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Abstract

Inner and outer bounds are derived on the optimal performahéixed length block codes on discrete memoryless
channels with feedback and errors-and-erasures decdsinsg.an inner bound is derived using a two phase encoding
scheme with communication and control phases togetherthétloptimal decoding rule for the given encoding scheme,
among decoding rules that can be represented in terms afipaicomparisons between the messages. Then an outer
bound is derived using a generalization of the straigha-bound to errors-and-erasures decoders and the optiroal err
exponent trade off of a feedback encoder with two messagesddition upper and lower bounds are derived, for the
optimal erasure exponent of error free block codes in terhtbeorate. Finally we present a proof of the fact that the
optimal trade off between error exponents of a two message does not increase with feedback on DMCs.

I. INTRODUCTION:

Shannon showed in [30] that the capacity of discrete merassythannels (DMCs) does not increase even when a
noiseless and delay free feedback link is available fromréleeiver to the transmitter. On symmetric DMCs the sphere
packing exponent bounds the error exponent of fixed lengtbkbtodes from above, as shown by DobrL@ﬁlin[ll].
Thus relaxations like errors-and-erasures decoding dalarlength coding are needed for feedback to increase the
error exponent of block codes at rates larger than the akitede on symmetric DMCs. In this work we investigate one
such relaxation, namely errors-and-erasures decodindimednner and outer bounds to the optimal error exponent
erasure exponent trade off.

Finding the optimal encoding and decoding schemes, andehfinding optimal performance by characterizing
the surface of achievable error exponent erasure exporzérst is an important motivation for the investigation of
errors-and-erasure decoding. Note, however, that findiegoptimal performance with erasures will implicitly solve
the problem of finding the optimal feedback encoder and deténg the error exponent for the erasure free fixed
length block codes with feedback which is a long standinghgpeblem. Finding the optimal performance, however,
is far from being the only important aspect of the problemtebmining the performance of feedback encoding
schemes that are easier to implement, more robust to thedsgns of the feedback link and bounding the loss
in the performance compared to the more complicated engaslihemes are both important tasks practically and
interesting ones intellectually. This will be our aim indtpaper. We will first analyze the performance of a two phase
encoding scheme inspired by the optimal encoding schemesf@ble length block codes and derive inner bounds
to the optimal performance. Then we will derive outer boutmighe performance of general feedback encoding
schemes with erasures and quantify the loss of performagpoediricting ourselves to the above mentioned two
phase schemes. This analysis complements the researcloaeltted block coding schemes: variable length block
coding and errors-and-erasures decoding for block codd#swui feedback. We start with a very brief overview of
the previous work on these problems to motivate our invattg further.

Burnashev|[B], [[4], [[5] was the first one to consider varidlelegth block codes with feedback, instead of fixed
length ones. He obtained the exact expression for the erporent at all rates. Later Yamamoto and Itch,! [34],
suggested a coding scheme which achieves the best erronexpfor variable-length block codes with feedback
by using a fixed length block code with an errors-and-erasdexoding and repeating the same codeword until a
non-erasure decoding occlirin fact any fixed length block code with erasures can be usdisrepetitive fashion,

Later Haroutunian,[[17], established an upper bound on the exponent of block codes with feedback. This upper boisndqual to
sphere packing exponent for symmetric channels but it ististlarger than the sphere packing exponent for non-sytrimehannels.
2Including erasures will not increase the exponent for eidength block codes with feedback.
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like it was done in[[34], to get a variable length block codewéssentially the same error exponent as the original
fixed length block code. Thu§l[3] can be reinterpreted to gimeupper bound to the error exponent achievable by
fixed length block codes with erasures. Furthermore thiguppund is achieved by the fixed length block codes with
erasures described in_[34], when erasure probability isylag to zero subexponentially with block length. However
the techniques used in this line of work are insufficient feriding proper inner or outer bounds for the situation
when erasure probability is decaying exponentially withckllength. As explained in the following paragraph the case
with strictly positive erasure exponent is important bathéngineering applications and for a better understanaling
soft decoding with feedback. Our investigation providesper tools for such an analysis, results in inner and outer
bounds to the trade off between error and erasure exponghilg, recovering all previously known results for the
zero erasure exponent case.

When considered together with higher layers, the codesenptiysical layer are part of a variable length/delay
communication scheme with feedback. However in the phi/fayar itself fixed length block codes are used instead
of variable length ones because of their amenability to nfardiesign and robustness against the noise in the feedback
link. In such an architecture retransmissions affect tiréopmance of higher layers. The average transmission time i
only a first order measure of this effect: as long as the eeagrobability is vanishing with increasing block length,
average transmission time will essentially be equal to tloekblength of the fixed length block code. Thus with
an analysis like the one in_[34], the cost of retransmissimmsignored as long as the erasure probability goes to
zero with increasing block length. In a communication systeith multiple layers, however, retransmissions usually
have costs beyond their effect on average transmission tivhich are described by constraints on the probability
distribution of the decoding time. Knowledge of error erasexponent trade off is useful in coming up with designs
to meet those constraints. An example of this phenomenaisba length block coding schemes with hard deadlines
for decoding time, which has already been investigated bpatcet. al. [16] for block codes without feedback.
They have used a block coding scheme with erasures and theydehe message whenever an erasure occurs. But
because of the hard deadline, they employ this scheme onlgoime fixed number of trials. If all those trials fail,
i.e. lead to an erasure, they use a non-erasure block codey e error exponent erasure exponent trade off they
were able to obtain the best over all error performance fergiren architecture.

This brings us to the second line of research we complemehtauir investigation: errors-and-erasures decoding
for block codes without feedback. Forney [14] was the firs¢ am consider errors-and-erasures decoding without
feedback. He obtained an achievable trade off between thenexts of error and erasure probabilities. Then Csiszar
and Korner, [[10] achieved the same performance using tsaveoding and decoding algorithms. Later Telatar and
Gallager, [[33], introduced a strict improvement on certdiannels over the results presented.in [14] and [10]. Rcent
there has been a revived interest in the errors-and-esadao®ding for universally achievable performances [221],[
for alternative methods of analysis [20], for extension#h® channels with side information [27] and implementation
with linear block codes [18]. The encoding schemes in thestes do not have access to any feedback. However if
the transmitter can learn whether the decoded message veasure or not, it can resend the message whenever it is
erased. Because of this block retransmission variante thexblems are sometimes called decision feedback problems

We complement the results on the error exponent erasurenerptrade off without feedback and the results about
error exponent of variable length block codes with feedbaglfinding inner and outer bounds to the error exponent
erasure exponent trade off of fixed length block codes witdli@ck. We first introduce our model and notation
in Section[Il. Then in Sectioh Il we derive a lower bound gsim two phase coding algorithm similar to the one
described by Yamamoto and Ito in [34] and decoding rule aralyars techniques, inspired by Telatar’s in|[32] for
the non-feedback case. Note that the analysis and the decade in [32] is tailored for a single phase scheme and
without feedback and the two phase scheme of [34] is tunedifggdly to zero-erasure exponent;, coming up with
framework in which both of the ideas can be used efficientlthes main technical challenge here. In Secfioh IV we
first extend the straight line bound idea introduced by Sbanfallager and Berlekamp in_[31] to block codes with
erasures. Then we use it together with the outer bound onrtbe exponent trade off between two codewords with
feedback to establish an outer bound for the error exporfefitam length block codes with feedback and erasures.
In Sectior Y we first introduce error free block codes withseras and discuss their relation to the fixed length block
codes with errors-and-erasures-decoding, and then wergrigser and outer bounds to the erasure exponent of error
free block codes and point out its relation to the error exmbrerasure exponent trade off.

Before presenting our analysis, let us make a brief dignesand discuss two channel models in which the use



of feedback had been investigated for block codes withcagwaes. First channel model is the well known additive
white Gaussian noise channel (AWGNC) model. In AWGNCs if gmever constraint? is on the expected value
of the energy spent on a blodk[S,] i.e. power constraint is of the for&[S,] < Pn, the error probability can be
made to decay faster than any exponential function withkblengthn. Schalkwijk and Kailath suggested a coding
algorithm in [29] which achieves a doubly exponential detagrror probability for continuous time AWGNC:s, i.e.
infinite bandwidth case. Later Schalkwijk [28] modified tisaheme to achieve the same performance in discrete time
AWGNC:s, i.e. finite bandwidth case. Concatenating Schakkand Kailath scheme with pulse amplitude modulation
stages, gives a multi-fold exponential decrease in ther @mabability [26], [35], [15]. However this behavior retie

on the absence of any amplitude limit, the particular fornthef power constraint and the noise free nature of the
feedback link. First of all, as observed in [5] and|[24] whbere is an amplitude limit, error probability decays only
exponentially with block length. More importantly if the Wwer constraint restricts the energy spent in transmission
of each message for all noise realizations, i.e. if the paeistraint is an almost sure power constfhaftthe form

S, < Pn; then sphere packing exponent is still an upper bound to tiee exponent for AWGNCs as shown by
Pinsker, [[26]. Furthermore if the feedback link is also an@MC and if there is a power constrdirin the feedback
transmissions, then even in the case when there are only ®gsages, error probability decays only exponentially
as it has been recently shown by Kigt.al. [19].

The second channel model is the DMC model. Although feedlacknot increase the error exponent for rates
over the critical rate, it can simplify the encoding schei8B][ [13]. Furthermore, for rates below the critical rate
it is possible to improve the error exponent using feedb@iffangirov [35] has established lower bounds to the
error exponent for BSCs using a simple encoding schemendiga/’s lower bound is equal to the sphere packing
exponent for all rates in the intervg®,, ;. C] whereR,, ., < R..; and Zigangirov’s lower bound is strictly larger than
the corresponding non-feedback exponent for rates bétgw. Later Burnashev [6] introduced an improvement to
Zigangirov's bound for all positive rates less tha&y, ... D’yachkov [13] generalized Zigangirov’s encoding scheme
for general DMCs and established a lower bound to the errpomant for general binary input channels and k-ary
symmetric channels. However it is still an open problem tal finconstructive technique that can be used for all
DMCs which outperforms the random coding bound. Like AWGNK e has been a revived interest in the effect of
a noisy feedback link and achievable performances withyrieisdback on DMCs. Burnashev and Yamamoto recently
showed that error exponent of BSC channel increases evénawibisy feedback link [7],][8]. Furthermore Draper
and Sahail[12] investigated the use of noisy feedback linkairiable length schemes.

[I. MODEL AND NOTATION:

The input and output alphabets of the forward channel’rand ), respectively. The channel input and output
symbols at timeg will be denoted byX; andY, respectively. Furthermore, the sequences of input ancubsipnbols
from time ¢; to time ¢, are denoted by(ﬁj andYﬁj. Whent; = 1 we omitt; and simply writeX’> and Y2 instead
of X!* and Y?>. The forward channel is a stationary memoryless channetcterized by anX'|-by-|)| transition
probability matrix 7.

PV XY =PI X = W(YeX) V. (1)

The feedback channel is noiseless and delay free i.e. the ofpthe feedback chann&_,, chosen at the receiver,
is observed at the transmitter before transmissioiX,;0fln addition we assume that feedback channel is of infinite
capacity thuZ;_, includes all of the observation of the receiver at titrel, i.eﬁ Zi—1 = (Y¢—1,A¢—1). The random

variablesAg, A1, ..., A, are there to enable randomized encoding and decoding sshasnee will see shortly. It is
assumed that the choi@és does not affect the forward channels behavior, i.e. intaddto (1) we havé
PV XL Z7 = W (Y X)) V. 2)

The messagh! is drawn from the message skt with a uniform probability distribution and is given to thransmitter
at time zero. At each timee [1, n] the input symbolX,(M, Z~1) is sent. The sequence of functioig-) : M x Zt~!

3As Kim et. al. [19] calls it.

4This constraint can be an expected or almost sure constraint
Fort = 1 we haveZ, = Ag

®We make a slight abuse of notation and dengeby 7.



which assigns an input symbol for eaelh ¢ M and z!~! ¢ Z!~! is called the encoding function. Note that the
random variabled\o, A1, ..., A,_1 enable randomized encoding schemes. After receiYihghe receiver draws the
final A, i.e. A,, and decodes to the messagéZ") € {x} UM wherex is the erasure symbol. The random variable
A, does not have any effect on the encoding; it is used only tblemrandomized decoding schemes.

The conditional error and erasure probabilitieg,, and P, and unconditional error and erasure probabilities,
P, and Py are defined as,

Pop 2 P[M ] M( M} ~ Paw Pam 2
PeéP[MyéM}—Px p 2
Since all the messages are equally likely we have,

_ 1 _ 1
Pe—mzmpehn Px—mzmpxhn

We use a somewhat abstract but rigorous approach in defihngate and achievable exponent pairs. A reliable
sequencd, is a sequence of codes indexed by their block lengths swath th

: n n 1 _
Tim (Pe™ + P™ + fey) = 0.

In other words reliable sequences are sequences of codesewaverall error probability, detected and undetected,
vanishes and whose size of message set grows to infinity Witk bengthn.
Definition 1: The rate, erasure exponent, and error exponent of a relssogjeenca& are given by

.. o In|M® e e o) .
Rg % liminf % Exo £ lim inf % Feo £ liminf
n—o00 n—o00 n—o0

—InP,™

n
Haroutunian,[[1l7, Theorem 2], has already establishedoagtconverse for erasure free block codes with feedback
which in our setting implies thdim,_,. (P.™ + P4() = 1 for all codes whose rates are strictly above the capacity,
i.e. R > C. Thus we consider only rates that are less than or equal teapacity, R < C. For all ratesk below
capacity and for all non-negative erasure exponéhtswe define the (true) error exponefit( R, E) of fixed length
block codes with feedback to be the best error exponent ofetiiesble sequenc@whose rate is at leagt and whose
erasure exponent is at leasy,.

Definition 2: VR < C andVEy > 0 the error exponente(R, Ex) IS,
ge(R> Ex) é sup EeQ' (3)
Q:Ro>R,Fxg>FEx
Note that
ge(R7 Ex) = E(R) VEx > S(R) (4)

where £(R) is the (true) error exponent of erasure-free block codes BICH with feedbacl. Thus benefit of the
errors-and-erasures decoding is the possible increa$e iartor exponent as the erasure exponent goes &y
Determining€(R) for all R’s and for all channels is still an open problem; only upped &wer bounds t&(R)
are known. Our investigation focuses on quantifying thegaif errors-and-erasures decoding instead of findi{1g).
Consequently, we restrict ourselves to the region wherethsure exponent is lower than the error exponent for the
encoding scheme.
For future reference let us recall the expressions for thdam coding exponent and the sphere packing exponent,

E.(R,P) = m‘;n D(V||W|P)+I(P,V)—R|" E.(R) = mngr(R, P) (5)
Ey(R,P) = V:I(Ilggl)gRD (V||W|P) Eq(R) = max E. (R, P) (6)

"We restrict ourselves to the reliable sequences in ordensare finite error exponent at zero erasure exponent. Nateatbecoder which
always declares erasures has zero erasure exponent ariig iefior exponent.

8In order to see this consider a reliable sequence with exagirand replace its decoding algorithm b%/ an erasure free degagorithm
such thatM’(z") = M(2") if M(z") # x, to obtain a new reliable sequgn@. Then Peg‘E < PXQ") + Peg ; thus Feor = min{Exg, Eeo}
and Rg: = Ro. This together with the definition of (R) leads to equatiori14).



whereD (V|| W|P) stands for conditional Kullback Leibler divergencelofand W underP, andl (P, V') stands for
mutual information for input distributiol® and channel/.

We denote they marginal of a distribution likeP(z)V (y|z) by (PV)y. The support of a probability distribution
P is denoted bysuppP.

I1l. AN ACHIEVABLE ERROREXPONENT - ERASURE EXPONENT TRADE OFF

In this section we establish a lower bound to the achievalbiler exponent as a function of erasure exponent
and rate. We use a two phase encoding scheme similar to thdesoeibed by Yamamoto and Ito in_[34] together
with a decoding rule similar to the one described by Telata3R]. In the first phase, the transmitter uses a fixed-
composition code of lengtlxn and rate%. At the end of the first phase, the receiver makes a maximunuahut
information decoding to obtain a tentative decisin The transmitter know because of the feedback link. In the
remaining(n — ny) time units, i.e. the second phase, the transmitter confihegentative decision by sending the
accept codeword, il = M, and rejects it by sending the reject codeword otherwisehétend of the second phase
the receiver either declares an erasure or declares thaiventecision as the decoded message. Receiver declares th
tentative decision as the decoded message only when ttagivendecision “dominates” all other messages. The word
“dominate” will be made precise later in Section 1l1-B. Owhgme is inspired by [34] and [32]. However, unlike[34]
our decoding rule makes use of outputs of both of the phastsaid of output of just second phase while deciding
between declaring an erasure or declaring the tentativeideas the final one, and unlike [32] our encoding scheme
is a feedback encoding scheme with two phases.

In the rest of this section, we analyze the performance &f ¢tbding architecture and derive an achievable error
exponent expression in terms of a given r&teerasure exponeriiy, time sharing constant, communication phase
type P, control phase type (joint empirical type of the accept eoute and reject codeword) and domination rule
. Then we optimize over, II, P andq, to obtain an achievable error exponent expression as aidanaf rate R
and erasure exponeiity.

A. Fixed-Composition Codes and The Packing Lemma

We start with a very brief overview of certain properties ypeés. Those readers who are not familiar with method
types can use_[9] for a concise introduction [or|[10] for a thuyh study. The empirical distribution of arf € A"
is called the type ofz" and the empirical distribution of transitions fromzd € A" to ay" € Y" is called the
conditional typ

n
Por ()22 “1ypzy ieX. @)
t=1
n
Vyrpan (917) % 553 > Lppea =g Ve, VistPu(i)>0. (8)

t=1

For any probability transition matri¥l” : suppPy — ) we haved
n
H W(yt‘l't) = e_n(D(Vy"\x"HW'PIH)—i—H(Vyn‘In'PIn)) (9)
t=1

The set of ally™'s with the same conditional typ& with respect toz" is called theV-shell of 2" and denoted by
Ty (:Bn)l

TV (m”) = {y” : Vynlxn = V} (10)
Note that for any transition probability matrix frodi to ) total probability of7y (z") has to be less than one. Thus
by assuming that transition probabilities dreand using equatiori{9) we can conclude that,

Ty (z")| < eHVynian|Pon) (11)

°Note thatP,~ corresponds to a distribution oki for all z" € A", where asVv,n,» determines a channel from the supportRaf to ).
ONote that for anyiV : X — Y there is unique consistefit’’ : suppP.n — V.



Codes whose codewords all have the same empirical disathR,.,,) = P Vm € M are called fixed-composition
codes. In Section I-D we will describe the error and erasevents in terms of the intersections 6f-shells of
different codewords. For doing that let us defiR€") (V, V, m) as the intersection o¥-shell of z"(m) and the

V-shells of other codewords:
F (v, v, m) 2 Ty (2"(m)) (U Ty, (" (170)) (12)

The following packing lemma, proved by Csiszar and Kofi€), Lemma 2.5.1], claims the existence of a code with
a guaranteed upper bound on the sizeF6? (V, v, m)

Lemma 1:For every block length > 1, rateR > 0 and typeP satisfyingH (P) > R, there exist at leage"(i—%) |
distinct type P sequences ift" such that for every pair of stochastic matridés: suppP — Y, V : suppP — Y
andvVm € M R

‘F(n) (‘/, V’ m)‘ < ‘TV (mn(m))’e—n\I(P,V)—RH
wheres, — ln4+(4|X|+6|;Y||y\)1n(n+1)'
Above lemma is stated in a slightly different way by the awshof [10], for a fixedy and large enough. However,
this form follows immediately from their proof.

If we use Lemmall together with equatioh$ (9) dnd (11) we camdhahe conditional probability of observing a
y" e FM (V,V,m) whenM = m as follows.

Corollary 1: In a code satisfying Lemmd 1, when message= M is sent, the probability of receiving &' €
Ty (z"(m)) which is also inTy, (z"(1m)), for somem € M such thatn # m is bounded as follows,

P[F(“) (V,V, M)( M] < e~m(RPVV) (13)

where
n (R,P,V,V) 2D (V| WI|P) + |l (P, V) _RJ* (14)

B. Coding Algorithm

In the first phase, the communication phase, we use a lengte [an] type P fixed-composition code with
Le”1(§—5n1)J codewords which satisfies the property described in Leimn#st the end of the first phase the receiver
makes a tentative decision by choosing the codeword thatheasaximum empirical mutual information with the
output sequenc¥":. If there is a tie, i.e. if there are more than one codewordighvhave the maximum empirical
mutual information, the receiver chooses the codeword hiwvhis the lowest index.

~ I (P, VYnllxn(m)) > | (P, VYn]‘xn(m)) Vm < m }
M= : - 15
{m | (P, Vynjanim)) =1 (P, Vymifr(y) Vi > m (15)

In the remaining(n — ny) time units, the transmitter sends the accept codewfrd, (a) if M = M and sends the
reject codewordy, ,,(r) otherwise.

Note that our encoding scheme uses the feedback link actiselthe encoding neither within the first phase nor
within the second phase. It does not even change the codsvarses for accepting or rejecting the tentative decision
depending on the observation in the first phase. Feedbaciyisised to reveal the tentative decision to the transmitter

Accept and reject codewords have joint tyfiéz, z), i.e. the ratio of the number of time instances in which atcep
codeword has ai € X and reject codeword hasiac X to the length of the codewordéy — ny), is TI(#, 2). The
joint conditional type of the output sequence in the secdmisp,uynnﬁl, is the empirical conditional distribution of
yn. 1+ 1- We call set of all output sequencgs , ; whose joint conditional type i#/, the U-shell and denote it by .

Like we did in the Corollary1l, we can upper bound the prolighdf U-shells. Note that it} |, € Ty then,

P[y2]+1| X = 13:?1+1(a)] — ¢~ (n=n)(D(U[W.[I)+H(UI))
PY? XD =a0 ()] = e~ (n—n1)(D(U||W,[IN)+H(U|I))



wherez; _(a) is the accept codeword;' ., (r) is the reject codeword¥, (y|#,2) = W(y|z) and W,(y|Z,z) =
W (y|Z). Noting that|Ty;| < e("—r)HUID we get:

P[TU\ xng = x:1+1(a)] < e~ (n=n1)D(U[[Wa[TI) (16a)
P [Ty | X}, 11 = g g1(r)] < e ()P, (16b)

C. Decoding Rule

For an encoder like the one in Sectlonll-B, a decoder thpedds only on the conditional type ®f for different
codewords in the communication phase, Mg« |z (m)'S for m € M, the conditional type of the channel output
in the control phase, i.aJy:ﬁl, and the indices of the codewords can achieve the minimuor probability for a
given erasure probability. However finding that decodeobses analytically intractable. Instead, we restrict ouese
to the decoders that can be written in terms of pair wise coisgras between messages givéh Furthermore we
assume that these pairwise comparisons depend only on tiu#tional type ofY™ for the messages compared, the
conditional output type in the control phase and the indafethe messages. Thus if the triplet corresponding to the

tentative decisioriV,,, ot gm (W) JUve s M) dominates all other triplets of the fortWy., e (m)> Uve s m) for m # M,
the tentative decision becomes flnal else an erasure w&ﬂ
~ _ M |f Vm ?é '\~/| (VYn1|M7 UY:1+17 'YI) (VYn1|m> UY 1) ) (17)
x if Am 75 M s.t. (VYnl\M7 UY::1+17 M) ;L (Vyn1|m, Uy L m

The binary relation- is such that if(V, U, m) dominates(V, U, /) then (V,U, /) does not dominatéV, U, m):
(V.U,m) = (V.U im) = (V,U, ) # (V. U, m).

This property is a necessary and sufficient condition forrealyi relation to be a domination rule. Decoder given by
(@7), however, either accepts or rejects the tentativesaetM given in [15). Consequently its domination rule also
satisfies following two properties:

(a) If the empirical mutual information of the messages & tommunication phase are not equal, only the message
with larger mutual information can dominate the other one.

(b) If the empirical mutual information of the messages i@ tommunication phase are equal, only the message with
lower index can dominate the other one.

For any such binary relation there is a corresponding decofdthe form given in equatiori (17). In our scheme we

either use the trivial domination rule leading to the trivd@coderM = M or the domination rule given in equation
(18), both of which satisfies these conditions.

(18)

X I(P,V)>1(P,V) andan (&, P,V,V) + (1 — a)D (U|| Wo|I) < Bx if m >1m
V.U, m) = (V,U,m)

[(P,V)>1(P,V) andan (Z,P,V,V) + (1 — )D (U|| Wo|II) < Ex if m <
wheren (R, P,V,V ) is given by the equatiofi {14).

Among the family of decoders we are considering, i.e. amdrg decoders that only depend on the pairwise
comparisons between conditional types and indices of thesawes compared, the decoder giveriin (17) (18) is
optimal in terms of error exponent erasure exponent trafid-ofthermore, in order to employ this decoding rule, the
receiver needs to determine only the two messages with titeesi empirical mutual information in the first phase.
Then the receiver needs to check whether the triplet cooretipg to the tentative decision dominates the triplet
corresponding to the message with the second highest eadpinutual information. If it does then, for the rule given
in (18), it is guaranteed to dominate the rest of the triptets

"Note that conditional probability?[Y"| M = m], is only a function of correspondingyn, |20 (m) @ndUyn . . Thus all decoding rules, that

accepts or rejects the tentative decisibh,based on a threshold test on likelihood ratigw for m # M are in this family of decoding
rules.



D. Error Analysis

Using an encoder like the one described in Secfion 1ll-B andeeoder like the one in_(17) we achieve the
performance given below. IFx < aEr(g,P) then the domination rule given in equation|(18) is used indbeoder;
else a trivial domination rule that leads to a erasure-freeoding,M = M, is used in the decoder.

Theorem 1:For any block lengtm > 1, rate R, erasure exponenfy, time sharing constant, communication
phase typeP and control phase typH, there exists a length block code with feedback such that

In|M| > e"B=0) P < e B8)  p < omn(Be(RExa,PI)=5,)

where Eo (R, Ex, «, P,1I) is given by,

aE, (&, P) if Ex > aE,(£,P)
. R 2, B R
min an (2, P,V V )+ (1 —«a)D(U|W,II) if Ex <aF.(%,P
Ee= (V,V,U):(V,V,U)eV 7 (O‘ ) ( )0 (U] W [I) (5. P) (19a)
an<§,P,V,V> F(1—a)D(U||Wa|ID)<E.
V={(V1,V2,U) : 1(P, V1) 2 I(P,V2) and(PV1)y = (PV2)y} (19b)
5; _ (\X\+1)2Dn’|10g(n+1) (190)

The optimization problem given in_(119) is a convex optimiaatproblem: it is minimization of a convex function
over a convex set. Thus the value of the expon&ptR, Fx, «, P,II) can numerically be calculated relatively easily.
FurthermoreE (R, Ex, o, P,II) can be written in terms of solutions of lower dimensionalimj#ation problems (see
equation [(3B). However problem of finding the optinfal, P, II) triple for a given(R, Ex) pair is not that easy in
general, as we will discuss in more detail in Secfion IlI-E.

Note that for all control phase typd$ and control phase output typés D (U|| W,|II) > 0, D (U| W,|II) > 0.

Using this fact together with the definitions &f.(R, P), n (R, P,V,V) and Ee (R, Ex, o, P,1I) given in [B), [14)
and [19) we get:

Eo(R, Ex,a, PII) > aE, (&, P) V(R, Ex,a, P,II) st. Bx < aE,(£,P) (20)

Since we are interested in quantifying the gains of errod-@rasures decoding over the decoding schemes without
erasures we are ultimately interested only in the regionraviig < aEr(g,P) holds. However equation _(119) gives
us the whole achievable region for the family of codes we argsidering.

Proof: A decoder of the form given if(17) decodes correctly wién= M and (Y",M) = (Y",m) for all?
m # M. Thus an error or an erasure occur only when the correct mestzes not dominate all other messages, i.e.
when3m # M such that(Y", M) # (Y", m). Consequently, we can write the sum of conditional error erabure
probabilities for a message € M as,

Pe|m + Px\m = P[{yn cdm#Em S't'(yna m) 7 (yn’ ’ﬁ”l,)}| M= m] (21)

This can happen in two ways, either there is an error in the ginase, i.eM #£ m or first phase tentative decision
is correct, i.eM = m, but the second phase observa‘tyﬁ‘@rl leads to an erasure i.81 = x. For a decoder using a
domination rule satisfying constraints described in Se¢il-Cl

Pe\m+Px\m SZ Z Z P[ym’m]

Vo Vi(PV)>I(PV) ym eFD (V,V,m)

+ Z Z Z Py™| m] Z Z P [yn 1| o 41(a)] -

Vovi(PV)SIPV) ym eFCD (V,V,m) U:(V,U,m)%(V ,U,m~+1) Yny+1€Tu

2We use the short hangY™, M) = (Y", m) for (Vyni jm, Uyn

N M) = (Vyni |, UYR]+1,m) in the rest of this section.



wheréd () V,V,m) is the intersection of/-shell of messagen € M with the V-shells of other messages,
defined in equatiori(12). As a result of Corollady 1 we have

Z Py | m] :P{F(”l) (V,V, m)‘l\/l :m}
Yy eFCD (V,V,m)

< emn(2.PVV)
Furthermore because of equation (16a)

Z Plyn 1| 20 1(a)] = P[TyXp, o1 = af 11 (a)]
y:1+1€TU
< e~ (n=n1)D(U[W,[IT)

In addition the number of different non-empty-shells in the communication phase is less tian-+ 1)I*/1¥l and
the number of non-empt-shells in the control phase is less than-n; +1)I¥F*IYl, We denote the set ¢V, V,U)
triples that corresponds to erasures with a correct teetatcision byVs:

Vi 2 {(V, V,U): 1(P,V) > (P, f/) and (PV)y = (PV)y and (V,U, m) # (V,U,m + 1)} . (22
In the above definitionn is a dummy variable ant’y is the same set for ath € M. Thus using[(22) we get

Pejm + Pyjm < (n1 + DAYV max e~mn(R/e.PV.V)
VVI(PV)I(PV)

F(m+ )20 g EEYL pax e m@(R@ YY) (DU W),
(V,V,U)EVx

Using the definition ofEr(g,P) given in [B) we get

Pejm + Pxim < oo maX{e—naEr(R/a,P)7e—nmin(v)‘;)U)va an(R/a7P,V7V)+(1—a)D(U||Wa\H)}. (23)

On the other hand an error occurs only when an incorrect rgessaminates all other messages, i.e. wHén m

such that(Y", /) = (Y™, m) for all 7 # m:
Pejm = P[{y":3m # m s.t.(y",m) > (y",m) Vm # m}| M=m].
Note that when an € M dominates all othefm = 1, it also dominatesn, i.e.
{y": Im #£m st(y",m) = (y",m) Vm#m} C {y":Im#msty",m) = (y",m)}.
Thus,
Pojm < Py" : Im # m s.t(y",m) = (y", m)} M = m]
- Z Z Z Ply™[M = m] Z Z Plyn | ana(r)] . (24)
Vo va(PV)2UPV) yeFe (V,V,m) U:(V,Um—=1)=(V,U,m) Y +1€TU

The tentative decision is not equal #o only if there is a message with a strictly higher empiricaltmal information

or if there is a messages which has equal mutual informatitrsimaller index. This is the reason why we sum over
(V,U,m—1) > (V,U,m). Using the inequalityL(16b) in the inner most two sums anah theplying inequality[(113)
we get,

Pojm < (n+ 1)(\X\2+2|X|)\y| max o—n(en(R/a,P,V,V)+(1—a)D(U|W, |I1))

Wiy (PV)2IEY)
(V,Um—1)=(V,U,m)

< enér: e miny v.ryeve (om(R/a,P,V,V)+(1—a)D( U||W,.|1I))

— 6“6’,‘ e min v v yyeve (om(R/a,P,V,V)—l—(l—a)D( U||W,-|I)) (25)

Note that for the case whem = | M|, we need to replacéV, U, m) 3 (V,U, m + 1) with (V,U,m — 1) % (V,U, m).
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where), is the complement ofx in V given by
Ve = {(V,V, U):1(P,V)>1 (P, V) and (PV)y = (PV)y and(V,U,m) = (V,U, m + 1)}_ (26)

Note thatm in the definition of), is also a dummy variable. The domination ruedivides the se®d’ into two
subsets: the erasure sub3gt and the error subséi,. Choosing domination rule is equivalent to choosing Yhe
Depending on the value @jEr(g,P) and £, we chose different,’s as follows:

(i) Ex>aE.(£,P): Ve =V. ThenVx = § and Theoreri]1 follows from equation {23).
. {(V o). |(P,V) > (P, V) and(PV)y = (PV)y and
LT en(B P vV) (- a)D (U W) < Ex
triples satisfyingon (g,P,V,V> +(1—a)D (U|| W,|II) < Ex are in the the error subset. Thus as a result of

equation [(2B) erasure probability is boundedrgs< e~"(Ex=3,) and Theorer]1 follows from equation (25).
[

(i) Ex<oE. (2, P . Then all the(V, V', U)

E. Lower Bound tcf.(R, Ex):

In this section we use Theordm 1 to derive a lower bound to hienal error exponenf. (R, Fx). We do that by
optimizing the achievable performané® (R, Fx, «, P,1I) over«, P andIl.
1) High Erasure Exponent Region (i.Bx > E,.(R)): As a result of[AB)VR > 0 andVEx > E,(R)

Eo(R, Ex,, P,11) = aE, (£, P) < E.(R) Ya € [0,1], VP, vII (27a)
Eo(R, Ey,&, P,1I) = E,(R) =1, P =arg max B, (R, P), VIL (27b)

jo)

Thus for all (R, Ex) pairs such thaty > E.(R): optimal time sharing constant is 1, optimal input disttibn is
the optimal input distribution for random coding exponentae R, we use maximum mutual information decoding
and never declare erasures. Furthermore sineel we have only a single phase in our scheme.

Eo(R,Ex) = Eo(R, Ex,1,Pup),11) = E,(R) VR>0  VEyx> E.(R) (28)

where P, ) satisfiest, (R, P.(r)) = E-(R) andIl can be any control phase type. Evidently benefits of errocs-a
erasures decoding is not observed in this region.

2) Low Erasure Exponent Region (i.Bx < E,(R)): We observe and quantify the benefits of errors-and-erasures
decoding for(R, Ex) pairs such thatly < E,.(R). SinceE, (R) is a non-negative non-increasing and convex function
of R, we have

a € [a*(R,Ex),1] & Ex <aE. (&) VR>0 V0<Ex<E(R)

wherea*(R, Ex) is the unique solution of the equatier, (£) = E,.

For the caseby = 0, however,aEr(g) = 0 has multiple solutions and Theordm 1 holds but resultingrerr
exponent,FEe(R,0, a, P,1I), does not correspond to the error exponent of a reliableeseru Convention introduced
below in equation[(29) addresses both issues at once, bysitlgppthe minimum of those solutions ag(R,0). In
addition by this convention* (R, Ex) is also continuous abx = 0: limg,__,o a*(R, Fx) = a*(R,0).

— B Ex e (0,E.(R
o (B, ) & TR e € (0B () 29)
R/C Ex=0
whereg~—1(.) is the inverse of the functiop(r) = B
As a result equations (19) and (29)R > 0 andV0 < FEx < E,.(R) we have
Eo(R, Ex,a, P,I) = aE,(£,P) < E.(R) Va€[0,a"(R, Ex)), VP, VII  (30a)
Eo(R, Ey,&, P,1I) = E,(R) a=1, P = arg max B,(R, P), VIl (30b)
Thus for all (R, Ex) pairs such thaty < E,.(R) optimal time sharing constant is in the interyal' (R, Fx), 1].
For an(R, Ex, «) triple such thatk > 0, Ex < E,.(R) anda € [a* (R, Ex), 1] let P (R, Ex,«) be

P(R,Ex,a) 2 {P:aE.(&,P)> E,, 1(P,W) > £} (31)
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The constraint on mutual information is there to ensure fidtR, 0, o, P, II)’s are corresponding to error exponent
of reliable sequences. The st R, Ex, «) is convex becaus&, (R, P) andl (P, W) are concave irP.
Note thatVR > 0 andVEy € (0, E.(R)],

Ee(R, Ex,a, PII) = aE, (&, P) Yo € [a*(R, Fy), 1], VP ¢ P (R, Ey,a), VIT (32a)
Ee(R, Ex,a, P,II) > aE,(£) Va € [o* (R, Fx), 1], P =arg max E.(&.P), VIL (32b)

As a result of [(3R) we can restrict the optimization oveto P (R, Ex,«) whenR > 0 and Ex € (0, E,.(R)]. For
E« = 0 case if we require the expressiéi (R, 0, «, P,II) to correspond to the error exponent of a reliable sequence,
we get the restriction given in equatidn {32). Thus usingdfem[1 we conclude that. (R, Fx) given below is an
achievable error exponent at raleand erasure exponedni.
Ee¢(R, Ex) = max max  max Fe(R, Ex, o, P, 1) VR >0 VEx < E.(R) (33)
a€la*(R,Ex),1] PEP(R,Ex,) 11
wherea* (R, Ex), P (R, Ex,«) and Eo(R, Ex, o, P,II) are given in equation§ (29], (31) arid(19).

Note that unlikeFq (R, Ex, o, P,11) itself, Eq(R, Ex) as defined in[(33) corresponds to error exponent of reliable
code sequences even g = 0.

If the maximizing P for the inner maximization in equatioh (33) is same for@lE [o*(R, Ex), 1], the optimal
value ofa is a* (R, Ex). In order to see that, we first observe that any fix8dEx, P, II) such thatF, (R, P) > FEx,
function Ee (R, Fx, «, P H) is convex ina for all « € [o*(R, Ex, P), 1] wherea*(R, Ex, P) is the unique solution
of the equatloiE ,P) Ey as it is shown Lemma_10 in AppendiX B. Since the maximizatioesprves the
convexity,maxyy Fe (R EX, a, P, 1I) is also convex inx for all « € [a* (R, Ex, P),1]. Thus for any(R, Ex, P) triple,
maxy Fe(R, Ex, o, P, 1I), takes its maximum value either at the minimum possibleevalii, i.e. o*(R, Ex, P) =
a*(R, Ex), or at the maximum possible value af i.e. 1. It is shown in AppendiX Gnaxy; Fe(R, Fx, o, P,11) takes
its maximum value atv = o*(R, Ex).

Furthermore if the maximizing is not only the same for alk € [o*(R, Ex), 1] for a given(R, Ex) pair but also
for all (R, Ex) pairs such that’y < E,(R) then we can find the optimdl. (R, Ex) by simply maximizing oveil’s.

In symmetric channels, for example, uniform distributisnthe optimal distribution for all R, Ex) pairs. Thus
Eeo(R, Ey, 1, P* 1) if By > E,.(R,P*)

{ maxy Fe(R, Ex,*(R, Ex), P*,II) if Ex < E.(R, P*) }

where P* is the uniform distribution.

Eo(R,Ex) = (34)

F. Alternative Expression for Exponent:

The minimization given in[(19) forE (R, Ex, «, P,1I) is over transition probability matrices and control phase
output types. In order to get a better grasp of the resultigression, we simplify the analytical expression in this
section. We do that by expressing the minimization[in (19)eirms of solutions of lower dimensional optimization
problems.

Let ((R, P,Q) be the minimum Kullback-Leibler divergence undBrwith respect tolV among the transition
probability matrices whose mutual information undeiis less thank? and whose output distribution undéis Q.

It is shown in AppendiXx B that for a giveR, ((R, P, Q) is convex in(R, Q) pair. Evidently for a giver( P, Q) pair
¢(R, P,Q) is a non-increasing ii. Thus for a giver( P, Q) pair ((R, P, Q) is strictly decreasing on a closed interval
and is an extended real valued function of the form:

5 R < R} (P,Q)

C(R,P,Q) = { min, pv)<r D(VIWIP) R e [R(P.Q), B (P,Q)] (35a)

Y (PV)y=Q

miny.,pyy,—o D (V| W|P) R > R;(P,Q)

R[(P,Q) = min  pyspw (P, V) (35b)

(PV)y=
R} (P, Q) = ming {R sminypy)<r D (V][ W|P) = miny.py), = D (V]| W|P)} (35¢)
(PV)y=Q

HEvidently we need to make a minor modification 85 = 0 case as before to ensure that we consider onIyEl‘g(a'%, Ex,a, P,II)’s that

correspond to the reliable sequenca$(R,0, P) = I(PRW)'
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where PV > PW iff for all (z,y) pairs such thaP(z)W (y|z) is zero,P(z)V (y|z) is also zero.
Let I' (7,1I) be the minimum Kullback-Leibler divergence with respectit¢ underIl, among theU’s whose
Kullback-Leibler divergence with respect W&, underIl is less than or equal t@'.
I (T,10) = i D (U| W, II 36
(7,11) v < (U] W, [1T) (36)
For a givenll, T (7,1I) is non-increasing and convex ifi, thusT (T,1I) is strictly decreasing iff” on a closed
interval. An equivalent expressions for(7T',1I) and boundaries of this closed interval is derived in Appe#di

00 if T <D(U| W)
(T, 1) =< D(Us|| W, II) if T =D(Us| Wy|II) for somes € [0,1] (37)
D (UL[[W[I) if T > D (U] WalII)

where LWl 20 (y[y) i s =0
g g1agy0 WD) 1 ITL
w T 1=sW x9)® H
Udlyler,o2) = { sty it se(01)

Liwylzp >0y ; _
W (ylx if s=1
2w glen>o W (Hl22) (ylz2)

For a(R, Ex, a, P,1I) such thatFy < aEr(g, P), using the definition o (R, Ex, o, P, II) in (19) together with

the equationd (14)[(85) and (37) we get
E(R, Ex,a, P,II) = o, al(82,P,Q) + |Ry — RI* + (1 —a)l (%H)
Ri>R>>0, T>0
aC¢(EL,P,Q)+|Ra—R|*+T<Ey

For any (R, Ex, «, P,11) above minimum is also achieved af@, R;, Ro,T) such thatkR; > R, > R. In order to
see this take any minimizingQ*, R}, R;5,T™), then there are three possibilities:
(a) R} > R5 > R claim holds trivially.
(b) R > R > R3, since¢(£2, P, Q) is non-increasing functiofiQ*, R}, R,T™), is also minimizing, thus claim holds.
(c) R> R} > R3, since((y, P, Q) is non-increasing functiofQ*, R, R,T*), is also minimizing, thus claim holds.
Thus we obtain the following expression fék (R, Ex, «, P, 1),

aE, (&, P) if Ex>ab, (£, P)
R

Ee(R7 EX7a7P> H): erl"n}l%lll Rs: OZC(%’P’ Q) + Rl - (1 B OZ)F <%7H> i EXSOZET( ’P) (38)
R.>R:;>R, T>0

a¢(%L,P,Q)+Ro— R+T<Ex
Equation [(38) is simplified further for symmetric channéisr symmetric channels,

ESP(R) = C(R7 P*7Q*) = IIlanC(R, P*7Q) (39)

where P* is the uniform input distribution an@* is the corresponding output distribution undé&r.
Using alternative expression féi, (R, Ex, «, P, II) given in [38) together with equatioris (34) ahd](39) for syririne
channels we get,

E.(R) if Ex > E,.(R)
(R B = g @By (B) R - R (1= o) (1) i B BB L g
R'>R'>R T>0
(X*Esp(%)-i‘R/—R-i‘TSEx
wherea* (R, Ex) is given in equation[(29).
Although [39) does not hold in general using definition(éfz, P, Q) and E;,(R, P) we can assert that
((R,P,Q) > min((R, P,Q) = Eq(R, P) (41)
Q
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Note that [[4]l) can be used to bound the minimized expressi@88) from below. In addition recall that if the set
that a minimization is done over is enlarged resulting mimmcan not increase. We can usel(38) also to enlarge
the set that minimization is done over [n{41). Thus we getx@oeentEe (R, Ex, a, P, 11) which is smaller than or
equal toFe(R, Ex, a, P,1I) in all channels and for alE. (R, Ex, o, P,1I)’s:
aE,. (£, P) if Ex > ab,(
N i R "n_ _ T i
Eu(R Boo, PI)=] i, aBo (5.P)+ R R (L= o)l ({Z500) it B < aBy(
R'ZR'>R T>0
aB., (& Py+ R —R+T<E,

, P)
, P)

lmelw

(42)

After an investigation very similar to the one we have algeddne forEe (R, Ex, «, P,1I) in SectiorIl[-B, we obtain
the below expression for the optimal error exponent foraldé sequences emerging froml(42):

) E(R) VR>0 VEx> E.(R)
Eo(R, Ex) = max max max Ee(R, Ex,a, P,II) VR>0 VEx < E,(R) (43)
a€la*(R,Ex),1] PEP(R,Ex,a) 11

wherea* (R, Ex), P (R, Ex,«) and Eo(R, Ex, «, P,11) are given in equation$ (9], (31) arid1(42), respectively.
G. Special Cases

1) Zero Erasure Exponent Cas& (R, 0): Using a simple repetition-at-erasures scheme, fixed leegtirs-and-
erasures codes, can be converted into variable length ldodks, with the same error exponent. Thus the error
exponents of variable length block codes given by Burna&ng8] is an upper bound to the error exponent of fixed
length block codes with erasures:

Ee(R,Ex)<(1-8)D VR>0,Ex>0

whereD = max; ; >, W(y|z)log %(‘Z}g

_ (
We show below thatfe(R,0) > (1 — %)D. This implies that our coding scheme is optimal ¢ = 0 for all
rates i.e.Ee(R,0) = &(R,0) = (1 — £)D.
Recall that for allR less than capacity* (R, 0) = "Ci. Furthermore for anyx > %

P(R,0,0) ={P:1(P,W) > £}

Thus for any(R,0,a, P) such thatP € P (R,0,a), " > R' > R, T > 0 andaE.,(%,P)+ " — R+ T <0,
imply that R" = R, R” = ol (P,W), T = 0. Consequently

Eo(R,0,a, P,TI) = a [Eyp (£, P) + 1 (P,W) — Z] + (1 — )D (W, || W, |TI) (44)
When we maximize ovell and P € P (R,0,a) we get:
Eo(R,0,0) = pmax aEg (B, P)+al(PW)—R+(1—a)D  Vae [£1]. (45)

Simply inserting the minimum possible value @fi.e. o*(R,0) = "Ci:

Fo(R,0,8)= max HE,(C,P)+ 5I(P,W)-R+(1- D
PeP(R,0,%)

=(1-5&D.

Thus Ee(R,0) > (1 — £)D.

Indeed one need not to rely on the converse on variable lebigitk codes in order to establish the fact that
Eo(R,0) = (1 — %)D. The lower bound to probability of error presented in thetrssction, not only recovers this
particular optimality result but also upper bounds theroptierror exponent. (R, Fx), as a function of raté? and
erasure exponents,.

2) Channels with non-zero Zero Error Capacitifor channels with a non-zero zero-error capacity, as atresul
equation [(IB)E. (R, Ex) = oo for any Fx < E.(R). This implies that we can get error-free block codes witls thi
two phase coding scheme for any rdte< C and any erasure exponefii < E,(R). As we discuss in Sectidn]V in
more detail, this is the best erasure exponent for ratestheecritical rate, at least for symmetric channels.
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IV. AN OUTER BOUND FORERROREXPONENT ERASURE EXPONENT TRADE OFF

In this section we derive an upper bound &R, Ex) using previously known results on erasure free block codes
with feedback and a generalization of the straight line ldoaoh Shannon, Gallager and Berlekamp![31]. We first
present a lower bound on the minimum error probability ofckloodes with feedback and erasures, in terms of that
of shorter codes in Sectidn IVtA. Then in Section 1V-B we makérief overview of the outer bounds on the error
exponents of erasure free block codes with feedback. FimalBectionl IV-C, we use the relation we have derived in
Section IV-A to tie the previously known results we have suarized in Section IV-B to bounde(R, Ex).

A. A Trait of Minimum Error Probability of block codes with &ures

Shannon, Gallager and Berlekamp [inl[31] considered fixedtleblock codes, with list decoding and established
a family of lower bounds on the minimum error probability grrmns of the product of minimum error probabilities
of certain shorter codes. They have shown| [31, Theorenhai,for fixed length block codes with list decoding and
without feedback
Po(M,n, L) > Po(M,n1, L1)Pe(L1 + 1,n —ny, L) (46)

where P, (M, n, L) denotes the minimum error probability of erasure free bloclles of lengtm with A/ equally
probable messages and with decoding list dizé\s they have already pointed out in [31] this theorem cargto
hold in the case when a feedback link is available from remeio the transmitter; although,’s are different when
feedback is available, the relation given in equatiod (4#) leolds. They were interested in erasure free codes. We,
on the other hand, are interested in block codes which migid Imon-zero erasure probability. Accordingly we need
to incorporate erasure probability as one of the parametetise optimal error probability. This is what this section
is dedicated to.

In a sizeL list decoder with erasures, decoded Bets either a subs@ of M whose size is at modt, like the
erasure-free case, or a set which only includes the eragomed, i.e. eithet c M such thatM| < L or M = {x}.

An erasure occurs whenevbt = {x} and an error occurs whenevit # {x} andM ¢ M. We will denote the
minimum error probability of lengtm block codes, withM equally probable messages, decoding list dizand
erasure probabilityPx by Pe(M,n, L, Px).

Theorem[2 below bounds the error probability of block codéth wrasures and list decoding using the error
probabilities of shorter codes with erasures and list degpdike [31, Theorem 1] does in the erasure free case. Like
its counter part in erasure free case Theorém 2 is later wusesdtablish outer bounds to error exponents.

Theorem 2:For anyn, M, L, Py, n; <n, L1, and0 < s < 1 the minimum error probability of fixed length block
codes with feedback satisfy

(1= 5)Pe(M,n, L, Px) = Po(M, 1, Ly, 5P (L1 + 1,0 = n, L i) (47)

Note that given a M, n, L) triple if the error probability erasure probability paif®e;, Px1) and (Peo, Px2) are
achievable, then for any € [0, 1] using the initial symboA of the feedback link we can construct a code that uses
the code achievingPe1, Px1) With probability v, the code achievingPes, Pxo) With probability (1 — ). This new
code achieves error probability erasure probability paPe, + (1 — ) Pep, 7 Pxq + (1 — ) Pxp). As a result for any
(M,n, L) triple the set of achievable error probability erasure pholity pairs is convex. We use this fact twice in
order to prove Theoreim 2.

Let us first consider the following lemma which bounds theiedble error probability erasure probability, pairs
for block codes with nonuniform a priori probability diditition, in terms of block codes with a uniform a priori
probability distribution but fewer messages.

Lemma 2:For any lengtm block code with message satf, a priori probability distributionp(-) on M, erasure
probability Py, decoding list sizel,, and integerk

Pe > Q ((p,K) Pe (K + 17 n>L> %) where Q ((107 K) = SC/\I/ln,|igIS'1|§K(’D(SC)’ S§¢= M/S (48)

5Note that ifM ¢ M thenx ¢ M becausex ¢ M.
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Recall thatP. (K + 1,n, L, Py) is the minimum error probability of length codes with(K + 1) equally probable
messages and decoding list sizewith feedback if the original code does have feedback arkdout feedback if the
original code does not.
Note thatQ2 (¢, K) is the error probability of a decoder which decodes to theo§ét most likely messages under
©. In other words(2 (¢, K') is the minimum error probability for a siz& list decoder when the posterior probability
distribution is.

Proof: If Q (¢, K) = 0, the lemma holds trivially. Thus we assurfi¢, K) > 0 henceforth. For any size
(K + 1) subsetM’ of M, one can use the encoding scheme and the decoding rule ofigileabcode for M, to
construct the following block code fak1’:

« Encoder:Vm € M’ use the encoding scheme for messagn the original code, i.e.
X/ (m, 27 = Xy(m, 271 Vme M, te[l,n], 7 tezt™!

« Decoder: For all 2" € Z" if the original decoding rule declares erasure, declarsugea else the decode to the
intersection of the original decoded list and’.

I if M=x
MN M else
This is a lengtm code with(K + 1) messages and decoding list sizeFurthermore for alln in M’ the conditional
error probabilityPéIm and the conditional erasure probabilﬁsj(‘m are equal to the conditional error probability,,,,

and the conditional erasure probabilif/,, in the original code, respectively.
Note that

. ZmeM (Pejm, Pxjm) € U(K +1,n,L)  ¥M' C M such thaiM'| = K + 1 (49)

whereV (K +1,n, L) is the set of achievable error probability, erasure prdiglmairs for lengthn block codes with
(K + 1) equally probable messages and with decoding list Size

Let the smallest non-zero element{af(1), v(2),... o(|M|)} bep(&1). For any sizg K + 1) subset ofM which
includes¢; and all whose elements have non-zero probabilities,/sy we have,

(Pe; Pu) =D (m)(Pejsm: Pxjm)
= ZmeM [p(m) — o(§1) L tmem,}) (Pejms Pxjm) + ¢(&1) ZmeMl (Pejms Px|m)
Equation [(49) and the definition af (K + 1,n, L), implies that3y, € ¥(K + 1,n, L) such that
(Pe, Px) =Y @ (m)(Pejons Pum) + 0(41)01 (50)
L=gp)+) o(m) (51)

wherep(i1) = (K +1)¢p(£1) ande® (m) = p(m) — (&)1 {mepm, - Furthermore the number of non-zepeH (m)'s

is at least one less than that of non-zefen)’s. The remaining probabilitiesy() (m), have a minimumgp( (£5)
among its non-zero elements. One can repeat the same argonoenmore using that element and reduce the number
of non-zero elements at least one more. After at mdst— K such iterations one reaches tg@ which is non-zero

for K or fewer messages:

(Per P = 37 @)y + 3 O m) (Pepms Pag) (52)

wherep®) (m) < ¢(m) for all m in M and>>, c v Lipo (mys0y < K.
In equation[(5R), the first sum is equal to a convex combinatioy;'s multiplied byZﬁz1 ©(1p;); the second sum
is equal to a pair with non-negative entries. As a result dind®n of Q (p, K) given in equation[(48),

Q(p, K) < ijl (v;). (53)
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Then as a result of convexity of (K + 1,n, L) we can conclude that there existsac V(K + 1,n, L) such that
(Pe, Px) = aQ2 (v, K) ¢ + (b1, be) for somea > 1, by > 0 andby > 0. Thus

Jy € (K +1,n,L) such that(Q(w 7y Q@K ) ¥ + (b3, by) for somebs > 0,b4 > 0. (54)

Then the lemma follows from equatioh (54), the fact t#at{M,n, L, Py) is decreasing inPx and the fact that
Po(M,n, L, Py) is uniquely determined by (M, n, L) for sx € [0, 1] as follows

Pe ManyLypx = min e VM7n’L’ ) 55
( ) wx:(we,wx)elf(MmL)w ( Wx) (55)

[ |
For proving Theorernl2, we express the error and erasure Ipifities, as a convex combination of error and erasure
probabilities of(n—n1) long block codes with a priori probability distributiap,~. (m) = P[m| 2™ ] over the messages
and apply Lemmal2 together with convexity arguments sintdathe ones above.

Proof [Theorem [2]:
For all m in M, let T(m) be the decoding region of,, T(x) be the decoding region of the erasure symband
T (m) the error region ofn:

Tm)2{z":meM}  TE2{":xeM} T(MEY(m)*NT(x)°  whereY®=2"/T. (56)

Then for allm € M,
(Pefms Puim) = (P[T(m)| m] , PO (x) ] (57)

Note thatd
Px\m - Zz“:z"GT(x) P[Zn| m]
= Zzn] P[z" | m] Z e )T P[Zl?l"l‘l‘ m, an] .

Then the erasure probability is

= L ni n ni
Pe= ZWEM M z" P[Z ’ m] Zz:1+1:(z"1,2:1+1)€T(X) P[znl—i_l‘ M, & ]

B Zz"l Pl <ZWEM Plm] 2" Zzn"] 41:(2" 20 1)€Y (%) P [Z':‘1+1| m, Zn]]>

= P[z"] Px(z™).

Note that for every:"', Px(z") is the erasure probability of a code of lendih— n;) with a priori probability
distribution ¢, (m) = P[m| z™]. Furthermore one can write the error probabilis as

Pe - Zznl P[znl] ( Z P[m| an] Zz" P )ET(m) P[Zr?1+1| m, z”l])

+1- ( ’ +1
meM " "

=Y PEMIP(")

where P.(2") is the error probability of the very same lendih— n;) code. As a result of Lemnid 2, the pair
(Pe(2™), Px(z™)) satisfies

Po(2™) 2 Q (¢, L1) Po (L1 +1,(n = m), L, o725 ). (58)

%There is a slight abuse of notation hereAis include real valued random variables with densities, tveud integrate, rather than sum,
over them. Since it is clear from the context what needs todre dve omit that subtlety in below calculations.
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Then for anys € [0, 1].
(1=5)Pe=Y_  P["](1=)Q (e, L1) Pe (L + 1 (n = ), L =) )

ng P2 ](1—5) Pk (2"
= ( o PET = 5)2 (02 ’L1)> Pe (Ll 1 (0= m). Ly s SSE L))>

= ( anp[zm ] (1-5)Q2 (pzm Ll)) Pe (Ll +1, (n —ny), L, S p[znl(}l(_lil))a(%n] 7L1)> (59)

where the second inequality follows from the convexityRf(M,n, L, Px) in Px. Note thatPe(M,n, L, Py) is
convex in Py because of the equation (55) and the convexity of the rediaW, n, ).

Now consider a code which uses the fiigttime units of the original encoding scheme as its encodig®e.
Decoder of this new code draws a real number fiom| uniformly at random, independently @ of the original
code (and the message evidently). If this number is less ¢htideclares erasure else it makes a maximum
likelihood decoding with list of sizd.;. Then the sum on the left hand side of the below expresEigni¢6€s error
probability. But that probability is lower bounded B (M, ny, Ly, s) which is minimum error probability over alll
lengthn; block codes with// messages and decoding list sizg i.e.

> P (1= )0 (9, L1) = Pe (M n1, L, ). (60)

Then the theorem follows from the fact thBt (M, n, L1, Px) is decreasing function aP, and the equation$ (59)
and [60).

QED

Like the result of Shannon, Gallager and Berlekamp ini [3®dFem 1], Theorer 2 is correct both with and without
feedback. AlthoughP,’s are different in each case, the relationship between tgen in equation[(47) holds in
both cases.

B. Classical Results on Error Exponent of Erasure-free Bl@odes with Feedback:

In this section we give a very brief overview of the previgukhown results on the error probability of erasure
free block codes with feedback. These result are used indB@8:-C| together with Theoreml 2 to bour (R, Ex)
from above. Note that Theorelm 2 only relates the error prtibabf longer codes to that of the shorter ones. It does
not in and of itself bound the error probability. It is in a sera tool to glue together various bounds on the error
probability.

First bound we consider is on the error exponent of erase fiock codes with feedback. Haroutunian proved
in [17] that, for any(M,,n, L,) sequence of triples, such thiain,,_,,, 2=l — R

n

li_)m —lnPe(J\;[n,n,Ln,O) S EH(R) (61)

where
Ey(R) = i D(V|W|P and C(V) = (P, V). 62
u(R) yohin max (VIw|P) (V) max (P,V) (62)

Second bound we consider is on the trade off between the ermonents of two messages in a two message
erasure free block code with feedback. Berlekamp mentioissrésult in passing iri [1] and attributes it to Gallager
and Shannon.

Lemma 3:For any feedback encoding scheme with two messages andefeeseidecision rule and for all > T:

either  Po; > le nTHVMInPuw  or Py s Lemnl(@MHVdin P, 63)
where P, = minx,y:W(y\x)>O W(y|$)
Tp £ 2,5~ | W 64
o Emaxas 10Dy V1) (64)
I'(T) £ maxp I (T,10). (65)

Result is old and somewhat intuitive to those who are famikidh the calculations in the non-feedback case. Thus
probably it has been proven a number of times. But we are nateawf a published proof, hence we have included
one in AppendiX_A.
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Although Lemmal[B establishes only the converse Y&t (7)) is indeed the optimal trade off for the error
exponents of two messages in an erasure free block code,vitithand without feedback. Achievablity of this
trade off has already been establishedlin [31, Theorem 5ihfercase without feedback; evidently this implies the
achievablity with feedback. Furthermdfg does have an operational meaning, it is the maximum errooreqt first
message can have, while the second message has zero etrabifityp This fact is also proved in Appendix A.

For some channels Lemma 3 gives us a bound on the error expoherasure free-codes at zero rate, which is
tighter than Haroutunian’s bound at zero rate. In order ®thés let us first defind™ to be

T = max min{7, T (T)}. (66)

Note that7™ is finite iff 3, W (y|z)W (y|z) > 0 for all z, & pairs. Recall that this is also the necessary and sufficient
condition of zero-error capacity,, to be zero.Ey(R) on the other hand is infinite for alR < R, like E,,(R)
where R, is given by,

Ry = —minp(.y max, In Zz:W(y\z)>0 P(x) (67)

Even in the cases wherE(0) is finite, Ex(0) > T*. We can use this fact, Lemnia 3, and Theofem 2, of [31,
Theorem 1] for that matter, to strengthen Haroutunian baainidw rates, as follows.

Lemma 4:For all channels with zero zero-error capadity—= 0 and any sequence éf,,, such thatim,_, -, lnrﬂ”" =
R,

li, ZRROLND < (68)
where
) Ex(R) if R> Ry
En(R) = T
H(R) { T+ 4 B -T g it R e [0, Ryy)

and Ry, is the unique solution of the equatidi = Ex(R) — REY(R) if it exists, Ry, = C otherwise.
Before going into the proof let us note that; (R) is obtained simply by drawing the tangent line to the curve
(R, Eg(R)) from the point(0,7*). The curve(R, Ey(R)) is same as the tangent line, for the rates betweand
Ry, and it is same as the cur(&, Ex(R)) from then on whereR,, is the rate of the point at which the tangent
from (0,7*) meets the curvéR, Ex(R)).

Proof: For R > Ry, this Lemma immediately follows from Haroutunian’s result[L17] for L; = 1. If R < Ry
then we apply Theorem 2.

(1= 5)Pe(M,n, Ly, Py) = Po(M, i, Ly, 5)Pe (L1 + 1,0 — i, L, 5020 (69)
withit] s = 0, Py =0, L, = 1 andf = LRL;,J- Furthermore, by Lemmia 3 and the definition’®f given in [66) we
have, )

e~ (=R T* +Vn=n1n Ppyip

Pe(2>n_ﬁaL70) > — 8 - (70)
Using equationd (69) and (70) we get,

— InPe(M,n,1,0) —InPs(M,n,1,0) R R 1 * 1 Ru:i—R Prin
0 < cammy vl R i AR SV B WV vl R

Where% = Ry;. Lemma follows by simply applying Haroutunian’s result ke tfirst terms on the right hand side.
[ |

10r [31, Theorem 1] withl,; =1 andn; = L%J-
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C. Generalized Straight Line Bound for Error-Erasure Expots

Theorenm 2 bounds the minimum error probability lengthlock codes from below in terms of the minimum error
probability of lengthn; and length(n —n;) block codes. The rate and erasure probability of the longde constraints
the rates and erasure probabilities of the shorter onegjdasg not specify them completely. We use this fact together
with the improved Haroutunian’s bound on the error exposienterasure free block codes with feedback, i.e. Lemma
[, and the error exponent trade off of the erasure free feddblck codes with two messages, i.e. Lenima 3, to
obtain a family of upper bounds on the error exponents oflfaeki block codes with erasure.

Theorem 3:For any DMC withCy = 0 rate R € [0,C] and Ex € [0, Ex(R)] and for anyr € [r,(R, Ex),C]

6o (R B < BEu(r) + (1 - Byr (B4
wherery, (R, Ey), is the unique solution oREy (r) — 7Fyx = 0.
TheorenB simply states that any line connecting any twotpaifi the curveq R, Ey, Eo) = (R, Ey(R), Ex(R))
and (R, Ex, Fe) = (0, Ex,I' (Ex)) lies above the surfaceR, Ex, Ee) = (R, Ex, (R, Ex)). The conditionCy = 0
is not merely a technical condition due to the proof techejqas we will see in Sectidn]V for channels with > 0,
there are zero-error codes with erasure exponent as high,a®) for any rateR < C.
Proof: We will consider the casesc (r, (R, Ex),C] andr = r,(R, Ex) separately.
e 7 € (rp(R, Ex),C]: Apply Theorenl2 withs = 0, L = 1, L; = 1, take the logarithm of both sides of equation
(47) and divide byn,

—InP. <2,n—n1,1 Pi)

X
? Pe(M,n1,1,0)

_1nPe(]:]/[,n,1,Px) < (%) —In"Ps(M,ny,1,0) + (1 _ n_1) —

ni n

. (71)

For any(M, n, Px) sequence such thitn inf, oo 2% = R, liminf, . =25 = E, if we choosen; = | £n)|
sincer > r,(R, Ex) we have,
> 0.

e e 1 P
hnrgloréf n—n; hl Pe(M’nl’l’O)

Furthermore as a result of Lemria 4 and the convexity’g{ R) we have

LN -1 Py *

hggg,}f oy Pa(Mni 0] = 1.
Assume for the moment that for afiyc (0, 7*] and for any sequence &t (") such thatim inf,, . ‘lnfpx(") =T
we have .

lim inf M <T(T). (72)

Using equation[{71) and taking the limit asgoes to infinity we get
Eo (R, Ex) < E&(r)+ (1 - E)r (@g()) _

T

Then Theoreml3 follows from Lemnid 4 and the fact th4f") is nondecreasing function df,

In order to establish equatioh (72); note thafif > 0 andT < Ty thenT' (T) = co. Thus equation[(72) holds
trivially. For T' > T, case we prove equation (72) by contradiction. Assume @3ti§7wrong. Then there exists
a block code with erasures that satisfies

P [T(ﬁz)‘ m] < e~ n(0(T)+o(1)) P[Y(x)| ] < e—"(T+o)
P[Y(m)‘ ﬁz] < e~ n(0(T)+o(1)) P[Y(x)| 7] < e~ N(T+o(1))
Enlarge the decoding region @t by taking its union with the erasure region:
T(m)="T(m)UT()  YT(m)=T(m) Y(x)=0.
The resulting code is an erasure free code with
P[T'(ﬁz)| m] < e (T(T)+o(1)) and P[T'(ﬁz)| fn] < e n(min{T(T),T}+o(1))
SinceTy < T < T* T'(T) > T, this contradicts with Lemmia 3 thus equatiénl(72) holds.
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o r=r1,(R, Ex): Apply Theoren{® withs =0, L = 1, L, = 1 andn; = max{{ : Pe(M,(,1,0) > PxIn -},
Pe(M,n, 1, Px) > Po(M,n1,1,0)Pe(2,n = 01, 1, i)
> PXIHPLXIPG(27n —nl,l,ﬁ) (73)

Note that forn; = max{/ : Po(M,¢,1,0) > Py hlp%}'

lim inf %5(%) = Ex

n— 00 1

Then as a result of Lemnia 4 we have, R

liminf 2By (42) > By

np

n—o0
Then
liminf & > gt (74)
Assume for the moment that for amy such thatlim inf,, ,,. €, =0
lim inf =2 PelZnLa) < 1 () (75)

n—o00
Then taking the logarithm of both sides of the equation (@Rjiding both sides by, taking the limit asn tends
to infinity and substituting equationis (74) andl(75) we get,

Ey
Eo (R Bx) € Bx+ (1 = 52T (0) (76)

Note that, Theorer 3 for = r, (R, Ex) case is equivalent to (V6). Identity given in{75) followsrfr an analysis
similar to the one used for establishing](72), in which bstéad of LemmA]|3, we use a simple typicality argument
like [10, Corollary 1.2].

[ |

We have setl.; = 1 in the proof. If instead ofL.; = 1 we had choseri; to be a subexponential function ef
which grew to infinity withn, the logic and the mechanics of the proof would still work fuat would have replaced
I'(T) with £(0, Ey), while keeping the term includingy (R) the same. Since the best known upper bound for
Ee(0, Ex) isT (Ex) for Ex < T™* final result is same for case with feedb8lOn the other hand for the case without
feedback, which is not the main focus of this paper, this doaeke a difference. By choosing; to be a function
of block length that goes to infinity subexponentially wittodk length one can use Telatar's converse result [32,
Theorem 4.4] on the error exponent at zero rate and zeroreragponent without feedback.

In Figure[1, the upper and lower bounds we have derived far exponent are plotted as a function of erasure
exponent for a binary symmetric channel with cross over @dlty ¢ = 0.25 at rate R = 8.62 x 102 nats per
channel use. Solid lines are lower bounds to the error exgdioe block codes with feedback, which have been
established in Sectidn]ll, and without feedback, which watablished previously, [14], [10], [32]. Dashed lines are
the upper bounds obtained using Theofém 3.

Note that all four curves meet at a point on bottom right, thishe point that corresponds to the error exponent
of block codes at rat& = 8.62 x 10~2 nats per channel use and its values are the same with anduivitrexdback
since we are on a symmetric channel and our rate is over theatmate. Any point to the lower right of this point
is achievable both with and without feedback.

The proximity of the inner and the outer bound demonstrateligure[1 is not particular to the channel we have
chosen. A discussion of the closeness of the inner and ooterds are given in Sectidn MI.

8In binary symmetric channels these result can be strengthesing the value of (0), [36]. However those changes will improve the upper
bound on error exponent only at low rates and high erasurenexjs.

20



Error Exponent vs Erasure Exponent at R=0.0862 nats for a BSC with €=0.25
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Fig. 1. Error Exponent vs Erasure Exponent

V. ERASURE EXPONENT OFERRORFREE CODES:Ex (R)

For all DMCs which have one or more zero probability transig, for all rates below capacityy < C and for
small enoughZy’s, Fe(R, Ex) = co. For such(R, Ex) pairs, coding scheme we have described in Se€fion Il gives
us an error free code. The connection between the erasuomexipof error free block codes, and error exponent of
block codes with erasures is not confined to this particutenoding scheme. In order to explain those connections
in more detail let us first define the error-free codes mormédly.

Definition 3: A sequence®), of block codes with feedback is an error-free reliable seqaeff

P =0 Wn, and lim sup,,_, . (Px™ + W) =0.

The highest rate achievable for error-free reliable codehe zero-error capacity with feedback and erasutgs,
If all the transition probabilities are positive i.min, , W(y|z) = 6 > 0, then Petm) (&)™ for all m, m € M

Plz"|m] 1-0

andz" € Z". Thus we have
Plm|2"] > (:5)"Plin| "]  Vm,im € M,Vz" € 2" (77)
Consequently we hav€, > (ez?(_ell)?(s;}r)i_a) andC, is zero. On the other hand as an immediate consequence of
the encoding scheme suggested by Yamamoto and Itah in f3derie is one or more zero probability transitions,
C.,0 is equal to channel capacit.

Definition 4: For all DMCs with at least onéz, y) pair such that? (y|z) = 0, YR < C erasure exponent of error
free block codes with feedback is defined as

Ex(R) = sup  Ex(Qp). (78)
QOZR(QO)ZR

For any erasure exponeriiy less tharf(R), there is an error-free reliable sequence, i.e. there iiable sequence
with infinite error exponent:
Eyx <& (R) = E&(R, Ex) = 0. (79)

21



More interestingly ifEx > Ex(R) then&e(R, Ex) < oo. In order to see this lef be the minimum non-zero transition
probability. Then for anym, m € M andz € Z such thatP[m| z"| P[m| z"] > 0 we haveP[z"| m] > d"P[z"| m].

Thus ifP[l\?I ¢ {M,x}‘ Z”} #0 thenP[M ¢ {M,x}‘ Z“} > 2. Using this we get,

n

2] < 5 2l0)P M ¢ (M.x}| 2°]
— (1 +5—“)P[M ¢ {M,x}} (80)

Equation [(8D) reveals that the total probability £fs at which receiver chooses to decode to a message rather tha
declaring an erasure despite the fact that it is not cerfaguiathe message is upper bounded(by- 6~") times the
undetected error probability. Thus if we replace the decedth a new decoder which declares an erasure unless it
is sure about the transmitted message, i.e. unless thermessage with posterior probability one, resulting erasure
probability P,/ will be bounded in terms of original error and erasure prdliggs as follows,

Py < Py+(1+6")Pe. (81)

E |1 pfing ) E |1 pfing )

Thus by changing the decoding rule, any lengtltode with error probabilityP, and erasure probability’, can

be transformed into error free code with erasure probgbifi’, where P, satisfies equation (81). Using this
transformation we can change any code with errors-andssratecoding into a error free block code with erasures.
Evidently we can use the very same transformation to comedietble sequences into error-free reliable sequences.
Considering error and erasure exponents of the origin&lliel sequences and erasure exponents of resulting error
free reliable sequences we get,

Ex(R) > min{Ey, E(R, Ex) +In6} VR, Ex. (82)

Consequently,
Ey > Ex(R) = Ee(R, Ex) < Ex(R) —Ind < oo. (83)

As a result of equation$ (V9) anld {83) we can conclude §héR, Ex) = oo if and only if Ex < & (R). In a sense
like the error exponent of erasure free block cod®&gR), erasure exponent of the error free bock codgsR),
gives a partial description & (R, Ex). £(R) gives the value of error exponents below which erasure expiocan
be pushed to infinity andx(R) gives the value of erasure exponent below which error expocen be pushed to
infinity.

Below the erasure exponent of zero-error codgs,R), is investigated separately for two families of channels:
Channels which have a positive zero error capacity,dee> 0 and Channels which have zero zero-error capacity,
i.e.Co=0.

A. Case 1Cy >0
Theorem 4:For a DMC if Cy > 0 then,

En(R) 2 E(R) =2 Egp(R).

Proof: If zero-error capacity is strictly greater then zero, Cg.> 0, then one can achieve the sphere packing
exponent, with zero error probability using a two phase sehdn the first phase transmitter uses a lemgth= [e™ ?]
block code without feedback with a list decoder of size= [%ESP(R, Py)| where Py is the input distribution
satisfying E,,(R) = Esp(R, Py). Note that with this list size the sphere packing expateistachievable at raté.
Thus correct message is in the list with at least probabjlity- e =" #+»(%)), see[[10, Page 196]. In the second phase
transmitter uses a zero error code, of leRh, = [%1 with L 4+ 1 messages, to tell the receiver whether the
correct message is in that list or not, and the correct messsegf if it is in the list. Clearly such a feedback code
with two phases is error free, and it has erasures only where tbxists an error in the first phase. Thus the erasure
probability of the over all code is upper boundeddy “+»() Note thatn, is fixed for a givenR. Consequently as

¥Indeed this upper bound on error probability is tight expuiay for block codes without feedback.

For some DMCs withC, > 0 and for someL one may need more tha[nl“(é—jl)l time units to convey one of theL + 1) messages
without any errors, becaus® itself is defined as a limit. But even in those cases we areagteed to have a fixed amount of time for that
transmissions, which does not change with Thus above argument holds as is even in those cases.
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the length of the first phase;, grows to infinity the rate and erasure exponentmf+ n2) long block code converges
to the rate and error exponent of long code of the first phase, i.e. # and E,,(R). Thus

Ex(R) = Esp(R).

Any error free block code with erasures can be forced to decaterasures. The resulting fixed length code has
an error probability no larger than the erasure probabditythe original code. However we know that, [17], error
probability of the erasure free block codes with feedbaakreses with an exponent no larger than(R). Thus,

This upper bound on the erasure exponent also follows fraenctinverse result we present in the next section,
Theorenl5. [

For symmetric channel&y (R) = E,,(R) and Theoreni]4 determines the erasure exponent of erroctrdes on
symmetric channels with non-zero zero-error-capacity petely.

B. Case 2Cy =0

This case is more involved than the previous one. We firstobstaan upper bound 06 (R) in terms of the
improved version of Haroutunian’s bound, i.e. Lemiha 4, dmel @érasure exponent of error-free codes at zero rate,
&x(0). Then we show thaf,(0) is equal to the erasure exponent error-free block codestwithmessagesi 2, and
boundé&x » from below.

For any M, n and L, Pe(M,n, L, Py) = 0 for large enoughPyx. We denote the minimum of sucRy's by
Pox(M,n,L). Thus we can writ&x o as

SX’Q = lim inf 'Po’x (2, n, 1) .
n—00

Theorem 5:For anyn, M, L, n; < n and Ly, minimum erasure probability of fixed length error-free ddaodes
with feedback,Py x(M,n, L), satisfies

Pox(M,n,L) > Pe(M,ny,L1,0)Pox (L1 +1,n—ny, L). (84)

Like Theoren{ 2, Theore 5 is correct both with and withoutfeseck. AlthoughP x's and P will be different in
each case, the relationship between them given in equ@#nhplds in both cases.

Proof: If Pe(M,ny,Ly,0) = 0 theorem holds trivially. Thus we assume henceforth g/, nq, L1,0) > 0.
Using Theorenfl2 withPy = Py (M, n, L) we get

Po (M., L, Pox(M,n, L)) = Po(M,n1, Lt, 0)Pe (L1 + 1, (n = m1), L, prrztacilds ).

SincePe (M, n, L, Pox(M,n,L)) =0 andPe(M,ny,L1,0) > 0 we have,

Po.x(M,n,L
Pe (L1 +1,(n—ny), L, W) =0

Thus o L
LR > Py (L + 1, (n = m), L).

[ |
As we have done in the errors-and-erasures case we can téimgemto a bound on exponents. If we use the
improved version of Haroutunian's bound, i.e. Lemiha 4, asupper bound on the error exponent of erasure free
block codes we get the following.
Theorem 6:For any rateR > 0 for any a € [£,1]

Ex (R) < aBy () + (1 - @)&x (0)

Now let us focus on the value of erasure exponent at zero rate:

Lemma 5:For the channels which has zero zero-error capacityCpe= 0, erasure exponent of error free block
codes at zero raté(0) is equal to the erasure exponent of error free block codds wid messagesy .
Note that unlike the two message caSgy, in the zero rate cas&(0) the number of messages are increasing with
block length to infinity, thus we can not claiffy » = £« (0) just as a result of their definitions.
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Proof: If we write Theorem b forL =1, n; =0 andL; =1
Pox(M,n, 1) > Pe(M,0,1)Pyx(2,n,1)
= %P@x(l n,1) VM, n

Thus as an immediate result of the definitions£Qf0) and &y 2, we havely(0) < & 9.
In order to prove the equality one needs to préyk€0) > & ». For doing that let us assume that it is possible to
send one bit with erasure probabiliéywith a block code of lengtH(e):

€ > Po(2,0(e), 1) (85)

One can use this code to sendits, by repeating each bit whenever there exists an eradutee block length is
n = kl(e) then a message erasure occurs only when the number of hiresask trials is more therk — r. Let #e
denote the number of erasures outkofrials then

k
Pl#e =1 = glyp(l — )" 'e and szzl:k_mp[#e:z].

Thus
k
= k! k-1 1
Px_zllcr—i—lm(l_e) €
k! 1! INKE—=l —1In Yk (k—])1n 1=UE
_Zlkr-l,-ll' (E) (1—z) e [Hn 2=+ (k=0 In 5=

—Zlkmukl (L) (1= 1)* e*o(ille).

Then for anye <1 — £, we have

~

p. < e *0(1-5]).

Evidently Py > Py x(2",n, 1) for n = kl(e). Thus,

— ll’l'Po,x(27‘,n,1)
n

ille)
te)
Then% is an achievable erasure exponent for any sequenge bfs such thatlimy_,., 7 = 0, i.e. E(0) > —glne
Thus any exponent achievable for two message case is abléeos zero rate cas&,(0) > Ex 2. |
As a result of Lemmal6 which is presented in the next sectiorkmesv that
Pox(2,n,1) > ( sup B(s))" where [(s) = minx,iz W (yla) =W (y|7)®.
Y

s€(0,.5

> 2

Thus as a result of Lemnia 5 we have
Ex(0) =&k2 < —In sup p(s).
5€(0,0.5)
C. Lower Bounds orPj x(2,n,1)

Suppose at timeé the correct messagh, is assigned to the input letterand the other message is assigned to the
input letterz, then the receiver can not to rule out the incorrect messageet with probabilityzyzw(yMC)>0 W(y|z).
Using this fact one can prove that,

> in, ;
Pz )2 (mings 3 W) )
Now let us consider channels whose transition probabilitrix 1 is of the form
_1=a q
W = [ 0 1] . (87)

We denote the output letter that can be reached from bothedihtiut letters byy. For the moment we consider only
the deterministic encoding schemes, ¢ = Y;. Note that in the optimal encoding scheme,

XL,y £ X2,y v, vytteytt
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Then
PY,=§M=1y""P[Y,=gM=2,y""=q vt vy ley! (88)

Furthermore ifY"™ = 4" then the receiver can not decode without errors, i.e. it badetlare an erasure. Then,
Pox(2,n, 1) > 2(PY"=55...5|M=1]+PY"=§7...j|M=2])

(a) S S

> VPY"=57...gIM=1PY"=5j...5[M=2]

b) n

Ve (89)

where (a) hods because arithmetic mean is larger than the geometdao mued(b) follows from the equatior[ (88).
For theW given in [87) the bound given in_(89) is very tight. If the edeo assigns the first message to the input

letter that always leads t9 and the second message to the other input letter in [ffsttime instances, and does

the flipped assignment in the lagt | time instances, then an erasure happens with a probakeziﬁa/thamL%J, i.e.

PO,X(27 n, 1) S qL%J
On the other hand for th& given in [87), bound given in equation (86) ensures oAy (2,n,1) > ¢", rather

thanPy x(2,n,1) > qL%J. Thus for the channel givef (87) the bound given in equaf®) (s tighter than the one in
equation[(8b).

The idea used in deriving the bound given in equation (89)Ha particulari’’ can be applied to a general DMC
to prove the following lower bound,

Pox(2,n,1) > (mmzxz \/W (y|xe)W y|:1:)) . (90)

The bound given in equatioh (90) is decaying exponentially,ieven when all entries of thid” are positive, however
for those channels the bound given[inl(86) implRs,(2,n,1) > 1. Thus the bound given in_(90) can not be superior
to the bound given in equatioh (86) in general. The followbmyund implies bounds given in both equatiénl(86) and
equation[(9D). Furthermore for certain channels it is tyricetter than both.

Lemma 6:Erasure probability of all error free block codes with twogsages is lower bounded as

Pox(2,n,1) = ( sup B(s))" where [(s) = min, z Zy W (yla) =W (y|2)* (91)
5€(0,.5)

Note that bounds given in equatidn {86) ahdl (90) are impliedif,_,o+ 5(s) andlims_q5- 5(s) respectively.

Althoughy~ W (y|z) W (y|z)'~* is convex ins on (0,0.5) for all (z, ) pairs,3(s) is not convex ins because of the
minimization in its definition. Thus the supremum owedoes not necessarily occur on the boundaries. Indeed there
are channels for which bound given in Lemmfa 6 is strictly dretihan the bounds given ih_(86) ard](90). Following
is the transition probability matrix of one such channel.

0.1600 0.0200 0.2200 0.3000 0.3000 Lim 5(s) = 0.7000
W= {0.0900 0.4000 0.2700 0.0002 0.2398 lim_§(s) = 0.7027
0.1800 0.2000 0.3000 0.3200 0 5(0.18) = 0.7209.

Proof: Let u; and ji;(2'~!) be,

pe={z": P[M=1[z'] P[M = 2| 2] >0}
ﬂt(zt_l) ={y: P[yt| M =1, zt_l] P[yt| M =2, zt_l] >0}

Then for any error free code and for amy (0,0.5) we have

Py = E[ﬂ{u }]
E[1,,(PM=1]Z"]+P[M = 2|Z"))]
E[]l{u ) 1 —$5)PM =1|Z" 4+ sPM = 2| Z"])] + E[1y,,;(sP[M = 1| Z"] 4 (1 — s)P[M = 2| Z"])]
> E|1, ) PM = 1|2 "PM = 2| Z"°| + B|1(,,PIM = 1| Z"]"PM = 2| 27" ~*| (92)
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where the last inequality follows from the fact that arithimemean is lower bounded by the geometric mean.
Furthermore,

E[]I{MH}P[M — 12" PM = 2| z“ﬂ

=E [E []l{ﬁn(z"l (SRS ) (R )

zn—l} Lo i PM =121 PM=2/2""]"|. (93)

Note that,
PM=12"] _ PM=1]Z""1Y,]
PM=I[2"~1] =  PM=1[2"""]
Y, |M=1,2"-!
- HP{'Y‘AZH} L 54)
Similarly,
M=2|Z" Y, |M=2,Z"-!
AR = BT (95)

Thus using equation§ (P4) arld [95) we have

E []l{ﬂn(z“)} (P{iﬁx[nl\i:ﬁz'{]l] ) - (—p[lT\{AM:;fz‘fj]f} )s

—1| _ @ [P M=1,2""1"""PY,M=2,2"""]° | 7 n—1
z ]—E[ PV, 12 ] ]

=S Plp|M=1,2""1"Plg|M=2,2""1]"
Yn
> B(s) (96)
where the last inequality follows from the definition gfs) given in equation[(91).
Using equationd (93) an@ (96) we get
E[]I{HH}P[I\/I —1|Z"'*PM = 2| Z“]S} > E[P M =12 P[M =2/ 2] ] B(s)"
> 3B8(s)". (97)

If we follow a similar line of reasoning for the second term(@®) we get

E|1(,)PIM = 1|Z"]"P[M = 2/ 2")'*| = }8(1 - )"
B(s)". (98)
Lemma follows from equation$ (92], (97) and](98) by taking fupremum oves € (0,0.5). [ |

N[ N

VI. DISCUSSION

The value of error exponent is not known for erasure free fieedjth block codes with feedback on a general
DMC. We do not even know if it is still upper bounded by spheeeking exponent for non-symmetric DMCs.
Yet the value of error exponent for fixed length block codethviéedback and errors-and-erasures decoding can be
deduced, for the zero-erasure exponent case, from thagesuthe variable length block codes [3], [34]. Our main
aim in this paper was establishing upper and lower boundsetttand the bounds at the zero erasure exponent case
gracefully and non-trivially to the positive erasure expots values. Our results are best understood in this framkewo
and should be interpreted accordingly.

By finding the optimal error exponent erasure exponent tadil®ne solves the open problem of finding the optimal
error exponent of erasure free fixed length block codes veiddlback. This is an important and difficult problem on
its own right. We did not attempted to solve that problem, thet inner and outer bounds we have derived for the
case with erasure quantify how much we loose from the optpediormance by using the encoding schemes inspired
by the optimal encoding schemes for variable length bloakeso

We derived inner bounds using two phase encoding schemash vaine known to be optimal at zero-erasure
exponent case. We have improved the performance of thesphtage schemes at positive erasure exponent values by
choosing relative durations of the phases considering éisiretl values of rate and erasure exponent, and by using a
decoder that takes into account the outputs of both phasiss dédtiding between decoding to a message and declaring
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an erasure. However within each phase the assignment ofagess$o input letters is fixed. In a general feedback
encoder, on the other hand, assignment of the messagesuibsiypbols at each time can depend on the previous
channel outputs and such encoding schemes have proven tovinghe error exponent at low rates, [35], [13], [6],
[25], [23] for some DMCs. Using such an encoding in the comitation phase will improve the performance at low
rates. In addition instead of committing to a fixed duration the communication phase one might consider using
a stopping time to switch from communication phase to thetrobiphase. However in order to apply those ideas
effectively for a general DMC, it seems one first needs toesthe problem for the erasure free block codes for a
general DMC.

We derived the outer bounds without making any assumptieutathe feedback encoding scheme. Thus they are
valid for any fixed length block code with feedback and erasuihe principal idea of the straight line bound is
making use of the bounds derived for different rate, erasypmnent pairs by taking their convex combinations. This
approach can be interpreted as a generalization of the botands used for variable length block codés, [3], [2].
As it was the case for the inner bounds, it seems in order toawgpthe outer bounds one needs establish outer
bounds on two related problems, i.e. on the error expondngsasure free block codes with feedback and on the
error exponent erasure exponent trade off at zero rate.

The inner and outer bounds we have derived do not coincidarfitrary values of erasure exponent. But they do
coincide for all channels at all rates at zero erasure exgone

o If theRchanneI does not have a zero probability transitiathlthe inner bound and the outer bound are equal to

(1—-2)D.
o If thecchannel does have a zero probability transition, tiveei bound is equal to infinity and there are fixed
length block codes with zero error probability for all largeough block lengths.
Furthermore on the plane where erasure exponent is equbktertor exponent, the outer bound we have derived
is loose only as much as the best outer bound we know for tloe exponent of the erasure free block codes with
feedback is loose. Thus the proximity we have observed lestirener and outer bounds in Figure 1 is not peculiar
to the particular channel we have chosen for Fidure 1. Foclainnels inner and outer bounds we have derived
coincide on the upper left corner like they do in Figlfe 1.hé tchannel is symmetric and if we are considering a
rate over critical rate they will also coincide in lower rigborner. Furthermore if the sphere packing exponent is
shown to be an upper bound for the error exponent of eraseeefiiked length block codes this behavior will extend
to non-symmetric channels.

ACKNOWLEDGMENT

Authors are grateful to Emre Telatar for his encouragemarthe problem and for numerous discussions on error-
free codes. In particular the observations presented abol@nnels are his and Lemina 5 was proved in 2006 summer
at Ecole Polytechnique Federale de Lausanne (EPFL). Asuitlier thankful to Tsachy Weissman and Amos Lapidoth
for bringing the Shannon-Gallager result mentioned in EivBerlekamp’s thesis to their attention, to Anant Sahai
for various discussions on communication problems witldiieek and to Robert G. Gallager for various discussions
on the encoding scheme presented in Sedtidn Il and the twasage error exponent trade off. Authors would like
to acknowledge the thorough review provided by the anonymReviewer B, which has helped them to improve the
presentation of the paper in general. In addition the- s) factor on the left hand side of Theorém 2 was pointed
out to the authors by Reviewer B.

APPENDIX
A. The Error Exponent Trade Off for Feedback Encoding Sckesith Two Message and Erasure Free Decoders :

In this section we will first establish an alternative exgies for thel" (7, 1I) function defined in equatior _(B6)
in LemmalY. After that we will prove that in a two message codih ieedback on a DMC, if the error exponent
of one of the messages is greater than s@ime T, then the error exponent of the other message cannot be greate
thanT' (T"), whereTy and T (T') are defined in[(684) and_(B65) respectively. Furthermore wé pvibve that if the
error probability of the one of the message is zero than thar @robability of the other message cannot be lower
thane~"7o; we will also prove that it can be as low as"’®, see Lemmal8. These results will imply that the error
performance of a two message code, does not improve witlhéadd This result is attributed to Shannon and Gallager
by Berlekamp in[[1].
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Lemma 7:T (7', 1I) defined in equatiori (36) is equal to

00 if 7T < D(Ul| W,/)
r(7T,10) D(Us|| W, IT) if T =D(Us||W,|II) for somes € [0, 1]
D(Uh| W, 1) i T > D (U] WalD)

where
s Wyle) i s=0
. T qID20, !
i > V(Vy(ly\)x)l v(v(‘ |)) if se(0,1)
Tiw ylz)>0 - . _
Zy Wiy\x()lo) } |~) (y|$) |f S = 1
Proof:

r(r,1) = min D (U|| W, |II)
U:D(U||W,|ID)<T

=minsup D (U|| W, |IT) + X(D (U|| W,|II) — T)
U x>0

@ supmin D (U Wy |IT) + A(D (U|| W,|IT) — T)
A0 U

=supmin —AT + (1 4+ A I(z,z)U(y|z,Z)In Ulylz,7)

>\>I()J U ( )iny (= 2)U (gl %) W (ylz) T W (y]2) TR

@SUP—AT—(l—F/\)Z II(z,7) IDZW (y|x) 1+>\W(y|l‘)1+>\ (99)
A>0 z,T

)

where (a) follows from convexity ofD (U || W, |II) +
(b) holds because minimizing is Us for s =

~—

AD (U|| We|II) = T) in U and linearity (concavity) of it in\;
The function on the right hand side (’[{99) is maximized at a

‘H

[EDY
positive and finite\ iff there is a\ such thatD ( U ‘ W, ]H) T. Thus by substitutings = ~= we get
00 if 7T <limg,o+ D ((Us|| We|II)
limg o+ D (Us|| W |IT) if T = limg_,o+ D ( Us|| W, |II)
L(7,10) = D ( Us|| W, |IT) if T =D (Us| Wy|II) forsomes e (0,1) (100)

lims—>1* D( USH Wr’H) if T= hms—)l* D ( UsH Wa’H)
hms—ﬂ* D( UsH WT|H) if T> hms—>1* D ( USH Wa|H)

Lemma follows from the definitior/; at s = 0,1 and equation[(100). [ |
Now we are ready to present the proof of Lemnha 3

Proof [Lemma/[3]:

Our proof is very much like the one for the converse part_of, [Bieorem 5], except few modifications that allow
us to handle the fact that encoding schemes we are congidmrnfeedback encoding schemes. Like [31, Theorem
5] we construct a probability measuf- [-] on Z" as a function ofl” and the encoding scheme. Then we bound the
error probability of each message from below using the gribaof the decoding region of the other message
under Pr [-]. We consider probability measures & rather thanY™ to include the possible randomization in the
encoding and decoding schemes.

For anyT > T, andII, let Sty be

0 if T <D(Up| Wl
Srr={ s if 3se[0,1st.D(U| W) =T . (101)

1 if T >D(U| W,|I)

Recall that
Ty = n;%x —1In Zy:W(y|i)>0 Wi(ylz) and D (U W,|I) =— Zz (z,Z)In Zy Wls) W (y|z).
Then for allII we have
To > D (Upl| Wy|II) . (102)
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Thus as a result of definition dfr i1 and equation[(102) we have
D (Usyy||Walll) T VT >T. (103)
Using Lemmd7, definition oy and equation[(102) we can also conclude that
D (Usy || WeII) =T (T,11) < T(T) VT > Tp. (104)

Note that giverZ!~! = z!~! channel input letters assigned to each message atttitigm;, z'~!) and
X;(mg, 2'71), are fixed for any feedback encoding schem€s;) : {my, mgo} x Z~1. Thus the corresponding is

given by:
N 0 if (fl?,i') ?é (Xt(mlaZt_l)vXt(m27Zt_1))
(z, 7) —{ Uit (2,8) = (X, (ma, 281, X;(mg, 21 } (105)

Then for anyT > T, let Py [y] 2] be
Pr [yt| Zt_l] = UST,H(yt|Xt(m17 Zt_l)’ Xt(m27 Zt_l))' (106)

Furthermore let us assume that the conditional distributibA; given (M, Z!=1 Y,) under Py [-] be identical to the
conditional distribution ofA; given (M, Z=1 Y;) underP][], i.e. the original conditional distribution.
Note that as a result of equatidn (103) and equafion] (104) ave h

Pr Y| 2] Pr [Y¢| 271

Zt—l
P[Y{M = my, Zt1] P[Y{ M = my, Zt—1]

Er |In <T and Er |In

zH] <I'(T) wpl

Now we make a standard measure change argument,

Pr[Yezt 1]

—1In WPT [Yt‘ Zt_l]

PV, M=m,Z" ] =e

_ o Prle T o
_ [1 e = 21 |2 ]eXtﬂnl(Y”zH)PT Y| 27
> e~ Texem (V1270 pr Ty, 707 (107)
where
Xt (Ye|Z'71) = B [ln P[Y]:\TM[Y?tléljz}fl] Zt_l} —lIn P[Ylj\TM[Y?tlmzljz—jfl] (108)
For m = my, mg let x(m) be
)= {2130 X (V2] < aviin - (109)

For any evenB measurable in the sigma field generatediyas a result of equation equations (107) we have

P[B] > E[ﬂ{s}ﬂmml)}]
—nT —4fln

| \/

e T~V B T pr (B and x(m))] (10

| \/

Following a similar line of reasoning we get,
PYi M =my, 2171 > e MM exema(Yel270 pr [y, 2671] (111)
where

PV, [M=mz,2+-1]

_ PT B Zt—l
Xtoms (Ye|Z71) = Er [hl ] BY, M=m2,Z0 1]

27| — In 2oL (112)
and for any evenB measurable in the sigma field generatedeBywe have

P(B] > e " VAN B (B and x (my))] (113)
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Note that form = {m;, me} andt € {1,2,...,n},

Er [xem(Ye|ZH| 2971 =0 Vit e 2zl (114a)
Er [(xem (Y4 Z71)?| Z71] < 4(In Prin)® V2" € 2 (114b)
Er Xt,m(Yt\zt—l)Xt_k,m(vt_k\zt—’“—l)(zt—l] —0 Vatle 21 wr{l,2,...,t— 1}  (114c)
Thus as a result of equation (114), for € {my, my}
) ]
Br | xem(YelZ7H) | =0 (115a)
t=1 |
n 2
Er <Z Xt,m(Yt|Zt_1)> < 4n(In Prin)*. (115b)
t=1

Using equation[(115) and Chebychev’s inequality we coreltimt,
Prix(m)] >3/4  m=my,me

Hence,
Pr [x(m1) N x(mg)] > 1/2

Thus either the total probability of intersection pfm;) N x(mg) with the decoding region of the second message
is equal to or larger thai/4 or the total probability of intersection of(m;) N x(mg) with the decoding region of
the first message is strictly larger thapt. Then the lemma follows from equatioris (110) and {113).

QED
As we have noted previousl§j, does have an operational meaning it is the maximum errorrexudirst message
can have, when the error probability of the second messaperis
Lemma 8:For any feedback encoding scheme with two messagéy, if, = 0 then P,,,, > e~"To, Furthermore
there does exist an encoding scheme such Hgt, = 0 then Py, = e,
Proof: Let us use a construction similar to the one used in the prbdEmmal3

Pr Y 27 = Up(Ye| Xe(m, 271, Xy (mo, Z071)).
Recall that

Un(yrlr, &) = s Eveinsaryy (yz)

swanso WUz
Thus
Pr Y| 271 < ePPIY M = my, 2071
Pr Y zt71 < Lipry, M=m,,z-1]>0)
As we did in the proof of Lemm&l3 we will assume that conditiodiatribution of A; given (M,Z!~1Y;) under
Pr ] is identical to the conditional distribution &%; given (M,Z!~! Y,) underP][], i.e. the original conditional
distribution.
Then for any evenB measurable in the sigma field generatedZywe have
PB|IM = my] > e """ Pp [B] (116)
PB|M = my] > "2 Fmin pr[B] (117)
where P,,,;,, is the minimum non-zero element &fF .
Since P, =0 equation[(11[7) implies thalr [M ;émg] =0 and Pr [M #* ml} = 1. Using this fact together with
equation [(116) we conclude that
Pejpm, > € 0. (118)

Let us assume that maximizing x-pair in{64)(ig’, z3) i.e. To = —In 3", 1y 05)=0 W (ylz7). If the the encoding
scheme sendg’ for the first message and for the second message, and the decoder decodes to secaadjmenless
Y; = y* for somet € {1,2,...,n} and for somey* such thatW (y*|z;) = 0. ThenPe,,, =0 and Pe,,, = e "o. m
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B. Convexity ofE. (R, Ex, «, P,1I) in «:

Lemma 9: For any probability distribution? on input alphabeft’, {(P, @, R) is convex in(Q, R) pair.
Proof: Note that

R, P,Qy) + (1 — 3)C(Ry, P,Qyp) = i D (V,| W|P)+ (1 —~)D (V;| W|P
Y¢( Qa) + (1 —7)C(Ry, P, Q) VaVb:I(P’V“)rSn}lil p——— (Val| WIP) + (1 =)D (V,|| WI|P)

(PVL)y=Q. (PVi)y=Qy
Using the convexity oD (V|| W|P) in V and Jensen’s inequality we get,
Ra, P,Qu) + (1 — 7)C(Rp, P, Q) > i D(V,|W|P
7¢( Qa) + (1 = 7)¢( Ry, P, Qp) s e (IIW1P)
O (PV)y=Qa (PVh)y=Qs

whereV, =V, + (1 —v)V.
If the set that a minimization is done over is enlarged, tHenresulting minimum does not increase. Using this
fact together with the convexity df( 2, V') in V and Jensen’s inequality we get,

VC(RmPa Qa) + (1 - V)C(va P> Qb) > min D (V“/H W|P)

NPV )R,
W'(PV'V)Y:Q'V
= C(pra Q’Y)
whereRy =R, + (1 = 7) Ry, @y =7Qa + (1 —7)Qs. u
Lemma 10:For all (R, Ex, P,II) quadruples such that, (R, P) > Ex, Ee(R, Fx, a, P, H |s a convex function
of a on the intervalla* (R, Ex, P), 1] wherea*(R, Ex, P) is the unique solutlc@ of aE,( = Fx.

Proof: For any P such thatE, (R, P) is non-negative, convex and decreasmg funcUonRofn the interval
[0,1(P,W)]. Thusa.E,.(£, P) is strictly increasing continuous function afe [;2 (P ) 1]. Furthermore fory = ﬁ,
aE,(£,P)=0and fora =1, aE,.(£, P) > Ex. ThusaE, (£, P) = Ex has a unique solution.

Note that for anyy € [0, 1]

’YEe(Ra Ey,aq, P, H) + (1 - ’Y)Ee(Ra Ey, oy, P, H)

. 7 [aC(H25, P, Qu) + Raa = Rt (1= a)T (15,11
Qe e Lo Qultn T (1= ) [oaC(52, P, Qy) + Ry = R+ (1= )T (i, T0)|

)
laZfl2a Ta @b

R1b>R2b>R Tb>0
Oéac( laa PQ )+R2a_R+Ta§Ex

C(HL, P.Qs)+ Ray— R+T, < Ex
i T
min a (=22, P,Q,) + R, — R+ F(—H)
Q’Y?Rl’WRZwTw: v ( Fy) v ( 'Y) 1-a,?
R17>R2—Y>R T>0
a’YC( PQ7)+R2—Y—R+T <FE,

= e(Ra EX7a’ya P7 H)

v

whereo,, T, Q~, R1, and Ry, are given by,
Ay = YQq + (1 - ’Y)Oéb T’y = ’YTa + (1 - ’Y)Tb Q'y = %Qa + %Qb
Riy =7Ria+ (1 —7)Ryy Roy = vRaq + (1 —v)Ryy

The inequality follows from convexity arguments analogémshe ones used in the proof of Lemia 9. [ |

*'The equatiomE, (£, P) = 0 has multiple solutions; we choose the minimum of those toheent i.e.,a*(R,0, P) = I(PRW)'
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C. maxy Fe(R, Ex,a, P,II) > maxy Ee(R, Ex, 1, P,II), VP € P (R, Ex,«)

Let us first consider a control phase tyfe (z;, 22) = P(fil)gx(z)ﬂ“)l)im and establish,
Eo(R, Ex,a, PIIp) > Eo(R, Eyx,1,P,TIp) VP € P (R, Ex,q) (119)

First consider

D(UIWalllp) = mstprar D Plan)P(e) Y Ulylar,m)log Gt

T1,T2:T1 £ T

T1,T2 Vu Ty
==ty 2. P@P@)), Ulln,e) [log Tt — log vy ]

Z1,T2:T1 ;A!L'Q

> ey || (P V) + D (Wl WiP)] (120)
where the last step follows from the log sum inequality amehdition probability matrice¥;; and Vi, are given by
Vu(ylz) = W(yla) P(z1) + Z U(ylz1, 22) P(2)

Vo (ylan) = W (ylan) P() + Z U(ylar, z2) P(z1).
Using a similar line of reasoning we get,
D (U Willlp) = gty [0 (V| W1P) +1(P V)] (121)

Note that for all P € P (R, Ex, «) if use the inequalities_(120) anfl (121) together the dedinif £, given in
equation[(I¥) and(19) we get,
Ee(R7 EX7 Q(R, EX)7 P7 HP) > EE(R7 EX7 17 P7 HP) + 5P

for somedp > 0. Consequently for alP € P (R, Fx, «), equation[(119) holds.
Note that for allll and for all P € P (R, Ex, &)

Ee(R7 EX7 17P7 HP) = Ee(R7 EX7 17P7 H)

Thus we have:
max Eo(R, Ex,a, P,1I) > max Eo(R, Ex, 1, P,1I) VP € P(R,Ex, ). (122)
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