
Sparse Recovery with Partial Support
Knowledge?

Khanh Do Ba and Piotr Indyk

Massachusetts Institute of Technology, Cambridge MA 02139, USA

Abstract. The goal of sparse recovery is to recover the (approximately)
best k-sparse approximation x̂ of an n-dimensional vector x from linear
measurements Ax of x. We consider a variant of the problem which takes
into account partial knowledge about the signal. In particular, we focus
on the scenario where, after the measurements are taken, we are given a
set S of size s that is supposed to contain most of the “large” coefficients
of x. The goal is then to find x̂ such that

‖x− x̂‖p ≤ C min
k-sparse x′

supp(x′)⊆S

‖x− x′‖q . (1)

We refer to this formulation as the sparse recovery with partial support
knowledge problem (SRPSK). We show that SRPSK can be solved, up
to an approximation factor of C = 1 + ε, using O((k/ε) log(s/k)) mea-
surements, for p = q = 2. Moreover, this bound is tight as long as
s = O(εn/ log(n/ε)). This completely resolves the asymptotic measure-
ment complexity of the problem except for a very small range of the
parameter s.
To the best of our knowledge, this is the first variant of (1+ε)-approximate
sparse recovery for which the asymptotic measurement complexity has
been determined.

1 Introduction

In recent years, a new “linear” approach for obtaining a succinct approximate
representation of n-dimensional vectors (or signals) has been discovered. For
any signal x, the representation is equal to Ax, where A is an m× n matrix, or
possibly a random variable chosen from some distribution over such matrices.
The vector Ax is often referred to as the measurement vector or linear sketch of
x. Although m is typically much smaller than n, the sketch Ax often contains
plenty of useful information about the signal x.

A particularly useful and well-studied problem is that of stable sparse recov-
ery. We say that a vector x′ is k-sparse if it has at most k non-zero coordinates.

? This material is based upon work supported by the Space and Naval Warfare Systems
Center Pacific under Contract No. N66001-11-C-4092, David and Lucille Packard Fel-
lowship, MADALGO (Center for Massive Data Algorithmics, funded by the Danish
National Research Association) and NSF grants CCF-0728645 and CCF-1065125.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9590553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The sparse recovery problem is typically defined as follows: for some norm pa-
rameters p and q and an approximation factor C > 0, given Ax, recover an
“approximation” vector x̂ such that

‖x− x̂‖p ≤ C min
k-sparse x′

‖x− x′‖q (2)

(this inequality is often referred to as `p/`q guarantee). If the matrix A is random,
then (2) should hold for each x with some probability (say, 3/4). Sparse recovery
has a tremendous number of applications in areas such as compressive sensing
of signals [4, 11], genetic data acquisition and analysis [23, 3] and data stream
algorithms [20, 17].

It is known [4] that there exist matrices A and associated recovery algo-
rithms that produce approximations x̂ satisfying (2) with p = q = 1, constant
approximation factor C, and sketch length

m = O(k log(n/k)) . (3)

A similar bound, albeit using random matrices A, was later obtained for p = q =
2 [15] (building on [6–8]). Specifically, for C = 1 + ε, they provide a distribution
over matrices A with

m = O((k/ε) log(n/k)) (4)

rows, together with an associated recovery algorithm.
It is also known that the bound in (3) is asymptotically optimal for some

constant C and p = q = 1 (see [10] and [13], building on [14, 16, 18]). The bound
of [10] also extends to the randomized case and p = q = 2. For C = 1 + ε, a
lower bound of (roughly) m = Ω(k/εp/2) was recently shown [22].

The necessity of the “extra” logarithmic factor multiplying k is quite unfor-
tunate: the sketch length determines the “compression rate”, and for large n any
logarithmic factor can worsen that rate tenfold.

In this paper we show that this extra factor can be reduced if we allow the
recovery process to take into account some partial knowledge about the signal.
In particular, we focus on the scenario where, after the measurements are taken,
we are given a set S of size s (s is known beforehand) that is supposed to contain
most of the “large” coefficients of x. The goal is then to find x̂ such that

‖x− x̂‖p ≤ C min
k-sparse x′

supp(x′)⊆S

‖x− x′‖q . (5)

We refer to this formulation as the sparse recovery with partial support knowl-
edge problem (SRPSK).

Results We show that SRPSK can be solved, up to an approximation factor of
C = 1 + ε, using O((k/ε) log(s/k)) measurements, for p = q = 2. Moreover, we
show that this bound is tight as long as s = O(εn/ log(n/ε)). This completely
resolves the asymptotic measurement complexity of the problem except for a
very small range of the parameter s.

To the best of our knowledge, this is the first variant of (1 + ε)-approximate
sparse recovery for which the asymptotic measurement complexity has been
determined.

Motivation The challenge of incorporating external knowledge into the sparse
recovery process has received a fair amount of attention in recent years [9].
Approaches include model-based compressive sensing [2, 12] (where the sets of
large coefficients are known to exhibit some patterns), Bayesian compressive
sensing [5] (where the signals are generated from a known distribution) and
support restriction.

There are several scenarios where our formulation (SRPSK) could be appli-
cable. For example, for tracking tasks, the object position typically does not
change much between frames, so one can limit the search for current position
to a small set. The framework can also be useful for exploratory tasks, where
there is a collection S of sets, one of which is assumed to contain the support.
In that case, setting the probability of failure to 1

|S| enables exploring all sets in

the family and finding the one which yields the best approximation.
From a theoretical perspective, our results provide a smooth tradeoff between

the Θ(k log(n/k)) bound for “standard” sparse recovery and the Θ(k) bound
known for the set query problem [21]. In the latter problem we have the full
knowledge of the signal support, i.e., s = k.

Our techniques Consider the upper bound first. The general approach of our
algorithm is to reduce SRPSK to the noisy sparse recovery problem (NSR). The
latter is a generalization of sparse recovery where the recovery algorithm is given
Ax+ν, where ν is the measurement noise. The reduction proceeds by represent-
ing Ax as AxS + AxS̄ , and interpreting the second term as noise. Since the
vector xS has dimension s, not n, we can use A with only O(k log(s/k)) rows.
This yields the desired measurement bound.

To make this work, however, we need to ensure that for any fixed S, the
sub-matrix AS of A (containing the columns with indices in S) is a valid sparse
recovery matrix for s-dimensional vectors. This would be immediate if (as often
happens, e.g. [4]) each column of A was an i.i.d. random variable chosen from
some distribution: we could simply sample the n columns of A from the distri-
bution parametrized by k and s. Unfortunately, the algorithm of [15] (which has
the best known dependence on ε) does not have this independence property; in
fact, the columns are highly dependent on each other. However, we show that it
is possible to modify it so that the independence property holds.

Our lower bound argument mimics the approach of [10]. Specifically, consider
fixing s = Θ(εn/ log(n/ε)); we show how to encode α = Θ(log(n/ε)/ε) code
words x1, . . . , xα, from some code C containing 2Θ(k log(s/k)) code words, into a
vector x, such that a (1 + ε)-approximate algorithm for SRPSK can iteratively
decode all xi’s, starting from xα and ending with x1. This shows that one can
“pack” Θ(log(n/ε)/ε · k log(s/k)) bits into Ax. Since one can show that each
coordinate of Ax yields only O(log(n/ε)) bits of information, it follows that Ax
has to have Θ((k/ε) log(s/k)) coordinates.

Unfortunately, the argument of [10] applied only to the case of when ε is
a constant strictly greater than 0 (i.e., ε = Ω(1)). For ε = o(1), the recovery
algorithm could return a convex combination of several xi’s, which might not be
decodable. Perhaps surprisingly, we show that the formulation of SRPSK avoids
this problem. Intuitively, this is because different xi’s have different supports,
and SRPSK enables us to restrict sparse approximation to a particular subset
of coordinates.

2 Preliminaries

For positive integer n, let [n] = {1, 2, . . . , n}. For positive integer s ≤ n, let
(

[n]
s

)
denote the set of subsets of cardinality s in [n].

Let v ∈ Rn. For any positive integer k ≤ s and set S ∈
(

[n]
s

)
, denote by

vk ∈ Rn the vector comprising the k largest components of v, breaking ties
by some canonical ordering (say, leftmost-first), and 0 everywhere else. Denote
by vS ∈ Rn the vector comprising of components of v indexed by S, with 0
everywhere else, and denote by vS,k ∈ Rn the vector comprising the k largest
components of v among those indexed by S, with 0 everywhere else.

Let ΠS ∈ Rs×n denote the projection matrix that keeps only components
indexed by S (the dimension n will be clear from context). In particular, ΠSv ∈
Rs consists of components of v indexed by S, and for any matrix A ∈ Rm×n,
AΠT

S ∈ Rm×s consists of the columns of A indexed by S.
Define the `p/`p sparse recovery with partial support knowledge problem (de-

noted SRPSKp) to be the following:
Given parameters (n, s, k, ε), where 1 ≤ k ≤ s ≤ n and 0 < ε < 1, design an

algorithm and a distribution over matrices A ∈ Rm×n, where m = m(n, s, k, ε),

such that for any x ∈ Rn, the algorithm, given Ax and a specified set S ∈
(

[n]
s

)
,

recovers (with knowledge of A) a vector x̂ ∈ Rn such that, with probability 3/4,

‖x− x̂‖pp ≤ (1 + ε)‖x− xS,k‖pp . (6)

Define the `p/`p noisy sparse recovery problem (NSRp) to be the following:
Given parameters (n, k, ε), where 1 ≤ k ≤ n and 0 < ε < 1, design an

algorithm and a distribution over matrices A ∈ Rm×n, where m = m(n, k, ε),
such that for any x ∈ Rn and ν ∈ Rm, the algorithm recovers from Ax+ ν (with
knowledge of A) a vector x̂ ∈ Rn such that, with probability 3/4,

‖x− x̂‖pp ≤ (1 + ε)‖x− xk‖pp + ε‖ν‖pp . (7)

The distribution of A must be “normalized” so that for any v ∈ Rn, E[‖Av‖p] ≤
‖v‖p.

For all four problems, we will denote a solution by a pair (A,R), where A
is the measurement matrix and R is the recovery algorithm. For SRPSK1 and
SRPSK2, we will also often denote the recovery algorithm with the parameter
S as a subscript, e.g., RS .

3 Lower bounds

We will need a result from communication complexity. Consider the following
two-party communication game involving Alice and Bob: Alice is given a string
y ∈ {0, 1}d. Bob is given an index i ∈ [d], together with yi+1, yi+2, . . . , yd.
They also share an arbitrarily long common random string r. Alice sends a
single message M(y, r) to Bob, who must output yi correctly with probability
at least 3/4, where the probability is taken over r. We refer to this problem as
the augmented indexing problem (AIP). The communication cost of AIP is the
minimum, over all correct protocols, of the length of the message M(y, r) on the
worst-case choice of r and y. The following lemma is well-known (see, e.g., [19]
or [1]):

Lemma 1. The communication cost of AIP is Ω(d).

We will also make use of Lemma 5.1 of [10], which we reproduce below:

Lemma 2. Consider any m×n matrix A with orthonormal rows. Let A′ be the
result of rounding A to b bits per entry. Then for any v ∈ Rn there exists a
σ ∈ Rn with A′v = A(v − σ) and ‖σ‖1 < n22−b‖v‖1.

Now we can prove our lower bounds for SRPSK1 and SRPSK2:

Theorem 3. Any solution to SRPSK1 requires, for s = O(εn/ log(n/ε)), at
least Ω ((k/ε) log(s/k)) measurements.

Proof. For α = n/s, divide [n] into α equal-sized disjoint blocks, Si for i =
1, . . . , α. For each block Si, we will choose a binary error-correcting code Ci ⊆
{0, 1}n with minimum Hamming distance k, where all the code words have Ham-
ming weight exactly k and support contained in Si. Since |Si| = s = n/α, we
know each Ci can be chosen big enough that

log |Ci| = Θ(k log(n/(αk))) . (8)

Now, we will use any solution to SRPSK1 to design a protocol for AIP with
instance size

d = Θ(αk log(n/(αk))) . (9)

The protocol is as follows:
Alice divides her input y into α equal-sized blocks each of size

d/α = Θ(k log(n/(αk))) . (10)

Interpreting each block yi as a binary number, she uses it to index into Ci (notice
that Ci has sufficiently many code words for each yi to index a different one),
specifying a code word xi ∈ Ci. She then computes

x = D1x1 +D2x2 + · · ·+Dαxα (11)

for some fixed D dependent on ε. Then, using shared randomness, and following
the hypothetical protocol, Alice and Bob agree on a matrix A (wlog, and for
technical reasons, with orthonormal rows), which they both round to A′ so that
each entry has b bits. Alice computes A′x and sends it to Bob.

Bob, knowing his input i, can compute the j = j(i) for which block yj of
Alice’s input contains i, and hence knows the set Sj . Moreover, he knows yj′ ,
and thereby xj′ , for every j′ > j, so he can compute

z = Dj+1xj+1 + · · ·+Dαxα . (12)

From Alice’s message, using linearity, he can then compute A′(x− z). Now, by
Lem. 2, there must exist some σ ∈ Rn with A′(x− z) = A(x− z − σ) and

‖σ‖1 < n22−b‖x− z‖1 = n22−b
j∑

i′=1

kDi′ < n22−bkD
j+1

D−1 . (13)

Now, let w = x− z − σ, so that Bob has Aw = A′(x− z). He then runs RSj

on Aw to recover ŵ with the properties that supp(ŵ) ⊆ Sj and

‖w − ŵ‖1 ≤ (1 + ε)‖w − wSj ,k‖1 ≤ (1 + ε)‖w −Djxj‖1
≤ (1 + ε)(‖D1x1 + · · ·+Dj−1xj−1‖1 + ‖σ‖1)

= (1 + ε)
(
kD

j−D
D−1 + ‖σ‖1

)
. (14)

Bob then finds the code word in Cj that is closest in `1-distance to ŵ/Dj

(which he hopes is xj) and, looking at the index of that code word within Cj
(which he hopes is yj), he returns the bit corresponding to his index i.

Now, suppose that Bob was wrong. This means he obtained a ŵ that, appro-
priately scaled, was closer or equidistant to another code word in Cj than xj ,
implying that ‖xj − ŵ/Dj‖1 ≥ k/2. Since supp(ŵ) ⊆ Sj , we can write

‖w − ŵ‖1 ≥ ‖x− z − ŵ‖1 − ‖σ‖1
= ‖D1x1 + · · ·+Dj−1xj−1‖1 +Dj‖xj − ŵ/Dj‖1 − ‖σ‖1
≥ k

(
Dj−D
D−1 +Dj/2

)
− ‖σ‖1 . (15)

We will show that for appropriate choices of D and b, (14) and (15) contradict
each other, implying that Bob must have correctly extracted his bit and solved
AIP. To this end, it suffices to prove the following inequality:

‖σ‖1 < k
3

(
Dj/2− ε Dj

D−1

)
, (16)

where we used the fact that ε < 1. Now, let us fix D = 1 + 4ε. The above
inequality becomes

‖σ‖1 < k
3

(
(1 + 4ε)j/2− (1 + 4ε)j/4

)
= k(1 + 4ε)j/12 . (17)

Now, from (13) we know that

‖σ‖1 < n22−bkD
j+1

D−1 = n22−bk(1 + 4ε)j+1/(4ε) , (18)

so we need only choose b large enough that 2b ≥ 15n2/ε, i.e., b = O(log(n/ε))
suffices. Recall that b is the number of bits per component of A′, and each
component of x−z can require up to α logD = O(εα) bits, so the message A′(x−
z) which Alice sends to Bob contains at mostO(m(b+εα)) = O(m(log(n/ε)+εα))
bits, with which they solve AIP with d = Θ(αk log(n/(αk))). It follows from
Lem. 1 that

m = Ω

(
αk log(n/(αk))

log(n/ε) + εα

)
. (19)

Finally, as long as εα = Ω(log(n/ε)), or equivalently, s = n/α = O(εn/ log(n/ε)),
this simplifies to

m = Ω((k/ε) log(s/k)) . (20)

ut

Theorem 4. Any solution to SRPSK2 requires, for s = O(εn/ log(n/ε)) and
ε ≤ 1/6,1 requires at least Ω ((k/ε) log(s/k)) measurements.

We omit the proof, which involves only algebraic modifications from the proof
of Thm. 3, due to space constraints.

4 Upper bounds

First we prove a general black box reduction from SRPSK1 to NSR1 that works
if the solution to NSR1 has certain additional properties:

Lemma 5. Suppose we have a solution to NSR1 with parameters (n, k, ε), where
the m × n measurement matrix A′ has m = m(n, k, ε) rows. Suppose in addi-
tion that the columns of A′ are generated i.i.d. from some distribution. Then
there exists a solution (A,R) to SRPSK1 with parameters (n, s, k, ε) that uses
O(m(s, k,Θ(ε))) measurements. Moreover, if A′ has, in expectation, h(n, k, ε)
non-zeros per column, and the NSR1 recovery time is t(n, k, ε), then A has, in
expectation, O(h(s, k,Θ(ε))) non-zeros, and R runs in O(t(s, k,Θ(ε))) time. 2

Proof. We construct our solution (A,R) to SRPSK1 as follows:

1 The assumption that ε ≤ 1/6 is not necessary, but makes the proof simpler, so we
leave it in the theorem statement.

2 Note that this recovery time is based on the assumption that the solution to NSR
generated the columns of its measurement matrix i.i.d. In our application of this
reduction (Lems. 7 and 8), we will need to modify the NSR solution to enforce this
requirement, which will increase its recovery time.

1. Let δ > 0 be a constant to be specified later. Consider an instantiation of the
solution to NSR1 with parameters (s, k, δε), so that its measurement matrix
A′ is m × s, where m = m(s, k, δε). Generate the n columns of our m × n
measurement matrix A i.i.d. from the same distribution used to generated
the i.i.d. columns of A′ (note that the number of rows m is the same for both
A and A′).

2. Given S ⊆ [n], |S| = s, let R′S denote the recovery algorithm for NSR1

corresponding to the parameters (s, k, δε) and given the matrix AΠT
S (recall

that a recovery algorithm for NSR1 is allowed to behave differently given dif-
ferent instances of the measurement matrix). Define our recovery procedure
RS by RS(y) = ΠT

S (R′S(y)); in words, we run R′S on our m-dimensional
measurement vector y to obtain an s-dimensional vector, which we embed
into an n-dimensional vector at positions corresponding to S, filling the rest
with zeros.

Note that the number of non-zeros per column of A and the running time of
R follow immediately.

Observe that, thanks to the independence of the columns of A, the submatrix
comprised of any s of them (namely, AΠT

S) is a valid m×s measurement matrix.
Thus we have the guarantee that for any signal x′ ∈ Rs and noise vector ν ∈ Rm,
R′S recovers from AΠT

S x
′ + ν a vector x̂′ ∈ Rs satisfying, with probability 3/4,

‖x′ − x̂′‖1 ≤ (1 + ε)‖x′ − x′k‖1 + δε‖ν‖1 . (21)

Now, let x ∈ Rn be our signal for SRPSK1. We interpret ΠSx ∈ Rs to be the
sparse signal and AxS̄ ∈ Rm to be the noise, so that runningR′S on AΠT

S (ΠSx)+
AxS̄ returns x̂′ ∈ Rs satisfying, with probability 3/4,

‖ΠSx− x̂′‖1 ≤ (1 + ε)‖ΠSx− (ΠSx)k‖1 + δε‖AxS̄‖1
= (1 + ε)‖xS − xS,k‖1 + δε‖AxS̄‖1 . (22)

Finally, consider the x̂ ∈ Rn recovered by RS in our procedure for SRPSK1

when run on

Ax = AxS +AxS̄ = AΠT
S (ΠSx) +AxS̄ . (23)

We have x̂ = ΠT
S x̂
′, or, equivalently, ΠS x̂ = x̂′, so

‖x− x̂‖1 = ‖xS̄‖1 + ‖xS − x̂‖1 = ‖xS̄‖1 + ‖ΠSx− x̂′‖1
≤ ‖xS̄‖1 + (1 + ε)‖xS − xS,k‖1 + δε‖AxS̄‖1
= ‖xS̄‖1 + (1 + ε)(‖x− xS,k‖1 − ‖xS̄‖1) + δε‖AxS̄‖1
= (1 + ε)‖x− xS,k‖1 − ε‖xS̄‖1 + δε‖AxS̄‖1 .

Thus, if we can ensure that ‖AxS̄‖1 ≤ (1/δ)‖xS̄‖1, we would obtain the desired
guarantee for SRPSK1 of

‖x− x̂‖1 ≤ (1 + ε)‖x− xS,k‖1 . (24)

But we know that E[‖AxS̄‖1] ≤ ‖xS̄‖1, so by the Markov bound

Pr [‖AxS̄‖1 > (1/δ)‖xS̄‖1] ≤ δ . (25)

Choosing, say, δ = 1/12 would give us an overall success probability of at least
2/3, which can be amplified by independent repetitions and taking a componen-
twise median in the standard way. ut

Straightforward modification of the above proof yields the `2/`2 version:

Lemma 6. Suppose we have a solution to NSR2 with parameters (n, k, ε), where
the m × n measurement matrix A′ has m = m(n, k, ε) rows. Suppose in addi-
tion that the columns of A′ are generated i.i.d. from some distribution. Then
there exists a solution (A,R) to SRPSK2 with parameters (n, s, k, ε) that uses
O(m(s, k,Θ(ε))) measurements. Moreover, if A′ has, in expectation, h(n, k, ε)
non-zeros per column, and the NSR2 recovery time is t(n, k, ε), then A has, in
expectation, O(h(s, k,Θ(ε))) non-zeros, and R runs in O(t(s, k,Θ(ε))) time. 3

By a modification of the algorithm of [15], we prove the following result:

Lemma 7. There exist a distribution on m× n matrices A and a collection of
algorithms {RS | S ∈

(
[n]
s

)
} such that for any x ∈ Rn and set S ⊆ [n], |S| = s,

RS(Ax) recovers x̂ with the guarantee that

‖x− x̂‖2 ≤ (1 + ε)‖x− xS,k‖2 (26)

with probability 3/4. The matrix A has m = O((k/ε) log(s/k)) rows.

Proof. To apply a NSR2 solution to SRPSK2 using Lem. 6, we need the columns
of the measurement matrix to be generated independently. However, this re-
quirement does not hold with the algorithm in [15] as is. Therefore, we show
how to modify it to satisfy this requirement without changing its recovery prop-
erties and asymptotic number of measurements. For simplicity, we will ignore
pseudo-randomness considerations, and replace all k-wise independence by full
independence in the construction of [15].

We begin by describing the measurement matrix A of [15] (denoted by Φ
in that paper). At the highest level, A is formed by vertically stacking matrices
A(j), for j = 1, . . . , log k. Each A(j) is formed by vertically stacking two matrices,
E(j) and D(j). It will suffice for our purposes if the columns of each E(j) and
each D(j) are independent.

Consider, first, E(j), which consists of several i.i.d. submatrices, again stacked
vertically, in each of which every entry is set i.i.d. (to 1, −1 or 0). Thus, every
entry, and therefore every column, of E(j) is already independent without mod-
ification.

Next, consider D(j), which consists of several similarly stacked i.i.d. sub-
matrices. For some constant c < 1, each one of these submatrices consists of

kcj i.i.d. “blocks” B
(j)
1 , B

(j)
2 , . . . , B

(j)
kcj , which will be the smallest unit of verti-

cally stacked submatrices we need to consider (see Fig. 1). Within each block

3 See footnote to Lem. 5.

 w1 w2 w3 w4 w5 w6

 w1 w2 w3 w4

 w1 w2 w3 w4 w5 B(j)

1

B(j)
2

B(j)
3

…
Fig. 1. Example of an i.i.d. submatrix in D(j) consisting of kcj blocks. Each grey
rectangle represents a code word, and white space represents zeros.

B
(j)
i , each column is independently chosen to be non-zero with some probabil-

ity, and the ith non-zero column is equal to the ith code word wi from some
error-correcting code C. The code C has a constant rate and constant fractional
distance. Therefore, each block has O(log h) rows (and C needs to have O(h)
code words), where h is the expected number of non-zero columns per block.

The problem with the construction of D(j) (from our perspective) is that
each column chosen to be non-zero is not independently chosen, but instead is
determined by a code word that depends on how many non-zero columns are
to its left. In order to overcome this obstacle, we observe that the algorithm
of [15] only requires that the codewords of the consecutive non-zero columns
are distinct, not consecutive. Thus, we use as ECC C ′ with the same rate and
error-correction, but with O(h3) code words instead of O(h); for each column
chosen to be non-zero, we set it to a code word chosen uniformly at random from
C ′. In terms of Fig. 1, each grey rectangle, instead of being the code word from
C specified in the figure, is instead a random code word from a larger code C ′.
Note that each block has still O(log h) rows as before.

A block is good if all codewords corresponding to it are distinct. Observe that
for any given block, the probability it is not good is at most O(1/h). If there are
fewer than O(h) blocks in all of D(j), we could take a union bound over all of
them to show that all blocks are good constant probability. Unfortunately, for
j = 1, we have h = O(n/k) while the number of blocks is Ω(k). The latter value
could be much larger than h.

Instead, we will simply double the number of blocks. Even though we cannot
guarantee that all blocks are good, we know that most of them will be, since
each one is with probability 1−O(1/h). Specifically, by the Chernoff bound, at

least half of them will be with high probability (namely, 1−e−Ω(k)). We can use
only those good blocks during recovery and still have sufficiently many of them
to work with.

The result is a solution to NSR2 still with O((k/ε) log(n/k)) rows (roughly
6 times the solution of [15]), but where each column of the measurement matrix
is independent, as required by Lem. 6. A direct application of the lemma gives
us the theorem. ut

Lemma 8. The matrix A of Lem. 7 has, in expectation, O(log2 k log(s/k)) non-

zeros per column, and each algorithm RS runs in O(s log2 k + (k/ε) logO(1) s)
time.

Proof. It suffices to show that the modifications we made to [15] do not change
the asymptotic expected number of non-zeros in each column and does not in-
crease the recovery time by more than an additive term of O(n log2 k). Lem. 6
then gives us this lemma (by replacing n with s in both quantities).

Consider, first, the number of non-zeros. In both the unmodified and the
modified matrices, this is dominated by the number of non-zeros in the (mostly
dense) code words in the Dj ’s. But in the modified Dj , we do not change the
asymptotic length of each code word, while only doubling, in expectation, the
number of code words (in each column as well as overall). Thus the expected
number of non-zeros per column of A remains O(log2 k log(n/k)) as claimed.

Next, consider the running time. The first of our modifications, namely, in-
creasing the number of code words from O(h) to O(h3), and hence their lengths
by a constant factor, does not change the asymptotic running time since we can
use the same encoding and decoding functions (it suffices that these be poly-
nomial time, while they are in fact poly-logarithmic time). The second of our
modifications, namely, doubling the number of blocks, involves a little additional
work to identify the good blocks at recovery time. Observe that, for each block,
we can detect any collision in time linear in the number of code words. In D(j)

there are O(jkcj) blocks each containing O(n/(kcj)) code words, so the time
to process D(j) is O(jn). Thus, overall, for j = 1, . . . , log k, it takes O(n log2 k)
time to identify all good blocks. After that, we need only work with the same
number of blocks as there had been in the unmodified matrix, so the overall
running time is O(n log2 k + (k/ε) logO(1) n) as required. ut

For completeness, we state the section’s main result:

Theorem 9. There exist a distribution on m×n matrices A and a collection of
algorithms {RS | S ∈

(
[n]
s

)
} such that for any x ∈ Rn and set S ⊆ [n], |S| = s,

RS(Ax) recovers x̂ with the guarantee that

‖x− x̂‖2 ≤ (1 + ε)‖x− xS,k‖2 (27)

with probability 3/4. The matrix A has m = O((k/ε) log(s/k)) rows and, in
expectation, O(log2 k log(s/k)) non-zeros per column. Each algorithm RS runs

in O(s log2 k + (k/ε) logO(1) s) time.

References

1. Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and R. Kumar. The sketching
complexity of pattern matching. RANDOM, 2004.

2. R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive
sensing. IEEE Transactions on Information Theory, 56, No. 4:1982–2001, 2010.

3. A. Bruex, A. Gilbert, R. Kainkaryam, John Schiefelbein, and Peter Woolf. Poolmc:
Smart pooling of mRNA samples in microarray experiments. BMC Bioinformatics,
2010.

4. E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and
inaccurate measurements. Comm. Pure Appl. Math., 59(8):1208–1223, 2006.

5. V. Cevher, P. Indyk, L. Carin, and R.G Baraniuk. Sparse signal recovery and
acquisition with graphical models. Signal Processing Magazine, pages 92 – 103,
2010.

6. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. ICALP, 2002.

7. G. Cormode and S. Muthukrishnan. Improved data stream summaries: The count-
min sketch and its applications. LATIN, 2004.

8. G. Cormode and S. Muthukrishnan. Combinatorial algorithms for Compressed
Sensing. In Proc. 40th Ann. Conf. Information Sciences and Systems, Princeton,
Mar. 2006.

9. Defense Sciences Office. Knowledge enhanced compressive measurement. Broad
Agency Announcement, DARPA-BAA-10-38, 2010.

10. K. Do Ba, P. Indyk, E. Price, and D. Woodruff. Lower bounds for sparse recovery.
SODA, 2010.

11. D. L. Donoho. Compressed Sensing. IEEE Trans. Info. Theory, 52(4):1289–1306,
Apr. 2006.

12. Y.C. Eldar and H. Bolcskei. Block-sparsity: Coherence and efficient recovery. IEEE
Int. Conf. Acoustics, Speech and Signal Processing, 2009.

13. S. Foucart, A. Pajor, H. Rauhut, and T. Ullrich. The gelfand widths of lp-balls for
0 < p ≤ 1. J. Complexity, 2010.

14. A. Y. Garnaev and E. D. Gluskin. On widths of the euclidean ball. Sov. Math.,
Dokl., page 200204, 1984.

15. Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse
recovery: optimizing time and measurements. In STOC, pages 475–484, 2010.

16. E. D. Gluskin. Norms of random matrices and widths of finite-dimensional sets.
Math. USSR-Sb., 48:173182, 1984.

17. P. Indyk. Sketching, streaming and sublinear-space algorithms. Graduate course
notes, available at http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

18. B. S. Kashin. Diameters of some finite-dimensional sets and classes of smooth
functions. Math. USSR, Izv.,, 11:317333, 1977.

19. P. B. Milterson, N. Nisan, S. Safra, and A. Wigderson. On data structures and
asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49, 1998.

20. S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and
Trends in Theoretical Computer Science, 2005.

21. E. Price. Efficient sketches for the set query problem. SODA, 2011.
22. E. Price and D. Woodruff. (1 + ε)-approximate sparse recovery. Preprint, 2011.
23. N. Shental, A. Amir, and Or Zuk. Identification of rare alleles and their carriers

using compressed se(que)nsing. Nucleic Acids Research, 38(19):1–22, 2010.

