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Abstract

We present a method for constructing dependent Dirichlet processes. The new ap-
proach exploits the intrinsic relationship between Dirichlet and Poisson processes
in order to create a Markov chain of Dirichlet processes suitable for use as a prior
over evolving mixture models. The method allows for the creation, removal, and
location variation of component models over time while maintaining the property
that the random measures are marginally DP distributed. Additionally, we derive
a Gibbs sampling algorithm for model inference and test it on both synthetic and
real data. Empirical results demonstrate that the approach is effective in estimating
dynamically varying mixture models.

1 Introduction

As the corner stone of Bayesian nonparametric modeling, Dirichlet processes (DP) [22] have been
widely used in solving a variety of inference and estimation problems [3, 10, 20]. One of the most
successful application are Dirichlet process mixtures (DPM) [15, 17], which are a generalization of
finite mixture models that allow an indefinite number of mixture components. Traditional DPMs
assume that each sample is generated independently from the same DP, which limits its utility, as
in many cases different samples may come from different yet dependent DPs. While HDPs [23]
provide a way to construct multiple DPs implicitly depending on each other via a common parent,
their hierarchical structure may not be appropriate in some problems (e.g. temporally varying DPs).

Consider a topic model where each document is generated under a particular topic, and each topic
is characterized by a distribution over words. Over time, topics change: some old topics fade while
new ones emerge. For each particular topic, the word distribution may evolve as well. A natural
approach to model such topics is to use a Markov chain of DPs as a prior, such that the DP at each
time is generated by varying the previous one in three possible ways: creating a new topic, removing
an existing topic, and changing the word distribution of a topic.

Since MacEachern introduced the notion of dependent Dirichlet processes (DDP) [12], a vari-
ety of DDP constructions have been developed, which are based on either weighted mixtures of
DPs [6, 14, 18], generalized Chinese restaurant processes [4, 21, 24], or the stick breaking construc-
tion [5, 7]. Here, we propose a fundamentally different approach, taking advantage of the intrinsic
relations between Dirichlet processes and Poisson processes: a Dirichlet process is a normalized
Gamma process, while a Gamma process is essentially a compound Poisson process. The key idea
is motivated by the observation that applying an operation that preserves complete randomness to
Poisson processes will result in a new process that remains Poisson. Therefore, one can obtain a
Dirichlet process depending on other DPs by applying such operations to their underlying compound
Poisson processes. In particular, we discuss three types of operations: superposition, subsampling,
and point transition. We develop a Markov chain of DPs by combining these operations, leading
to a framework that allows creation, removal, and location variation of particles. This construction
inherently comes with an elegant property that the random measure at each time is marginally DP
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distributed. Our approach relates to previous efforts in constructing dependent DPs while overcom-
ing inherent limitations. A detailed comparison is given in section 4.

2 Poisson, Gamma, and Dirichlet Processes

Our construction of dependent Dirichlet processes is based on the connections between Poisson,
Gamma, and Dirichlet processes, as well as the concept of completely randomness. Here, we briefly
review these concepts. See Kingman [9] for a detailed exposition of the relevant theory.

Let (Ω,FΩ) be a measurable space, and Π be a random point process on Ω. Each realization of Π
uniquely corresponds to a counting measure NΠ defined by NΠ(A) := #(Π∩A) for each A ∈ FΩ.
Hence, NΠ is a measure-valued random variable or simply a random measure. A Poisson process
Π on Ω with mean measure µ, denoted Π ∼ PoissonP(µ), is defined to be a point process such
that NΠ(A) has a Poisson distribution with mean µ(A) and that for any disjoint measurable sets
A1, . . . , An, NΠ(A1), . . . , NΠ(An) are independent. The latter property is referred to as complete
randomness. Poisson processes are the only point process that satisfies this property [9]:

Theorem 1. A random point process Π on a regular measure space is a Poisson process if and only
if NΠ is completely random. If this is true, the mean measure is given by µ(A) = E(NΠ(A)).

Consider Π∗ ∼ PoissonP(µ∗) on a product space Ω × R+. For each realization of Π∗, We define
Σ∗ : FΩ → [0,+∞] as

Σ∗ :=
∑

(θ,wθ)∈Π∗

wθδθ (1)

Intuitively, Σ∗(A) sums up the values of wθ with θ ∈ A. Note that Σ∗ is also a completely random
measure (but not a point process in general), and it is essentially a generalization of the compound
Poisson process. As a special case, if we choose µ∗ to be

µ∗ = µ× γ with γ(dw) = w−1e−wdw, (2)

Then the random measure as defined in Eq.(1) is called a Gamma process with base measure µ,
denoted by G ∼ ΓP(µ). Normalizing any realization of G ∼ ΓP(µ) yields a sample of a Dirichlet
process, as

D := G/G(Ω) ∼ DP(µ). (3)

In conventional parameterization, µ is often decomposed into two parts: a base distribution pµ :=
µ/µ(Ω), and a concentration parameter αµ := µ(Ω).

3 Construction of Dependent Dirichlet Processes

Motivated by the relations between Poisson processes and Dirichlet processes, we develop a new
approach of constructing dependent Dirichlet processes (DDPs). In a high level, our approach can
be described as follows. Given a collection of Dirichlet processes, we can apply operations that
preserve complete randomness to their underlying Poisson processes, which would yield a new
Poisson process (due to theorem 1), and thus a new DP depending on the source. In particular, we
study three such operations: superposition, subsampling, and point transition.

Superposition of Poisson processes: Combining a set of independent Poisson processes yields a
Poisson process whose mean measure is the sum of mean measures of the individual ones.

Theorem 2 (Superposition Theorem [9]). Let Π1, . . . ,Πm be independent Poisson processes on Ω
with Πk ∼ PoissonP(µk), then their union has

Π1 ∪ · · · ∪Πm ∼ PoissonP(µ1 + · · ·+ µm). (4)

Given a collection of independent Gamma processes G1, . . . , Gm, where for each k = 1, . . . ,m,
Gk ∼ ΓP(µk) with underlying Poisson process Π∗k ∼ PoissonP(µk × γ). By theorem 2, we have

m⋃
k=1

Π∗k ∼ PoissonP

(
m∑
k=1

(µk × γ)

)
= PoissonP

((
m∑
k=1

µk

)
× γ

)
. (5)
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According to the relation between Gamma processes and their underlying Poisson processes, such
combination is tantamount to directly superimposing the Gamma processes themselves, as

G′ := G1 + · · ·+Gm ∼ ΓP(µ1 + · · ·+ µm). (6)
Let Dk = Gk/Gk(Ω), and gk = Gk(Ω), then Dk is independent of gk, and thus

D′ := G′/G′(Ω) = (g1D1 + · · ·+ gmDm)/(g1 + · · ·+ gm) = c1D1 + · · ·+ cmDm. (7)
Here, ck = gk/

∑m
l=1 gl, which has (c1, . . . , cm) ∼ Dir(µ1(Ω), . . . , µm(Ω)). Consequently, one

can construct a Dirichlet process through a random convex combination of independent Dirichlet
processes. This result is summarized by the following theorem:
Theorem 3. Let D1, . . . , Dm be independent Dirichlet processes on Ω with Dk ∼ DP(µk), and
(c1, . . . , cm) ∼ Dir(µ1(Ω), . . . , µm(Ω)) be independent of D1, . . . , Dm, then

D1 ⊕ · · · ⊕Dm := c1D1 + · · · cmDm ∼ DP(µ1 + · · ·+ µm). (8)

Here, we use the symbol ⊕ to indicate superposition via a random convex combination. Let αk =
µk(Ω) and α′ =

∑m
k=1 αk, then for each measurable subset A,

E(D′(A)) =
m∑
k=1

αk
α′

E(Dk(A)), and Cov(D′(A), Dk(A)) =
αk
α′

Var(Dk(A)). (9)

Subsampling Poisson processes: Random subsampling of a Poisson process via independent
Bernoulli trials yields a new Poisson process.
Theorem 4 (Subsampling Theorem). Let Π ∼ PoissonP(µ) be a Poisson process on the space Ω,
and q : Ω→ [0, 1] be a measurable function. If we independently draw zθ ∈ {0, 1} for each θ ∈ Π0

with P(zθ = 1) = q(θ), and let Πk = {θ ∈ Π : zθ = k} for k = 0, 1, then Π0 and Π1 are
independent Poisson processes on Ω, with Π0 ∼ PoissonP((1− q)µ) and Π1 ∼ PoissonP(qµ)1.

We emphasize that subsampling is via independent Bernoulli trials rather than choosing a fixed
number of particles. We use Sq(Π) := Π1 to denote the result of subsampling, where q is referred
to as the acceptance function. Note that subsampling the underlying Poisson process of a Gamma
process G is equivalent to subsampling the terms of G. Let G =

∑∞
i=1 wiδθi , and for each i, we

draw zi with P(zi = 1) = q(θi). Then, we have

G′ = Sq(G) :=
∑
i:zi=1

wiδθi ∼ ΓP(qµ). (10)

Let D be a Dirichlet process given by D = G/G(Ω), then we can construct a new Dirichlet pro-
cess D′ = G′/G′(Ω) by subsampling the terms of D and renormalizing their coefficients. This is
summarized by the following theorem.
Theorem 5. Let D ∼ DP(µ) be represented by D =

∑n
i=1 riδθi and q : Ω → [0, 1] be a measur-

able function. For each i we independently draw zi with P(zi = 1) = q(θi), then

D′ = Sq(D) :=
∑
i:zi=1

r′iδθi ∼ DP(qµ), (11)

where r′i := ri/
∑
j:zj=1 rj are the re-normalized coefficients for those i with zi = 1.

Let α = µ(Ω) and α′ = (qµ)(Ω), then for each measurable subset A,

E(D′(A)) =
(qµ)(A)

(qµ)(Ω)
=

∫
A
qdµ∫

Ω
qdµ

, and Cov(D′(A), D(A)) =
α′

α
Var(D′(A)). (12)

Point transition of Poisson processes: The third operation moves each point independently fol-
lowing a probabilistic transition. Formally, a probabilistic transition is defined to be a function
T : Ω×FΩ → [0, 1] such that for each θ ∈ FΩ, T (θ, ·) is a probability measure on Ω that describes
the distribution of where θ moves, and for each A ∈ FΩ, T (·, A) is integrable. T can be considered
as a transformation of measures over Ω, as

(Tµ)(A) :=

∫
Ω

T (θ,A)µ(dθ). (13)

1qµ is a measure on Ω given by (qµ)(A) =
∫
A
qdµ, or equivalently (qµ)(dθ) = q(θ)µ(dθ).
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Theorem 6 (Transition Theorem). Let Π ∼ PoissonP(µ) and T be a probabilistic transition, then

T (Π) := {T (θ) : θ ∈ Π} ∼ PoissonP(Tµ). (14)

With a slight abuse of notation, we use T (θ) to denote an independent sample from T (θ, ·).

As a consequence, we can derive a Gamma process and thus a Dirichlet process by applying the
probabilistic transition to the location of each term, leading to the following:
Theorem 7. Let D =

∑∞
i=1 riδθi ∼ DP(µ) be a Dirichlet process on Ω, then

T (D) :=

∞∑
i=1

riδT (θi) ∼ DP(Tµ). (15)

Theorems 1 and 2 are immediate consequences of the results in [9]. Theorem 3 to Theorem 7 are
derived in developing the proposed approach. Detailed explanation of relevant concepts and the
proofs of theorem 2 to theorem 7 are provided in the supplement.

3.1 A Markov Chain of Dirichlet Processes

Integrating these three operations, we construct a Markov chain of DPs formulated as

Dt = T (Sq(Dt−1))⊕Ht, with Ht ∼ DP(ν). (16)

The model can be explained as follows: given Dt−1, we choose a subset of terms by subsampling,
then move their locations via a probabilistic transition T , and finally superimpose a new DP Ht on
the resultant process to form Dt. Hence, creating new particles, removing existing particles, and
varying particle locations are all allowed, respectively, via superposition, subsampling, and point
transition. Note that while they are based on the operations of the underlying Poisson processes, due
to theorems 3, 5, and 7, we operate directly on the DPs, without the need of explicitly instantiating
the associated Poisson processes or Gamma processes. Let µt be the base measure of Dt, then

µt = T (qµt−1) + ν. (17)

Particularly, if the acceptance probability q is a constant, then αt = qαt−1 + αν . Here, αt = µt(Ω)
and αν = ν(Ω) are the concentration parameters. One may hold αt fixed over time by choosing
appropriate values for q and αν . Furthermore, it can be shown that

Cov(Dt+n(A), Dt(A)) ≤ qnVar(Dt(A)). (18)

The covariance with a previous DPs decays exponentially when q < 1. This is often a desirable
property in practice. Moreover, we note that ν and q play different roles in controlling the process.
Generally, ν determines how frequently a new terms appear; while q governs the the life span of a
term which has a geometric distribution with mean (1− q)−1.

We aim to use the Markov chain of DPs as a prior of evolving mixture models. This provides
a mechanism with which new component models can be brought in, existing components can be
removed, and the model parameters can vary smoothly over time.

4 Comparison with Related Work

In his pioneering work [12], MacEachern proposed the “single-p DDP model”. It considers DDP
as a collection of stochastic processes, but does not provide a natural mechanism to change the
collection size over time. Müller et al [14] formulated each DP as a weighted mixture of a common
DP and an independent DP. This formulation was extended by Dunson [6] in modeling latent trait
distributions. Zhu et al [24] presented the Time-sensitive DP, in which the contribution of each DP
decays exponentially. Teh et al [23] proposed the HDP where each child DP takes its parent DP as
the base measure. Ren [18] combines the weighted mixture formulation with HDP to construct the
dynamic HDP. In contrast to the model proposed here, a fundamental difference of these models is
that the marginal distribution at each node is generally not a DP.

Caron et al [4] developed a generalized Polya Urn scheme while Ahmed and Xing [1] developed the
recurrent Chinese Restaurant process (CRP). Both generalize the CRP to allow time-variation, while
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retaining the property of being marginally DP. The motivation underlying these methods fundamen-
tally differs from ours, leading to distinct differences in the sampling algorithm. In particular, [4]
supports innovation and deletion of particles, but does not support variation of locations. Moreover,
its deletion scheme is based on the distribution in history, but not on whether a component model
fits the new observation. While [1] does support innovation and point transition, there is no explicit
way to delete old particles. It can be considered a special case of the proposed framework in which
subsampling operation is not incorporated. We note that [1] is motivated from an algorithmic rather
than theoretical perspective.

Grifin and Steel [7] present the πDDP based on the stick breaking construction [19], reordering
the stick breaking ratios for each time so as to obtain different distributions over the particles. This
work is further extended [8] to a generic stick breaking processes. Chung et al [5] propose a local DP
that generalizes πDDP. Rather than reordering the stick breaking ratios, they regroup them locally
such that dependent DPs can be constructed over a general covariate space. Inference in these mod-
els requires sampling a series of auxiliary variables, considerably increasing computational costs.
Moreover, the local DP relies on a truncated approximation to devise the sampling scheme.

Recently, Rao and Teh [16] proposed the spatially normalized Gamma process. They constructs a
universal Gamma process in an auxiliary space and obtain dependent DPs by normalizing it within
overlapped local regions. The theoretical foundation differs in that it does not exploit the relations
between Gamma process and Poisson process which is in the heart of the proposed model. In [16],
the dependency is established through region overlapping; while in our work, this is accomplished
by explicitly transferring particles from one DP to another. In addition, this work does not support
location variation, as it relies on a universal particle pool that is fixed over time.

5 The Sampling Algorithm

We develop a Gibbs sampling procedure based on the construction of DDP introduced above. The
key idea is to derive the sampling steps by exploiting the fact that our construction maintains the
property of being marginally DP via connections to the underlying Poisson processes. Furthermore,
the derived procedure unifies distinct aspects (innovation, removal, and transition) of our model. Let
D ∼ DP(µ) be a Dirichlet process on Ω. Then given a set of samples Φ ∼ D, in which φi appears
ci times, we have D|Φ ∼ DP(µ+ c1δφ1 + · · ·+ cnδφn). Let D′ be a Dirichlet process depending
on D as in Eq.(16), α0 = (qµ)(Ω), and qi = q(θi). Given Φ ∼ D, we have

D′|Φ ∼ DP

(
ανpν + α0pqµ +

m∑
k=1

qkckT (φk, ·)

)
. (19)

Sampling from D′. Let θ1 ∼ D′. Marginalizing over D′, we get

θ1|Φ ∼
αν
α′1
pν +

α0

α′1
pqµ +

m∑
k=1

qkck
α′1

T (φk, ·) with α′1 = αν + α0 +

m∑
k=1

qkck. (20)

Thus we sample θ1 from three types of sources: the innovation distribution pν , the q-subsampled
base distribution pqµ, and the transition distribution T (φk, ·). In doing so, we first sample a variable
u1 that indicates which source to sample from. Specifically, when u1 = −1, u1 = 0, or u1 = l > 0,
we respectively sample θ1 from pν , pqµ, or T (φl, ·). The probabilities of these cases are αν/α′1,
α0/α

′
1, and qici/α′1 respectively. After u1 is obtained, we then draw θ1 from the indicated source.

The next issue is how to update the posterior given θ1 and u1. The answer depends on the value of
u1. When u1 = −1 or 0, θ1 is a new particle, and we have

D′|θ1, {u1 ≤ 0} ∼ DP

(
ανpν + α0pqµ +

m∑
k=1

qkckT (φk, ·) + δθ1

)
. (21)

If u1 = l > 0, we know that the particle φl is retained in the subsampling process (i.e. the corre-
sponding Bernoulli trial outputs 1), and the transited version T (φl) is determined to be θ1. Hence,

D′|θ1, {u1 = l > 0} ∼ DP

ανpν + α0pqµ +
∑
k 6=l

qkckT (θk, ·) + (cl + 1)δθ1

 . (22)
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With this posterior distribution, we can subsequently draw the second sample and so on. This process
generalizes the Chinese restaurant process in several ways: (1) it allows either inheriting previous
particles or drawing new ones; (2) it uses qk to control the chance that we sample a previous particle;
(3) the transition T allows smooth variation when we inherit a previous particle.

Inference with Mixture Models. We use the Markov chain of DPs as the prior of evolving mixture
models. The generation process is formulated as

θ1, . . . , θn ∼ D′ i.i.d., and xi ∼ L(θi), i = 1, . . . , n. (23)
Here, L(θi) is the observation model parameterized by θi. According to the analysis above, we
derive an algorithm to sample θ1, . . . , θn conditioned on the observations x1, . . . , xn as follows.

Initialization. (1) Let m̃ denote the number of particles, which is initialized to be m and will
increase as we draw new particles from pν or pqµ. (2) Let wk denote the prior weights of different
sampling sources which may also change during the sampling. Particularly, we set wk = qkck for
k > 0, w−1 = αν , and w0 = α0. (3) Let ψk denote the particles, whose value is decided when a
new particle or the transited version of a previous one is sampled. (4) The label li indicates to which
particle θi corresponds and the counter rk records the number of times that ψk has been sampled
(set to 0 initially). (5) We compute the expected likelihood, as given by F (k, i) := Epk(f(xi|θ)).
Here, f(xi|θ) is the likelihood of xj with respect to the parameter θ, and pk is pν , pqµ or T (φk, ·)
respectively when k = −1, k = 0 and k ≥ 1.

Sequential Sampling. For each i = 1, . . . , n, we first draw the indicator ui with probability P(ui =
k) ∝ wkF (k, i). Depending on the value of ui, we sample θi from different sources. For brevity,
let p|x to denote the posterior distribution derived from the prior distribution p conditioned on the
observation x. (1) If ui = −1 or 0, we draw θi from pν |xi or pqµ|xi, respectively, and then add it
as a new particle. Concretely, we increase m̃ by 1, let ψm̃ = θj , rm̃ = wm̃ = 1, and set li = m̃.
Moreover, we compute F (m, i) = f(xi|ψm̃) for each i. (2) Suppose ui = k > 0. If rk = 0 then it is
the first time we have drawn ui = k. Since ψk has not been determined, we sample θi ∼ T (φk, ·)|xi,
then set ψk = θi. If rk > 0, the k-th particle has been sampled before. Thus, we can simply set
θi = ψk. In both cases, we set the label li = k, increase the weight wi and the counter ri by 1, and
update F (k, i) to f(xi|ψk) for each i.

Note that this procedure is inefficient in that it samples each particle φk merely based on the first
observation with label k. Therefore, we use this procedure for bootstrapping, and then run a Gibbs
sampling scheme that iterates between parameter update and label update.

(Parameter update): We resample each particle ψk from its source distribution conditioned on all
samples with label k. In particular, for k ∈ [1,m] with rk > 0, we draw ψk ∼ T (φk, ·)|{xi : li =
k}, and for k ∈ [m+ 1, m̃], we draw ψk ∼ p|{xi : li = k}, where p = pqµ or pν , depending which
source ψk was initially sampled from. After updating ψk, we need to update F (k, i) accordingly.

(Label update): The label updating is similar to the bootstrapping procedure described above. The
only difference is that when we update a label from k to k′, we need to decrease the weight and
counter for k. If rk decreases to zero, we remove ψk, and reset wk to qkck when k ≤ m.

At the end of each phase t, we sample ψk ∼ T (φk, ·) for each k with rk = 0. In addition, for
each of such particles, we update the acceptance probability as qk ← qk · q(φk), which is the prior
probability that the particle φk will survive in next phase. MATLAB codes are available in the
following website: http://code.google.com/p/ddpinfer/.

6 Experiments

Here we present experimental results on both synthetic and real data. In the synthetic case, we
compare both methods in modeling mixtures of Gaussians whose number and centers evolve over
time. For real data, we test the approach in modeling the motion of people in crowded scenes and
the trends of research topics reflected in index terms.

6.1 Simulations on Synthetic Data

The data for simulations were synthesized as follows. We initialized the model with two Gaussian
components, and added new components following a temporal Poisson process (one per 20 phases
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Figure 1: The simulation results: (a) compares the performance between D-DPMM and D-FMM with differing
numbers of components. The upper graph shows the median of distance between the resulting clusters and the
ground truth at each phase. The lower graph shows the actual numbers of clusters. (b) shows the performance of
D-DPMM with different values of acceptance probability, under different data sizes. (c) shows the performance
of D-DPMM with different values of diffusion variance, under different data sizes.

on average). For each component, the life span has a geometric distribution with mean 40, the
mean evolves independently as a Brownian motion, and the variance is fixed to 1. We performed
the simulation for 80 phases, and at each phase, we drew 1000 samples for each active component.
At each phase, we sample for 5000 iterations, discarding the first 2000 for burn-in, and collecting
a sample for every 100 iterations for performance evaluation. The particles of the last iteration at
each phase were incorporated into the model as a prior for sampling in the next phase. We obtained
the label for each observation by majority voting based on the collected samples, and evaluated the
performance by measuring the dissimilarity between the resultant clusters and the ground truth using
the variation of information [13]. Under each parameter setting, we repeated the experiment for 20
times, utilizing the median of the dissimilarities for comparison.

We compare our approach (D-DPMM) with dynamic finite mixtures (D-FMM), which assumes a
fixed number of Gaussians whose centers vary as Brownian motion. From Figure 1(a), we observe
that when the fixed number K of components equals the actual number, they yield comparable per-
formance; while when they are not equal, the errors of D-FMM substantially increase. Particularly,
K less than the actual number results in significant underfitting (e.g. D-FMM with K = 2 or 3 at
phases 30−50 and 66−76); whenK is greater than the actual number, samples from the same com-
ponent are divided into multiple groups and assigned to different components (e.g. D-FMM with
K = 5 at phases 1− 10 and 30− 50). In all cases, D-DPMM consistently outperforms D-FMM due
to its ability to adjust the number of components to adapt to the change of observations.

We also studied how design parameters impact performance. In Figure 1(b), we see that setting the
acceptance probability q to 0.1 tends to create new components rather than inheriting from previous
phases, leading to poor performance when the number of samples is limited. If we set q = 0.9, the
components in previous phase have more chance survive, and thus the estimation of the component
parameter can be based on multiple phases, which is more reliable. Figure 1(c) shows the effect of
the diffusion variance that controls the parameter variation. When it is small, the parameter in next
phase is tied tightly with the previous value; when it is large, the estimation basically relies on new
observations. Both cases lead to performance degradation on small datasets, which indicates that
it is important to keep a balance between inheritance and innovation. Our framework provides the
flexibility to attain such balance. Cross-validation can be used to set these parameters automatically.

6.2 Real Data Applications

Modeling People Flows. It was observed [11] that the majority of people walking in crowded areas
such as a rail station tend to follow motion flows. Typically, there are several flows at a time, and
each flow may last for a period. In this experiment, we apply our approach to extract the flows. The
test was conducted on a video acquired in New York Grand Central Station (provided by the author
of [11]), which comprises 90, 000 frames for one hour (25 fps). A low level tracker was used to
obtain the tracks of people, which were then processed by a rule-based filter that discards obviously
incorrect tracks. We adopt the flow model described in [11], which uses an affine field to capture
the motion patterns of each flow. The observation for this model is in form of location-velocity
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Figure 2: The experiment results on real data. (a) left: the timelines of the top 20 flows; right: illustration of
first two flows. (Illustrations of larger sizes are in the supplement.) (b) left: the timelines of the top 10 topics;
right: the two leading keywords for these topics. (A list with more keywords is in the supplement.)

pairs. We divided the entire sequence into 60 phases (each for one minute), extract location-velocity
pairs from all tracks, and randomly choose 3000 pairs for each phase for model inference. The
algorithm infers 37 flows in total, while at each phase, the numbers of active flows range from 10
to 18. Figure 2(a) shows the timelines of the top 20 flows (in terms of the numbers of assigned
observations). We compare the performance of our method with D-FMM by measuring the average
likelihood on a disjoint dataset. The value for our method is −3.34, while those for D-FMM are
−6.71, −5.09, −3.99, −3.49, and −3.34, when K are respectively set to 10, 20, 30, 40, and 50.
This shows that with much smaller number of components (12 active components on average), our
method can attain similar modeling accuracy as a D-FMM with 50 components.

Modeling Paper Topics. Next we analyze the evolution of paper topics for IEEE Trans. on PAMI.
By parsing the webpage of IEEE Xplore, we collected the index terms for 3014 papers published in
PAMI from Jan, 1990 to May, 2010. We first compute the similarity between each pair of papers
in terms of relative fraction of overlapped index terms. We derive a 12-dimensional feature vector
using spectral embedding [2] over the similarity matrix for each paper. We run our algorithm on
these features with each phase corresponding to a year. Each cluster of papers is deemed a topic.
We compute the histogram of index terms and sorted them in decreasing order of frequency for each
topic. Figure 2(b) shows the timelines of top 10 topics, and together with the top two index terms
for each of them. Not surprisingly, we see that topics such as “neural networks” arise early and then
diminish while “image segmentation” and “motion estimation” persist.

7 Conclusion and Future Directions

We developed a principled framework for constructing dependent Dirichlet processes. In contrast to
most DP-based approaches, our construction is motivated by the intrinsic relation between Dirichlet
processes and compound Poisson processes. In particular, we discussed three operations: super-
position, subsampling, and point transition, which produce DPs depending on others. We further
combined these operations to derive a Markov chain of DPs, leading to a prior of mixture models
that allows creation, removal, and location variation of component models under a unified formula-
tion. We also presented a Gibbs sampling algorithm for inferring the models. The simulations on
synthetic data and the experiments on modeling people flows and paper topics clearly demonstrate
that the proposed method is effective in estimating mixture models that evolve over time.

This framework can be further extended along different directions. The fact that each completely
random point process is a Poisson process suggests that any operation that preserves the complete
randomness can be applied to obtain dependent Poisson processes, and thus dependent DPs. Such
operations are definitely not restricted to the three ones discussed in this paper. For example, random
merging and random splitting of particles also possess this property, which would lead to an extended
framework that allows merging and splitting of component models. Furthermore, while we focused
on Markov chain in this paper, the framework can be straightforwardly generalized to any acyclic
network of DPs. It is also interesting to study how it can be generalized to the case with undirected
network or even continuous covariate space. We believe that as a starting point, this paper would
stimulate further efforts to exploit the relation between Poisson processes and Dirichlet processes.
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