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Abstract—We provide a geometric solution to the problem of
optimal relay positioning to maximize the multicast rate for low-
SNR networks. The network we consider consists of a single
source, multiple receivers and the only intermediate and locatable
node as the relay. We construct network the hypergraph of the
system nodes from the underlying information theoretic model
of low-SNR regime that operates using superposition codingand
FDMA in conjunction (which we call the “achievable hypergraph
model”). We make the following contributions.

1) We show that the problem of optimal relay positioning
maximizing the multicast rate can be completely decoupled
from the flow optimization by noticing and exploiting
geometric properties of multicast flow.

2) All the flow maximizing the multicast rate is sent over at
most two paths, in succession. The relay position depends
on only one path (out of the two), irrespective of the number
of receiver nodes in the system. Subsequently, we propose
simple and efficient geometric algorithms to compute the
optimal relay position.

3) Finally, we show that in our model at the optimal relay
position, the difference between the maximized multicast
rate and the cut-set bound is minimum.

We solve the problem for all (Ps, Pr) pairs of source and relay
transmit powers and the path loss exponentα ≥ 2.

Index Terms—Low-SNR, broadcast relay channel, geometry.

I. INTRODUCTION

We primarily consider the problem of optimal relay posi-
tioning in order to maximize the multicast rate in low-SNR
networks consisting of a single sources, a set of multiple
receiversT and an arbitrarily locatable relayr, on a 2-
D Euclidean plane. In [1], the authors previously addressed
this problem under a heavy and complex network flow opti-
mization framework. They showed that optimizing the relay
position can lead to a strong gain in the multicast rate.

In [2] the authors introduced equivalent hypergraph models
for the low-SNR Broadcast (BC) and Multiple Access channels
(MAC). The authors then derived an achievable hypergraph
model for the broadcast relay channel (BRC), obtained by
concatenating the equivalent BC and MAC hypergraphs. This
concatenated model follows from constraining the source and
relay to transmit using the optimal schemes for the low-SNR
BC and MAC: superposition coding and frequency division,
respectively. In this paper, building on this model, we solve
geometrically the problem of optimal relay positioning under

the pretext of multicast rate maximization, which is much
simpler and efficient than the solution proposed in [1].

Most importantly, we establish the fact that for a given
low-SNR BRC hypergraphG(N ,A), the multicast rate is
maximized by sending all the flow through at most two paths
in succession, independently of the number of destination
nodes. This is a consequence of simply maximizing the
multicast min-cut. The dependency of the multicast min-cuton
the relay position is essentially through a single path (outof
the two), and this motivates a simple geometric interpretation
and formulation of the problem. It should be noted that, the
“optimal relay position” refers to the position that maximizes
the multicast rate over a given achievable hypergraph, but in
general the achievable hypergraph model is not necessarily
optimal in terms of meeting the cut-set bound for low-SNR
networks. On the other hand, the achievable hypergraph model
performs closely to the peaky binning scheme in the case
of a single destination [3], and enjoys an important practi-
cal advantage of being easily scalable to more complicated
topologies. Finally, under our model the difference between the
maximum multicast rate and the cut-set bound is minimized
at the optimal relay position.

In the proposed geometric approach, we decouple the prob-
lem of rate maximization from the problem of computing the
optimal relay position. This substantially reduces the complex-
ity (compared to the flow optimization based framework in
[1]) and also provides a great deal of insight in understanding
the nature of such network planning problems. Finally, we
show that at the optimal position the difference between the
maximum multicast rate and the cut-set bound is minimized
under the achievable hypergraph model.

The paper is organized as follows. We introduce the low-
SNR achievable hypergraph model of the BRC in section II.
Then we prove certain geometric properties of multicast in
section III. The computation of optimal relay position is
divided in two parts, section IV forPs = Pr and section V
for Ps 6= Pr. Finally, we conclude in section VI.

II. LOW-SNR SYSTEM AND HYPERGRAPH MODEL
A. System model and notations

The network topology is given by a hypergraphG(N ,A),
whereN = {s, r, T }, and all nodes exceptr are fixed on the2-
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. Here,h gives the path loss andDij the distance fromi to j.

D Euclidean plane.T = {t1, .., tn} denotes the set ofn = |T |
receivers ordered in increasing distance froms. C represents
the convex hull of{s, T }. The multicast rate froms to T is
defined asRsT , min

t∈T
(Rst), whereRst is the total rate from

s to receivert ∈ T . Ps andPr = γPs are the total transmit
powers ofs andr, respectively, andγ > 0 is their ratio.Duv

denotes the Euclidean distance between nodesu and v, and
α ≥ 2 the path loss exponent. For a subsetQ ⊆ N\r, define
LQ(C) as the point inC, that minimizes the maximum over
the distances between itself and each node inQ, i.e.

LQ(C) , argmin
r∈C

(

max
j∈{Q}

(Drj)

)

. (A)

The value of objective function of the output of Program (A)
is denoted asDQ.

B. Low-SNR BC, MAC and BRC hypergraph models

In [1], [2], it was shown that concatenating the low-SNR
BC (superposition coding) and MAC (FDMA) equivalent
hypergraph models results in an achievable hypergraph model
for the low-SNR BRC. The rate region of this model is
included in the capacity region of the low-SNR broadcast
relay channel. In fact, even though superposition coding and
FDMA are independently capacity achieving for the low-SNR
AWGN BC and MAC channels respectively, their combination
in general is not capacity achieving for the low-SNR relay
channel, and a fortiori for the low-SNR BRC [3].

In this section, we briefly recall the equivalent hypergraph
models for the low-SNR BC and MAC, and the achievable
hypergraph model for the BRC [1]. Note that in the low-SNR
regime, BC and MAC arenot limited by interference.

1) Low-SNR BC equivalent hypergraph:Superposition
coding is known to achieve the capacity region of the AWGN
BC. In the low-SNR regime, the rates achieved by superpo-
sition coding boil down to the time-sharing region [4]–[6].
For a given topology with|T | = n receivers, the hypergraph
will contain at mostn hyperarcs with non-zero capacities [1].
Figures 1(a) and 1(b) illustrate the two-destination case.

2) Low-SNR MAC equivalent hypergraph:In the low-SNR
regime, interference becomes negligible with respect to the
noise [1], [2], and all sources can achieve their point-to-
point capacity to the common destination, like with frequency
division multiple access (FDMA). In the general wideband
MAC with n sources, the hypergraph model consists ofn
hyperarcs of size1 from each sourcesi, i ∈ {1, .., n} to

the destination with non-zero capacity. Figures 1(c) and 1(d)
illustrate the two-source case.

3) Low-SNR BRC achievable hypergraph:We can obtain
an achievable hypergraph model of the low-SNR BRC by sim-
ply concatenating the BC and MAC equivalent hypergraphs,
as shown in Figures 1(e) and 1(f) for the two-destination case.
As mentioned before, this achievable hypergraph model is
suboptimal in general for the BRC, but the ability to scale
easily to larger and complex networks is one of its biggest
strength.

III. GEOMETRIC PROPERTIES OF MULTICAST

In this section, we derive the geometric properties of the
optimal relay position maximizing the multicast rate for the
BRC. We first focus on the single destination case of the BRC:
the relay channel, in Section III-A. Then, these preliminary ob-
servations and properties are extended for the general problem
with an arbitrary number of destinations, in Section III-B.

A. Single destination: low-SNR relay channel

Consider the simple network in Figure 2 (a), with a fixed
sources, a fixed receivert and an arbitrarily positionable relay
r, where the multicast rateRst from s to t is to be maximized.
Naturally,Rst depends on the position ofr. The achievable
hypergraph in Figure 2 (a) can be broken into two subgraphs,
shown in Figures 2 (b) and (c), which are essentially the two
disjoint paths froms to t.

Our claim is that the optimal position of the relay maximiz-
ing the multicast rate froms to t lies on the line segments− t
joining s andt, and at this optimal position all the flowRst is
sent through a single path consisting of two hyperarcs, namely
{(s, r), (r, t)} shown in Figure 2 (c). This holds true for any
given pair of power constraints(Ps, Pr) ≻ 0 and for any path
loss exponentα ≥ 2. We prove this claim in Lemmas 1 and
2 hereafter.

We first recall the following lemma from [1].
Lemma 1 (Lemma 1 [1]):The optimal position ofr maxi-

mizing RsT lies inside the convex hullC.
Here, Lemma 1 simply implies that the optimal position of

r lies on the segments− t.
The rates over the three hyperarcs{(s, r), (r, t), (s, rt)} =

A are given by,

Rsr =
Psr

Dα
srN0

, Rrt =
Prt

Dα
rtN0

, Rsrt =
Psrt

Dα
stN0

, (1)

Psr + Psrt ≤ Ps, Prt ≤ Pr, (2)
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Fig. 2. (a): One receiver case decomposed into two subgraphsfrom s to t,
(b) and (c), respectively. (d): Optimal position ofr for Ps = Pr andα = 2,
which is at the perpendicular bisector (red) of line segments − t. (e): Left
bias forPs < Pr. (f): Right bias forPs > Pr .

whereN0 is the noise power spectral density. Note that the
multicast rate is given byRst = Rsrt +min(Rsr, Rrt).

Lemma 2:The optimal location ofr on the segments− t
for a simple BRC withγ ∈ (0,∞) andα ≥ 2 that maximizes
the multicast rateRst satisfies,

D∗
sr =

Dst

1 + α
√
γ
, D∗

rt =
α
√
γDst

1 + α
√
γ
, (3)

and the optimal (maximized) multicast rate is given by,

R∗
st =

Ps

(D∗
sr)

αN0
=

γPs

(D∗
rt)

αN0
(4)

where all the flowR∗
st is sent over the path{(s, r), (r, t)}.

In Lemma 2 the starred entities refer the optimal values and
for the proof the reader is referred to Appendix A.

Lemma 2 essentially gives the position ofr in terms of
how far it is from s and r on the segments − t. Also, it
provides the maximized multicast rateR∗

st that is achieved at
this position. It can be easily seen that the relay position only
affects the rate over the path{(s, r), (r, t)}. Since the min-cut
of the path{(s, r), (r, t)} is strictly larger than the min-cut
of the path{(s, rt)}, i.e. the rate that can be sent for a unit
power over the former path is strictly larger than the latterpath
(Rsrt < min(Rsr, Rrt)), the rate over the path{(s, r), (r, t)}
should be maximized first by simply maximizing its min-
cut min(Rsr , Rrt) before allocating any power to the path
{(s, rt)}. The min-cutmin(Rsr , Rrt) is maximized at the
position on the segments − t such that rates over the two
hyperarcs of the path{(s, r), (r, t)} become equal, and all
the flow from s to t is transmitted over this path only. The
maximized multicast flowR∗

st is then simply given by the
rates of either of the two hyperarcs.

Several important conclusions can be drawn from Lemma 2.
The multicast flow optimization can be separated from the
determination of the optimal relay position that maximizesthe
multicast flow. Even if the aim is not to maximize the multicast
flow (for instance by simply choosing not to use all the source
and relay powers), Lemma 2 still gives the most suitable relay
position for any feasible multicast rateRst ≤ R∗

st. At the same
time, the algorithmic style intuitive proof arguments in the
previous paragraph indicate that upon computing the optimal
relay position, the multicast rate maximization problem could
be casted as a straightforward linear program resulting in a

simple power allocation scheme maximizing the multicast rate.
This fact will prove handy for the general case with arbitrary
number of destinations. On the other hand, we observe the
dependency of the optimal relay position on the constantsα
and γ. If γ = 1 i.e. Ps = Pr, the optimal relay position is
always at the mid-point of the segments− t for any value of
α ≥ 2. Whenγ 6= 1, there will be a natural bias on the optimal
position ofr either towardss or t, depending on the value of
γ. This bias will also depend on the value ofα. Figure 2(e)
and 2(f) show the bias effect.

B. Multiple destinations

In this subsection, we extend the simple geometric insights
developed in Section III-A for a single destination to the
general case of an arbitrary number of destinations|T | = n.

Let us first note the following. For a given hypergraph
G(N ,A), and a fixed position ofr, we have at most(n+1)+
(n) hyperarcs in the system, i.e.|A| = 2n + 1. The former
(n+ 1) are source hyperarcs, emanating froms to the nodes
in N\s and the lattern are the relay hyperarcs, emanating
from r to all T . Also, for any given position ofr there always
exist at least two paths that will span all the receiver setT ,
namely{(s, T )} (or {s, t1..tn}) and{(s, T1), (r, T2)} (where
r ∈ T1 andT1 ∪ T2 = {r, T }).

Now, consider that each hyperarc(i, J) ∈ A is associated
with a continuous functionfiJ(P

+
i , D−

iJ) : R2 −→ R, that
is a monotonically increasing in the transmit node’s powerPi

and monotonically decreasing in the distanceDiJ , whereDiJ

is the Euclidean distance between the transmit nodei and the
farthest receiver nodej ∈ J (from i) spanned by the hyperarc.
Then the following theorem holds true.

Theorem 1:Given a hypergraphG(N ,A) and the associ-
ated rate functionsfiJ(P

+
i , D−

iJ) : R2 −→ R for each hy-
perarc inA, at the optimal position maximizing the multicast
rateRsT one of the two multicast flow characteristics holds:

(i) all the optimal flowR∗
sT goes through at most two paths

{(s, T1, (r, T2)} and{(s, T )}, in succession.
(ii) all the optimal flowR∗

sT can be arbitrarily split between
the two paths{(s, T )} and{(s, T1), (r, T2)}.

For the proof of Theorem 1, refer to Appendix B.
Theorem 1 partially generalizes Lemma 2. We say partially,

because on one hand, Theorem 1 establishes the important
multicast flow characteristics at the optimal relay position,
but it does not provide a simple numerical result that de-
termines the optimal relay location (like Lemma 2). Note
that, for a given relay position there could be multiple paths
from s, throughr, to all T , but in the Theorem 1 by path
{(s, T1), (r, T2)} we mean the path froms, throughr, to all
T that has the highest min-cut among all the paths froms,
throughr, to allT . Intuitively, Theorem 1 states that only those
paths will contain the multicast flow froms to the receiver set
T that serve allT , namely{(s, T )} and{(s, T1), (r, T2)}. All
other path that serve proper subsets ofT will carry no flow as
they do not contribute to the multicast flow and among all the
paths serving allT throughr, only the path with the highest



min-cut will carry the multicast flow. This fact is a simple yet
fundamental consequence of the definition of multicast.

Theorem 1 reveals a lot about the nature of multicast flow
over a hypergraph. The dependence of relay position on the
rate of only a single path{(s, T1), (r, T2)} reduces the problem
to its core by removing the clutter away. In other words, now
we only need to worry about the maximization of the flow
over this single path and the relay position that maximizes
the flow over this path also maximizes the multicast flow
RsT . This result of Theorem 1 motivates a pure geometric
interpretation of the problem. If we imagine the two hyperarcs
(s, T1) and (r, T2) to be two circlesCs andCr centered ats
andr with radii πs andπr, respectively, then the optimal relay
positioning problem could be stated as:For a givenG(N ,A),
find the point inC such that whenr is positioned at this point,
max( α

√
γπs, πr) is minimized whiler ∈ Cs and the region of

union of two circlesC∪ = Cs ∪ Cr encompasses allT .
At first, it seems plausible to try a simple (preferably

convex) optimization framework to compute such a point,
but the condition that the two circles must encompass allN
brings in discreteness, which we avoid for obvious reasons.In
contrast, we propose a simple (polynomial time) algorithm to
compute such point in the next sections. Once the optimal relay
position is obtained, obtaining optimal power allocations(for
s andr) maximizing the multicast rate boils down to solving
a simple linear program involving only two paths. We divide
the development of this algorithm into two cases ofγ = 1 and
γ ∈ (0,∞). The case ofγ = 1 is easy to understand and holds
importance in its own right. In addition it develops the basic
intuition for the proposed algorithm and leaves the extension
to the case of all values ofγ ∈ (0,∞), as straightforward.

IV. (Ps = Pr) - CASE AND ALGORITHM

In this section, we haveγ = 1 and α ≥ 2 for a
given G(N ,A) on the 2-D Euclidean plane. The optimal
relay positioning problem stated geometrically in the previous
section simply boils down to finding the point inC such that
max(πs, πr) is minimized whiler ∈ Cs andC∪ encompasses
all T . We divide the problem in the following two cases based
on the topology of the givenG(N ,A).

A. s− tn mid-point case

Lemma 3: If r is placed at the mid-point ofs − tn such
that the hyperarcsCs andCr each with radiiDstn

2 span all
T , then it is the optimal relay position maximizingRsT .

The proof of Lemma 3 is a straightforward generalization
of Lemma 2 and therefore is omitted. Intuitively, Lemma 3
simply states that since the farthest node (froms) tn is also
the limiting node for maximizingRsT , if the rate is maximized
only to tn while guaranteeing it to all other nodes inT , then
this maximizesRsT as well. This means that ifr is placed at
the mid-point of the segments−tn (as this position maximizes
the rate totn only) and if the two hyperarcs of the path
{(s, r), (r, tn)} ({Cs, Cr}) span allT , then clearly this is the
relay position that maximizesRsT .

B. General Case

In this case we tackle all topologies and caseA becomes a
special case of it. Recall that, the entityLQ(C) represents the
coordinates of the point which is the argument of the objective
function of the output of program (A), andDQ is the value
of the objective function of the output of program (A).

Optimal relay positioning Algorithm (ORP)
Given:G(N ,A).

1) Computel0 = L{N\r}(C) and build the setN0 = {t ∈
T |Dst < Dl0t&Dl0t > Dsl0} = {t′1, .., t′m} in increasing
order of distance froms. If N0 = {∅}, declarel0 as the
optimal relay position and quit, else go to step2.

2) Build the setN1 = {N\(r,N0)} and compute the
point l1 = LN1

(C). Form the hyperarcsCs and Cl1

of radii Dsl1 andDN1
, respectively. IfC∪ = Cs ∪ Cl1

encompasses allT , outputl1 as the optimal relay position
and quit, else go to step3.

3) Reform the hyperarcCs of radiusDst′m and build the set
N2 = {t ∈ T |Dst > Dst′m} and computel2 = LN2

(C).
Declarel2 as the optimal relay position and quit.

Algorithm ORP is a straightforward set of basic and intuitive
computational steps based on the properties of the point
l0 = LN\r(C). If there exist no nodet′ ∈ T such that
t′ /∈ Cs andDst′ < Dl0t′ (i.e. setN0 is empty), that can be
directly reached bys rather than by a path throughr, thenl0 is
certainly the optimal relay position. In contrast, if the set N0

is not empty, then there exist at least one receiver node in the
system that influences the computation of the optimal relay
position but can be served directly byCs. Therefore, either
the nodes inN0 can be removed from the computation of
the optimal relay position (l1 in Step2) andmax(πs, πr) can
be further reduced or we could reform the hyperarcCs with
radiusDst′m (where,t′m is the farthest node inN0 from s) and
then computing the pointl2 for the nodes that were not covered
by Cs and thus reducing the value ofmax(πs, πr). Note that,
Algorithm ORP categorizes all possible topologies of the given
G(N ,A) in three steps and there is no underlying iterative
process. This makes algorithm ORP behave like a numerical
formula, which we originally wanted from Theorem 1.

We leave the formal proof thatORP always outputs the
optimal relay position maximizingRsT to Appendix C and
extend this simple approach in a straightforward manner to
the case of all values ofγ ∈ (0,∞) in the next section.

V. Ps 6= Pr- CASE AND ALGORITHM

In this section, we considerγ ∈ (0,∞) for a given
G(N ,A) and α ≥ 2. Almost all the theory developed in
Section IV simply transcends to this section, with certain
notable differences. Mainly, that whenγ 6= 1 it gives rise
to a bias in the positioning ofr ( ref. Figure 2(e) and 2(f)).
Taking into account the bias while computing the optimal
relay position will be the main enhancement in this section.
Likewise previously, we first consider thes− tn case.



A. s− tn case
Lemma 4:Given G(N ,A), if r is placed ons − tn at a

distance ofDsr =
Dstn

1+ α
√
γ from s, such thatr ∈ Cs andC∪ =

Cs ∪ Cr spans allT , then it is optimal relay position that
maximizesRsT .

The line of argument for the proof of Lemma 3 (using
Lemma 2) could be simply generalized for Lemma 4.

B. General Case

In this case, like in Section IV, we generalize to all
topologies. As we know, that the values ofγ (when not equal
to 1) andα inflict the bias on the relay position. The main
difference in case ofPs 6= Pr is the computation of the point
li = LQ(C) (i = {0, 1}), given by,

li = LQ(C) , argmin
i∈C

(

max
(j∈Q\s)

( α
√
γDsi, Dij)

)

. (B)

and the computation of the setN0 = {t ∈ T | α
√
γDsl0 >

Dl0t} = {t′1, .., t′m}, in the Algorithm ORP. Program (B)
and the setN0 takes into account the bias induced by the
differences in the transmit power of the source and relay and
the value ofα. The rest of the algorithm remains the same.

Now that we have an efficient algorithm for computing the
optimal relay position, we can be more ambitious to assess
the standing of our work in a more theoretical sense. One
of the important consequences of this work that signifies its
theoretical importance is shown in Figure 3. We computed the
difference between the optimal multicast rateR∗

sT (for a given
position ofr) and the cut set bound for|T | = 9 receiver nodes
network at21 interesting positions, including the optimal relay
position computed by the Algorithm ORP. At the optimal relay
position (blue point), this difference is minimized, confirming
the fact that the optimal relay position not only results in gains
but the maximized multicast rate is theoretically closest to the
cut-set bound at the optimal relay position in our framework.

It is worth mentioning that the theory developed in this
paper well transcends to the low-SNR fading channels , which
we do not discuss here but can be easily generalized from the
results of [2] and [3].

VI. CONCLUSION

We list the important deductions from our work in the
following points.

1) The problem of optimal relay positioning to maximize
the multicast rate for the achievable hypergraph model
of low-SNR networks using superposition coding and
FDMA, can be decoupled from flow optimization and
casted as a simpler geometric problem, as opposed to a
complex network optimization approach of [1].

2) The geometric properties of multicast are innately simple
and provide interesting insights for relay positioning
problem. This is largely due to the fact that all the
multicast flow is pushed over at most two paths which
is a direct consequence of the definition of the multicast
flow, and this results in simple geometric interpretation.
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Fig. 3. |T | = 9 case with green receivers, red source and blue as the optimal
relay position. The optimalRsT and cut set bound difference (in nats/sec)
is calculated for21 positions and is the lowest at the optimal relay position
(blue). We assumePs

N0

= Pr
N0

= 1 (normalized) andα = 4.

3) Importantly, the benefits of determining the optimal relay
position are substantiated by the fact that the difference
between the maximized multicast rate and the cut-set
bound at the optimal position is minimized.

We now outline, what we think are certain important future
directions our work could take. The geometric properties of
multicast give great insights and are surprisingly easy to work
with. This motivates us to ask further, whether is it possible
to apply the simple techniques of our work for the optimal
relay positioning problem to moderate and high-SNR regimes
that are interference limited. Another natural and interesting
dimension is to look at the possibility of extending this work
to multicommodity flows.
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APPENDIX A
PROOF OFLemma 2

Proof: We only consider the positions in the interior of
the segments− t. Then, the multicast rate is given by

Rst = Rsrt +min(Rsr, Rrt)

=
λPs

D
α/2
st N0

+min

(

(1− λ)Ps

Dα
srN0

,
γPs

Dα
rtN0

)

=
Ps

N0
min

(

λ

(

1

Dα
st

− 1

Dα
sr

)

+
1

Dα
sr

, λ
1

Dα
st

+
γ

Dα
rt

)

.

(5)

By assumption, we haveDst > max(Dsr, Drt). Thus, in
the minimization of (5), the first and the second term are
respectively decreasing and increasing affine functions ofλ.
Two cases can occur. Ifα

√
γDsr ≥ Drt, then the second term

is always larger than the first term, which consequently is the
minimum of the two. The first term decreases inλ, thusRst is
maximized forλ = 0. Else, if α

√
γDsr ≤ Drt, the two affine

functions intersect in the interval[0, 1] at λ = 1− γDα
sr

Dα
rt

. The
multicast rateRst is maximized at this intersection. Note that
for the position ofr satisfying α

√
γDsr = Drt, both solutions

match:λ = 1− γDα
sr

Dα
rt

= 0.
By Lemma 1, the relay position maximizing the multicast

rate lies on segments− t. Then, we can write

Dst = Dsr +Drt, (6)

and the relay position is simply determined by the distance
Dsr. Using (6), the conditionsα/2

√
γDsr ≶ Drt in Lemma 2

can be rewritten in function ofDsr as

Dsr ≶
Dst

1 + α
√
γ
. (7)

Given the optimal power allocationλ∗, and using (7), the
multicast rateRst can be rewritten as the following function
of Dsr

Rst =

{

Ps

Dα
stN0

(

1 + γ
Dα

st−Dα
sr

(Dst−Dsr)α

)

, if Dsr ≤ Dst

1+ α
√
γ ;

Ps

Dα
srN0

, if Dsr ≥ Dst

1+ α
√
γ .

(8)

From (8), it can be seen thatRst is an increasing function of
Dsr over (0, Dst

1+ α
√
γ ], and then a decreasing function ofDsr

over [ Dst

1+ α
√
γ , Dst). Therefore, the multicast rate is maximized

at the border between these two intervals:D∗
sr = Dst

1+ α
√
γ .

SubstitutingD∗
sr in (8) yieldsR∗

st. This completes the proof
of the Lemma.

APPENDIX B
PROOF OFTheorem 1

A simple assimilation of the basic graph theoretic and
Euclidean geometric concepts helps form the fundamental
reasoning for the proof. Let’s assume that the hypergraph
G(N ,A) is given with the constantγ ∈ (0,∞) (where,
Pr = γPs) and each hyperarc(i, J) ∈ A is associated with
any continuous rate functionfiJ (P

+
i , D−

iJ ) : R2 −→ R,
that is monotonically increasing in the transmit power of

the emanating nodei of the hyperarc and is monotonically
decreasing in the distanceDiJ (between the transmit nodei
and the farthest nodej ∈ J from i). We notice that there
are only two transmitters in the systems and r and the
multicast rate froms to the receiver setT is defined as
RsT = min

(t∈T )
(Rst), whereRst is the total rate received by

the receivert ∈ T .

Proof: To prove the theorem, we first notice that for a
given position ofr there are at least two paths, namely certain
paths of the type{(s, T1), (r, T2)} (where,T1 ∪ T2 = T ) and
the path{(s, T )}, that span the whole receiver setT . Any
other path, that only serves the proper subsets ofT does not
count in contribution to the multicast rateRsT .

Among all the paths froms to T , that go throughr (i.e. of
the type{(s, T1), (r, T2)}, where,T1∪T2 = T ), only the path
with highest min-cut contributes to the multicast flowRsT .
Let us denote this path as{(s, T ′

1), (r, T
′
2)}, whereT ′

1 ∪ T ′
2 =

T . Once the min-cut of the path{(s, T ′
1), (r, T

′
2)} is reached,

considering it has the highest min-cut among the paths that
span allT throughr, no flow can be sent over any other path
of the type{(s, T1), (r, T2)}. This is true because when the
min-cut of the path{(s, T ′

1), (r, T
′
2)} is achieved (for a fixed

position of r) eitherPs is consumed orPr is consumed. If
Ps is consumed, no more multicast flow can be pushed, and
if Pr is consumed beforePs then rest of the flow have to
be pushed over the path{(s, T )} (not involving r). On the
other hand for a given position ofr, if the min-cut of the path
{(s, T ′

1), (r, T
′
2)} is strictly less than of{(s, T )}, then all the

multicast flow must be sent over the path{(s, T )}.
This implies that for any given position ofr, all the

multicast flow must be sent over at most these two paths.
Now, we can write down the min-cut of the multicast flow as

RsT =fsT (P
+
s , D−

sT )+

min(fsT ′

1
(P+

s , D−
sT ′

1

), frT ′

2
(P+

r , D−
rT ′

2

)).

Now, consider the regionC∩ = Cs ∩ Ctn , which is the
intersection of the two circles centered ats and r with radii
πs = min(Dstn ,

2Dstn

1+ α
√
γ ) and πr = min(Dstn ,

2 α
√
γDstn

1+ α
√
γ ),

respectively. The radiiπs andπr takes the bias due toα and
γ into account. Simply stated, ifγ > 1 thenπs < πr, and if
γ < 1 thenπs > πr, and finally if γ = 1 then the two circles
have equal radii. It is clear that ifγ ∈ (0,∞) then the area of
C∩ > 0.

If the relay is positioned outsideC∩, then

max

(

2Dsr

1 + α
√
γ
,
2 α
√
γDrtn

1 + α
√
γ

)

> Dstn ,

implying,

fsT (P
+
s , D−

sT ) > min
(

fsT1
(P+

s , D−
sT1

), frT2
(P+

r , D−
rT2

)
)

.

This means that the min-cut of the path{(s, T )} is strictly
larger than the min-cut of the path{(s, T ′

1), (r, T
′
2)}, implying

that all the multicast flow must be sent over the path{(s, T )},
rendering relay useless. Hence, the optimal relay positionmust
lie insideC∩.
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Fig. 4. T = {t1, t2, t3} case illustrating step3 of the algorithm ORP. (a):
The relayr is placed at the pointl0 = LN\r(C) with N0 = {t1}. Dst1 <
Drt1 andDst1 > Dsr (b): Reforming the hyperarcCs and r is placed at
l2 = LN2

(C) (where,N2 = {t2, t3}), thus reducingmax(πs, πr).

From here, it is straightforward to see that if the optimal
relay position lies in the interior ofC∩, rendering the min-
cut of the path{(s, T ′

1), (r, T
′
2)} strictly larger than the path

{(s, T )}; then flow over the path{(s, T ′
1), (r, T

′
2)} must be

maximized first and then the flow over the path{(s, T )}, in
order to maximizeRsT . This proves the first point of the
theorem.

Similarly, if the optimal relay position lies on the boundary
of the regionC∩, then

fsT (P
+
s , D−

sT ) = min
(

fsT1
(P+

s , D−
sT1

), frT2
(P+

r , D−
rT2

)
)

,

rendering the min-cut of the two paths equal. In this case, all
the flow can be sent over the path{(s, T )}, {(s, T1), (r, T2)}
by arbitrarily sharing the flow between them. This case is
reminiscent to the case when relay is placed outsideC∩,
but for completeness we count it as an individual case, and
moreover in this case relay is not really useless. This proves
the second part and hence completes the proof of Theorem 3.

APPENDIX C
PROOF OF OPTIMALITY OFALGORITHM ORP

Assume a givenG(N ,A) andγ = 1. The argument of the
output of Program (A) is a pointl and the objective function
value of the output of Program (A) is distance denoted byDQ

(where,Q is the set of points of input to Program (A)).
Proof: In order to prove that Algorithm ORP always

outputs optimal relay position, we need to prove that the
three steps suffice to tackle all the topologies of a given
G(N ,A) (namely, the distribution of the pointsN\r on the
2-D Euclidean plane).

First, we divide all the topologies in two classes. In the first,
the pointl is the optimal relay position (which corresponds to
the step1 of the algorithm ORP), and the second class in
which the pointl is not the optimal relay position (this class
corresponds to the Step2 and3 of the algorithm ORP). The
only complicated case (if at all) is the Step3, so we will go
about proving the optimality of the output of algorithm ORP
backwards in the order Step3, then Step2 and finally Step1.

For a givenG(N ,A), compute the pointl0 defined as,

l0 =arg min
j∈N\r

(max(Dij))

subject to: i ∈ C.
(9)

Form the hyperarcsCs of radiusDsl0 and Cr of radius
DN\r. Denote the value of the quantitymax(πs, πr) = ζ.
Construct the setN0 = {t ∈ T |Dst < Dl0t & Dl0t >
Dsl0} = {t′1, .., t′m}, in the increasing order of distance from
s. Considering the setN0 is not empty, take the farthest node
t′m from s. If Dst′m > Dsl0 , then it is clear thatt′m should
be approached directly froms and not throughr, because
Dl0t′m > Dsl0 andmax(Dsl0 , Dl0t′m) < Dst′m . Reforming a
source hyperarcCs of radiusDst′m (where,Dst′m < ζ), the
setN2 = {t ∈ T |Dst > Dst′m} can be constructed consisting
of all the nodes not lying in the areaCs. Now, computing
the point l2 = LN2

(C) we could form the second hyperarc
Cr of radiusDN2

. Note thatDN2
< ζ because the setN2

consists only the nodes inT that are not in the hyperarcCs

andDst′m
> Dsl0 . Denotingmax(πs, πr) = ζ′′ (with respect

to point l2), we now haveζ′′ < ζ. We cannot further reduce
max(πs, πr) as t′m is the farthest node inN0 that satisfies
this property. Thusl2 is the optimal relay position. Figure 4
illustrates this step for|T | = 3 case.

On the other hand, if the nodet′m satisfies the relation
Dst′m ≤ Dsl0 , it is clear that all the nodes inN0 could
be dropped from the computation of the pointl and the set
N1 = {N\(r,N0)} can be constructed. Therefore, computing
the point l1 = LN1

(C), gives the optimal relay position as
there is no node in the setN1 that influences the computation
of the optimal relay position unnecessarily. Again, reforming
the hyperarcs and denotingmax(πs, πr) = ζ′ (with respect
to point l1), we can easily see thatζ′ < ζ. The value of
max(πs, πr) cannot be reduced further because there is no
receiver node inT that is in the setN0 that cannot be
encompassed by the area of union of the two hyperarcsCs

and Cr (constructed with respect to the pointl1). Thus, in
this casel1 is the optimal relay position.

Finally, if the setN0 = {∅}, the point l0 is clearly the
optimal relay position as there is no receiver node in the
system that is affecting the computation of the relay position
and can be dropped off simultaneously. Hence, the three steps
of algorithm ORP always outputs the optimal relay position
for a givenG(N ,A).

The case whenγ 6= 1 is a straightforward generalization
and line of argument for the proof of optimality remains the
same for the case ofγ = 1.
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