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Abstract

Inner and outer bounds are derived on the optimal performance of fixed length block codes on discrete memoryless
channels with feedback and errors-and-erasures decoding.First an inner bound is derived using a two phase encoding
scheme with communication and control phases together withthe optimal decoding rule for the given encoding scheme,
among decoding rules that can be represented in terms of pairwise comparisons between the messages. Then an outer
bound is derived using a generalization of the straight-line bound to errors-and-erasures decoders and the optimal error
exponent trade off of a feedback encoder with two messages. In addition upper and lower bounds are derived, for the
optimal erasure exponent of error free block codes in terms of the rate. Finally we present a proof of the fact that the
optimal trade off between error exponents of a two message code does not increase with feedback on DMCs.

I. INTRODUCTION:

Shannon showed in [30] that the capacity of discrete memoryless channels (DMCs) does not increase even when a
noiseless and delay free feedback link is available from thereceiver to the transmitter. On symmetric DMCs the sphere
packing exponent bounds the error exponent of fixed length block codes from above, as shown by Dobrushin1 in [11].
Thus relaxations like errors-and-erasures decoding or variable length coding are needed for feedback to increase the
error exponent of block codes at rates larger than the critical rate on symmetric DMCs. In this work we investigate one
such relaxation, namely errors-and-erasures decoding andfind inner and outer bounds to the optimal error exponent
erasure exponent trade off.

Finding the optimal encoding and decoding schemes, and hence finding optimal performance by characterizing
the surface of achievable error exponent erasure exponent pairs is an important motivation for the investigation of
errors-and-erasure decoding. Note, however, that finding the optimal performance with erasures will implicitly solve
the problem of finding the optimal feedback encoder and determining the error exponent for the erasure free fixed
length block codes with feedback which is a long standing open problem. Finding the optimal performance, however,
is far from being the only important aspect of the problem. Determining the performance of feedback encoding
schemes that are easier to implement, more robust to the degradations of the feedback link and bounding the loss
in the performance compared to the more complicated encoding schemes are both important tasks practically and
interesting ones intellectually. This will be our aim in this paper. We will first analyze the performance of a two phase
encoding scheme inspired by the optimal encoding schemes for variable length block codes and derive inner bounds
to the optimal performance. Then we will derive outer boundsto the performance of general feedback encoding
schemes with erasures and quantify the loss of performance by restricting ourselves to the above mentioned two
phase schemes. This analysis complements the research on two related block coding schemes: variable length block
coding and errors-and-erasures decoding for block codes without feedback. We start with a very brief overview of
the previous work on these problems to motivate our investigation further.

Burnashev [3], [4], [5] was the first one to consider variable-length block codes with feedback, instead of fixed
length ones. He obtained the exact expression for the error exponent at all rates. Later Yamamoto and Itoh, [34],
suggested a coding scheme which achieves the best error exponent for variable-length block codes with feedback
by using a fixed length block code with an errors-and-erasures decoding and repeating the same codeword until a
non-erasure decoding occurs.2 In fact any fixed length block code with erasures can be used inthis repetitive fashion,

1Later Haroutunian, [17], established an upper bound on the error exponent of block codes with feedback. This upper boundis equal to
sphere packing exponent for symmetric channels but it is strictly larger than the sphere packing exponent for non-symmetric channels.

2Including erasures will not increase the exponent for variable-length block codes with feedback.
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like it was done in [34], to get a variable length block code with essentially the same error exponent as the original
fixed length block code. Thus [3] can be reinterpreted to givean upper bound to the error exponent achievable by
fixed length block codes with erasures. Furthermore this upper bound is achieved by the fixed length block codes with
erasures described in [34], when erasure probability is decaying to zero subexponentially with block length. However
the techniques used in this line of work are insufficient for deriving proper inner or outer bounds for the situation
when erasure probability is decaying exponentially with block length. As explained in the following paragraph the case
with strictly positive erasure exponent is important both for engineering applications and for a better understandingof
soft decoding with feedback. Our investigation provides proper tools for such an analysis, results in inner and outer
bounds to the trade off between error and erasure exponents,while recovering all previously known results for the
zero erasure exponent case.

When considered together with higher layers, the codes in the physical layer are part of a variable length/delay
communication scheme with feedback. However in the physical layer itself fixed length block codes are used instead
of variable length ones because of their amenability to modular design and robustness against the noise in the feedback
link. In such an architecture retransmissions affect the performance of higher layers. The average transmission time is
only a first order measure of this effect: as long as the erasure probability is vanishing with increasing block length,
average transmission time will essentially be equal to the block length of the fixed length block code. Thus with
an analysis like the one in [34], the cost of retransmissionsare ignored as long as the erasure probability goes to
zero with increasing block length. In a communication system with multiple layers, however, retransmissions usually
have costs beyond their effect on average transmission time, which are described by constraints on the probability
distribution of the decoding time. Knowledge of error erasure exponent trade off is useful in coming up with designs
to meet those constraints. An example of this phenomena is variable length block coding schemes with hard deadlines
for decoding time, which has already been investigated by Gopala et. al. [16] for block codes without feedback.
They have used a block coding scheme with erasures and they resend the message whenever an erasure occurs. But
because of the hard deadline, they employ this scheme only for some fixed number of trials. If all those trials fail,
i.e. lead to an erasure, they use a non-erasure block code. Using the error exponent erasure exponent trade off they
were able to obtain the best over all error performance for the given architecture.

This brings us to the second line of research we complement with our investigation: errors-and-erasures decoding
for block codes without feedback. Forney [14] was the first one to consider errors-and-erasures decoding without
feedback. He obtained an achievable trade off between the exponents of error and erasure probabilities. Then Csiszár
and Körner, [10] achieved the same performance using universal coding and decoding algorithms. Later Telatar and
Gallager, [33], introduced a strict improvement on certainchannels over the results presented in [14] and [10]. Recently
there has been a revived interest in the errors-and-erasures decoding for universally achievable performances [22], [21],
for alternative methods of analysis [20], for extensions tothe channels with side information [27] and implementation
with linear block codes [18]. The encoding schemes in these codes do not have access to any feedback. However if
the transmitter can learn whether the decoded message was anerasure or not, it can resend the message whenever it is
erased. Because of this block retransmission variant, these problems are sometimes called decision feedback problems.

We complement the results on the error exponent erasure exponent trade off without feedback and the results about
error exponent of variable length block codes with feedback, by finding inner and outer bounds to the error exponent
erasure exponent trade off of fixed length block codes with feedback. We first introduce our model and notation
in Section II. Then in Section III we derive a lower bound using a two phase coding algorithm similar to the one
described by Yamamoto and Ito in [34] and decoding rule and analysis techniques, inspired by Telatar’s in [32] for
the non-feedback case. Note that the analysis and the decoding rule in [32] is tailored for a single phase scheme and
without feedback and the two phase scheme of [34] is tuned specifically to zero-erasure exponent; coming up with
framework in which both of the ideas can be used efficiently isthe main technical challenge here. In Section IV we
first extend the straight line bound idea introduced by Shannon, Gallager and Berlekamp in [31] to block codes with
erasures. Then we use it together with the outer bound on the error exponent trade off between two codewords with
feedback to establish an outer bound for the error exponent of fixed length block codes with feedback and erasures.
In Section V we first introduce error free block codes with erasures and discuss their relation to the fixed length block
codes with errors-and-erasures-decoding, and then we present inner and outer bounds to the erasure exponent of error
free block codes and point out its relation to the error exponent erasure exponent trade off.

Before presenting our analysis, let us make a brief digression and discuss two channel models in which the use
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of feedback had been investigated for block codes without erasures. First channel model is the well known additive
white Gaussian noise channel (AWGNC) model. In AWGNCs if thepower constraintP is on the expected value
of the energy spent on a blockE[Sn] i.e. power constraint is of the formE[Sn] ≤ Pn, the error probability can be
made to decay faster than any exponential function with block lengthn. Schalkwijk and Kailath suggested a coding
algorithm in [29] which achieves a doubly exponential decayin error probability for continuous time AWGNCs, i.e.
infinite bandwidth case. Later Schalkwijk [28] modified thatscheme to achieve the same performance in discrete time
AWGNCs, i.e. finite bandwidth case. Concatenating Schalkwijk and Kailath scheme with pulse amplitude modulation
stages, gives a multi-fold exponential decrease in the error probability [26], [35], [15]. However this behavior relies
on the absence of any amplitude limit, the particular form ofthe power constraint and the noise free nature of the
feedback link. First of all, as observed in [5] and [24] when there is an amplitude limit, error probability decays only
exponentially with block length. More importantly if the power constraint restricts the energy spent in transmission
of each message for all noise realizations, i.e. if the powerconstraint is an almost sure power constraint3 of the form
Sn ≤ Pn; then sphere packing exponent is still an upper bound to the error exponent for AWGNCs as shown by
Pinsker, [26]. Furthermore if the feedback link is also an AWGNC and if there is a power constraint4 on the feedback
transmissions, then even in the case when there are only two messages, error probability decays only exponentially
as it has been recently shown by Kimet.al. [19].

The second channel model is the DMC model. Although feedbackcan not increase the error exponent for rates
over the critical rate, it can simplify the encoding scheme [35], [13]. Furthermore, for rates below the critical rate
it is possible to improve the error exponent using feedback.Zigangirov [35] has established lower bounds to the
error exponent for BSCs using a simple encoding scheme. Zigangirov’s lower bound is equal to the sphere packing
exponent for all rates in the interval[R

′

crit, C] whereR
′

crit < Rcrit and Zigangirov’s lower bound is strictly larger than
the corresponding non-feedback exponent for rates belowR

′

crit. Later Burnashev [6] introduced an improvement to
Zigangirov’s bound for all positive rates less thanR

′

crit. D’yachkov [13] generalized Zigangirov’s encoding scheme
for general DMCs and established a lower bound to the error exponent for general binary input channels and k-ary
symmetric channels. However it is still an open problem to find a constructive technique that can be used for all
DMCs which outperforms the random coding bound. Like AWGNCsthere has been a revived interest in the effect of
a noisy feedback link and achievable performances with noisy feedback on DMCs. Burnashev and Yamamoto recently
showed that error exponent of BSC channel increases even with a noisy feedback link [7], [8]. Furthermore Draper
and Sahai [12] investigated the use of noisy feedback link invariable length schemes.

II. M ODEL AND NOTATION:

The input and output alphabets of the forward channel areX andY, respectively. The channel input and output
symbols at timet will be denoted byXt andYt respectively. Furthermore, the sequences of input and output symbols
from time t1 to time t2 are denoted byXt2t1 andYt2t1 . Whent1 = 1 we omit t1 and simply writeXt2 andYt2 instead
of Xt21 andYt21 . The forward channel is a stationary memoryless channel characterized by an|X |-by-|Y| transition
probability matrixW .

P
[

Yt|Xt,Yt−1
]

= P[Yt|Xt] =W (Yt|Xt) ∀t. (1)

The feedback channel is noiseless and delay free i.e. the input of the feedback channelZt−1, chosen at the receiver,
is observed at the transmitter before transmission ofXt. In addition we assume that feedback channel is of infinite
capacity thusZt−1 includes all of the observation of the receiver at timet−1, i.e.5 Zt−1 = (Yt−1,At−1). The random
variablesA0,A1, . . . ,An are there to enable randomized encoding and decoding schemes as we will see shortly. It is
assumed that the choiceA’s does not affect the forward channels behavior, i.e. in addition to (1) we have6

P
[

Yt|Xt,Zt−1
]

=W (Yt|Xt) ∀t. (2)

The messageM is drawn from the message setM with a uniform probability distribution and is given to the transmitter
at time zero. At each timet ∈ [1, n] the input symbolX t(M,Z

t−1) is sent. The sequence of functionsXt(·) : M×Zt−1

3As Kim et. al. [19] calls it.
4This constraint can be an expected or almost sure constraint.
5For t = 1 we haveZ0 = A0
6We make a slight abuse of notation and denoteZt

0 by Zt.
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which assigns an input symbol for eachm ∈ M and z t−1 ∈ Zt−1 is called the encoding function. Note that the
random variablesA0,A1, . . . ,An−1 enable randomized encoding schemes. After receivingYn the receiver draws the
final A, i.e.An, and decodes to the messageM̂(Zn) ∈ {x} ∪M wherex is the erasure symbol. The random variable
An does not have any effect on the encoding; it is used only to enable randomized decoding schemes.

The conditional error and erasure probabilitiesPe|M andPx|M and unconditional error and erasure probabilities,
Pe andPx are defined as,

Pe|M , P

[

M̂ 6= M

∣

∣

∣
M

]

− Px|M Px|M , P

[

M̂ = x

∣

∣

∣
M

]

Pe , P

[

M̂ 6= M

]

− Px Px , P

[

M̂ = x

]

Since all the messages are equally likely we have,

Pe = 1
|M|

∑

m
Pe|m Px = 1

|M|
∑

m
Px|m .

We use a somewhat abstract but rigorous approach in defining the rate and achievable exponent pairs. A reliable
sequenceQ, is a sequence of codes indexed by their block lengths such that

lim
n→∞

(Pe
(n) + Px

(n) + 1
|M(n)|) = 0.

In other words reliable sequences are sequences of codes whose overall error probability, detected and undetected,
vanishes and whose size of message set grows to infinity with block lengthn.

Definition 1: The rate, erasure exponent, and error exponent of a reliablesequenceQ are given by

RQ , lim inf
n→∞

ln |M(n)|
n

ExQ , lim inf
n→∞

− lnPx
(n)

n
EeQ , lim inf

n→∞
− lnPe

(n)

n
.

Haroutunian, [17, Theorem 2], has already established a strong converse for erasure free block codes with feedback
which in our setting implies thatlimn→∞(Pe

(n)+Px
(n)) = 1 for all codes whose rates are strictly above the capacity,

i.e. R > C. Thus we consider only rates that are less than or equal to thecapacity,R ≤ C. For all ratesR below
capacity and for all non-negative erasure exponentsEx, we define the (true) error exponentEe(R,Ex) of fixed length
block codes with feedback to be the best error exponent of thereliable sequences7 whose rate is at leastR and whose
erasure exponent is at leastEx.

Definition 2: ∀R ≤ C and∀Ex ≥ 0 the error exponent,Ee(R,Ex) is,

Ee(R,Ex) , sup
Q:RQ≥R,ExQ≥Ex

EeQ. (3)

Note that
Ee(R,Ex) = E(R) ∀Ex > E(R) (4)

whereE(R) is the (true) error exponent of erasure-free block codes on DMCs with feedback.8 Thus benefit of the
errors-and-erasures decoding is the possible increase in the error exponent as the erasure exponent goes belowE(R).

DeterminingE(R) for all R’s and for all channels is still an open problem; only upper and lower bounds toE(R)
are known. Our investigation focuses on quantifying the gains of errors-and-erasures decoding instead of findingE(R).
Consequently, we restrict ourselves to the region where theerasure exponent is lower than the error exponent for the
encoding scheme.

For future reference let us recall the expressions for the random coding exponent and the sphere packing exponent,

Er(R,P ) = min
V

D (V ‖W |P ) + |I (P, V )−R|+ Er(R) = max
P

Er(R,P ) (5)

Esp(R,P ) = min
V :I(P,V )≤R

D (V ‖W |P ) Esp(R) = max
P

Esp(R,P ) (6)

7We restrict ourselves to the reliable sequences in order to ensure finite error exponent at zero erasure exponent. Note that a decoder which
always declares erasures has zero erasure exponent and infinite error exponent.

8In order to see this consider a reliable sequence with erasuresQ and replace its decoding algorithm by an erasure free decoding algorithm
such thatM̂′(z n) = M̂(z n) if M̂(z n) 6= x, to obtain a new reliable sequenceQ′. ThenPe

(n)
Q′ ≤ Px

(n)
Q + Pe

(n)
Q ; thusEeQ′ = min{ExQ, EeQ}

andRQ′ = RQ. This together with the definition ofE(R) leads to equation (4).
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whereD (V ‖W |P ) stands for conditional Kullback Leibler divergence ofV andW underP , andI (P, V ) stands for
mutual information for input distributionP and channelV .

We denote they marginal of a distribution likeP (x )V (y |x ) by (PV )Y . The support of a probability distribution
P is denoted bysuppP .

III. A N ACHIEVABLE ERROR EXPONENT - ERASURE EXPONENT TRADE OFF

In this section we establish a lower bound to the achievable error exponent as a function of erasure exponent
and rate. We use a two phase encoding scheme similar to the onedescribed by Yamamoto and Ito in [34] together
with a decoding rule similar to the one described by Telatar in [32]. In the first phase, the transmitter uses a fixed-
composition code of lengthαn and rateRα . At the end of the first phase, the receiver makes a maximum mutual
information decoding to obtain a tentative decisionM̃. The transmitter knows̃M because of the feedback link. In the
remaining(n − n1) time units, i.e. the second phase, the transmitter confirms the tentative decision by sending the
accept codeword, if̃M = M, and rejects it by sending the reject codeword otherwise. Atthe end of the second phase
the receiver either declares an erasure or declares the tentative decision as the decoded message. Receiver declares the
tentative decision as the decoded message only when the tentative decision “dominates” all other messages. The word
“dominate” will be made precise later in Section III-B. Our scheme is inspired by [34] and [32]. However, unlike [34]
our decoding rule makes use of outputs of both of the phases instead of output of just second phase while deciding
between declaring an erasure or declaring the tentative decision as the final one, and unlike [32] our encoding scheme
is a feedback encoding scheme with two phases.

In the rest of this section, we analyze the performance of this coding architecture and derive an achievable error
exponent expression in terms of a given rateR, erasure exponentEx, time sharing constantα, communication phase
typeP , control phase type (joint empirical type of the accept codeword and reject codeword)Π and domination rule
≻. Then we optimize over≻, Π, P andα, to obtain an achievable error exponent expression as a function of rateR
and erasure exponentEx.

A. Fixed-Composition Codes and The Packing Lemma

We start with a very brief overview of certain properties of types. Those readers who are not familiar with method
types can use [9] for a concise introduction or [10] for a thorough study. The empirical distribution of anxn ∈ X n

is called the type ofxn and the empirical distribution of transitions from axn ∈ X n to a yn ∈ Yn is called the
conditional type:9

Px n(x̃ ), 1
n

n
∑

t=1

1{xt=x̃} x̃ ∈ X . (7)

Vyn|x n(ỹ |x̃ ), 1
nPxn (x̃ )

n
∑

t=1

1{xt=x̃}1{yt=ỹ} ∀ỹ ∈ Y, ∀x̃ s.t.Px n(x̃ ) > 0. (8)

For any probability transition matrixW : suppPx n → Y we have10

n
∏

t=1

W (yt|xt) = e−n(D(Vyn|xn‖W |Pxn)+H(Vyn|xn |Pxn )) (9)

The set of allyn’s with the same conditional typeV with respect toxn is called theV -shell of xn and denoted by
TV (xn):

TV (xn) = {yn : Vyn|x n = V }. (10)

Note that for any transition probability matrix fromX to Y total probability ofTV (xn) has to be less than one. Thus
by assuming that transition probabilities areV and using equation (9) we can conclude that,

|TV (xn) | ≤ eH(Vyn|xn |Pxn ) (11)

9Note thatPxn corresponds to a distribution onX for all x n ∈ X n, where asVyn|xn determines a channel from the support ofPxn to Y.
10Note that for anyW : X → Y there is unique consistentW ′ : suppPxn → Y.
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Codes whose codewords all have the same empirical distribution, Px n(m) = P ∀m ∈ M are called fixed-composition
codes. In Section III-D we will describe the error and erasure events in terms of the intersections ofV−shells of
different codewords. For doing that let us defineF (n)

(

V, V̂ ,m
)

as the intersection ofV -shell of xn(m) and the

V̂ -shells of other codewords:

F (n)
(

V, V̂ ,m
)

, TV (xn(m))
⋂

∪m̃ 6=mTV̂ (xn(m̃)) . (12)

The following packing lemma, proved by Csiszár and Körner[10, Lemma 2.5.1], claims the existence of a code with
a guaranteed upper bound on the size ofF (n)

(

V, V̂ ,m
)

.

Lemma 1:For every block lengthn ≥ 1, rateR > 0 and typeP satisfyingH(P ) > R, there exist at least⌊en(R−δn)⌋
distinct typeP sequences inX n such that for every pair of stochastic matricesV : suppP → Y, V̂ : suppP → Y
and∀m ∈ M

∣

∣

∣
F (n)

(

V, V̂ ,m
)
∣

∣

∣
≤ |TV (xn(m))|e−n|I(P,V̂ )−R|+

whereδn = ln 4+(4|X |+6|X ||Y|) ln(n+1)
n

.
Above lemma is stated in a slightly different way by the authors of [10], for a fixedδ and large enoughn. However,
this form follows immediately from their proof.

If we use Lemma 1 together with equations (9) and (11) we can bound the conditional probability of observing a
yn ∈ F (n)

(

V, V̂ ,m
)

whenM = m as follows.
Corollary 1: In a code satisfying Lemma 1, when messagem ∈ M is sent, the probability of receiving ayn ∈

TV (xn(m)) which is also inTV̂ (xn(m̃)), for somem̃ ∈ M such thatm̃ 6= m is bounded as follows,

P

[

F (n)
(

V, V̂ ,M
)
∣

∣

∣
M

]

≤ e−nη(R,P,V,V̂ ) (13)

where
η
(

R,P, V, V̂
)

,D (V ‖W |P ) + |I
(

P, V̂
)

−R|+ (14)

B. Coding Algorithm

In the first phase, the communication phase, we use a lengthn1 = ⌈αn⌉ type P fixed-composition code with
⌊en1(

R

α
−δn1)⌋ codewords which satisfies the property described in Lemma 1.At the end of the first phase the receiver

makes a tentative decision by choosing the codeword that hasthe maximum empirical mutual information with the
output sequenceYn1 . If there is a tie, i.e. if there are more than one codewords which have the maximum empirical
mutual information, the receiver chooses the codeword which has the lowest index.

M̃ =

{

m :
I
(

P,VYn1 |x n(m)

)

> I
(

P,VYn1 |x n(m̃)

)

∀m̃ < m

I
(

P,VYn1 |x n(m)

)

≥ I
(

P,VYn1 |x n(m̃)

)

∀m̃ > m

}

(15)

In the remaining(n − n1) time units, the transmitter sends the accept codewordxn
n1+1(a) if M̃ = M and sends the

reject codewordxn
n1+1(r) otherwise.

Note that our encoding scheme uses the feedback link actively for the encoding neither within the first phase nor
within the second phase. It does not even change the codewords it uses for accepting or rejecting the tentative decision
depending on the observation in the first phase. Feedback is only used to reveal the tentative decision to the transmitter.

Accept and reject codewords have joint typeΠ(x̃ , ˜̃x ), i.e. the ratio of the number of time instances in which accept
codeword has añx ∈ X and reject codeword has ã̃x ∈ X to the length of the codewords,(n− n1), is Π(x̃ , ˜̃x ). The
joint conditional type of the output sequence in the second phase,Uyn

n1+1
, is the empirical conditional distribution of

yn
n1+1. We call set of all output sequencesyn

n1+1 whose joint conditional type isU , theU -shell and denote it byTU .
Like we did in the Corollary 1, we can upper bound the probability of U -shells. Note that ifYn

n1+1 ∈ TU then,

P
[

Yn

n1+1

∣

∣Xn

n1+1 = xn

n1+1(a)
]

= e−(n−n1)(D(U‖Wa|Π)+H(U |Π))

P
[

Yn

n1+1

∣

∣Xn

n1+1 = xn

n1+1(r)
]

= e−(n−n1)(D(U‖Wr|Π)+H(U |Π))

6



wherexn
n1+1(a) is the accept codeword,xn

n1+1(r) is the reject codeword,Wa(y |x̃, ˜̃x) = W (y |x̃) andWr(y |x̃, ˜̃x) =
W (y |˜̃x). Noting that|TU | ≤ e(n−n1)H(U |Π), we get:

P
[

TU |Xn

n1+1 = xn

n1+1(a)
]

≤ e−(n−n1)D(U‖Wa|Π) (16a)

P
[

TU |Xn

n1+1 = xn

n1+1(r)
]

≤ e−(n−n1)D(U‖Wr|Π). (16b)

C. Decoding Rule

For an encoder like the one in Section III-B, a decoder that depends only on the conditional type ofYn1 for different
codewords in the communication phase, i.e.VYn1 |x n1(m)’s for m ∈ M, the conditional type of the channel output
in the control phase, i.e.UYn

n1+1
, and the indices of the codewords can achieve the minimum error probability for a

given erasure probability. However finding that decoder becomes analytically intractable. Instead, we restrict ourselves
to the decoders that can be written in terms of pair wise comparisons between messages givenYn. Furthermore we
assume that these pairwise comparisons depend only on the conditional type ofYn1 for the messages compared, the
conditional output type in the control phase and the indicesof the messages. Thus if the triplet corresponding to the
tentative decision(V

Yn1 |x n1(M̃),UYn

n1+1
, M̃) dominates all other triplets of the form(VYn1 |x n1(m),UYn

n1+1
,m) for m 6= M̃,

the tentative decision becomes final; else an erasure is declared.11

M̂ =

{

M̃ if ∀m 6= M̃ (V
Yn1 |M̃,UYn

n1+1
, M̃) ≻ (VYn1 |m ,UYn

n1+1
,m)

x if ∃m 6= M̃ s.t. (V
Yn1 |M̃,UY

n

n1+1
, M̃) ⊁ (VYn1 |m ,UY

n

n1+1
,m)

}

(17)

The binary relation≻ is such that if(V,U,m) dominates(V̂ , U, m̃) then (V̂ , U, m̃) does not dominate(V,U,m):

(V,U,m) ≻ (V̂ , U, m̃) ⇒ (V̂ , U, m̃) ⊁ (V,U,m).

This property is a necessary and sufficient condition for a binary relation to be a domination rule. Decoder given by
(17), however, either accepts or rejects the tentative decision M̃ given in (15). Consequently its domination rule also
satisfies following two properties:

(a) If the empirical mutual information of the messages in the communication phase are not equal, only the message
with larger mutual information can dominate the other one.

(b) If the empirical mutual information of the messages in the communication phase are equal, only the message with
lower index can dominate the other one.

For any such binary relation there is a corresponding decoder of the form given in equation (17). In our scheme we
either use the trivial domination rule leading to the trivial decoderM̂ = M̃ or the domination rule given in equation
(18), both of which satisfies these conditions.

(V, U,m) ≻ (V̂ , U, m̃) ⇔







I (P, V ) > I

(

P, V̂
)

andαη
(

R

α
, P, V, V̂

)

+ (1 − α)D (U‖Wa|Π) ≤ Ex if m ≥ m̃

I (P, V ) ≥ I
(

P, V̂
)

andαη
(

R

α
, P, V, V̂

)

+ (1 − α)D (U‖Wa|Π) ≤ Ex if m < m̃
(18)

whereη
(

R,P, V, V̂
)

is given by the equation (14).
Among the family of decoders we are considering, i.e. among the decoders that only depend on the pairwise

comparisons between conditional types and indices of the messages compared, the decoder given in (17) and (18) is
optimal in terms of error exponent erasure exponent trade off. Furthermore, in order to employ this decoding rule, the
receiver needs to determine only the two messages with the highest empirical mutual information in the first phase.
Then the receiver needs to check whether the triplet corresponding to the tentative decision dominates the triplet
corresponding to the message with the second highest empirical mutual information. If it does then, for the rule given
in (18), it is guaranteed to dominate the rest of the tripletstoo.

11Note that conditional probability,P[Yn|M = m], is only a function of correspondingVY
n1 |xn(m) andUYn

n1+1
. Thus all decoding rules, that

accepts or rejects the tentative decision,M̃, based on a threshold test on likelihood ratios,
P[Yn|M=M̃]
P[Yn|M=m]

, for m 6= M̃ are in this family of decoding
rules.
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D. Error Analysis

Using an encoder like the one described in Section III-B and adecoder like the one in (17) we achieve the
performance given below. IfEx ≤ αEr(

R
α , P ) then the domination rule given in equation (18) is used in thedecoder;

else a trivial domination rule that leads to a erasure-free decoding,M̂ = M̃, is used in the decoder.
Theorem 1:For any block lengthn ≥ 1, rateR, erasure exponentEx, time sharing constantα, communication

phase typeP and control phase typeΠ, there exists a lengthn block code with feedback such that

ln |M| ≥ en(R−δn) Px ≤ e−n(Ex−δ′n) Pe ≤ e−n(Ee(R,Ex,α,P,Π)−δ′
n
)

whereEe(R,Ex, α, P,Π) is given by,

Ee=



















αEr(
R
α , P ) if Ex > αEr(

R
α , P )

min
(V,V̂ ,U):(V,V̂ ,U)∈V

αη

(

R
α ,P,V,V̂

)

+(1−α)D(U‖Wa|Π)≤Ex

αη
(

R
α , P, V̂ , V

)

+ (1− α)D (U‖Wr|Π) if Ex ≤ αEr(
R
α , P )



















(19a)

V={(V1, V2, U) : I (P, V1) ≥ I (P, V2) and (PV1)Y = (PV2)Y } (19b)

δ
′

n=
(|X |+1)2|Y| log(n+1)

n
(19c)

The optimization problem given in (19) is a convex optimization problem: it is minimization of a convex function
over a convex set. Thus the value of the exponent,Ee(R,Ex, α, P,Π) can numerically be calculated relatively easily.
FurthermoreEe(R,Ex, α, P,Π) can be written in terms of solutions of lower dimensional optimization problems (see
equation (38). However problem of finding the optimal(α,P,Π) triple for a given(R,Ex) pair is not that easy in
general, as we will discuss in more detail in Section III-E.

Note that for all control phase typesΠ and control phase output typesU , D (U‖Wa|Π) ≥ 0, D (U‖Wr|Π) ≥ 0.

Using this fact together with the definitions ofEr(R,P ), η
(

R,P, V̂ , V
)

andEe(R,Ex, α, P,Π) given in (5), (14)
and (19) we get:

Ee(R,Ex, α, P,Π) ≥ αEr(
R
α , P ) ∀(R,Ex, α, P,Π) s.t.Ex ≤ αEr(

R
α , P ) (20)

Since we are interested in quantifying the gains of errors-and-erasures decoding over the decoding schemes without
erasures we are ultimately interested only in the region where Ex ≤ αEr(

R
α , P ) holds. However equation (19) gives

us the whole achievable region for the family of codes we are considering.
Proof: A decoder of the form given in (17) decodes correctly whenM̃ = M and (Yn,M) ≻ (Yn,m) for all12

m 6= M. Thus an error or an erasure occur only when the correct message does not dominate all other messages, i.e.
when∃m 6= M such that(Yn,M) ⊁ (Yn,m). Consequently, we can write the sum of conditional error anderasure
probabilities for a messagem ∈ M as,

Pe|m + Px|m = P[{yn : ∃m̃ 6= m s.t.(yn,m) ⊁ (yn, m̃)}|M = m] (21)

This can happen in two ways, either there is an error in the first phase, i.e.M̃ 6= m or first phase tentative decision
is correct, i.e.M̃ = m, but the second phase observationyn

n1+1 leads to an erasure i.e.̂M = x. For a decoder using a
domination rule satisfying constraints described in Section III-C,

Pe|m + Px|m ≤
∑

V

∑

V̂ :I(P,V̂ )≥I(P,V )

∑

yn1∈F (n1)(V,V̂ ,m)

P[yn1 |m]

+
∑

V

∑

V̂ :I(P,V̂ )≤I(P,V )

∑

yn1∈F (n1)(V,V̂ ,m)

P[yn1 |m]
∑

U :(V,U,m)⊁(V̂ ,U,m+1)

∑

yn

n1+1∈TU

P
[

ynn1+1

∣

∣ xn

n1+1(a)
]

.

12We use the short hand(Yn,M) ≻ (Yn,m) for (VY
n1 |M,UYn

n1+1
,M) ≻ (VY

n1 |m ,UYn

n1+1
,m) in the rest of this section.
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where13 F (n1)
(

V, V̂ ,m
)

is the intersection ofV -shell of messagem ∈ M with the V̂ -shells of other messages,
defined in equation (12). As a result of Corollary 1 we have

∑

yn1∈F (n1)(V,V̂ ,m)

P[yn1 |m] = P

[

F (n1)
(

V, V̂ ,m
)∣

∣

∣
M = m

]

≤ e−n1η(R

α
,P,V,V̂ ).

Furthermore because of equation (16a)
∑

yn

n1+1∈TU

P
[

ynn1+1

∣

∣ xn

n1+1(a)
]

= P
[

TU |Xn

n1+1 = xn

n1+1(a)
]

≤ e−(n−n1)D(U‖Wa|Π).

In addition the number of different non-emptyV -shells in the communication phase is less than(n1 + 1)|X ||Y| and
the number of non-emptyU -shells in the control phase is less than(n−n1+1)|X |2|Y|. We denote the set of(V, V̂ , U)
triples that corresponds to erasures with a correct tentative decision byVx:

Vx ,

{

(V, V̂ , U) : I (P, V ) ≥ I

(

P, V̂
)

and (PV )Y = (PV̂ )Y and (V,U,m) ⊁ (V̂ , U,m + 1)
}

. (22)

In the above definitionm is a dummy variable andVx is the same set for allm ∈ M. Thus using (22) we get

Pe|m + Px|m ≤ (n1 + 1)2|X ||Y| max
V,V̂ :I(P,V )≤I(P,V̂ )

e−n1η(R/α,P,V,V̂ )

+ (n1 + 1)2|X ||Y|(n− n1 + 1)|X |2|Y| max
(V,V̂ ,U)∈Vx

e−n1(η(R/α,P,V,V̂ ))−(n−n1)D(U‖Wa|Π).

Using the definition ofEr(Rα , P ) given in (5) we get

Pe|m + Px|m ≤ enδ
′
n max

{

e−nαEr(R/α,P ), e−nmin(V,V̂ ,U)∈Vx
αη(R/α,P,V,V̂ )+(1−α)D(U‖Wa|Π)

}

. (23)

On the other hand an error occurs only when an incorrect message dominates all other messages, i.e. when∃m̃ 6= m

such that(Yn, m̃) ≻ (Yn, ˜̃m) for all m̃ 6= ˜̃m:

Pe|m = P
[{

yn : ∃m̃ 6= m s.t. (yn, m̃) ≻ (yn, ˜̃m) ∀ ˜̃m 6= m̃
}
∣

∣M = m
]

.

Note that when ãm ∈ M dominates all other̃̃m 6= m̃, it also dominatesm, i.e.
{

yn : ∃m̃ 6= m s.t.(yn, m̃) ≻ (yn, ˜̃m) ∀ ˜̃m 6= m̃
}

⊂ {yn : ∃m̃ 6= m s.t.(yn, m̃) ≻ (yn,m)} .
Thus,

Pe|m ≤ P[{yn : ∃m̃ 6= m s.t.(yn, m̃) ≻ (yn,m)}|M = m]

=
∑

V

∑

V̂ :I(P,V̂ )≥I(P,V )

∑

yn1∈F (n1)(V,V̂ ,m)

P[yn1 |M = m ]
∑

U :(V̂ ,U,m−1)≻(V,U,m)

∑

yn

n1+1∈TU

P
[

ynn1+1

∣

∣ xn

n1+1(r)
]

. (24)

The tentative decision is not equal tom only if there is a message with a strictly higher empirical mutual information
or if there is a messages which has equal mutual information but smaller index. This is the reason why we sum over
(V̂ , U,m − 1) ≻ (V,U,m). Using the inequality (16b) in the inner most two sums and then applying inequality (13)
we get,

Pe|m ≤ (n+ 1)(|X |2+2|X |)|Y| max

(V,V̂ ,U):
I(P,V̂ )≥I(P,V )

(V̂ ,U,m−1)≻(V,U,m)

e−n(αη(R/α,P,V,V̂ )+(1−α)D(U‖Wr|Π))

≤ enδ
′
ne−nmin(V̂ ,V,U)∈Ve

(αη(R/α,P,V,V̂ )+(1−α)D(U‖Wr|Π))

= enδ
′
ne−nmin(V,V̂ ,U)∈Ve

(αη(R/α,P,V̂ ,V )+(1−α)D(U‖Wr |Π)) (25)

13Note that for the case whenm = |M|, we need to replace(V,U,m) ⊁ (V̂ , U,m + 1) with (V,U,m − 1) ⊁ (V̂ , U,m).
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whereVe is the complement ofVx in V given by

Ve ,

{

(V, V̂ , U) : I (P, V ) ≥ I

(

P, V̂
)

and (PV )Y = (PV̂ )Y and (V,U,m) ≻ (V̂ , U,m + 1)
}

. (26)

Note thatm in the definition ofVe is also a dummy variable. The domination rule≻ divides the setV into two
subsets: the erasure subsetVx and the error subsetVe. Choosing domination rule is equivalent to choosing theVe.
Depending on the value ofαEr(Rα , P ) andEx we chose differentVe’s as follows:

(i) Ex>αEr(
R
α , P ): Ve = V. ThenVx = ∅ and Theorem 1 follows from equation (23).

(ii) Ex≤αEr(Rα , P ): Ve =







(V, V̂ , U) :
I (P, V ) ≥ I

(

P, V̂
)

and(PV )Y = (PV̂ )Y and

αη
(

R
α , P, V, V̂

)

+ (1− α)D (U‖Wa|Π) ≤ Ex







. Then all the(V, V̂ , U)

triples satisfyingαη
(

R
α , P, V, V̂

)

+(1−α)D (U‖Wa|Π) ≤ Ex are in the the error subset. Thus as a result of

equation (23) erasure probability is bounded asPx ≤ e−n(Ex−δ′n) and Theorem 1 follows from equation (25).

E. Lower Bound toEe(R,Ex):

In this section we use Theorem 1 to derive a lower bound to the optimal error exponentEe(R,Ex). We do that by
optimizing the achievable performanceEe(R,Ex, α, P,Π) overα, P andΠ.

1) High Erasure Exponent Region (i.e.Ex > Er(R)): As a result of (19),∀R ≥ 0 and∀Ex > Er(R)

Ee(R,Ex, α, P,Π) = αEr(
R
α , P ) ≤ Er(R) ∀α ∈ [0, 1], ∀P, ∀Π (27a)

Ee(R,Ex, α̃, P̃ ,Π) = Er(R) α̃ = 1, P̃ = argmax
P

Er(R,P ), ∀Π. (27b)

Thus for all (R,Ex) pairs such thatEx > Er(R): optimal time sharing constant is 1, optimal input distribution is
the optimal input distribution for random coding exponent at rateR, we use maximum mutual information decoding
and never declare erasures. Furthermore sinceα = 1 we have only a single phase in our scheme.

Ee(R,Ex) = Ee(R,Ex, 1, Pr(R),Π) = Er(R) ∀R ≥ 0 ∀Ex > Er(R) (28)

wherePr(R) satisfiesEr(R,Pr(R)) = Er(R) andΠ can be any control phase type. Evidently benefits of errors-and-
erasures decoding is not observed in this region.

2) Low Erasure Exponent Region (i.e.Ex ≤ Er(R)): We observe and quantify the benefits of errors-and-erasures
decoding for(R,Ex) pairs such thatEx ≤ Er(R). SinceEr(R) is a non-negative non-increasing and convex function
of R, we have

α ∈ [α∗(R,Ex), 1] ⇔ Ex ≤ αEr(
R
α ) ∀R ≥ 0 ∀0 < Ex ≤ Er(R)

whereα∗(R,Ex) is the unique solution of the equationαEr(Rα ) = Ex.
For the caseEx = 0, however,αEr(Rα ) = 0 has multiple solutions and Theorem 1 holds but resulting error

exponent,Ee(R, 0, α, P,Π), does not correspond to the error exponent of a reliable sequence. Convention introduced
below in equation (29) addresses both issues at once, by choosing the minimum of those solutions asα∗(R, 0). In
addition by this conventionα∗(R,Ex) is also continuous atEx = 0: limEx→0 α

∗(R,Ex) = α∗(R, 0).

α∗(R,Ex) ,

{

R
g−1(Ex/R)

Ex ∈ (0, Er(R)]

R/C Ex = 0
(29)

whereg−1(·) is the inverse of the functiong(r) = Er(r)
r .

As a result equations (19) and (29),∀R ≥ 0 and∀0 < Ex ≤ Er(R) we have

Ee(R,Ex, α, P,Π) = αEr(
R
α , P ) ≤ Er(R) ∀α ∈ [0, α∗(R,Ex)), ∀P, ∀Π (30a)

Ee(R,Ex, α̃, P̃ ,Π) = Er(R) α̃ = 1, P̃ = argmax
P

Er(R,P ), ∀Π. (30b)

Thus for all (R,Ex) pairs such thatEx ≤ Er(R) optimal time sharing constant is in the interval[α∗(R,Ex), 1].
For an(R,Ex, α) triple such thatR ≥ 0, Ex ≤ Er(R) andα ∈ [α∗(R,Ex), 1] let P (R,Ex, α) be

P (R,Ex, α) , {P : αEr(
R
α , P ) ≥ Ex , I (P,W ) ≥ R

α }. (31)
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The constraint on mutual information is there to ensure thatEe(R, 0, α, P,Π)’s are corresponding to error exponent
of reliable sequences. The setP (R,Ex, α) is convex becauseEr(R,P ) and I (P,W ) are concave inP .

Note that∀R ≥ 0 and∀Ex ∈ (0, Er(R)],

Ee(R,Ex, α, P,Π) = αEr(
R
α , P ) ∀α ∈ [α∗(R,Ex), 1], ∀P /∈ P (R,Ex, α) , ∀Π (32a)

Ee(R,Ex, α, P̃ ,Π) ≥ αEr(
R
α ) ∀α ∈ [α∗(R,Ex), 1], P̃ = argmax

P
Er(

R
α , P ), ∀Π. (32b)

As a result of (32) we can restrict the optimization overP to P (R,Ex, α) whenR ≥ 0 andEx ∈ (0, Er(R)]. For
Ex = 0 case if we require the expressionEe(R, 0, α, P,Π) to correspond to the error exponent of a reliable sequence,
we get the restriction given in equation (32). Thus using Theorem 1 we conclude thatEe(R,Ex) given below is an
achievable error exponent at rateR and erasure exponentEx.

Ee(R,Ex) = max
α∈[α∗(R,Ex),1]

max
P∈P(R,Ex,α)

max
Π

Ee(R,Ex, α, P,Π) ∀R ≥ 0 ∀Ex ≤ Er(R) (33)

whereα∗(R,Ex), P (R,Ex, α) andEe(R,Ex, α, P,Π) are given in equations (29), (31) and (19).
Note that unlikeEe(R,Ex, α, P,Π) itself, Ee(R,Ex) as defined in (33) corresponds to error exponent of reliable

code sequences even atEx = 0.
If the maximizingP for the inner maximization in equation (33) is same for allα ∈ [α∗(R,Ex), 1], the optimal

value ofα is α∗(R,Ex). In order to see that, we first observe that any fixed(R,Ex, P,Π) such thatEr(R,P ) ≥ Ex,
functionEe(R,Ex, α, P,Π) is convex inα for all α ∈ [α∗(R,Ex, P ), 1] whereα∗(R,Ex, P ) is the unique solution
of the equation14 αEr(

R
α , P ) = Ex as it is shown Lemma 10 in Appendix B. Since the maximization preserves the

convexity,maxΠEe(R,Ex, α, P,Π) is also convex inα for all α ∈ [α∗(R,Ex, P ), 1]. Thus for any(R,Ex, P ) triple,
maxΠEe(R,Ex, α, P,Π), takes its maximum value either at the minimum possible value of α, i.e. α∗(R,Ex, P ) =
α∗(R,Ex), or at the maximum possible value ofα, i.e. 1. It is shown in Appendix CmaxΠEe(R,Ex, α, P,Π) takes
its maximum value atα = α∗(R,Ex).

Furthermore if the maximizingP is not only the same for allα ∈ [α∗(R,Ex), 1] for a given(R,Ex) pair but also
for all (R,Ex) pairs such thatEx ≤ Er(R) then we can find the optimalEe(R,Ex) by simply maximizing overΠ’s.
In symmetric channels, for example, uniform distribution is the optimal distribution for all(R,Ex) pairs. Thus

Ee(R,Ex) =

{

Ee(R,Ex, 1, P
∗,Π) if Ex > Er(R,P

∗)
maxΠ Ee(R,Ex, α

∗(R,Ex), P
∗,Π) if Ex ≤ Er(R,P

∗)

}

(34)

whereP ∗ is the uniform distribution.

F. Alternative Expression for Exponent:

The minimization given in (19) forEe(R,Ex, α, P,Π) is over transition probability matrices and control phase
output types. In order to get a better grasp of the resulting expression, we simplify the analytical expression in this
section. We do that by expressing the minimization in (19) interms of solutions of lower dimensional optimization
problems.

Let ζ(R,P,Q) be the minimum Kullback-Leibler divergence underP with respect toW among the transition
probability matrices whose mutual information underP is less thanR and whose output distribution underP is Q.
It is shown in Appendix B that for a givenP , ζ(R,P,Q) is convex in(R,Q) pair. Evidently for a given(P,Q) pair
ζ(R,P,Q) is a non-increasing inR. Thus for a given(P,Q) pair ζ(R,P,Q) is strictly decreasing on a closed interval
and is an extended real valued function of the form:

ζ(R,P,Q) =











∞ R < R∗
l (P,Q)

min
V :

I(P,V )≤R
(PV )Y =Q

D (V ‖W |P ) R ∈ [R∗
l (P,Q), R∗

h(P,Q)]

minV :(PV )Y =QD (V ‖W |P ) R > R∗
h(P,Q)











(35a)

R∗
l (P,Q) = min

V :PV≫PW
(PV )Y =Q

I (P, V ) (35b)

R∗
h(P,Q) = minR

{

R : min
V :

I(P,V )≤R
(PV )Y =Q

D (V ‖W |P ) = minV :(PV )Y =QD (V ‖W |P )
}

(35c)

14Evidently we need to make a minor modification forEx = 0 case as before to ensure that we consider only theẼe(R,Ex, α, P,Π)’s that
correspond to the reliable sequences:α∗(R, 0, P ) = R

I(P,W )
.
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wherePV ≫ PW iff for all (x , y) pairs such thatP (x )W (y |x ) is zero,P (x )V (y |x ) is also zero.
Let Γ (T,Π) be the minimum Kullback-Leibler divergence with respect toWr underΠ, among theU ’s whose

Kullback-Leibler divergence with respect toWa underΠ is less than or equal toT .

Γ (T,Π) , min
U :D(U‖Wa|Π)≤T

D (U‖Wr|Π) (36)

For a givenΠ, Γ (T,Π) is non-increasing and convex inT , thusΓ (T,Π) is strictly decreasing inT on a closed
interval. An equivalent expressions forΓ (T,Π) and boundaries of this closed interval is derived in Appendix A,

Γ (T,Π) =







∞ if T < D (U0‖Wa|Π)
D (Us‖Wr|Π) if T = D (Us‖Wa|Π) for somes ∈ [0, 1]
D (U1‖Wr|Π) if T > D (U1‖Wa|Π)







(37)

where

Us(y|x1, x2) =















1{W(y|x2)>0}
∑

ỹ:W (ỹ|x2)>0 W (ỹ|x1)
W (y|x1) if s = 0

W (y|x1)1−sW (y|x2)s
∑

ỹ W (ỹ|x1)1−sW (ỹ|x2)s
if s ∈ (0, 1)

1{W(y|x1)>0}
∑

ỹ:W (ỹ|x1)>0 W (ỹ|x2)
W (y|x2) if s = 1















For a(R,Ex, α, P,Π) such thatEx ≤ αEr(
R
α , P ), using the definition ofEe(R,Ex, α, P,Π) in (19) together with

the equations (14), (35) and (37) we get

Ee(R,Ex, α, P,Π) = min
Q,T,R1,R2:

R1≥R2≥0, T≥0
αζ(R1

α
,P,Q)+|R2−R|++T≤Ex

αζ(R2

α , P,Q) + |R1 −R|+ + (1− α)Γ
(

T
1−α ,Π

)

For any(R,Ex, α, P,Π) above minimum is also achieved at a(Q,R1, R2, T ) such thatR1 ≥ R2 ≥ R. In order to
see this take any minimizing(Q∗, R∗

1, R
∗
2, T

∗), then there are three possibilities:

(a) R∗
1 ≥ R∗

2 ≥ R claim holds trivially.
(b) R∗

1 ≥ R > R∗
2, sinceζ(R2

α , P,Q) is non-increasing function(Q∗, R∗
1, R, T

∗), is also minimizing, thus claim holds.
(c) R > R∗

1 > R∗
2, sinceζ(Rα , P,Q) is non-increasing function(Q∗, R,R, T ∗), is also minimizing, thus claim holds.

Thus we obtain the following expression forEe(R,Ex, α, P,Π),

Ee(R,Ex, α, P,Π)=















αEr(
R
α , P ) if Ex>αEr(

R
α , P )

min
Q,T,R1,R2:
R1≥R2≥R, T≥0
αζ(R1

α
,P,Q)+R2−R+T≤Ex

αζ(R2

α , P,Q) +R1 −R+ (1− α)Γ
(

T
1−α ,Π

)

if Ex≤αEr(Rα , P )















(38)

Equation (38) is simplified further for symmetric channels.For symmetric channels,

Esp(R) = ζ(R,P ∗, Q∗) = min
Q
ζ(R,P ∗, Q) (39)

whereP ∗ is the uniform input distribution andQ∗ is the corresponding output distribution underW .
Using alternative expression forEe(R,Ex, α, P,Π) given in (38) together with equations (34) and (39) for symmetric

channels we get,

Ee(R,Ex) =



















Er(R) if Ex > Er(R)

max
Π

min
R′′,R′,T :

R′′≥R′≥R T≥0

α∗Esp(
R′′

α∗ )+R′−R+T≤Ex

α∗Esp
(

R′

α∗

)

+R′′ −R+ (1− α∗)Γ
(

T
1−α∗ ,Π

)

if Ex ≤ Er(R)



















(40)

whereα∗(R,Ex) is given in equation (29).
Although (39) does not hold in general using definition ofζ(R,P,Q) andEsp(R,P ) we can assert that

ζ(R,P,Q) ≥ min
Q̃

ζ(R,P, Q̃) = Esp(R,P ) (41)
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Note that (41) can be used to bound the minimized expression in (38) from below. In addition recall that if the set
that a minimization is done over is enlarged resulting minimum can not increase. We can use (38) also to enlarge
the set that minimization is done over in (41). Thus we get an exponentẼe(R,Ex, α, P,Π) which is smaller than or
equal toEe(R,Ex, α, P,Π) in all channels and for all̃Ee(R,Ex, α, P,Π)’s:

Ẽe(R,Ex, α, P,Π)=



















αEr(
R
α , P ) if Ex > αEr(

R
α , P )

min
R′′,R′,T :
R′′≥R′≥R T≥0

αEsp(
R′′

α ,P )+R′−R+T≤Ex

αEsp
(

R′

α , P
)

+R′′ −R+ (1− α)Γ
(

T
1−α ,Π

)

if Ex ≤ αEr(
R
α , P )



















(42)

After an investigation very similar to the one we have already done forEe(R,Ex, α, P,Π) in Section III-E, we obtain
the below expression for the optimal error exponent for reliable sequences emerging from (42):

Ẽe(R,Ex) =

{

Er(R) ∀R ≥ 0 ∀Ex > Er(R)

max
α∈[α∗(R,Ex),1]

max
P∈P(R,Ex,α)

max
Π

Ẽe(R,Ex, α, P,Π) ∀R ≥ 0 ∀Ex ≤ Er(R)

}

(43)

whereα∗(R,Ex), P (R,Ex, α) andẼe(R,Ex, α, P,Π) are given in equations (29), (31) and (42), respectively.

G. Special Cases

1) Zero Erasure Exponent Case,Ee(R, 0): Using a simple repetition-at-erasures scheme, fixed lengtherrors-and-
erasures codes, can be converted into variable length blockcodes, with the same error exponent. Thus the error
exponents of variable length block codes given by Burnashevin [3] is an upper bound to the error exponent of fixed
length block codes with erasures:

Ee(R,Ex) ≤
(

1− R
C
)

D ∀R ≥ 0, Ex ≥ 0

whereD = maxx ,x̃
∑

y W (y |x ) log W (y |x)
W (y |x̃) .

We show below that,̃Ee(R, 0) ≥ (1 − R
C )D. This implies that our coding scheme is optimal forEx = 0 for all

rates i.e.Ẽe(R, 0) = Ee(R, 0) = (1− R
C )D.

Recall that for allR less than capacityα∗(R, 0) = R
C . Furthermore for anyα ≥ R

C

P (R, 0, α) = {P : I (P,W ) ≥ R
α }

Thus for any(R, 0, α, P ) such thatP ∈ P (R, 0, α), R′′ ≥ R′ ≥ R, T ≥ 0 andαEsp(R
′′

α , P ) + R′ − R + T ≤ 0,
imply thatR′ = R, R′′ = αI (P,W ), T = 0. Consequently

Ẽe(R, 0, α, P,Π) = α
[

Esp
(

R
α , P

)

+ I (P,W )− R
α

]

+ (1− α)D (Wr‖Wa|Π) (44)

When we maximize overΠ andP ∈ P (R, 0, α) we get:

Ẽe(R, 0, α) = max
P∈P(R,0,α)

αEsp
(

R
α , P

)

+ αI (P,W )−R+ (1− α)D ∀α ∈ [RC , 1]. (45)

Simply inserting the minimum possible value ofα i.e. α∗(R, 0) = R
C :

Ẽe(R, 0,
R
C ) = max

P∈P(R,0,RC )
R
C Esp (C, P ) + R

C I (P,W )−R+ (1− R
C )D

= (1− R
C )D.

Thus Ẽe(R, 0) ≥ (1− R
C )D.

Indeed one need not to rely on the converse on variable lengthblock codes in order to establish the fact that
Ẽe(R, 0) = (1 − R

C )D. The lower bound to probability of error presented in the next section, not only recovers this
particular optimality result but also upper bounds the optimal error exponent,Ee(R,Ex), as a function of rateR and
erasure exponentsEx.

2) Channels with non-zero Zero Error Capacity:For channels with a non-zero zero-error capacity, as a result of
equation (19)Ee(R,Ex) = ∞ for anyEx < Er(R). This implies that we can get error-free block codes with this
two phase coding scheme for any rateR < C and any erasure exponentEx ≤ Er(R). As we discuss in Section V in
more detail, this is the best erasure exponent for rates overthe critical rate, at least for symmetric channels.
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IV. A N OUTER BOUND FORERROR EXPONENT ERASURE EXPONENT TRADE OFF

In this section we derive an upper bound onEe(R,Ex) using previously known results on erasure free block codes
with feedback and a generalization of the straight line bound of Shannon, Gallager and Berlekamp [31]. We first
present a lower bound on the minimum error probability of block codes with feedback and erasures, in terms of that
of shorter codes in Section IV-A. Then in Section IV-B we makea brief overview of the outer bounds on the error
exponents of erasure free block codes with feedback. Finally in Section IV-C, we use the relation we have derived in
Section IV-A to tie the previously known results we have summarized in Section IV-B to boundEe(R,Ex).

A. A Trait of Minimum Error Probability of block codes with Erasures

Shannon, Gallager and Berlekamp in [31] considered fixed length block codes, with list decoding and established
a family of lower bounds on the minimum error probability in terms of the product of minimum error probabilities
of certain shorter codes. They have shown, [31, Theorem 1], that for fixed length block codes with list decoding and
without feedback

P̃e(M, n, L) ≥ P̃e(M, n1, L1)P̃e(L1 + 1, n− n1, L) (46)

whereP̃e(M, n, L) denotes the minimum error probability of erasure free blockcodes of lengthn with M equally
probable messages and with decoding list sizeL. As they have already pointed out in [31] this theorem continues to
hold in the case when a feedback link is available from receiver to the transmitter; although̃Pe’s are different when
feedback is available, the relation given in equation (46) still holds. They were interested in erasure free codes. We,
on the other hand, are interested in block codes which might have non-zero erasure probability. Accordingly we need
to incorporate erasure probability as one of the parametersof the optimal error probability. This is what this section
is dedicated to.

In a sizeL list decoder with erasures, decoded setM̂ is either a subset15 of M whose size is at mostL, like the
erasure-free case, or a set which only includes the erasure symbol, i.e. eitherM̂ ⊂ M such that|M̂| ≤ L or M̂ = {x}.
An erasure occurs whenever̂M = {x} and an error occurs whenever̂M 6= {x} andM /∈ M̂. We will denote the
minimum error probability of lengthn block codes, withM equally probable messages, decoding list sizeL and
erasure probabilityPx by Pe(M, n, L,Px).

Theorem 2 below bounds the error probability of block codes with erasures and list decoding using the error
probabilities of shorter codes with erasures and list decoding, like [31, Theorem 1] does in the erasure free case. Like
its counter part in erasure free case Theorem 2 is later used to establish outer bounds to error exponents.

Theorem 2:For anyn, M , L, Px, n1 ≤ n, L1, and0 ≤ s ≤ 1 the minimum error probability of fixed length block
codes with feedback satisfy

(1− s)Pe(M, n, L,Px) ≥ Pe(M, n1, L1, s)Pe

(

L1 + 1, n− n1, L,
(1−s)Px

Pe(M,n1,L1,s)

)

(47)

Note that given a(M, n, L) triple if the error probability erasure probability pairs(Pe1,Px1) and (Pe2,Px2) are
achievable, then for anyγ ∈ [0, 1] using the initial symbolA0 of the feedback link we can construct a code that uses
the code achieving(Pe1,Px1) with probability γ, the code achieving(Pe2,Px2) with probability (1− γ). This new
code achieves error probability erasure probability pair(γPea+ (1− γ)Peb, γPxa + (1− γ)Pxb). As a result for any
(M, n, L) triple the set of achievable error probability erasure probability pairs is convex. We use this fact twice in
order to prove Theorem 2.

Let us first consider the following lemma which bounds the achievable error probability erasure probability, pairs
for block codes with nonuniform a priori probability distribution, in terms of block codes with a uniform a priori
probability distribution but fewer messages.

Lemma 2:For any lengthn block code with message setM, a priori probability distributionϕ(·) on M, erasure
probabilityPx, decoding list sizeL, and integerK

Pe ≥ Ω (ϕ,K)Pe

(

K + 1, n, L, Px

Ω(ϕ,K)

)

where Ω (ϕ,K) = min
S⊂M,|S|≤K

ϕ(Sc), Sc = M/S. (48)

15Note that ifM̂ ⊂ M thenx /∈ M̂ becausex /∈ M.
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Recall thatPe (K + 1, n, L,Px) is the minimum error probability of lengthn codes with(K + 1) equally probable
messages and decoding list sizeL, with feedback if the original code does have feedback and without feedback if the
original code does not.
Note thatΩ (ϕ,K) is the error probability of a decoder which decodes to the setof K most likely messages under
ϕ. In other wordsΩ (ϕ,K) is the minimum error probability for a sizeK list decoder when the posterior probability
distribution isϕ.

Proof: If Ω (ϕ,K) = 0, the lemma holds trivially. Thus we assumeΩ (ϕ,K) > 0 henceforth. For any size
(K + 1) subsetM′ of M, one can use the encoding scheme and the decoding rule of the original code forM, to
construct the following block code forM′:

• Encoder:∀m ∈ M′ use the encoding scheme for messagem in the original code, i.e.

X ′
t (m, z

t−1) = Xt(m, z
t−1) ∀m ∈ M′, t ∈ [1, n], z t−1 ∈ Zt−1

• Decoder: For all zn ∈ Zn if the original decoding rule declares erasure, declare erasure, else the decode to the
intersection of the original decoded list andM′.

M̂′ =

{

x if M̂ = x

M̂ ∩M′ else

This is a lengthn code with(K+1) messages and decoding list sizeL. Furthermore for allm in M′ the conditional
error probabilityP ′

e|m and the conditional erasure probabilityP ′
x|m are equal to the conditional error probabilityPe|m

and the conditional erasure probabilityPx|m in the original code, respectively.
Note that

1
K+1

∑

m∈M′

(

Pe|m ,Px|m
)

∈ Ψ(K + 1, n, L) ∀M′ ⊂ M such that|M′| = K + 1 (49)

whereΨ(K+1, n, L) is the set of achievable error probability, erasure probability pairs for lengthn block codes with
(K + 1) equally probable messages and with decoding list sizeL.

Let the smallest non-zero element of{ϕ(1), ϕ(2), . . . ϕ(|M|)} beϕ(ξ1). For any size(K +1) subset ofM which
includesξ1 and all whose elements have non-zero probabilities, sayM1, we have,

(Pe,Px) =
∑

m∈M
ϕ(m)(Pe|m ,Px|m)

=
∑

m∈M
[ϕ(m) − ϕ(ξ1)1{m∈M1}](Pe|m ,Px|m) + ϕ(ξ1)

∑

m∈M1

(Pe|m ,Px|m)

Equation (49) and the definition ofΨ(K + 1, n, L), implies that∃ψ1 ∈ Ψ(K + 1, n, L) such that

(Pe,Px) =
∑

m∈M
ϕ(1)(m)(Pe|m ,Px|m) + ϕ(ψ1)ψ1 (50)

1 = ϕ(ψ1) +
∑

m∈M
ϕ(1)(m) (51)

whereϕ(ψ1) = (K+1)ϕ(ξ1) andϕ(1)(m) = ϕ(m)−ϕ(ξ1)1{m∈M1}. Furthermore the number of non-zeroϕ(1)(m)’s
is at least one less than that of non-zeroϕ(m)’s. The remaining probabilities,ϕ(1)(m), have a minimum,ϕ(1)(ξ2)
among its non-zero elements. One can repeat the same argument once more using that element and reduce the number
of non-zero elements at least one more. After at most|M|−K such iterations one reaches to aϕ(ℓ) which is non-zero
for K or fewer messages:

(Pe,Px) =
∑ℓ

j=1
ϕ(ψj)ψj +

∑

m∈M
ϕ(ℓ)(m)(Pe|m ,Px|m) (52)

whereϕ(ℓ)(m) ≤ ϕ(m) for all m in M and
∑

m∈M 1{ϕ(ℓ)(m)>0} ≤ K.
In equation (52), the first sum is equal to a convex combination of ψj ’s multiplied by

∑ℓ
j=1 ϕ(ψj); the second sum

is equal to a pair with non-negative entries. As a result of definition of Ω (ϕ,K) given in equation (48),

Ω (ϕ,K) ≤
∑ℓ

j=1
ϕ(ψj). (53)
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Then as a result of convexity ofΨ(K + 1, n, L) we can conclude that there exists aψ ∈ Ψ(K + 1, n, L) such that
(Pe,Px) = aΩ (ϕ,K) ψ̃ + (b1, b2) for somea ≥ 1, b1 ≥ 0 andb2 ≥ 0. Thus

∃ψ ∈ Ψ(K + 1, n, L) such that( Pe

Ω(ϕ,K) ,
Px

Ω(ϕ,K)) = ψ + (b3, b4) for someb3 ≥ 0, b4 ≥ 0. (54)

Then the lemma follows from equation (54), the fact thatPe(M, n, L,Px) is decreasing inPx and the fact that
Pe(M, n, L,Px) is uniquely determined byΨ(M, n, L) for sx ∈ [0, 1] as follows

Pe (M, n, L,Px) = min
ψx:(ψe,ψx)∈Ψ(M,n,L)

ψe ∀(M, n, L, ψx). (55)

For proving Theorem 2, we express the error and erasure probabilities, as a convex combination of error and erasure
probabilities of(n−n1) long block codes with a priori probability distributionϕz n1 (m) = P[m| zn1 ] over the messages
and apply Lemma 2 together with convexity arguments similarto the ones above.

Proof [Theorem 2]:
For all m in M, let Υ(m) be the decoding region ofm, Υ(x) be the decoding region of the erasure symbolx and
Υ̃(m) the error region ofm:

Υ(m),{zn : m ∈ M̂} Υ(x),{zn : x ∈ M̂} Υ̃(m),Υ(m)c ∩Υ(x)c whereΥc = Zn/Υ. (56)

Then for allm ∈ M,
(Pe|m ,Px|m) =

(

P

[

Υ̃(m)
∣

∣

∣
m
]

,P[Υ(x)|m]
)

. (57)

Note that16

Px|m =
∑

z n:z n∈Υ(x)
P[zn|m]

=
∑

z n1
P[zn1 |m]

∑

z n

n1+1:(z
n1 ,z n

n1+1)∈Υ(x)
P
[

znn1+1

∣

∣m, zn1
]

.

Then the erasure probability is

Px =
∑

m∈M
1

|M|
∑

z n1
P[zn1 |m]

∑

z n

n1+1:(z
n1 ,z n

n1+1)∈Υ(x)
P
[

znn1+1

∣

∣m, zn1
]

=
∑

z n1
P[zn1 ]

(

∑

m∈M
P[m| zn1 ]

∑

z n

n1+1:(z
n1 ,z n

n1+1)∈Υ(x)
P
[

znn1+1

∣

∣m, zn1
]

)

=
∑

z n1
P[zn1 ]Px(z

n1).

Note that for everyzn1 , Px(z
n1) is the erasure probability of a code of length(n− n1) with a priori probability

distributionϕz n1 (m) = P[m| zn1 ]. Furthermore one can write the error probability,Pe as

Pe =
∑

z n1
P[zn1 ]

(

∑

m∈M
P[m| zn1 ]

∑

z n

n1+1:(z
n1 ,z n

n1+1)∈Υ̃(m)
P
[

znn1+1

∣

∣m, zn1
]

)

=
∑

z n1
P[zn1 ]Pe(z

n1)

wherePe(z
n1) is the error probability of the very same length(n− n1) code. As a result of Lemma 2, the pair

(Pe(z
n1),Px(z

n1)) satisfies

Pe(z
n1) ≥ Ω (ϕz n1 , L1)Pe

(

L1 + 1, (n − n1), L,
Px(z n1 )

Ω(ϕzn1 ,L1)

)

. (58)

16There is a slight abuse of notation here, ifA’s include real valued random variables with densities, we should integrate, rather than sum,
over them. Since it is clear from the context what needs to be done we omit that subtlety in below calculations.
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Then for anys ∈ [0, 1].

(1− s)Pe≥
∑

z n1
P[zn1 ] (1− s)Ω (ϕz n1 , L1)Pe

(

L1 + 1, (n− n1), L,
Px(z n1 )

Ω(ϕzn1 ,L1)

)

≥
(

∑

z n1
P[zn1 ] (1− s)Ω (ϕz n1 , L1)

)

Pe

(

L1 + 1, (n− n1), L,
∑

zn1 P[z n1 ](1−s)Px(z n1 )
∑

zn1 P[z n1 ](1−s)Ω(ϕzn1 ,L1)

)

=
(

∑

z n1
P[zn1 ](1−s)Ω (ϕz n1 , L1)

)

Pe

(

L1+1, (n−n1), L,
(1−s)Px

∑

zn1P[z
n1 ](1−s)Ω(ϕzn1 ,L1)

)

(59)

where the second inequality follows from the convexity ofPe(M, n, L,Px) in Px. Note thatPe(M, n, L,Px) is
convex inPx because of the equation (55) and the convexity of the regionΨ(M, n, L).
Now consider a code which uses the firstn1 time units of the original encoding scheme as its encoding scheme.
Decoder of this new code draws a real number from[0, 1] uniformly at random, independently ofZn1 of the original
code (and the message evidently). If this number is less thans it declares erasure else it makes a maximum
likelihood decoding with list of sizeL1. Then the sum on the left hand side of the below expression (60) is its error
probability. But that probability is lower bounded byPe (M, n1, L1, s) which is minimum error probability over all
lengthn1 block codes withM messages and decoding list sizeL1, i.e.

∑

z n1
P[zn1 ] (1− s)Ω (ϕz n1 , L1) ≥ Pe (M, n1, L1, s) . (60)

Then the theorem follows from the fact thatPe(M, n, L1,Px) is decreasing function ofPx and the equations (59)
and (60).

QED
Like the result of Shannon, Gallager and Berlekamp in [31, Theorem 1], Theorem 2 is correct both with and without

feedback. AlthoughPe’s are different in each case, the relationship between themgiven in equation (47) holds in
both cases.

B. Classical Results on Error Exponent of Erasure-free Block Codes with Feedback:

In this section we give a very brief overview of the previously known results on the error probability of erasure
free block codes with feedback. These result are used in Section IV-C together with Theorem 2 to boundEe(R,Ex)
from above. Note that Theorem 2 only relates the error probability of longer codes to that of the shorter ones. It does
not in and of itself bound the error probability. It is in a sense a tool to glue together various bounds on the error
probability.

First bound we consider is on the error exponent of erasure free block codes with feedback. Haroutunian proved
in [17] that, for any(Mn, n, Ln) sequence of triples, such thatlimn→∞

lnMn−lnLn

n
= R,

lim
n→∞

− lnPe(Mn,n,Ln,0)
n

≤ EH(R) (61)

where
EH(R) = min

V :C(V )≤R
max
P

D (V ‖W |P ) and C(V ) = max
P

I (P, V ) . (62)

Second bound we consider is on the trade off between the errorexponents of two messages in a two message
erasure free block code with feedback. Berlekamp mentions this result in passing in [1] and attributes it to Gallager
and Shannon.

Lemma 3:For any feedback encoding scheme with two messages and erasure free decision rule and for allT ≥ T0:

either Pe1 ≥ 1
4e

−nT+
√
n4 lnPmin or Pe2 >

1
4e

−nΓ(T )+
√
n4 lnPmin (63)

wherePmin = minx ,y :W (y |x)>0W (y |x ).

T0 , maxx ,x̃ − ln
∑

y :W (y |x̃)>0
W (y |x ) (64)

Γ (T ) , maxΠ Γ (T,Π) . (65)

Result is old and somewhat intuitive to those who are familiar with the calculations in the non-feedback case. Thus
probably it has been proven a number of times. But we are not aware of a published proof, hence we have included
one in Appendix A.
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Although Lemma 3 establishes only the converse part(T,Γ (T )) is indeed the optimal trade off for the error
exponents of two messages in an erasure free block code, bothwith and without feedback. Achievablity of this
trade off has already been established in [31, Theorem 5] forthe case without feedback; evidently this implies the
achievablity with feedback. FurthermoreT0 does have an operational meaning, it is the maximum error exponent first
message can have, while the second message has zero error probability. This fact is also proved in Appendix A.

For some channels Lemma 3 gives us a bound on the error exponent of erasure free-codes at zero rate, which is
tighter than Haroutunian’s bound at zero rate. In order to see this let us first defineT ∗ to be

T ∗ = max
T

min{T,Γ (T )}. (66)

Note thatT ∗ is finite iff
∑

y W (y |x )W (y |x̃ ) > 0 for all x , x̃ pairs. Recall that this is also the necessary and sufficient
condition of zero-error capacity,C0, to be zero.EH(R) on the other hand is infinite for allR ≤ R∞ like Esp(R)
whereR∞ is given by,

R∞ = −minP (·)maxy ln
∑

x :W (y |x)>0
P (x ) (67)

Even in the cases whereEH(0) is finite, EH(0) ≥ T ∗. We can use this fact, Lemma 3, and Theorem 2, or [31,
Theorem 1] for that matter, to strengthen Haroutunian boundat low rates, as follows.

Lemma 4:For all channels with zero zero-error capacity,C0 = 0 and any sequence ofMn, such thatlimn→∞
lnMn

n
=

R,
lim
n→∞

− lnPe(Mn,n,1,0)
n

≤ ẼH(R) (68)

where

ẼH(R) =

{

EH(R) if R ≥ Rht
T ∗ + EH(Rht)−T ∗

Rht
R if R ∈ [0, Rht)

}

andRht is the unique solution of the equationT ∗ = EH(R)−RE′
H(R) if it exists,Rht = C otherwise.

Before going into the proof let us note that̃EH(R) is obtained simply by drawing the tangent line to the curve
(R,EH(R)) from the point(0, T ∗). The curve(R, ẼH(R)) is same as the tangent line, for the rates between0 and
Rht, and it is same as the curve(R,EH(R)) from then on whereRht is the rate of the point at which the tangent
from (0, T ∗) meets the curve(R,EH(R)).

Proof: ForR ≥ Rht this Lemma immediately follows from Haroutunian’s result in [17] for L1 = 1. If R < Rht
then we apply Theorem 2.

(1− s)Pe(M, n, L1,Px) ≥ Pe(M, ñ, L1, s)Pe

(

L1 + 1, n− ñ, L̃, (1−s)Px

Pe(M,n,L1,s)

)

(69)

with17 s = 0, Px = 0, L1 = 1 and ñ = ⌊ R
Rht

⌋. Furthermore, by Lemma 3 and the definition ofT ∗ given in (66) we
have,

Pe(2, n − ñ, L, 0) ≥ e−(n−ñ)T∗+
√

n−ñ lnPmin

8 (70)

Using equations (69) and (70) we get,

− lnPe(M,n,1,0)
n

≤ − lnPe(M,ñ,1,0)
ñ

R
Rht

+
[

1− R
Rht

+ 1
ñ

]

T ∗ +

(

√

1
ñ

)(

√

Rht−R
Rht

)

ln Pmin

8

where lnMn

ñ
= Rht. Lemma follows by simply applying Haroutunian’s result to the first terms on the right hand side.

17Or [31, Theorem 1] withL1 = 1 andn1 = ⌊ R

Rht
⌋.
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C. Generalized Straight Line Bound for Error-Erasure Exponents

Theorem 2 bounds the minimum error probability lengthn block codes from below in terms of the minimum error
probability of lengthn1 and length(n−n1) block codes. The rate and erasure probability of the longer code constraints
the rates and erasure probabilities of the shorter ones, butdoes not specify them completely. We use this fact together
with the improved Haroutunian’s bound on the error exponents of erasure free block codes with feedback, i.e. Lemma
4, and the error exponent trade off of the erasure free feedback block codes with two messages, i.e. Lemma 3, to
obtain a family of upper bounds on the error exponents of feedback block codes with erasure.

Theorem 3:For any DMC withC0 = 0 rateR ∈ [0, C] andEx ∈ [0, EH(R)] and for anyr ∈ [rh(R,Ex), C]

Ee (R,Ex) ≤ R
r ẼH(r) + (1− R

r )Γ

(

Ex−R

r
ẼH(r)

1−R

r

)

whererh(R,Ex), is the unique solution ofRẼH(r)− rEx = 0.
Theorem 3 simply states that any line connecting any two points of the curves(R,Ex, Ee) = (R, ẼH(R), ẼH(R))
and (R,Ex, Ee) = (0, Ex,Γ (Ex)) lies above the surface(R,Ex, Ee) = (R,Ex, Ee(R,Ex)). The conditionC0 = 0
is not merely a technical condition due to the proof technique; as we will see in Section V for channels withC0 > 0,
there are zero-error codes with erasure exponent as high asEsp(R) for any rateR ≤ C.

Proof: We will consider the casesr ∈ (rh(R,Ex), C] andr = rh(R,Ex) separately.
• r ∈ (rh(R,Ex), C]: Apply Theorem 2 withs = 0, L = 1, L1 = 1, take the logarithm of both sides of equation

(47) and divide byn,

− lnPe(M,n,1,Px)
n

≤
(

n1

n

) − lnPe(M,n1,1,0)
n1

+
(

1− n1

n

) − lnPe

(

2,n−n1,1,
Px

Pe(M,n1,1,0)

)

n−n1
. (71)

For any(M, n,Px) sequence such thatlim infn→∞
lnM
n

= R, lim infn→∞
− lnPx

n
= Ex, if we choosen1 = ⌊Rr n⌋

sincer > rh(R,Ex) we have,
lim inf
n→∞

−1
n−n1

ln Px

Pe(M,n1,1,0)
> 0.

Furthermore as a result of Lemma 4 and the convexity ofẼH(R) we have

lim inf
n→∞

−1
n−n1

ln Px

Pe(M,n1,1,0)
≤ T ∗.

Assume for the moment that for anyT ∈ (0, T ∗] and for any sequence ofPx
(n) such thatlim infn→∞

− lnPx
(n)

n
= T

we have
lim inf
n→∞

− lnPe(2,n,1,Px
(n))

n
≤ Γ (T ) . (72)

Using equation (71) and taking the limit asn goes to infinity we get

Ee (R,Ex) ≤ R
r Ee(r) + (1− R

r )Γ
(

rEx−REe(r)
r−R

)

.

Then Theorem 3 follows from Lemma 4 and the fact thatΓ (T ) is nondecreasing function ofT ,
In order to establish equation (72); note that ifT0 > 0 andT ≤ T0 thenΓ (T ) = ∞. Thus equation (72) holds
trivially. For T > T0 case we prove equation (72) by contradiction. Assume that (72) is wrong. Then there exists
a block code with erasures that satisfies

P

[

Υ̃( ˜̃m)
∣

∣

∣
m̃
]

≤ e−n(Γ(T )+o(1))
P[Υ(x)| m̃] ≤ e−n(T+o(1))

P

[

Υ̃(m̃)
∣

∣

∣

˜̃m
]

≤ e−n(Γ(T )+o(1))
P
[

Υ(x)| ˜̃m
]

≤ e−n(T+o(1))

Enlarge the decoding region of̃m by taking its union with the erasure region:

Υ′(m̃) = Υ(m̃) ∪Υ(x) Υ′( ˜̃m) = Υ( ˜̃m) Υ′(x) = ∅.
The resulting code is an erasure free code with

P
[

Υ′( ˜̃m)
∣

∣ m̃
]

≤ e−n(Γ(T )+o(1)) and P
[

Υ′(m̃)
∣

∣ ˜̃m
]

≤ e−n(min{Γ(T ),T}+o(1))

SinceT0 < T ≤ T ∗, Γ (T ) ≥ T , this contradicts with Lemma 3 thus equation (72) holds.
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• r = rh(R,Ex): Apply Theorem 2 withs = 0, L = 1, L1 = 1 andn1 = max{ℓ : Pe(M, ℓ, 1, 0) > Px ln
1
Px

},

Pe(M, n, 1,Px) ≥ Pe(M, n1, 1, 0)Pe(2, n− n1, 1,
Px

Pe(M,n1,1,0)
)

≥ Px ln
1
Px

Pe(2, n − n1, 1,
1

− lnPx

) (73)

Note that forn1 = max{ℓ : Pe(M, ℓ, 1, 0) > Px ln
1
Px

},

lim inf
n→∞

n1

n
E(Rn

n1
) = Ex

Then as a result of Lemma 4 we have,
lim inf
n→∞

n1

n
ẼH(

Rn
n1
) ≥ Ex

Then
lim inf
n→∞

n1

n
≥ R

rh(R,Ex)
(74)

Assume for the moment that for anyǫn such thatlim infn→∞ ǫn = 0

lim inf
n→∞

− lnPe(2,n,1,ǫn)
n

≤ Γ (0) (75)

Then taking the logarithm of both sides of the equation (73),dividing both sides byn, taking the limit asn tends
to infinity and substituting equations (74) and (75) we get,

Ee (R,Ex) ≤ Ex + (1− Ex

ẼH(rh(R,Ex))
)Γ (0) (76)

Note that, Theorem 3 forr = rh(R,Ex) case is equivalent to (76). Identity given in (75) follows from an analysis
similar to the one used for establishing (72), in which but instead of Lemma 3, we use a simple typicality argument
like [10, Corollary 1.2].

We have setL1 = 1 in the proof. If instead ofL1 = 1 we had chosenL1 to be a subexponential function ofn
which grew to infinity withn, the logic and the mechanics of the proof would still work butwe would have replaced
Γ (T ) with Ee(0, Ex), while keeping the term including̃EH(R) the same. Since the best known upper bound for
Ee(0, Ex) is Γ (Ex) for Ex ≤ T ∗ final result is same for case with feedback.18 On the other hand for the case without
feedback, which is not the main focus of this paper, this doesmake a difference. By choosingL1 to be a function
of block length that goes to infinity subexponentially with block length one can use Telatar’s converse result [32,
Theorem 4.4] on the error exponent at zero rate and zero erasure exponent without feedback.

In Figure 1, the upper and lower bounds we have derived for error exponent are plotted as a function of erasure
exponent for a binary symmetric channel with cross over probability ǫ = 0.25 at rateR = 8.62 × 10−2 nats per
channel use. Solid lines are lower bounds to the error exponent for block codes with feedback, which have been
established in Section III, and without feedback, which wasestablished previously, [14], [10], [32]. Dashed lines are
the upper bounds obtained using Theorem 3.

Note that all four curves meet at a point on bottom right, thisis the point that corresponds to the error exponent
of block codes at rateR = 8.62 × 10−2 nats per channel use and its values are the same with and without feedback
since we are on a symmetric channel and our rate is over the critical rate. Any point to the lower right of this point
is achievable both with and without feedback.

The proximity of the inner and the outer bound demonstrated in Figure 1 is not particular to the channel we have
chosen. A discussion of the closeness of the inner and outer bounds are given in Section VI.

18In binary symmetric channels these result can be strengthened using the value ofE(0), [36]. However those changes will improve the upper
bound on error exponent only at low rates and high erasure exponents.
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Fig. 1. Error Exponent vs Erasure Exponent

V. ERASURE EXPONENT OFERROR-FREE CODES:Ex(R)
For all DMCs which have one or more zero probability transitions, for all rates below capacity,R ≤ C and for

small enoughEx’s, Ee(R,Ex) = ∞. For such(R,Ex) pairs, coding scheme we have described in Section III gives
us an error free code. The connection between the erasure exponent of error free block codes, and error exponent of
block codes with erasures is not confined to this particular encoding scheme. In order to explain those connections
in more detail let us first define the error-free codes more formally.

Definition 3: A sequencesQ0 of block codes with feedback is an error-free reliable sequence iff

Pe
(n) = 0 ∀n, and lim supn→∞(Px

(n) + 1
|M(n)|) = 0.

The highest rate achievable for error-free reliable codes is the zero-error capacity with feedback and erasures,Cx,0.
If all the transition probabilities are positive i.e.minx ,y W (y |x ) = δ > 0, then P[z n|m]

P[z n|m̃] ≥ ( δ
1−δ )

n for all m, m̃ ∈ M
andzn ∈ Zn. Thus we have

P[m| zn] ≥ ( δ
1−δ )

n
P[m̃| zn] ∀m, m̃ ∈ M,∀zn ∈ Zn (77)

Consequently we havePe ≥ (enR−1)δn

(enR−1)δn+(1−δ)n and Cx,0 is zero. On the other hand as an immediate consequence of
the encoding scheme suggested by Yamamoto and Itoh in [34], if there is one or more zero probability transitions,
Cx,0 is equal to channel capacityC.

Definition 4: For all DMCs with at least one(x , y) pair such thatW (y |x ) = 0, ∀R ≤ C erasure exponent of error
free block codes with feedback is defined as

Ex(R) , sup
Q0:R(Q0)≥R

Ex(Q0). (78)

For any erasure exponent,Ex less thanEx(R), there is an error-free reliable sequence, i.e. there is a reliable sequence
with infinite error exponent:

Ex ≤ Ex(R) ⇒ Ee(R,Ex) = ∞. (79)
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More interestingly ifEx > Ex(R) thenEe(R,Ex) <∞. In order to see this letδ be the minimum non-zero transition
probability. Then for anym, m̃ ∈ M and z ∈ Z such thatP[m| zn]P[m̃| zn] > 0 we haveP[zn|m] ≥ δnP[zn| m̃].

Thus if P
[

M̂ /∈ {M,x}
∣

∣

∣
Zn

]

6= 0 thenP
[

M̂ /∈ {M,x}
∣

∣

∣
Zn

]

≥ δn

1+δn . Using this we get,

E

[

1{P[M̂/∈{M,x}|Zn]6=0}

]

≤ 1+δn

δn E

[

1{P[M̂/∈{M,x}|Zn]6=0}P
[

M̂ /∈ {M,x}
∣

∣

∣
Zn

]]

= (1 + δ−n)P
[

M̂ /∈ {M,x}
]

(80)

Equation (80) reveals that the total probability ofzn’s at which receiver chooses to decode to a message rather than
declaring an erasure despite the fact that it is not certain about the message is upper bounded by(1+ δ−n) times the
undetected error probability. Thus if we replace the decoder with a new decoder which declares an erasure unless it
is sure about the transmitted message, i.e. unless there is amessage with posterior probability one, resulting erasure
probabilityPx

′ will be bounded in terms of original error and erasure probabilities as follows,

Px
′ ≤ Px + (1 + δ−n)Pe. (81)

Thus by changing the decoding rule, any lengthn code with error probabilityPe and erasure probabilityPx can
be transformed into error free code with erasure probability Px

′, where Px
′ satisfies equation (81). Using this

transformation we can change any code with errors-and-erasure decoding into a error free block code with erasures.
Evidently we can use the very same transformation to convertreliable sequences into error-free reliable sequences.
Considering error and erasure exponents of the original reliable sequences and erasure exponents of resulting error
free reliable sequences we get,

Ex(R) ≥ min{Ex, Ee(R,Ex) + ln δ} ∀R,Ex. (82)

Consequently,
Ex > Ex(R) ⇒ Ee(R,Ex) ≤ Ex(R)− ln δ <∞. (83)

As a result of equations (79) and (83) we can conclude thatEe(R,Ex) = ∞ if and only if Ex ≤ Ex(R). In a sense
like the error exponent of erasure free block codes,E(R), erasure exponent of the error free bock codes,Ex(R),
gives a partial description ofE(R,Ex). E(R) gives the value of error exponents below which erasure exponent can
be pushed to infinity andEx(R) gives the value of erasure exponent below which error exponent can be pushed to
infinity.

Below the erasure exponent of zero-error codes,Ex(R), is investigated separately for two families of channels:
Channels which have a positive zero error capacity, i.e.C0 > 0 and Channels which have zero zero-error capacity,
i.e. C0 = 0.

A. Case 1:C0 > 0

Theorem 4:For a DMC if C0 > 0 then,

EH(R) ≥ Ex(R) ≥ Esp(R).

Proof: If zero-error capacity is strictly greater then zero, i.e.C0 > 0, then one can achieve the sphere packing
exponent, with zero error probability using a two phase scheme. In the first phase transmitter uses a lengthn1 = ⌈en1R⌉
block code without feedback with a list decoder of sizeL =

⌈

∂
∂REsp(R,P

∗
R)
⌉

whereP ∗
R is the input distribution

satisfyingEsp(R) = Esp(R,P
∗
R). Note that with this list size the sphere packing exponent19 is achievable at rateR.

Thus correct message is in the list with at least probability(1− e−n1Esp(R)), see [10, Page 196]. In the second phase
transmitter uses a zero error code, of length20 n2 = ⌈ ln(L+1)

C0
⌉ with L+ 1 messages, to tell the receiver whether the

correct message is in that list or not, and the correct message itself if it is in the list. Clearly such a feedback code
with two phases is error free, and it has erasures only when there exists an error in the first phase. Thus the erasure
probability of the over all code is upper bounded bye−n1Esp(R). Note thatn2 is fixed for a givenR. Consequently as

19Indeed this upper bound on error probability is tight exponentially for block codes without feedback.
20For some DMCs withC0 > 0 and for someL one may need more than⌈ ln(L+1)

C0
⌉ time units to convey one of the(L + 1) messages

without any errors, becauseC0 itself is defined as a limit. But even in those cases we are guaranteed to have a fixed amount of time for that
transmissions, which does not change withn1. Thus above argument holds as is even in those cases.
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the length of the first phase,n1, grows to infinity the rate and erasure exponent of(n1+n2) long block code converges
to the rate and error exponent ofn1 long code of the first phase, i.e. toR andEsp(R). Thus

Ex(R) ≥ Esp(R).

Any error free block code with erasures can be forced to decode, at erasures. The resulting fixed length code has
an error probability no larger than the erasure probabilityof the original code. However we know that, [17], error
probability of the erasure free block codes with feedback decreases with an exponent no larger thanEH(R). Thus,

Ex(R) ≤ EH(R).

This upper bound on the erasure exponent also follows from the converse result we present in the next section,
Theorem 6.
For symmetric channelsEH(R) = Esp(R) and Theorem 4 determines the erasure exponent of error-freecodes on
symmetric channels with non-zero zero-error-capacity completely.

B. Case 2:C0 = 0

This case is more involved than the previous one. We first establish an upper bound onEx(R) in terms of the
improved version of Haroutunian’s bound, i.e. Lemma 4, and the erasure exponent of error-free codes at zero rate,
Ex(0). Then we show thatEx(0) is equal to the erasure exponent error-free block codes withtwo messages,Ex,2, and
boundEx,2 from below.

For anyM , n and L, Pe(M, n, L,Px) = 0 for large enoughPx. We denote the minimum of suchPx’s by
P0,x(M, n, L). Thus we can writeEx,2 as

Ex,2 = lim inf
n→∞

P0,x (2, n, 1) .

Theorem 5:For anyn, M , L, n1 ≤ n andL1, minimum erasure probability of fixed length error-free block codes
with feedback,P0,x(M, n, L), satisfies

P0,x(M, n, L) ≥ Pe(M, n1, L1, 0)P0,x (L1 + 1, n− n1, L) . (84)

Like Theorem 2, Theorem 5 is correct both with and without feedback. AlthoughP0,x’s andPe will be different in
each case, the relationship between them given in equation (84) holds in both cases.

Proof: If Pe(M, n1, L1, 0) = 0 theorem holds trivially. Thus we assume henceforth thatPe(M, n1, L1, 0) > 0.
Using Theorem 2 withPx = P0,x(M, n, L) we get

Pe (M, n, L,P0,x(M, n, L)) ≥ Pe(M, n1, L1, 0)Pe

(

L1 + 1, (n − n1), L,
P0,x(M,n,L)

Pe(M,n1,L1,0)

)

.

SincePe (M, n, L,P0,x(M, n, L)) = 0 andPe(M, n1, L1, 0) > 0 we have,

Pe

(

L1 + 1, (n− n1), L,
P0,x(M,n,L)

Pe(M,n1,L1,0)

)

= 0.

Thus
P0,x(M,n,L)

Pe(M,n1,L1,0)
≥ P0,x (L1 + 1, (n− n1), L) .

As we have done in the errors-and-erasures case we can convert this into a bound on exponents. If we use the
improved version of Haroutunian’s bound, i.e. Lemma 4, as anupper bound on the error exponent of erasure free
block codes we get the following.

Theorem 6:For any rateR ≥ 0 for anyα ∈
[

R
C , 1
]

Ex (R) ≤ αẼH
(

R
α

)

+ (1− α̃)Ex (0)
Now let us focus on the value of erasure exponent at zero rate:

Lemma 5:For the channels which has zero zero-error capacity, i.e.C0 = 0, erasure exponent of error free block
codes at zero rateEx(0) is equal to the erasure exponent of error free block codes with two messagesEx,2.
Note that unlike the two message case,Ex,2, in the zero rate caseEx(0) the number of messages are increasing with
block length to infinity, thus we can not claimEx,2 = Ex(0) just as a result of their definitions.
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Proof: If we write Theorem 5 forL = 1, n1 = 0 andL1 = 1

P0,x(M, n, 1) ≥ Pe(M, 0, 1)P0,x(2, n, 1)

= M−1
M P0,x(2, n, 1) ∀M, n

Thus as an immediate result of the definitions ofEx(0) andEx,2, we haveEx(0) ≤ Ex,2.
In order to prove the equality one needs to proveEx(0) ≥ Ex,2. For doing that let us assume that it is possible to

send one bit with erasure probabilityǫ with a block code of lengthℓ(ǫ):

ǫ ≥ P0,x(2, ℓ(ǫ), 1) (85)

One can use this code to sendr bits, by repeating each bit whenever there exists an erasure. If the block length is
n = kℓ(ǫ) then a message erasure occurs only when the number of bit erasures ink trials is more thenk− r. Let #e
denote the number of erasures out ofk trials then

P[#e = l] = k!
(k−l)!l!(1− ǫ)k−lǫl and Px =

∑k

l=k−r+1
P[#e = l] .

Thus

Px =
∑k

l=k−r+1

k!
l!(k−l)!(1− ǫ)k−lǫl

=
∑k

l=k−r+1

k!
l!(k−l)!

(

l
k

)l (
1− l

k

)k−l
e−[l ln l/k

ǫ
+(k−l) ln 1−l/k

1−ǫ
]

=
∑k

l=k−r+1

k!
l!(k−l)!

(

l
k

)l (
1− l

k

)k−l
e−kD(

l

k‖ǫ).

Then for anyǫ ≤ 1− r
k , we have

Px ≤ e−kD(1−
r

k
‖ǫ).

EvidentlyPx ≥ P0,x(2
r, n, 1) for n = kℓ(ǫ). Thus,

− lnP0,x(2r ,n,1)
n

≥ D(1− r

k‖ǫ)
ℓ(ǫ) .

Then − ln ǫ
ℓ(ǫ) is an achievable erasure exponent for any sequence of(r, k)’s such thatlimk→∞

r
k = 0, i.e. Ex(0) ≥ − ln ǫ

ℓ(ǫ) .
Thus any exponent achievable for two message case is achievable for zero rate case:Ex(0) ≥ Ex,2.

As a result of Lemma 6 which is presented in the next section weknow that

P0,x(2, n, 1) ≥ ( sup
s∈(0,.5)

β(s))n where β(s) = minx ,x̃
∑

y
W (y |x )(1−s)W (y |x̃ )s.

Thus as a result of Lemma 5 we have

Ex(0) = Ex,2 ≤ − ln sup
s∈(0,0.5)

β(s).

C. Lower Bounds onP0,x(2, n, 1)

Suppose at timet the correct message,M, is assigned to the input letterx and the other message is assigned to the
input letterx̃ , then the receiver can not to rule out the incorrect message at time t with probability

∑

y:W (y |x̃)>0W (y |x ).
Using this fact one can prove that,

P0,x(2, n, 1) ≥
(

minx ,x̃
∑

y :W (y |x̃)>0
W (y |x )

)n

. (86)

Now let us consider channels whose transition probability matrix W is of the form

W =

[

1− q q
0 1

]

. (87)

We denote the output letter that can be reached from both of the input letters bỹy . For the moment we consider only
the deterministic encoding schemes, i.e.Zt = Yt. Note that in the optimal encoding scheme,

Xt(1, y
t−1) 6= Xt(2, y

t−1) ∀t, ∀y t−1 ∈ Yt−1
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Then
P
[

Yt = ỹ |M = 1, y t−1
]

P
[

Yt = ỹ |M = 2, y t−1
]

= q ∀t, ∀y t−1 ∈ Yt−1 (88)

Furthermore ifYn = ỹn then the receiver can not decode without errors, i.e. it has to declare an erasure. Then,

P0,x(2, n, 1)≥ 1
2 (P[Yn = ỹ ỹ . . . ỹ |M = 1] +P[Yn = ỹ ỹ . . . ỹ |M = 2])

(a)

≥
√

P[Yn = ỹ ỹ . . . ỹ |M = 1]P[Yn = ỹ ỹ . . . ỹ |M = 2]

(b)
= q

n

2 (89)

where(a) hods because arithmetic mean is larger than the geometric mean and(b) follows from the equation (88).
For theW given in (87) the bound given in (89) is very tight. If the encoder assigns the first message to the input

letter that always leads tõy and the second message to the other input letter in first⌊n2⌋ time instances, and does

the flipped assignment in the last⌈n2⌉ time instances, then an erasure happens with a probability less thanq⌊
n

2 ⌋, i.e.

P0,x(2, n, 1) ≤ q⌊
n

2 ⌋.
On the other hand for theW given in (87), bound given in equation (86) ensures onlyP0,x(2, n, 1) ≥ qn, rather

thanP0,x(2, n, 1) ≥ q⌊
n

2 ⌋. Thus for the channel given (87) the bound given in equation (89) is tighter than the one in
equation (86).

The idea used in deriving the bound given in equation (89) forthis particularW can be applied to a general DMC
to prove the following lower bound,

P0,x(2, n, 1) ≥
(

minx ,x̃
∑

y

√

W (y |x )W (y |x̃ )
)n

. (90)

The bound given in equation (90) is decaying exponentially in n, even when all entries of theW are positive, however
for those channels the bound given in (86) impliesP0,x(2, n, 1) ≥ 1. Thus the bound given in (90) can not be superior
to the bound given in equation (86) in general. The followingbound implies bounds given in both equation (86) and
equation (90). Furthermore for certain channels it is strictly better than both.

Lemma 6:Erasure probability of all error free block codes with two messages is lower bounded as

P0,x(2, n, 1) ≥ ( sup
s∈(0,.5)

β(s))n where β(s) = minx ,x̃
∑

y
W (y |x )(1−s)W (y |x̃ )s (91)

Note that bounds given in equation (86) and (90) are implied by lims→0+ β(s) and lims→0.5− β(s) respectively.
Although

∑

y W (y|x )sW (y|x̃ )1−s is convex ins on (0, 0.5) for all (x , x̃ ) pairs,β(s) is not convex ins because of the
minimization in its definition. Thus the supremum overs does not necessarily occur on the boundaries. Indeed there
are channels for which bound given in Lemma 6 is strictly better than the bounds given in (86) and (90). Following
is the transition probability matrix of one such channel.

W =





0.1600 0.0200 0.2200 0.3000 0.3000
0.0900 0.4000 0.2700 0.0002 0.2398
0.1800 0.2000 0.3000 0.3200 0





lim
s→0

β(s) = 0.7000

lim
s→0.5

β(s) = 0.7027

β(0.18) = 0.7299.

Proof: Let µt and µ̃t(z t−1) be,

µt = {z t : P
[

M = 1| z t
]

P
[

M = 2| z t
]

> 0}
µ̃t(z

t−1) = {yt : P
[

yt|M = 1, z t−1
]

P
[

yt|M = 2, z t−1
]

> 0}

Then for any error free code and for anys ∈ (0, 0.5) we have

Px = E
[

1{µn}
]

= E
[

1{µn}(P[M = 1|Zn] +P[M = 2|Zn])
]

= E
[

1{µn}((1− s)P[M = 1|Zn] + sP[M = 2|Zn])
]

+E
[

1{µn}(sP[M = 1|Zn] + (1− s)P[M = 2|Zn])
]

≥ E

[

1{µn}P[M = 1|Zn]1−sP[M = 2|Zn]s
]

+E

[

1{µn}P[M = 1|Zn]sP[M = 2|Zn]1−s
]

(92)
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where the last inequality follows from the fact that arithmetic mean is lower bounded by the geometric mean.
Furthermore,

E

[

1{µn}P[M = 1|Zn]1−sP[M = 2|Zn]s
]

= E

[

E

[

1{µ̃n(Zn−1)}
(

P[M=1|Zn]
P[M=1|Zn−1]

)1−s(
P[M=2|Zn]

P[M=2|Zn−1]

)s
∣

∣

∣

∣

Zn−1

]

1{µ(n−1)}P
[

M = 1|Zn−1
]1−s

P
[

M = 2|Zn−1
]s
]

. (93)

Note that,

P[M=1|Zn]
P[M=1|Zn−1] =

P[M=1|Zn−1,Yn]
P[M=1|Zn−1]

= P[Yn|M=1,Zn−1]
P[Yn|Zn−1] . (94)

Similarly,

P[M=2|Zn]
P[M=2|Zn−1] =

P[Yn|M=2,Zn−1]
P[Yn|Zn−1] . (95)

Thus using equations (94) and (95) we have

E

[

1{µ̃n(Zn−1)}
(

P[M=1|Zn]
P[M=1|Zn−1]

)1−s (
P[M=2|Zn]

P[M=2|Zn−1]

)s
∣

∣

∣

∣

Zn−1

]

= E

[

P[Yn|M=1,Zn−1]1−s
P[Yn|M=2,Zn−1]s

P[Yn|Zn−1]

∣

∣

∣
Zn−1

]

=
∑

yn

P
[

yn|M = 1,Zn−1
]1−s

P
[

yn|M = 2,Zn−1
]s

≥ β(s) (96)

where the last inequality follows from the definition ofβ(s) given in equation (91).
Using equations (93) and (96) we get

E

[

1{µn}P[M = 1|Zn]1−sP[M = 2|Zn]s
]

≥ E

[

P
[

M = 1|Z0
]1−s

P
[

M = 2|Z0
]s
]

β(s)n

≥ 1
2β(s)

n. (97)

If we follow a similar line of reasoning for the second term in(92) we get

E

[

1{µn}P[M = 1|Zn]sP[M = 2|Zn]1−s
]

≥ 1
2β(1− s)n

= 1
2β(s)

n. (98)

Lemma follows from equations (92), (97) and (98) by taking the supremum overs ∈ (0, 0.5).

VI. D ISCUSSION

The value of error exponent is not known for erasure free fixedlength block codes with feedback on a general
DMC. We do not even know if it is still upper bounded by sphere packing exponent for non-symmetric DMCs.
Yet the value of error exponent for fixed length block codes with feedback and errors-and-erasures decoding can be
deduced, for the zero-erasure exponent case, from the results on the variable length block codes [3], [34]. Our main
aim in this paper was establishing upper and lower bounds that extend the bounds at the zero erasure exponent case
gracefully and non-trivially to the positive erasure exponents values. Our results are best understood in this framework
and should be interpreted accordingly.

By finding the optimal error exponent erasure exponent tradeoff, one solves the open problem of finding the optimal
error exponent of erasure free fixed length block codes with feedback. This is an important and difficult problem on
its own right. We did not attempted to solve that problem, yetthe inner and outer bounds we have derived for the
case with erasure quantify how much we loose from the optimalperformance by using the encoding schemes inspired
by the optimal encoding schemes for variable length block codes.

We derived inner bounds using two phase encoding schemes, which are known to be optimal at zero-erasure
exponent case. We have improved the performance of these twophase schemes at positive erasure exponent values by
choosing relative durations of the phases considering the desired values of rate and erasure exponent, and by using a
decoder that takes into account the outputs of both phases while deciding between decoding to a message and declaring
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an erasure. However within each phase the assignment of messages to input letters is fixed. In a general feedback
encoder, on the other hand, assignment of the messages to input symbols at each time can depend on the previous
channel outputs and such encoding schemes have proven to improve the error exponent at low rates, [35], [13], [6],
[25], [23] for some DMCs. Using such an encoding in the communication phase will improve the performance at low
rates. In addition instead of committing to a fixed duration for the communication phase one might consider using
a stopping time to switch from communication phase to the control phase. However in order to apply those ideas
effectively for a general DMC, it seems one first needs to solve the problem for the erasure free block codes for a
general DMC.

We derived the outer bounds without making any assumption about the feedback encoding scheme. Thus they are
valid for any fixed length block code with feedback and erasures. The principal idea of the straight line bound is
making use of the bounds derived for different rate, erasureexponent pairs by taking their convex combinations. This
approach can be interpreted as a generalization of the outerbounds used for variable length block codes, [3], [2].
As it was the case for the inner bounds, it seems in order to improve the outer bounds one needs establish outer
bounds on two related problems, i.e. on the error exponents of erasure free block codes with feedback and on the
error exponent erasure exponent trade off at zero rate.

The inner and outer bounds we have derived do not coincide forarbitrary values of erasure exponent. But they do
coincide for all channels at all rates at zero erasure exponent.

• If the channel does not have a zero probability transition, both the inner bound and the outer bound are equal to
(1− R

C )D.
• If the channel does have a zero probability transition, the inner bound is equal to infinity and there are fixed

length block codes with zero error probability for all largeenough block lengths.
Furthermore on the plane where erasure exponent is equal to the error exponent, the outer bound we have derived
is loose only as much as the best outer bound we know for the error exponent of the erasure free block codes with
feedback is loose. Thus the proximity we have observed between inner and outer bounds in Figure 1 is not peculiar
to the particular channel we have chosen for Figure 1. For allchannels inner and outer bounds we have derived
coincide on the upper left corner like they do in Figure 1. If the channel is symmetric and if we are considering a
rate over critical rate they will also coincide in lower right corner. Furthermore if the sphere packing exponent is
shown to be an upper bound for the error exponent of erasure free fixed length block codes this behavior will extend
to non-symmetric channels.
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APPENDIX

A. The Error Exponent Trade Off for Feedback Encoding Schemes with Two Message and Erasure Free Decoders :

In this section we will first establish an alternative expression for theΓ (T,Π) function defined in equation (36)
in Lemma 7. After that we will prove that in a two message code with feedback on a DMC, if the error exponent
of one of the messages is greater than someT ≥ T0 then the error exponent of the other message cannot be greater
than Γ (T ), whereT0 and Γ (T ) are defined in (64) and (65) respectively. Furthermore we will prove that if the
error probability of the one of the message is zero than the error probability of the other message cannot be lower
thane−nT0 ; we will also prove that it can be as low ase−nT0 , see Lemma 8. These results will imply that the error
performance of a two message code, does not improve with feedback. This result is attributed to Shannon and Gallager
by Berlekamp in [1].
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Lemma 7:Γ (T,Π) defined in equation (36) is equal to

Γ (T,Π) =







∞ if T < D (U0‖Wa|Π)
D (Us‖Wr|Π) if T = D (Us‖Wa|Π) for somes ∈ [0, 1]
D (U1‖Wr|Π) if T > D (U1‖Wa|Π)







where

Us(y |x , x̃ ) =















1{W(y|x̃)>0}
∑

ỹ:W (ỹ|x̃)>0 W (ỹ|x)W (y |x ) if s = 0
W (y |x)1−sW (y |x̃)s

∑

ỹ
W (ỹ |x)1−sW (ỹ|x̃)s if s ∈ (0, 1)
1{W(y|x)>0}

∑

ỹ:W (ỹ|x)>0 W (ỹ|x̃)W (y |x̃ ) if s = 1















Proof:

Γ (T,Π) = min
U :D(U‖Wa|Π)≤T

D (U‖Wr|Π)

=min
U

sup
λ>0

D (U‖Wr|Π) + λ(D (U‖Wa|Π)− T )

(a)
= sup

λ>0
min
U

D (U‖Wr|Π) + λ(D (U‖Wa|Π)− T )

= sup
λ>0

min
U

−λT + (1 + λ)
∑

x ,x̃ ,y
Π(x , x̃ )U(y |x , x̃ ) ln U(y |x ,x̃)

W (y |x)
λ

1+λW (y |x̃)
1

1+λ

(b)
= sup

λ>0
−λT − (1 + λ)

∑

x ,x̃
Π(x , x̃ ) ln

∑

y

W (y |x ) λ

1+λW (y |x̃ ) 1

1+λ (99)

where(a) follows from convexity ofD (U‖Wr|Π)+ λ(D (U‖Wa|Π)− T ) in U and linearity (concavity) of it inλ;
(b) holds because minimizingU is Us for s = 1

1+λ . The function on the right hand side of (99) is maximized at a

positive and finiteλ iff there is aλ such thatD
(

U 1

1+λ

∥

∥

∥
Wa|Π

)

= T . Thus by substitutingλ = 1−s
s we get

Γ (T,Π) =























∞ if T < lims→0+ D (Us‖Wa|Π)
lims→0+ D (Us‖Wr|Π) if T = lims→0+ D (Us‖Wa|Π)

D (Us‖Wr|Π) if T = D (Us‖Wa|Π) for somes ∈ (0, 1)
lims→1− D (Us‖Wr|Π) if T = lims→1− D (Us‖Wa|Π)
lims→1− D (Us‖Wr|Π) if T > lims→1− D (Us‖Wa|Π)























(100)

Lemma follows from the definitionUs at s = 0, 1 and equation (100).
Now we are ready to present the proof of Lemma 3

Proof [Lemma 3]:
Our proof is very much like the one for the converse part of [31, Theorem 5], except few modifications that allow
us to handle the fact that encoding schemes we are considering are feedback encoding schemes. Like [31, Theorem
5] we construct a probability measurePT [·] on Zn as a function ofT and the encoding scheme. Then we bound the
error probability of each message from below using the probability of the decoding region of the other message
underPT [·]. We consider probability measures onZn rather thanYn to include the possible randomization in the
encoding and decoding schemes.
For anyT ≥ T0 andΠ, let ST,Π be

ST,Π =







0 if T < D (U0‖Wa|Π)
s if ∃s ∈ [0, 1]s.t. D (Us‖Wa|Π) = T
1 if T > D (U1‖Wa|Π)







. (101)

Recall that

T0 = max
x ,x̃

− ln
∑

y :W (y |x̃)>0
W (y |x ) and D (U0‖Wa|Π) = −

∑

x ,x̃
Π(x , x̃ ) ln

∑

y :W (y |x̃)>0
W (y |x ).

Then for allΠ we have
T0 ≥ D (U0‖Wa|Π) . (102)
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Thus as a result of definition ofST,Π and equation (102) we have

D
(

UST,Π

∥

∥Wa|Π
)

≤ T ∀T ≥ T0. (103)

Using Lemma 7, definition ofST,Π and equation (102) we can also conclude that

D
(

UST,Π

∥

∥Wr|Π
)

= Γ (T,Π) ≤ Γ (T ) ∀T ≥ T0. (104)

Note that givenZt−1 = z t−1 channel input letters assigned to each message at timet, Xt(m1, z
t−1) and

Xt(m2, z
t−1), are fixed for any feedback encoding schemes,Xt(·) : {m1,m2} × Zt−1. Thus the correspondingΠ is

given by:

Π(x , x̃ ) =

{

0 if (x , x̃ ) 6= (Xt(m1, z
t−1),Xt(m2, z

t−1))
1 if (x , x̃ ) = (Xt(m1, z

t−1),Xt(m2, z
t−1))

}

. (105)

Then for anyT ≥ T0 let PT
[

yt| z t−1
]

be

PT
[

yt| z t−1
]

= UST,Π
(yt|Xt(m1, z

t−1),Xt(m2, z
t−1)). (106)

Furthermore let us assume that the conditional distribution of At given (M,Zt−1,Yt) underPT [·] be identical to the
conditional distribution ofAt given (M,Zt−1,Yt) underP[·], i.e. the original conditional distribution.
Note that as a result of equation (103) and equation (104) we have

ET

[

ln
PT
[

Yt|Zt−1
]

P[Yt|M = m1,Zt−1]

∣

∣

∣

∣

∣

Zt−1

]

≤ T and ET

[

ln
PT
[

Yt|Zt−1
]

P[Yt|M = m2,Zt−1]

∣

∣

∣

∣

∣

Zt−1

]

≤ Γ (T ) w.p.1

Now we make a standard measure change argument,

P
[

Yt|M = m1,Z
t−1
]

= e
− ln

PT [Yt|Zt−1]
P[Yt|M=m1,Zt−1]PT

[

Yt|Zt−1
]

= e
−ET

[

ln
PT [Yt|Zt−1]

P[Yt|M=m1,Zt−1]

∣

∣

∣

∣

Z
t−1

]

eχt,m1(Yt|Zt−1)PT
[

Yt|Zt−1
]

≥ e−T eχt,m1 (Yt|Zt−1)PT
[

Yt|Zt−1
]

(107)

where
χt,m1

(Yt|Zt−1) = ET

[

ln PT [Yt|Zt−1]
P[Yt|M=m1,Zt−1]

∣

∣

∣
Zt−1

]

− ln PT [Yt|Zt−1]
P[Yt|M=m1,Zt−1] (108)

For m = m1,m2 let χ(m) be

χ(m) =
{

zn : |
∑n

t=1
χt,m(Yt|Zt−1)| ≤ 4

√
n ln 1

Pmin

}

(109)

For any eventB measurable in the sigma field generated byZn as a result of equation equations (107) we have

P[B] ≥ E
[

1{B}1{χ(m1)}
]

≥ e−nT e
−4

√
n ln

1
Pmin ET

[

1{B}1{χ(m1)}
]

≥ e−nT e
−4

√
n ln

1
Pmin PT [{B andχ(m1)}] (110)

Following a similar line of reasoning we get,

P
[

Yt|M = m2,Z
t−1
]

≥ e−nΓ(T )eχt,m2 (Yt|Zt−1)PT
[

Yt|Zt−1
]

(111)

where
χt,m2

(Yt|Zt−1) = ET

[

ln PT [Yt|Zt−1]
P[Yt|M=m2,Zt−1]

∣

∣

∣
Zt−1

]

− ln PT [Yt|Zt−1]
P[Yt|M=m2,Zt−1] (112)

and for any eventB measurable in the sigma field generated byZn we have

P[B] ≥ e−nΓ(T )e
−4

√
n ln

1
Pmin PT [{B andχ(m2)}] . (113)

29



Note that form = {m1,m2} and t ∈ {1, 2, . . . , n},

ET
[

χt,m(Yt|Zt−1)
∣

∣Zt−1
]

= 0 ∀z t−1 ∈ Zt−1 (114a)

ET
[

(χt,m (Yt|Zt−1))2
∣

∣Zt−1
]

≤ 4(lnPmin)
2 ∀z t ∈ Zt (114b)

ET

[

χt,m(Yt|Zt−1)χt−k,m(Yt−k|Zt−k−1)
∣

∣

∣
Zt−1

]

= 0 ∀z t−1 ∈ Zt−1 ∀k{1, 2, . . . , t− 1} (114c)

Thus as a result of equation (114), form ∈ {m1,m2}

ET

[

n
∑

t=1

χt,m(Yt|Zt−1)

]

= 0 (115a)

ET





(

n
∑

t=1

χt,m(Yt|Zt−1)

)2


 ≤ 4n(lnPmin)
2. (115b)

Using equation (115) and Chebychev’s inequality we conclude that,

PT [χ(m)] ≥ 3/4 m = m1,m2

Hence,
PT [χ(m1) ∩ χ(m2)] ≥ 1/2

Thus either the total probability of intersection ofχ(m1) ∩ χ(m2) with the decoding region of the second message
is equal to or larger than1/4 or the total probability of intersection ofχ(m1) ∩ χ(m2) with the decoding region of
the first message is strictly larger than1/4. Then the lemma follows from equations (110) and (113).

QED
As we have noted previouslyT0 does have an operational meaning it is the maximum error exponent first message

can have, when the error probability of the second message iszero.
Lemma 8:For any feedback encoding scheme with two messages, ifPe|m2

= 0 thenPe|m1
≥ e−nT0 . Furthermore

there does exist an encoding scheme such thatPe|m2
= 0 thenPe|m1

= e−nT0 .
Proof: Let us use a construction similar to the one used in the proof of Lemma 3

PT
[

Yt|Zt−1
]

= U0(Yt|Xt(m1,Z
t−1),Xt(m2,Z

t−1)).

Recall that
U0(yt|x , x̃ ) = 1{W(y|x̃)>0}

∑

ỹ:W (ỹ|x̃)>0W (ỹ |x)W (y |x )
Thus

PT
[

Yt|Zt−1
]

≤ eT0P
[

Yt|M = m1,Z
t−1
]

PT
[

Yt|Zt−1
]

≤ 1{P[Yt|M=m2,Zt−1]>0}

As we did in the proof of Lemma 3 we will assume that conditional distribution of At given (M,Zt−1,Yt) under
PT [·] is identical to the conditional distribution ofAt given (M,Zt−1,Yt) underP[·], i.e. the original conditional
distribution.

Then for any eventB measurable in the sigma field generated byZn we have

P[B|M = m1] ≥ e−nT0PT [B] (116)

P[B|M = m2] ≥ en lnPminPT [B] (117)

wherePmin is the minimum non-zero element ofW .
SincePe|m2

=0 equation (117) implies thatPT
[

M̂ 6=m2

]

=0 andPT
[

M̂ 6= m1

]

= 1. Using this fact together with
equation (116) we conclude that

Pe|m1
≥ e−nT0 . (118)

Let us assume that maximizing x-pair in (64) is(x ∗
1 , x

∗
2 ) i.e. T0 = − ln

∑

y :W (y |x∗
2 )>0W (y |x ∗

1 ). If the the encoding
scheme sendsx ∗

1 for the first message andx ∗
2 for the second message, and the decoder decodes to second message unless

Yt = y∗ for somet ∈ {1, 2, . . . , n} and for somey∗ such thatW (y∗|x ∗
2 ) = 0. ThenPem2

= 0 andPem1
= e−nT0 .
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B. Convexity ofEe(R,Ex, α, P,Π) in α:

Lemma 9:For any probability distributionP on input alphabetX , ζ(P,Q,R) is convex in(Q,R) pair.
Proof: Note that

γζ(Ra, P,Qa) + (1− γ)ζ(Rb, P,Qb) = min
Va,Vb:

I(P,Va)≤Ra I(P,Vb)≤Rb

(PVa)Y =Qa (PVb)Y =Qb

γD (Va‖W |P ) + (1− γ)D (Vb‖W |P )

Using the convexity ofD (V ‖W |P ) in V and Jensen’s inequality we get,

γζ(Ra, P,Qa) + (1− γ)ζ(Rb, P,Qb) ≥ min
Va,Vb:

I(P,Va)≤Ra I(P,Vb)≤Rb

(PVa)Y =Qa (PVb)Y =Qb

D (Vγ‖W |P )

whereVγ = γVa + (1− γ)Vb.
If the set that a minimization is done over is enlarged, then the resulting minimum does not increase. Using this

fact together with the convexity ofI (P, V ) in V and Jensen’s inequality we get,

γζ(Ra, P,Qa) + (1− γ)ζ(Rb, P,Qb) ≥ min
Vγ :

I(P,Vγ)≤Rγ

(PVγ)Y =Qγ

D (Vγ‖W |P )

= ζ(Rγ , P,Qγ)

whereRγ = γRa + (1− γ)Rb, Qγ = γQa + (1− γ)Qb.
Lemma 10:For all (R,Ex, P,Π) quadruples such thatEr(R,P ) ≥ Ex, Ee(R,Ex, α, P,Π) is a convex function

of α on the interval[α∗(R,Ex, P ), 1] whereα∗(R,Ex, P ) is the unique solution21 of αEr(Rα , P ) = Ex.
Proof: For anyP such thatEr(R,P ) is non-negative, convex and decreasing function ofR in the interval

[0, I (P,W )]. ThusαEr(Rα , P ) is strictly increasing continuous function ofα ∈ [ R
I(P,W ) , 1]. Furthermore forα = R

I(P,W ) ,

αEr(
R
α , P ) = 0 and forα = 1, αEr(Rα , P ) ≥ Ex. ThusαEr(Rα , P ) = Ex has a unique solution.

Note that for anyγ ∈ [0, 1]

γEe(R,Ex, αa, P,Π) + (1− γ)Ee(R,Ex, αb, P,Π)

= min
Qa,R1a,R2a,Ta,Qb,R1b,R2b,Tb:

R1a≥R2a≥R Ta≥0
R1b≥R2b≥R Tb≥0

αaζ(
R1a
αa

,P,Qa)+R2a−R+Ta≤Ex

αbζ(
R1b
αb

,P,Qb)+R2b−R+Tb≤Ex

γ
[

αaζ(
R2a

αa
, P,Qa) +R1a −R+ (1− αa)Γ

(

Ta

1−αa
,Π
)]

+(1− γ)
[

αbζ(
R2b

αb
, P,Qb) +R1b −R+ (1− αb)Γ

(

Tb

1−αb
,Π
)]

≥ min
Qγ ,R1γ ,R2γTγ :

R1γ≥R2γ≥R Tγ≥0

αγζ(
R1γ

αγ
,P,Qγ)+R2γ−R+Tγ≤Ex

αγζ(
R2γ

αγ
, P,Qγ) +R1γ −R+ (1− αγ)Γ

(

T
1−αγ

,Π
)

= Ee(R,Ex, αγ , P,Π).

whereαγ , Tγ , Qγ , R1γ andR2γ are given by,

αγ = γαa + (1− γ)αb Tγ = γTa + (1− γ)Tb Qγ = γαa

αγ
Qa +

(1−γ)αb

αγ
Qb

R1γ = γR1a + (1− γ)R1b R2γ = γR2a + (1− γ)R2b

The inequality follows from convexity arguments analogousto the ones used in the proof of Lemma 9.

21The equationαEr(
R

α
, P ) = 0 has multiple solutions; we choose the minimum of those to be theα∗ i.e., α∗(R, 0, P ) = R

I(P,W )
.
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C. maxΠEe(R,Ex, α, P,Π) > maxΠ Ee(R,Ex, 1, P,Π), ∀P ∈ P (R,Ex, α)

Let us first consider a control phase typeΠP (x1, x2) =
P (x1)P (x2)1{x1 6=x2}

1−∑

x
(P (x))2 and establish,

Ee(R,Ex, α, P,ΠP ) > Ee(R,Ex, 1, P,ΠP ) ∀P ∈ P (R,Ex, α) (119)

First consider

D (U‖Wa|ΠP ) = 1
1−∑

x
(P (x))2

∑

x1,x2:x1 6=x2

P (x1)P (x2)
∑

y
U(y |x1, x2) log U(y |x1,x2)

W (y |x1)

= 1
1−∑

x
(P (x))2

∑

x1,x2:x1 6=x2

P (x1)P (x2)
∑

y
U(y |x1, x2)

[

log U(y |x1,x2)
VU (y |x1) − log VU (y |x1)

W (y |x1)

]

≥ 1
1−∑

x
(P (x))2

[

I

(

P, V̂U

)

+ D (VU‖W |P )
]

(120)

where the last step follows from the log sum inequality and transition probability matricesVU and V̂U are given by

VU (y |x1) =W (y |x1)P (x1) +
∑

x2:x2 6=x1
U(y |x1, x2)P (x2)

V̂U (y |x2) =W (y |x2)P (x2) +
∑

x1:x1 6=x2
U(y |x1, x2)P (x1).

Using a similar line of reasoning we get,

D (U‖Wr|ΠP ) ≥ 1
1−∑

x
(P (x))2

[

D

(

V̂U

∥

∥

∥
W |P

)

+ I (P, VU )
]

(121)

Note that for allP ∈ P (R,Ex, α) if use the inequalities (120) and (121) together the definition of Ee given in
equation (14) and (19) we get,

Ee(R,Ex, α(R,Ex), P,ΠP ) ≥ Ee(R,Ex, 1, P,ΠP ) + δP

for someδP > 0. Consequently for allP ∈ P (R,Ex, α), equation (119) holds.
Note that for allΠ and for allP ∈ P (R,Ex, α)

Ee(R,Ex, 1, P,ΠP ) = Ee(R,Ex, 1, P,Π).

Thus we have:
max
Π

Ee(R,Ex, α, P,Π) > max
Π

Ee(R,Ex, 1, P,Π) ∀P ∈ P (R,Ex, α) . (122)
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