
Smoothing a Program Soundly and Robustly?

Swarat Chaudhuri1 and Armando Solar-Lezama2

1 Rice University
2 MIT

Abstract. We study the foundations of smooth interpretation, a recently-
proposed program approximation scheme that facilitates the use of local
numerical search techniques (e.g., gradient descent) in program analy-
sis and synthesis. While the popular techniques for local optimization
works well only on relatively smooth functions, functions encoded by
real-world programs are infested with discontinuities and local irregular
features. Smooth interpretation attenuates such features by taking the
convolution of the program with a Gaussian function, effectively replac-
ing discontinuous switches in the program by continuous transitions. In
doing so, it extends to programs the notion of Gaussian smoothing, a
popular signal-processing technique used to filter noise and discontinu-
ities from signals.
Exact Gaussian smoothing of programs is undecidable, so algorithmic im-
plementations of smooth interpretation must necessarily be approximate.
In this paper, we characterize the approximations carried out by such
algorithms. First, we identify three correctness properties—soundness,
robustness, and β-robustness—that an approximate smooth interpreter
should satisfy. In particular, a smooth interpreter is sound if it computes
an abstraction of a program’s “smoothed” semantics, and robust if it has
arbitrary-order derivatives in the input variables at every point in its
input space. Second, we describe the design of an approximate smooth
interpreter that provably satisfies these properties. The interpreter com-
bines program abstraction using a new domain with symbolic calculation
of convolution.

1 Introduction

Smooth interpretation [5] is a recently-proposed program transformation permit-
ting more effective use of numerical optimization in automated reasoning about
programs. Many problems in program analysis and synthesis can be framed as
optimization questions—examples include finding program parameters so that
the resultant program behavior is as close as possible to a specification [5], or
the generation of tests that maximize the number of times a certain operation is
executed [2]. But rarely are such problems solvable using off-the-shelf numerical
optimization engines. This is because search spaces arising in real-world pro-
grams are rife with discontinuities—on such spaces, local search algorithms like
gradient descent or Newton iteration find themselves unable to converge on a
good solution. It is this predicament that smooth interpretation tries to resolve.
? This work was supported by NSF CAREER Award #0953507 and the MIT CSAIL.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9590575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To aid numerical search over the input space of a program P , smooth inter-
pretation transforms P into a smooth mathematical function. For example, if
the semantics of P (viewed as a function P (x1, x2) of inputs x1 and x2) is the
discontinuous map in Fig. 1-(a), the “smoothed” version of P will typically have
semantics as in Fig. 1-(b). More precisely, smooth interpretation extends to pro-
grams the notion of Gaussian smoothing [13], an elementary signal-processing
technique for filtering out noise and discontinuities from ill-behaved real-world
signals. To perform Gaussian smoothing of a signal, one takes the convolution
of the signal with a Gaussian function. Likewise, to smooth a program, we take
the convolution of the denotational semantics of P with a Gaussian function.

The smoothing transformation is parameterized by a

(b)

x1

x2

z

(a)

x1

x2

P (x1, x2)

P (x1, x2)

Fig. 1. (a) A
discontinuous pro-
gram. (b) After
smoothing.

value β which controls the degree of smoothing. Numer-
ical search algorithms will converge faster and find bet-
ter local minima when β is high and the function is very
smooth, but a bigger β also introduces imprecision, as the
minima that is found when using a big β may be far from
the real minima. The numerical optimization algorithm
from [5] addresses this by starting with a high value of
β then reducing it every time a minima is found. When
β is reduced, the location of the last minima is used as a
starting point for a new round of numerical search.

In our previous work, we showed the effectiveness of
this approach for the problem of embedded controller syn-
thesis. Specifically, we showed that the algorithm defined
above could find optimal parameters for interesting con-
trollers where simple numerical search would fail. But
the benefits of the technique are not limited to parame-
ter synthesis; smooth interpretation constitutes a wholly
new form of program approximation, and is likely to have
broad impact by opening the door to a wide array of ap-
plications of numerical optimization in program analysis.

Smooth interpretation exhibits many parallels with program abstraction, but
it also introduces some new and important concerns. The goal of this paper is
to understand these concerns by analyzing the foundations of smooth interpre-
tation. In particular, we seek to characterize the approximations that must be
made by algorithmic implementations of program smoothing given that comput-
ing the exact Gaussian convolution of an arbitrary program is undecidable.

Our concrete contributions are the following:

1. We identify three correctness properties that an algorithmic (and therefore
approximate) implementation of smooth interpretation should ideally satisfy:
soundness, robustness, and β-robustness.
While the notion of soundness here is related to the corresponding notion
in program abstraction, the two notions are semantically quite different: a
sound smooth interpreter computes an abstraction of a “smoothed” semantics
of programs. As for robustness, this property states that the function com-

puted by an approximate smooth interpreter has a linearly bounded deriva-
tive at every point in its input space—i.e., that even at the points in the input
space where P is discontinuous or non-differentiable, the smoothed version
of P is only as “steep” as a quadratic function. This property allows gradient-
based optimization techniques to be applied to the program—indeed, many
widely used algorithms for gradient-based nonlinear optimization [11, 8] are
known to perform best under such a guarantee.
As for β-robustness, this property demands that the output of the smooth
interpreter has a small partial derivative in β. The property is important
to the success of the iterative algorithm described above, which relies on
repeated numerical search with progressively smaller values of β. Without
β-robustness, it would be possible for the approximation to change dramat-
ically with small changes to β, making the algorithm impractical.

2. We give a concrete design for an approximate smooth interpreter (called
SmoothP (x, β)) that satisfies the above properties. The framework combines
symbolic computation of convolution with abstract interpretation: when
asked to smooth a program P , SmoothP (x, β) uses an abstract interpreter
to approximate P by a pair of simpler programs Pinf and Psup , then per-
forms a symbolic computation on these approximations. The result of this
computation is taken as the semantics of the smoothed version of P .
The soundness of our method relies on the insight that Gaussian convolution
is a monotone map on the pointwise partial order of vector functions. We
establish robustness and β-robustness under a weak assumption about β,
by bounding the derivative of a convolution. Thus, the techniques used to
prove our analysis correct are very different from those in traditional pro-
gram analysis. Also, so far as we know, the abstract domain used in our
construction is new to the program analysis literature.

The paper is structured as follows. In Sec. 2, we recapitulate the elements of
smooth interpretation and set up the programming language machinery needed
for our subsequent development. In Sec. 3, we introduce our correctness require-
ments for smoothing; in Sec. 4, we present our framework for smooth interpre-
tation. Sec. 5 studies the properties of interpreters derived from this framework.
Our discussion of related work, as well as our conclusions, appear in Sec. 6.

2 Smooth interpretation

We begin by fixing, for the rest of the paper, a simple language of programs.
Our programs are written in a flow-graph syntax [9], and maintain their state
in k real-valued variables named x1 through xk.

Formally, let Re denote the set of linear arithmetic expressions over x1, . . . , xk,
encoding linear transformations of the type Rk → Rk. Also, let Be the set of
boolean expressions of the form Q > 0 or Q ≥ 0, where Q ∈ Rk → R. A program
P in our language is a directed graph. Nodes of this graph can be of five types:

– An entry node has one outgoing edge and no incoming edge, and an exit
node has one incoming edge and no outgoing edge. A program has a single
entry node and a single exit node.

– An assignment node has a single incoming edge and single outgoing edge.
Each assignment node u is labeled with an expression E ∈ Re. Intuitively,
this expression is the r-value of the assignment.

– A test node u has one incoming edge and two outgoing edges (known as the
true and false-edges), and is labeled by a boolean expression Test(u) ∈ Be.
Intuitively, u is a conditional branch.

– A junction node has a single outgoing edge and two incoming edges.

For example, Fig. 2 depicts a simple program over a single variable.

Semantics. The intuitive op-

test: x > 0!

x := x + 3!

x := 2 * x!

exit

entry

!"#$% &'()$%

test: x < 10!

x := x + 1!

{true ⇒ x + 2}

{true ⇒ x}

{x + 2 > 0 ⇒
x + 2}

{x + 2 ≤ 0 ⇒
x + 2}

{x + 2 ≤ 0
⇒ x + 5}

{(x + 2 ≤ 0) ∧ (x + 5 < 10)
⇒ x + 5}

{ (x + 2 ≤ 0) ∧ (x + 5 < 10)
⇒ x + 6,

x + 2 > 0 ⇒ 2x + 4 }

!"#$%
&'()$%

x := x + 2!

Fig. 2. A program and its collecting semantics

erational semantics of P is that
it starts executing at its entry
node, taking transitions along
the edges, and terminates at
the exit node. For our subse-
quent development, however, a
denotational semantics as well
as an abstract-interpretation-
style collecting semantics are
more appropriate than an op-
erational one. Now we define
these semantics.

Let a state of P be a vector
x = 〈x1, . . . , xk〉 ∈ Rk, where
each xi captures the value of
the variable xi. For each arith-
metic expression E ∈ Re, the
denotational semantics [[E]](x) :
Rk → Rk produces the value
of E at the state x. For each

B ∈ Be, the denotation function [[B]] produces [[B]](x) = 0 if B is false at the
state x, and 1 otherwise.

To define the semantics of P , we need some more machinery. Let a guarded
linear expression be an expression of the form

if B then F else 0,

where B is a conjunction of linear inequalities over the variables x1, . . . , xk, and
F is a linear arithmetic expression. We abbreviate the above expression by the
notation (B ⇒ F), and lift the semantic function [[◦]] to such expressions:

[[B ⇒ F]](x) = if [[B]](x) then [[F]](x) else 0 = [[B]](x) · [[F]](x).
The collecting semantics of P is given by a map ΨP that associates with each

node u of P a set ΨP (u) of guarded linear expressions. Intuitively, each such

expression captures the computation carried out along a path in P ending at u.
As the program P can have “loops,” ΨP (u) is potentially infinite.

In more detail, we define the sets ΨP (u) so that they form the least fixpoint
of a monotone map. For each node u of P , ΨP (u) is the least set of guarded
linear expressions satisfying the following conditions:

– If u is the entry node and its out-edge goes to v, then {(true ⇒ x)} ⊆ ΨP (v).
– Suppose u is an assignment node labeled by E and its outgoing edge leads

to v. Let ◦ be the usual composition operator over expressions. Then for all
(B ⇒ F) ∈ ΨP (u), the expression B ⇒ (E ◦ F) is in ΨP (v).

– Suppose u is a branch node, and let vt and vf respectively be the targets
of the true- and false-edges out of it. Let Qt = Test(u) ◦ F and Qf =
(¬Test(u)) ◦ F ; then, for all (B ⇒ F) ∈ ΨP (u), we have

(B ∧Qt)⇒ F ∈ ΨP (vt) (B ∧Qf)⇒ F ∈ ΨP (vf).
– If u is a junction node and its outgoing edge leads to v, then ΨP (u) ⊆ ΨP (v).
For example, consider the program in Fig. 2. Most nodes u of this program

are labeled with ΨP (u). We note that one of the three control flow paths to the
exit node ex is infeasible; as a result ΨP (ex) has two formulas rather than three.

The denotational semantics [[P]] of P is now defined using the above collecting
semantics. Let ex be the exit node of P . We define:

[[P]](x) =
∑

(B⇒F)∈ΨP (ex)

[[B]](x) · [[F]](x).

Intuitively, for any x ∈ Rk, [[P]](x) is the output of P on input x.

Smoothed semantics. Now we recall the definition [5] of the smoothed se-
mantics of programs, which is the semantics that smooth interpretation seeks to
compute. To avoid confusion, the previously defined semantics is from now on
known as the crisp semantics.

Let β > 0 be a real-valued smoothing parameter, and let N (x, β) be the
joint density function of k independent normal variables, each with mean 0 and
standard deviation β. In more detail, letting x = 〈x1, . . . , xk〉 as before, N (x, β)

is given by N (x, β) = 1
(2πβ2)k/2

e
−

∑k
i=1 x

2
i

2β2 =
∏
i=0..kN (xi).

The smoothed semantics [[P]]β : Rk → Rk of a program P with respect to β is
obtained by taking the convolution of N and the crisp semantics of P as shown
be the following equation.

[[P]]β(x) =
∫
r∈Rk [[P]](r) N (x− r, β) dr

=
∑

(B⇒F)∈ΨP (ex)

∫
r∈Rk [[B ⇒ F]](r) N (x− r, β) dr.

(1)

As before, ex refers to the exit node of P . Note that because convolution is a
commutative operator, we have the property

[[P]]β(x) =

∫
r∈Rk

[[P]](x− r) N (r, β) dr.

When β is clear from context, we denote [[P]]β by [[P]], and N (x, β) by N (x).
One of the properties of smoothing is that even if [[P]] is highly discontinuous,

[[P]] is a smooth mathematical function that has all its derivatives defined at every
point in Rk. The smoothing parameter β can be used to control the extent to
which [[P]] is smoothed by the above operation—the higher the value of β, the
greater the extent of smoothing.

Example 1. Consider a program P over one variable x such that [[P]](x) = if x >
a then 1 else 0, where a ∈ R. Let erf be the Gauss error function. We have

[[P]](x) =
∫∞
−∞[[P]](y)N (x− y) dy = 0 +

∫∞
a
N (x− y) dy

=
∫∞
0

1√
2πβ

e−(y−x+a)
2/2β2

dy =
1+erf(x−a√

2β
)

2 .

Figure 3-(a) plots the crisp semantics [[P]] of P with a = 2, as well as [[P]]
for β = 0.5 and β = 3. While [[P]] has a discontinuous “step,” [[P]] is a smooth
S-shaped curve, or a sigmoid. Note that as we decrease the “tuning knob” β, the
sigmoid [[P]] becomes steeper and steeper, and at the limit, approaches [[P]].

Now consider the program P ′ such that [[P ′]](x) = if a < x < c then 1 else 0,
where a, c ∈ R and a < c. The “bump-shaped” functions obtained by smoothing
P ′ are plotted in Figure 3-(b) (here a = −5, c = 5, and β has two values 0.5 and
2). Note how the discontinuities are smoothed.

Now we consider an even more interesting program, one that is key to the
main results of this paper. Consider [[P ′′]](x) = [[B ⇒ F]](x), where B is the
boolean expression a < x < b for constants a, b, and F (x) = α · x + γ for
constants α, γ. In this case, the smoothed semantics of P ′′ can be evaluated
symbolically as follows:

[[P ′′]](x) =

∫ b

a

(αy + γ) N (x− y) dy = α

∫ b

a

y N (x− y) dy + γ

∫ b

a

N (x− y) dy

=
(α x+ γ) · (erf(b−x√

2β
)− erf(a−x√

2β
))

2
+
β α (e−(a−x)

2/2β2 − e−(b−x)2/2β2

)√
2π

.

Smooth interpretation.We

Fig. 3. (a) A sigmoid. (b) A bump.

use the phrase “smooth inter-
preter of a program P ” to re-
fer to an algorithm that can
execute P according to the
smoothed semantics [[◦]]β . The
primary application of smooth
interpretation is to enable the

use of numerical search for parameter optimization problems. For example, sup-
pose our goal is to compute an input x for which [[P]](x) is minimal. For a vast
number of real-world programs, discontinuities in [[P]] would preclude the use
of local numerical methods in this minimization problem. By eliminating such
discontinuities, smooth interpretation can make numerical search practical.

In a way, smooth interpretation is to numerical optimization what abstraction
is to model checking: a mechanism to approximate challenging local transitions
in a program-derived search space. But the smoothed semantics that we use
is very different from the collecting semantics used in abstraction. Rather, the
smoothed semantics of P can be seen to be the expectation of a probabilistic
semantics of P .

Consider an input x ∈ Rk of P , and suppose that, before executing P ,
we randomly perturb x following a k-D normal distribution with independent
components and standard deviation β. Thus, the input of P is now a ran-
dom variable X following a normal distribution N with mean x and similar
shape as the one used in the perturbation. Now let us execute P on X with
crisp semantics. Consider the expectation of the output [[P]](X): Exp [[[P]](X)] =∫∞
−∞[[P]](r) N (x− r) dr = [[P]](x). Here [[P]] is computed using the Gaussian N .
In other words, the smoothed semantics of P is the expected crisp semantics of
P under normally distributed perturbations to the program inputs.

Now that we have defined how a smooth interpreter must behave, consider
the question of how to algorithmically implement such an interpreter. On any
input x, an idealized smooth interpreter for P must compute [[P]]β(x)—in other
words, integrate the semantics of P over a real space. This problem is of course
undecidable in general; therefore, any algorithmic implementation of a smooth
interpreter must necessarily be approximate. But when do we judge such an
approximation to be “correct”? Now we proceed to answer this question.

3 Approximate smooth interpreters and their correctness

In this section, we define three correctness properties for algorithmic implemen-
tations of smooth interpretation: soundness, robustness, and β-robustness. While
an algorithm for smooth interpretation of a program must necessarily be approx-
imate, these desiderata impose limits on the approximations that it makes.

Formally, we let an approximate smooth interpreter SmoothP (x, β) for P be
an algorithm with two inputs: an input x ∈ Rk and a smoothing parameter
β ∈ R+. Given these, SmoothP returns a symbolic representation of a set Y ⊆
Rk. To avoid notation-heavy analytic machinery, we restrict the sets returned by
SmoothP to be intervals in Rk. Recall that such an interval is a Cartesian product
〈[l1, u1], . . . , [lk, uk]〉 of intervals over R; the interval can also be represented
more conveniently as a pair of vectors [〈l1, . . . , lk〉, 〈u1, . . . , uk〉]; from now on,
we denote the set of all such intervals by I.

Soundness. Just as a traditional static analysis of P is sound if it computes
an abstraction of the crisp semantics of P , an approximate smooth interpreter
is sound if it abstracts the smoothed semantics of P . In other words, the in-
terval returned by SmoothP on any input x bounds the output of the idealized
smoothed version of P on x. We define:

Definition 1 (Soundness). An approximate smooth interpreter SmoothP :
Rk × R+ → I is sound iff for all x ∈ Rk, [[P]]β(x) ∈ SmoothP (x, β).

Robustness. A second requirement, critical for smooth interpreters but less
relevant in abstract interpretation, is robustness. This property asserts that for all
x and β, SmoothP (x, β) has derivatives of all orders, and that further, its partial
derivative with respect to the component scalars of x is small—i.e., bounded by
a function linear in x and β.

The first of the two requirements above simply asserts that SmoothP (x, β)
computes a smooth function, in spite of all the approximations carried out for
computability. The rationale behind the second requirement is apparent when
we consider smooth interpretation in the broader context of local numerical
optimization of programs. A large number of numerical search routines work by
sampling the input space under the expectation that the derivative around each
sample point is well defined. Our requirement guarantees this.

In fact, by putting a linear bound on the derivative of SmoothP , we give
a stronger guarantee: the absence of regions of extremely steep descent that
can lead to numerical instability. Indeed, robustness implies that even at the
points in the input space where P is discontinuous, the gradient of SmoothP is
Lipschitz-continuous—i.e., SmoothP is only as “steep” as a quadratic function.
Many algorithms for nonlinear optimization [11, 8] demand a guarantee of this
sort for best performance. As we will see later, we can implement a smooth
interpreter that is robust (under a weak additional assumption) even in our
strong sense. Let us now define:

Definition 2 (Robustness). SmoothP (x, β) is robust if ∂
∂ xi

SmoothP (x, β) ex-
ists at all x = 〈x1, . . . , xk〉 and for all i, and there exists a linear function K(x, β)
in x that satisfies ‖ ∂

∂ xi
SmoothP (x, β)‖ ≤ K(x, β) for all x, i, β.

The definition above abuses notation somewhat because, as you may recall,
SmoothP (x, β) actually produces a Cartesian product of intervals, as opposed to
a real number; so the derivative ∂

∂ xi
SmoothP (x, β) is actually a pair of vectors

[〈 ∂
∂ xi

l1, . . . ,
∂
∂ xi

lk〉, 〈 ∂
∂ xi

u1, . . . ,
∂
∂ xi

uk〉]. The measure for such a pair of vectors
is a simple Euclidian measure that adds the squares of each of the components.

β-robustness. Another correctness property for an approximate smooth inter-
preter is that it produces functions that have small partial derivatives with re-
spect to the smoothing parameter β. In more detail, the derivative ∂SmoothP (x,β)

∂β
must be bounded by a function linear in x and β. We consider this property im-
portant because of the way our numerical search algorithm from [5] uses smooth-
ing: starting with a large β and progressively reducing it, improving the quality
of the approximation in a way akin to the abstraction-refinement loop in pro-
gram verification. The property of β-robustness guarantees that the functions
optimized in two successive iterations of this process are not wildly different. In
other words, the optima of one iteration of the process do not become entirely
suboptimal in the next iteration.

Formally, we define the property of β-robustness as follows:

Definition 3 (Robustness in β). SmoothP (x, β) is robust in β if the partial
derivative ∂

∂ βSmoothP (x, β) exists for all β > 0, and there is a linear function
K(x, β) such that for all x and β, ‖ ∂

∂ βSmoothP (x, β)‖ ≤ K(x, β).

1. Given a program P for which an approximate smooth interpreter is to be con-
structed, use abstract interpretation to obtain programs Psup and Pinf such that:
– Psup and Pinf are interval-guarded linear programs.
– [[Pinf]] � [[P]] � [[Psup]] (here � is the pointwise ordering over functions).

2. Construct symbolic representations of [[Psup]]β and [[Pinf]]β .
3. Let the approximate smooth interpreter for P be a function that on any x and β,

returns the Cartesian interval [[[Pinf]]β(x), [[Psup]]β(x)].

Fig. 4. The approximate smooth interpretation algorithm.

4 Designing a smooth interpreter

Now we present a framework for approximate smooth interpretation that satisfies
the correctness properties defined in the previous section. We exploit the fact that
under certain restrictions on a program P , it is possible to build an exact smooth
interpreter for P—i.e., an algorithm that computes the smoothed semantics [[P]]
exactly. The idea behind our construction is to approximate P by programs for
which exact smooth interpreters can be constructed.

Let us consider guarded linear expressions (defined in Sec. 2); recall that
for nodes u of P , ΨP (u) is a possibly-infinite set of guarded linear expressions
(B ⇒ F). By Eqn. (1), computing the exact smoothed semantics of P amounts
to computing a sum of Gaussian convolutions of guarded linear expressions.

Unfortunately, the convolution integral of a general guarded linear expression
does not have a clean symbolic solution. We overcome this problem by abstract-
ing each such expression using an interval-guarded linear expression Bint ⇒ F ,
where Bint is an interval in Rk obtained through a Cartesian abstraction of B.
From an argument as in Example 1, if an expression is interval-guarded and
linear, then its exact smoothed semantics can be computed in closed-form.

The above strategy alone is not enough to achieve convergence, given that
ΨP (u) can be infinite. Hence we use pairs of interval-guarded linear expressions
of the form 〈(Bint ⇒ Fsup), (Bint ⇒ Finf)〉 to abstract unbounded sets of linear
expressions guarded by subintervals of Bint . Such a tuple is known as an interval-
guarded bounding expression, and abbreviated by the notation 〈Bint , Fsup , Finf 〉.

To see what such an abstraction means, let us define the pointwise ordering
relation� among functions of type Rk → Rk as follows: F1 � F2 iff for all x ∈ Rk,
we have F1(x) ≤ F2(x). We lift this function to arithmetic expressions E, letting
E1 � E2 iff [[E1]] � [[E2]]. We guarantee that if 〈Bint , Fsup , Finf 〉 abstracts a set
S of interval-guarded linear expressions, then for all (B ⇒ F) ∈ S, we have

(Bint ⇒ Finf) � (B ⇒ F) � (Bint ⇒ Fsup).

In fact, rather than tracking just a single interval-guarded bounding expres-
sion, an abstract state in our framework tracks bounded sets of such expressions.
Using this abstraction, it is possible to approximate the semantics [[P]] of P by
two programs Psup and Pinf , whose semantics can be represented as a sum of a

bounded number of terms, each term being an interval-guarded linear expression.
(We call such programs interval-guarded linear programs.)

The smoothed semantics of Psup and Pinf can be computed in closed form,
leading to an approximate smooth interpreter that is sketched in Fig. 4. In the
rest of this section, we complete the above algorithm by describing the abstract
interpreter in Step (1) and the analytic calculation in Step (2).

Step 1: Abstraction using interval-guarded bounding expressions

Abstract domain. An abstract state σ in our semantics is either a bounded-
sized set of interval-guarded bounding expressions (we let N be a bound on the
number of elements in such a set), or the special symbol >. The set of all abstract
states is denoted by A.

As usual, we define a partial order over the domain A. Before defining this
order, let us define a partial order E over the universe IGB that consists of all
interval-guarded bounding expressions, as well as >. For all σ, we have σ E >.
We also have:

〈B,Fsup , Finf 〉 E 〈B′, F ′sup , F ′inf 〉 iff B ⇒ B′ and
(B′ ∧B)⇒ (Fsup � F ′sup) ∧ (F ′inf � Finf) and
(B′ ∧ ¬B)⇒ (0 � F ′sup) ∧ (F ′inf � 0).

Intuitively, in the above,B is a subinterval ofB′, and the expressions (B′ ⇒ F ′inf)
and (B′ ⇒ F ′sup) define more relaxed bounds than (B ⇒ Finf) and (B ⇒ Fsup).

Note that E is not a lattice relation—e.g., the interval-guarded expressions
(1 < x < 2)⇒ 1 and (3 < x < 4)⇒ 5 do not have a unique least upper bound.
However, it is easy to give an algorithm tIGB that, given H1, H2 ∈ IGB , returns
a minimal, albeit nondeterministic, upper bound H of H1 and H2 (i.e., H1 E H,
H2 E H, and there is no H ′ 6= H such that H ′ E H, H1 E H ′, and H2 E H ′).

Now can we define the partial order v over A that we use for abstract
interpretation. For σ1, σ2 ∈ A, we have σ1 v σ2 iff either σ2 = >, or if for
all H ∈ σ1, there exists H ′ ∈ σ2 such that H E H ′.

Once again, we can construct an algorithm tA that, given σ1, σ2 ∈ A, returns
a minimal upper bound σ for σ1 and σ2. If σ1 or σ2 equals >, the algorithm
simply returns >. Otherwise, it executes the following program:

1. Let σ′ := σ1 ∪ σ2.
2. While |σ′| > N , repeatedly: (a) Nondeterministically select two elements
H1, H2 ∈ σ′; (b) assign σ′ := σ′ \ {H1, H2} ∪ (H1 tIGB H2);

3. Return σ′.

Abstraction. The abstract semantics of the program P is given by a map Ψ#
P

that associates an abstract state Ψ#
P (u) with each node u of P . To define this

semantics, we need some more machinery. First, we need a way to capture the
effect of an assignment node labeled by an expression E, on an abstract state
σ. To this end, we define a notation (E ◦ σ) that denotes the composition of

E and σ. We have E ◦ > = > for all E. If σ 6= >, then we have (E ◦ σ) =
{〈B, (E ◦ Fsup), (E ◦ Finf)〉 : 〈B,Fsup , Finf 〉 ∈ σ}. Applied to the abstract state
σ, the assignment produces the abstract state (E ◦ σ).

Second, we must be able to propagate an abstract state σ through a test node
labeled by the boolean expression C. To achieve this, we define, for each abstract
state σ and boolean expression C, the composition (C ◦ σ) of C and σ. In fact,
we begin by defining the composition of (C ◦H), where H = 〈B,Fsup , Finf 〉 is
an interval-guarded boolean expression.

The idea here is that if a test node is labeled

Fsup(x)

Finf (x)

C

Fig. 5. Propagation through
test C.

by C and H reaches the node, then (C ◦ H) is
propagated along the true-branch. For simplic-
ity, let us start with the case B = true. Clearly,
(C ◦H) should be of the form 〈B′, Fsup , Finf 〉 for
some B′. To see what B′ should be, consider the
scenario in Fig. 5, which shows the points Fsup(x)
and Finf (x) for a fixed x ∈ R2. For all F such that
Finf � F � Fsup , the point F (x) must lie within
the dashed box. So long as an “extreme point” of
this box satisfies the constraint C (the region to
the left of the inclined line), x should satisfy B′.

We need some more notation. For each func-
tion F : Rk → Rk, let us define a collection of “components” F 1, . . . , F k such
that for all i, F i(x) = (F (x))(i). A collection of component functions F1, . . . , Fk :
Rk → R can be “combined” into a function F = 〈F1, . . . , Fk〉 : Rk → Rk, where
for all x, F (x) = 〈F1(x), . . . , Fk(x)〉. The extreme points of our dashed box can
now be seen to be obtained by taking all possible combinations of components
from Fsup and Finf and combining those functions. Then the property that some
extreme point of the dashed box of Fig. 5 satisfies C is captured by the formula

(C ◦ 〈F 1
sup , F

2
sup〉) ∨ (C ◦ 〈F 1

sup , F
2
inf 〉) ∨ (C ◦ 〈F 1

inf , F
2
sup〉) ∨ (C ◦ 〈F 1

inf , F
2
inf 〉).

The above can now be generalized to k-dimensions and the case B 6= true.
The composition of C with an interval-guarded boolean expression 〈B,Fsup , Finf 〉
is defined to be C ◦ 〈B,Fsup , Finf 〉 = 〈B′, Fsup , Finf 〉, where

B′ = B ∧

 ∨
Gi∈{F isup ,F iinf }

(C ◦ 〈G1, . . . , Gk〉)

 .

Let us now lift this composition operator to abstract states. We define C ◦
> = > for all C. For all σ 6= >, we have (C ◦ σ) = {C ◦ 〈B,Fsup , Finf 〉 :
〈B,Fsup , Finf 〉 ∈ σ}. Finally, for any boolean expression C, let us define C# to
be an interval that overapproximates C.

The abstract semantics Ψ#
P of P is now defined using the algorithm in Fig-

ure 6. We note that Ψ#
P can have different values depending on the sequence

of nondeterministic choices made by our upper-bound operators. However, ev-
ery resolution of such choices leads to an abstract semantics that can support a

1. If u is the entry node of P and its outgoing edge leads to v, then assign Ψ#
P (v) :=

{〈true,x,x〉}. Assign Ψ#
P (v′) = ∅ for every other node v′.

2. Until fixpoint, repeat:
(a) If u is an assignment node labeled by E and its outgoing edge leads to v, then

assign Ψ#
P (v) := Ψ#

P (v) t (E ◦ Ψ#
P (u)).

(b) Suppose u is a branch node; then let vt and vf respectively be the targets of
the true- and false-edges out of it, and let Qt = Test(u) and Qf = ¬Test(u)

Ψ#
P (vt) := Ψ#

P (vt) t {Qt ◦ 〈B,Fsup , Finf 〉 : 〈B,Fsup , Finf 〉 ∈ Ψ#
P (u)}

Ψ#
P (vf) := Ψ#

P (vf) t {Qf ◦ 〈B,Fsup , Finf 〉 : 〈B,Fsup , Finf 〉 ∈ Ψ#
P (u)}

(c) If u is a junction node with an out-edge to v, then Ψ#
P (v) := Ψ#

P (u) t Ψ#
P (v).

Fig. 6. Algorithm to compute Ψ#
P

.

sound and robust approximate smooth interpreter. Consequently, from now on,
we will ignore the fact that Ψ#

P actually represents a family of maps, and instead
view it as a function of P .

Widening. As our abstract domain is infinite, our fixpoint computation does not
guarantee termination. For termination of abstract interpretation, our domain
needs a widening operator [9]. For example, one such operator 5 can be defined
as follows.

First we define 5 on interval-guarded bounding expressions. Let us suppose
〈Bw, F ′′sup , F ′′inf 〉 = 〈B,Fsup , Finf 〉 5 〈B′, F ′sup , F ′inf 〉. Then we have:

– Bw = B 5int B′, where 5int is the standard widening operator for the
interval domain [9].

– F ′′sup is a minimal function in the pointwise order � such that for all x ∈ Bw,
we have F ′′sup(x) ≥ (B ⇒ Fsup)(x) and F ′′sup(x) ≥ (B′ ⇒ F ′sup)(x).

– F ′′inf is a maximal function such that for all x ∈ Bw, we have F ′′sup(x) ≤
(B ⇒ Finf)(x) and F ′′inf (x) ≤ (B′ ⇒ F ′inf)(x).

This operator is now lifted to abstract states in the natural way.

Computing Psup and Pinf . Now we can compute the interval-guarded linear
programs Psup and Pinf that bound P . Let ex be the exit node of P , and let
Ψ#
P (ex) = {〈B1, F 1

sup , F
1
inf 〉, . . . , 〈Bn, Fnsup , Fninf 〉} for some n ≤ N . Then, the

symbolic representation of the semantics [[Psup]] and [[Pinf]] of Psup and Pinf is
as follows:

[[Psup]] =
∑N
i [[Bi ⇒ F isup]] [[Pinf]] =

∑N
i [[Bi ⇒ F iinf]].

Step 2: Symbolic convolution of interval-guarded linear programs

Now we give a closed-form expression for the smoothed semantics of Psup (the
case of [[Pinf]] is symmetric). We have:

[[Psup]](x) =

∫
r∈Rk

[[Psup]](r) N (x−r) dr =
∑
i

∫
r∈Rk

[[Bi ⇒ F isup]](r) N (x−r) dr.

To solve this integral, we first observe that by our assumptions, N is the
joint distribution of k univariate independent Gaussians with the same standard
deviation β. Therefore, we can split N into a product of univariate Gaussians
N1, . . . ,Nk, where the Gaussian Nj-th ranges over xj . Letting rj be the j-th
component of r, we have:∫

r∈Rk [[B
i ⇒ F isup]](r) N (x− r) dr =∫∞
−∞ . . . (

∫∞
−∞[[Bi ⇒ F isup]](r) N1(x1 − r1) dr1) . . . Nk(xk − rk)drk.

Thus, due to independence of the xj ’s, it is possible to reduce the vector integral
involved in convolution to a sequence of integrals over one variable. Each of these
integrals will be of the form

∫∞
−∞[[Bi ⇒ F isup]](r) Nj(xj − rj) drj . Projecting the

interval Bi over the axis for xj leaves us with an integral like the one we solved
analytically in Example 1. This allows us to represent the result of smooth
interpretation as a finite sum of closed form expressions.

5 Properties of the interpreter

Now we prove that the algorithm as defined above actually satisfies the properties
claimed in Sec. 3. We first establish that the approximate smooth interpreter
presented in this paper is sound. Next we show that under a weak assumption
about β, it is robust and β-robust as well.

Theorem 1. The approximate smooth interpreter of Figure 4 is sound.

Proof: In order to prove soundness, we need to prove that [[P]]β(x) ∈ SmoothP (x, β).
This follows directly from the soundness of abstract interpretation thanks to a
property of Gaussian convolution: that it is a monotone map on the pointwise
partial order � of functions between Rk.

First, we have seen how to use abstract interpretation to produce two pro-
grams Pinf and Psup such that [[Pinf]] � [[P]] � [[Psup]].

Now, we defined SmoothP (x, β) as the interval [[[Pinf]](x), [[Psup]](x)]; there-
fore, all we have to do to prove soundness is to show that [[Pinf]] � [[P]]β � [[Psup]].
In other words, we need to show that Gaussian smoothing preserves the ordering
among functions.

This follows directly from a property of convolution. Let F � G for functions
F,G : Rk → Rk, and H : Rk → Rk be any function satisfying H(x) > 0 for
all x (note that the Gaussian function satisfies this property). Also, let FH and
GH be respectively the convolutions of F and H, and G and H. Then we have
F ′ � H ′.

Theorem 2. For every constant ε > 0, the approximate smooth interpreter of
Figure 4 is robust in the region β > ε.

Proof: To prove robustness of SmoothP , it suffices to show that both [[Pinf]]

and [[Psup]] satisfy the robustness condition. We focus on proving [[Psup]] robust,
since the proof for [[Pinf]] is symmetric. Now, we know that [[Psup]] has the form
[[Psup]](x) =

∑N
i=0Bi(x)Fi(x), where Bi(x) is an interval in Rk and Fi(x) is a

linear function. Hence we have:

[[Psup]](x) =

∫
r∈Rk

(

N∑
i=0

Bi(r) · Fi(r)) · N (r− x, β) dr.

where N is the joint density function of k independent 1-D Gaussians. It is easy
to see that this function is differentiable arbitrarily many times in xj . We have:

∂[[Psup]](x)

∂xj
=

∫
r∈Rk

(

N∑
i=0

Bi(r) · Fi(r)) · (
∂N (r− x, β)

∂xj
) dr

Now note that ∂N (r−x,β)
∂xj

=
(rj−xj)
β2 · N (r− x, β). Hence,

∂[[Psup]](x)

∂xj
=

∫
r∈Rk

(
1

β2

N∑
i=0

Bi(r) · Fi(r) · (rj − xj)) · N (r− x, β) dr

= (
1

β2

N∑
i=0

∫
r∈Bi

Fi(r) · (rj − xj) · N (r− x, β) dr (2)

Each Fi is a linear function of type Rk → Rk, so for each n < k, we have
(Fi(r))(n) = (

∑k−1
l=0 αi,l,n · rl)+γi,n for constants αi,j,n and γi,n. Substituting in

Eqn. 2, we find that the n-th coordinate of the vector-valued expression ∂[[Psup]](x)
∂xj

can be expanded into a linear sum of terms as below:

1

β2

∫ b

rj=a

N (rj − xj , β) drj (3)

1

β2

∫ b

rj=a

(rj − xj) · N (rj − xj , β) drj (4)

1

β2

∫ b

rj=a

rj · N (rj − xj , β) drj (5)

1

β2

∫ b

rj=a

rj · (rj − xj) · N (rj − xj , β) drj (6)

In order to show that
∣∣∣∂[[Psup]](x)

∂xj

∣∣∣ is bounded by a linear function, we first observe

that for all β > ε, the multiplier 1
β2 is bounded by a constant. Now we show

that the each integrals in the above is bounded by a function that is linear in
xj , even when a = −∞ or b =∞.

It is easy to see that of these integrals, the first two are bounded in value for
any value of xj ; this follows from the fact that N decays exponentially as its first

argument goes to infinity. The last integral will also be bounded as a function
of xj , while the second to last function can grow linearly with xj . It follows that∣∣∣∂[[Psup]](x)

∂xj

∣∣∣ can grow only linearly with x and β. Hence [[Psup]] is robust.

Theorem 3. For every constant ε > 0, the approximate smooth interpreter from
Figure 4 is β-robust in the region β > ε.

Proof: As in the proof of Theorem 2, it suffices to only consider the derivative
of Psup (w.r.t. β this time)—the case for Pinf is symmetric. From the definition
of smoothing, we have:

∂[[Psup]](x)

∂β
=

∫
r∈Rk

(

N∑
i=0

Bi(r) · Fi(r)) ·
∂N (r− x, β)

∂β
dr

=

∫
r∈Rk

(

N∑
i=0

Bi(r) · Fi(r)) · (
‖r− x‖2

β3
− k

β
)) · N (r− x, β) dr

=

N∑
i=0

∫
r∈Bi

Fi(r) · (
‖r− x‖2

β3
− k

β
) · N (r− x, β) dr. (7)

Just like in the proof of robustness, we can decompose the integral into a
linear sum of terms of one of the following forms:

1

β3

∫ b

rj=a

(rj − xj)2 · N (rj − xj , β) drj (8)

1

β3

∫ b

rj=a

rj · (rj − xj)2 · N (rj − xj , β) drj (9)

1

β

∫ b

rj=a

rj · N (rj − xj , β) drj (10)

1

β

∫ b

rj=a

N (rj − xj , β) drj (11)

The first and last terms are clearly bounded by constants. The third term
is similar to the term we saw in the proof of robustness, and is bounded by a
linear function; in fact, when a and b go to infinity, the term corresponds to
the mean of a Gaussian centered at x. As for the second term, it is bounded
when a and b are bounded, but will grow as O(xj) when a or b are −∞ or ∞
respectively. Putting the facts together, we note that

∣∣∣∂[[Psup]](x)
∂β

∣∣∣ is bounded by
a linear function of x and β, which completes the proof of β-robustness.

6 Related work and conclusion

In a recent paper [5], we introduced smooth interpretation as a program approxi-
mation that facilitates more effective use of numerical optimization in reasoning

about programs. While the paper showed the effectiveness of the method, it
left open a lot of theoretical questions. For example, while we implemented and
empirically evaluated a smooth interpreter, could we also formally characterize
smooth interpretation? How did program smoothing relate to program abstrac-
tion? In the present paper, we have answered the above questions.

Regarding related work, Gaussian smoothing is ubiquitous in signal and im-
age processing [13]. Also, the idea of using smooth, robust approximations to
enable optimization of non-smooth functions has been previously studied in the
optimization community [1, 12]. However, these approaches are technically very
different from ours, and we were the first to propose and find an application for
Gaussian smoothing of programs written in a general-purpose programming lan-
guage. As for work in the software engineering community, aside from a cursory
note by DeMillo and Lipton [10], there does not seem to be any prior proposal
here for the use of “smooth” models of programs (although some recent work in
program verification studies continuity properties [3, 4] of programs).

The abstract interpretation used in our smoothing framework is closely re-
lated to a large body of prior work on static analysis, in particular analysis using
intervals [9], interval equalities [7], and interval polyhedra [6]. However, so far as
we know, there is no existing abstract domain that can conditionally bound the
denotational semantics of a program from above and below.

References

1. D.P. Bertsekas. Nondifferentiable optimization via approximation. Nondifferen-
tiable Optimization, pages 1–25, 1975.

2. J. Burnim, S. Juvekar, and K. Sen. Wise: Automated test generation for worst-case
complexity. In ICSE, pages 463–473, 2009.

3. S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of programs.
In POPL, 2010.

4. S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving programs
robust, 2011.

5. S. Chaudhuri and A. Solar-Lezama. Smooth interpretation. In PLDI, 2010.
6. L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An abstract domain

to infer interval linear relationships. In SAS, pages 309–325, 2009.
7. L. Chen, A. Miné, J. Wang, and P. Cousot. An abstract domain to discover interval

linear equalities. In VMCAI, pages 112–128, 2010.
8. X. Chen. Convergence of the BFGS method for LC convex constrained optimiza-

tion. SIAM J Control and Optim, 14:2063, 1996.
9. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL, 1977.
10. R. DeMillo and R. Lipton. Defining software by continuous, smooth functions.

IEEE Transactions on Software Engineering, 17(4):383–384, 1991.
11. W.W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods.

Pacific journal of Optimization, 2(1):35–58, 2006.
12. Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-

gramming, 103(1):127–152, 2005.
13. J. Russ. The image processing handbook. CRC Press, 2007.

