (Ref. [16]-[18]) mass terms

SEW ∼ ΛD−4M2

∫
dDx

(
Tr

{
(gAµ −

g′

2
Ωτ3BµΩ

† − iΩ∂µΩ
†)2
}

+
κ

2

[
Tr{gAµ −

g′

2
Ωτ3BµΩ

† − iΩ∂µΩ
†τ3}

]2
)
. (61)

The 2× 2 ∈ SU(2) matrix may be parametrized by the real fields

Ω = φ0 + iτiφi, φ0 =

√
1− ~φ2. (62)
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The constraint is implemented in the path integral measure

∏

x

D4φ(x)θ(φ0)δ(~φ(x)
2 + φ2

0(x)− 1) =
∏

x

D3φ(x)
2√

1− ~φ2

. (63)

The non trivial measure in the path integral is the source of very interesting facts.

The non polynomial interaction makes the theory nonrenormalizable

SNLSM = ΛD−4M
2

2

∫
dDx

{
∂µφ0∂µφ0 + ∂µ~φ∂µ~φ

}

= ΛD−4M
2

2

∫
dDx

{
∂µ~φ∂µ~φ+

1

φ2
0

φa∂
µφa φb∂µφb

}
. (64)

Vertexes carry second power of momenta, therefore already at one loop there is an infinite

number of independent divergent amplitudes. Moreover, it has been shown in the seventies

and in the eighties that some divergences break chiral invariance (global) at the same order.

Strategy: Abandon Hamiltonian formalism and do perturbation theory directly on

the effective action functional Γ.

4.2 The Local Functional Equation (LFE)

The measure is invariant under ”local left multiplication” transformations Ω → U(ω(x))Ω

δφ0 = −
ωa(x)

2
φa

δφa =
ωa(x)

2
φ0 +

ωc(x)

2
ǫabcφb. (65)

The following technical work should be done: (i) find the algebra of operators closed under

local left multiplication transformations by starting from the classical action, (ii) associate

to every composite operator an external classical source (for subtraction strategy), (iii)

write the LFE which follows from the invariance of the path integral measure.

Step (i)

This is simple in the NLSM. Introduce the ”gauge field”

Fµ =
τa

2
Faµ ≡ iΩ∂µΩ

†. (66)

Its field strength tensor is zero (it describes a scalar mode) and its transformation prop-

erties are those of a gauge field:

Fµ → UFµU
† + iU∂µU

†. (67)

The classical action can be written as

SNLSM = ΛD−4M
2

4

∫
dDx Tr

{
FµF

µ
}
. (68)

Thus the closed set of operators is {~φ, φ0, ~Fµ} .
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Step (ii)

The complete effective action at the tree level is then

Γ(0) = ΛD−4

∫
dDx

(
M2

8

{
Faµ − Jaµ

}2
+K0φ0

)
. (69)

The effective action Γ[~φ, ~Jµ,K0] is obtained via the Legendre transform of the logarithm

of the path integral functional

Z[ ~K, ~Jµ,K0] ≡

∫ ∏

x

2

φ0
D3φ(x) exp

[
Γ(0) +

∫
dDy ~K~φ

]
. (70)

Step (iii)

Now we exploit the invariance of the path integral measure under local left multiplication

(δφa = ωa(x)
2 φ0 +

ωc(x)
2 ǫabcφb). We expand ~ω(x) for small parameter values and obtain the

LFE (〈· · ·〉 indicates the mean over the weighted paths )
∫

dDx
〈(

M2
D(F − J)aµ(ǫabcωcF

µ
b + ∂µωa)

−ΛD−4K0
ωa

2
φa + φ0Ka

ωa

2
+ ǫabcKaωcφb

)
(x)
〉
= 0, (71)

where

M2
D ≡ ΛD−4M2. (72)

We will use the notation

D[X]µab = δab∂µ − ǫabcXcµ. (73)

Thus for the effective action we get the local functional equation (LFE)

−∂µ δΓ

δJ
µ
a
+ ǫabcJ

µ
c

δΓ

δJ
µ
b

+
ΛD−4

2
φaK0+

1

2ΛD−4

δΓ

δK0

δΓ

δφa
+

1

2
ǫabcφc

δΓ

δφb
= 0. (74)

4.3 Hierarchy

The Spontaneous Breakdown of Symmetry is imposed by the condition

δΓ

δK0

∣∣∣∣
field &sources=0

= 1. (75)

Then the LFE naturally induces a strong hierarchy structure among the 1PI irreducible

amplitudes: all amplitudes involving the ~φ fields (descendant) are known in terms of

the amplitudes involving only the (ancestor) sources ~Jµ and K0. For instance, if we

differentiate the LFE with respect to Jν
a′(y), we get

M2
D

2
∂µ δ2Γ

δJ
µ
a (x)δJν

a′ (y)
+

δ2Γ

δφa(x)δJν
a′ (y)

+2δaa′∂xνδ(x− y) = 0. (76)
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4.4 Weak Power Counting (WPC)

How many ancestor divergent amplitudes are there ? The degree of divergence of a graph

G for an ancestor amplitude is (nL is the number of loops)

δ(G) = D nL − 2I +
∑

j,k

j Vjk +NF

nL = I −
∑

j,k

Vjk −NF −NK0 + 1 (77)

where I is the number of propagators, NF the number of external Fµ sources and NK0

those of K0; Vjk denotes the number of vertexes with k φ-lines and j derivatives. The

superficial degree of divergence δ(G) for a graph can be bounded by using standard argu-

ments.

By removing I from these two equations one gets

δ(G) = D nL − 2nL −
∑

j,k

(2− j) Vjk −NF − 2NK0 + 2. (78)

The classical action has vertexes with j ≤ 2, therefore, it can be stated that

δ(G) ≤ nL(D − 2) + 2−NF − 2NK0 . (79)

For instance, at nL = 1 the only ancestor divergent (independent) amplitudes are (J−J),

(J − J − J), (J − J − J − J), (K0 − J − J) and (K0 − K0). The one-loop divergences

of graphs where the descendant field appears (~φ) are all expressible all in terms of the

ancestor divergences.

4.5 Perturbative Expansion

This is an Ansatz. Consider the generic dimension D. Start with Γ(0), read from it the

value of the vertexes and construct Γ(n) for n > 0. The connected amplitudes W (n) can

then be obtained. Few questions are in order:

1. Does Γ(0) obey the LFE? Yes, by construction

2. Does Γ(n), n > 0 obey the linearized LFE ?

(
−∂µ δ

δJ
µ
a
+ ǫabcJ

µ
c

δ

δJ
µ
b

+
1

2ΛD−4

δΓ(0)

δφa

δ

δK0

+
1

2
φ0

δ

δφa
+

1

2
ǫabcφc

δ

δφb

)
Γ(n) +

n−1∑

j=1

1

2ΛD−4

δΓ(j)

δφa

δΓ(n−j)

δK0
= 0. (80)

3. Assume that a symmetric subtraction procedure is given for the divergences in the

limit D = 4. How does the breaking of the above equation occur?
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The answers to these questions are given in a compact form by the Quantum Action

Principle

(
− ∂µ δ

δJ
µ
a
+ ǫabcJ

µ
c

δ

δJ
µ
b

−
ΛD−4

2
K0

δ

δKa
+

1

2ΛD−4
Ka

δ

δK0
+ ǫacbKc

δ

δKb

)
Z

= i

∫ ∏

x

2

φ0
D3φ(x)

[
−∂µ δΓ̂

δJ
µ
a
+ ǫabcJ

µ
c

δΓ̂

δJ
µ
b

+
ΛD−4

2
φaK0+

1

2ΛD−4

δΓ̂

δK0

δΓ̂

δφa
+

1

2
ǫabcφc

δΓ̂

δφb

]
exp i

[
Γ̂ +

∫
dDy ~K~φ

]
, (81)

where Γ̂ contains the counterterms Γ̂(j),

Γ̂ = Γ(0) +

∞∑

j=1

Γ̂(j). (82)

4.6 Subtraction Strategy

Thus if the counterterms at order n are missing, the linearized LFE is broken by the term
(
−∂µ δ

δJ
µ
a
+ ǫabcJ

µ
c

δ

δJ
µ
b

+
1

2ΛD−4

δΓ(0)

δφa

δ

δK0

+
1

2
φ0

δ

δφa
+

1

2
ǫabcφc

δ

δφb

)
Γ(n) = −

1

2ΛD−4

n−1∑

j=1

δΓ̂(j)

δK0

δΓ̂(n−j)

δφa
. (83)

Notice that 1
ΛD−4

δΓ(0)

δφa
is independent from ΛD−4. Thus we use the Laurent expansion on

Λ−D+4Γ(n) (84)

to define the finite part and the counterterm Λ−D+4Γ̂(n) = −Λ−D+4Γ(n)

∣∣∣∣∣
poles

.

The LFE is a power organizer of the divergences that WPC has classified. The full

control can be obtained by finding the relevant local solutions of the linearized LFE
(
−∂µ δ

δJ
µ
a
+ ǫabcJ

µ
c

δ

δJ
µ
b

+
1

2ΛD−4

δΓ(0)

δφa

δ

δK0

+
1

2
φ0

δ

δφa
+

1

2
ǫabcφc

δ

δφb

)
Γ(n)[~φ, ~Jµ,K0] = 0. (85)

This can easily be achieved by using the technique of bleaching. We shortly describe this

procedure. The above equation naturally suggests the following infinitesimal transforma-

tions:

δ0J
µ
b = (∂µδab + ǫabcJ

µ
c )ωa = D[J ]µbaωa
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δ0F
µ
a = D[F ]µabωb

δ0K0 = −
ωa

ΛD−4

δΓ(0)

δφa

δ0(−
δΓ(0)

δφa
) = ΛD−4 1

2
ωaK0 +

1

2
ǫabcωc(−

δΓ(0)

δφb
) , (86)

which lead to the bleaching

Jµ ≡ Ω†(Jµ − Fµ)Ω

K0 ≡
K0

φ0
−

M2

4
(Jµ

b − F
µ
b )

∂Fbµ

∂φa
φa (87)

Here are few facts about bleaching. i) The relations are invertible, ii) In the case of Jaµ,

bleaching is a kind of gauge transformation where the parameters are the ~φ fields:

Jµ = Ω†JµΩ+ iΩ∂µΩ

∂µJν = Ω†
(
∂µ +Ω∂µΩ

†
)
(Jν − Fν)Ω = Ω†Dµ[F ](Jν − Fν)Ω (88)

iii) the invariants can be constructed by using Jµ and K0 and their space-time derivatives.

Ancestor amplitudes do not depend explicitly on ~φ. We consider only those relevant

for the one-loop divergences.

We give here a list of the relevant one-loop invariants necessary for the parameterization

of the one-loop divergences of the NLSM:

I1 =

∫
dDx

[
Dµ(F − J)ν

]
a

[
Dµ(F − J)ν

]
a
,

I2 =

∫
dDx

[
Dµ(F − J)µ

]
a

[
Dν(F − J)ν

]
a
,

I3 =

∫
dDx ǫabc

[
Dµ(F − J)ν

]
a

(
F

µ
b − J

µ
b

)(
F ν
c − Jν

c

)
,

I4 =

∫
dDx

(K0

φ0
+

M2

4
[Fµ

b − J
µ
b ]

∂Fbµ

∂φa
φa

)2
,

I5 =

∫
dDx

(K0

φ0
+

M2

4
[Fµ

b − J
µ
b ]

∂Fbµ

∂φa
φa

)(
Fµ
c − Jµ

c

)2
,

I6 =

∫
dDx

(
Fµ
a − Jµ

a

)2(
F ν
b − Jν

b

)2
,

I7 =

∫
dDx

(
Fµ
a − Jµ

a

)(
F ν
a − Jν

a

)(
Fbµ − Jbµ

)(
Fbν − Jbν

)
, (89)

where Dµ denotes the covariant derivative w.r.t Faµ:

Dabµ = δab∂µ − ǫabcFcµ . (90)

The counterterms are evaluated by extracting the pole parts from the relevant ampli-

tudes given by the effective action functional normalized by Λ−D+4Γ. It is very important

to care about the relation
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2(I1 − I2)− 4I3 + (I6 − I7) =

∫
dDxGaµν [J]G

µν
a [J] =

∫
dDxGaµν [J ]G

µν
a [J ] =∼ 0. (91)

The last integral is sterile: no descendant terms are generated. Now the calculation

gives

Γ(1) =
1

D − 4

ΛD−4

(4π)2

[
−

1

12

(
I1 − I2 − I3

)
+

1

48

(
I6 + 2I7

)
+

3

2

1

M4
I4 +

1

2

1

M2
I5

]
. (92)

4.7 The massive Yang-Mills theory

Ω describes the Goldstone bosons, that are here unphysical modes. Then it is important to

ensure that the Slavnov-Taylor Identity (STI) is valid in order to preserve unitarity. The

LFE must be compatible with the STI. A suitable gauge-fixing term will help to achieve

this result. The Landau gauge is the simplest, since the tadpole contributions can be

neglected in most cases. The transformations to be considered are the local left SU(2)L

and the global right SU(2)R on Ω, the gauge fields are Aµ and the Faddeev-Popov fields

are c, c̄. Few external sources are needed in order to describe the complete (under the

SU(2)L ⊗ SU(2)R) set of composite operators.

The action in the presence of the Landau gauge-fixing terms looks as follows:

Γ(0) = SYM +
ΛD−4

g2

∫
dDx

(
Ba(D

µ[V ](Aµ − Vµ))a − c̄a(D
µ[V ]Dµ[A]c)a

)

+

∫
dDx

(
A∗

aµsA
µ
a + φ∗

0sφ0 + φ∗
asφa + c∗asca +K0φ0

)
. (93)

SYM =
Λ(D−4)

g2

∫
dDx

(
−

1

4
Gaµν [A]G

µν
a [A] +

M2

2
(Aaµ − Faµ)

2
)
. (94)

Ω =
1

v
(φ0 + iτaφa), φ2

0 + φ2
a = v2 (95)

where v is a parameter with dimension one. We stress that v is not a parameter of the

model , because it can can be removed by a rescaling of the fields ~φ and φ0.

Slavnov-Taylor Identity

The S-matrix satisfies the following equation at the perturbative level :

〈α|β〉 =
∑

n∈{physical states}

〈α|S|n〉〈n|S†|β〉
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if both α and β are physical states. This in general is valid if the Slavnov-Taylor identity

is valid.

S(Γ) =

∫
dDx

( δΓ

δA∗
aµ

δΓ

δA
µ
a
+

δΓ

δφ∗
a

δΓ

δφa
+

δΓ

δc∗a

δΓ

δca
+Ba

δΓ

δc̄a
−K0

δΓ

δφ∗
0

)
= 0 . (96)

The LFE for the massive YM model can be cast in the form:

W(Γ) ≡

∫
dDxαL

a (x)

(
−∂µ

δΓ

δVaµ
+ ǫabcVcµ

δΓ

δVbµ
− ∂µ

δΓ

δAaµ

+ǫabcAcµ
δΓ

δAbµ
+ ǫabcBc

δΓ

δBb
+

1

2
K0φa+

1

2

δΓ

δK0

δΓ

δφa

+
1

2
ǫabcφc

δΓ

δφb
+ ǫabcc̄c

δΓ

δc̄b
+ ǫabccc

δΓ

δcb

+ǫabcA
∗
cµ

δΓ

δA∗
bµ

+ ǫabcc
∗
c

δΓ

δc∗b
+

1

2
φ∗
0

δΓ

δφ∗
a

+
1

2
ǫabcφ

∗
c

δΓ

δφ∗
b

−
1

2
φ∗
a

δΓ

δφ∗
0

)
= 0 . (97)

Γ also obeys the Landau gauge equation

δΓ

δBa
=

ΛD−4

g2
Dµ[V ](Aµ − Vµ)a (98)

Linearized Equations and Induced Transformations

The structure of both STI and LFE is standard. Thus we can

1. Establish the full hierarchy (only the Goldstone bosons are descendant fields)

2. Confirm the validity of the WPC

3. Introduce the linearized STI and LFE

4. Extract from the linearized STI and LFE the generators of the transformations on

the effective action Γ

5. Check that the generators stemming from STI commute with those from LFE

Subtraction procedure

With these tools we can construct the most general classical action compatible with the

WPC and the invariance under the BRST transformations and the LFE induced sym-

metry. Surprisingly enough, the resulting action is the standard YM field theory with a

Stückelberg mass term.

The subtraction procedure of the divergences is then the same as in the NLSM: sub-

traction of the pure pole parts in the Laurent expansion around D = 4 of the normalized

amplitudes Λ−D+4Γ. This subtraction procedure has been implemented in the one-loop

calculation of the gauge field two-point functions [15], [18]. Moreover, it has been tested

for a solvable model [19].
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Consistency of the Subtraction Procedure

The two-loop self-energy amplitude has been considered from the point of view of the con-

sistency. It has been argued that the subtraction scheme is consistent: i) the counterterms

are local ii) physical unitarity is satisfied iii) the STI and LFE induced symmetry on Γ is

preserved.

In Ref. [15] we proved the following results:

1) explicit calculation of the gauge field two-point function.

2) Check that the counterterms are local at the two-loop level.

3) Validity of unitarity.

4) All divergences (infinite) at the one-loop level are subtracted by a finite number of

counterterms.

Outlook and (some) open questions

Several issues should be addressed:

• Phenomenological applications

• Running constant (dependence on Λ)

• How to proceed with a generic regularization tool?

• Well-defined strategy of minimal subtraction with anticommuting γ5.

• Extension to Grand Unified groups

5 Conclusions

Our approach to theories with nonlinearly realized gauge group is based on the Local

Functional Equation, which applies to the generating functionals. The features of this

method are quite novel in field theory and can be briefly summarized as follows:

• Hierarchy: all the amplitudes involving the parameter fields (the pion field in the

nonlinear sigma model, the Goldstone bosons in the nonabelian gauge theories) can

be derived from well-defined ancestor field amplitudes given in terms of gauge- and

order-parameter-fields. This property allows one to fix at every order an infinite

number of divergent amplitudes in terms of a finite number of divergences involving

only the ancestor fields.

• Weak Power Counting: for the ancestor amplitudes a criterion is needed in order

to make hierarchy effective. The subtraction procedure that we are implementing

is compatible with the WPC, i.e. if the starting action is constructed by using the

WPC, then the counterterms do not alter this property.
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• Existence of a consistent subtraction procedure (symmetric and local): it can be

proven that minimal dimensional subtraction on properly normalized amplitudes

maintains the validity of the LFE.

• Necessity of a finite number of physical parameters. It is essential that the number

of free parameters is finite and independent from the order in the loop expansion.

Otherwise the subtraction strategy would not be consistent, since every parameter

should be present in the tree-level action.

For massive Yang-Mills theory, using Slavnov-Taylor identities and the Landau gauge

equation we proved

• The physical unitarity of the theory. This property is of paramount importance since

our approach, as in the usual linear case, has unphysical modes (Goldstone bosons,

spin-zero vector field polarization, Faddev-Popov ghosts). The proof proceeds in the

standard way by showing that the unphysical modes cancel in the unitarity equation

for the S-matrix involving only physical states.

• The consistency of the Local Functional Equation with all other equations, such as

the Slavnov-Taylor identities, the gauge-fixing equation and the anti-ghost equation.

All the equations are not spoiled in the proposed subtraction procedure.

• We finally mention that the massive YM theory can also be formulated in the ’t

Hooft-Feynman gauge. However, in this gauge one has to deal with many tadpole

diagrams that are absent in the Landau gauge.
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