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Abstract. The paper presents a novel and efficient method to geneustean-
dom numbers on FPGAs by inducing metastability in bi-staireuit elements,
e.g. flip-flops. Metastability is achieved by using precisegpammable delay
lines (PDL) that accurately equalize the signal arrivale#mo flip-flops. The
PDLs are capable of adjusting signal propagation delayls rggolutions higher
than fractions of a pico second. In addition, a real time roitig system is uti-
lized to assure a high degree of randomness in the genernatigat bits, resilience
against fluctuations in environmental conditions, as welr@ustness against
active adversarial attacks. The monitoring system empéofeedback loop that
actively monitors the probability of output bits; as sooraay bias is observed
in probabilities, it adjusts the delay through PDLs to retto the metastable op-
eration region. Implementation on Xilinx Virtex 5 FPGAs aresults of NIST
randomness tests show the effectiveness of our approach.

1 Introduction

True Random Number Generators (TRNG) are important sgcprimitives that can
be used to generate random numbers for various essentalitasuding the genera-
tion of (i) secret or public keys, (ii) initialization veat® and seeds for cryptographic
primitives and pseudo-random number generators, (iii)dpagl bits, and (iv) nonces
(numbers used once). Since modern cryptographic algosithiten require large key
sizes, generating the keys from a smaller sized seed witifiégntly reduce the en-
tropy of the long keys. In other words, by performing a brideze attack only on the
seed that generated the key, one could break the cryptonsysteaddition, for ap-
plications that demand a constant high-speed and hightggaheration of keys, e.g.
secure web servers, algorithmic approaches to pseud@nandmber generation are
typically inefficient, and hardware accelerated mechasisme highly desired. True
random numbers also find applications in gaming, gamblimtlattery drawings.

To date, numerous TRNG designs have been proposed and iemtiedn Each de-
sign uses a different mechanism to extract randomness foome sinderlying physical
phenomena that exhibit uncertainty or unpredictabilityaBples of sources of ran-
domness include thermal and shot noise in circuits, seegreféects such as clock
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jitter and metastability in circuits, Brownian motion, aispheric noise, nuclear decay,
and random photon behavior.

Because of its flexibility and fast time to market, FPGA hasdme a popular
platform for implementing many cryptographic systems thatude TRNGs as an es-
sential block. It is important to develop new FPGA TRNG siaog because: (i) not
all hardware TRNG methods available for ASICs or other plaifs are amenable to
FPGA implementation; (ii) the existing FPGA TRNGs have tatibns in terms of
the throughput-per-unit-area and could be improved,; aijctive adversarial attacks
as well as variations in operational conditions such asdhtains in temperature and
voltage supply may bias and disturb the randomness of TRNG®ibbitstream. Since
most of the state-of-the-art TRNGs operate in an open-laspibn, it is important to
incorporate a mechanism to constantly provide a feedbapgiakto adaptively adjust
the TRNG system parameters to increase its output bit randem

In this work, we propose a novel technique to generate trndaa numbers on
FPGA using the flip-flop metastability as a source of rand@and&he introduced
TRNG core operates within a closed-loop feedback systetraittavely monitors the
output bit probabilities over windows of bit sequences ardeagates a proportional
feedback signal based on any observed bias in the bit prigtieghiThe feedback mech-
anism is made possible by performing fine delay tuning usigl precision PDLs with
picosecond resolution. The delay tuning ensures that greaks arrive simultaneously
at the flip-flop to drive it into a metastable state. Our cdmitions are as follows.

— We introduce an FPGA-based TRNG system that utilizes flip-fietastability as
the source of randomness.

— A novel feedback mechanism is introduced that performs-adjostment on de-
lays in order to make the metastability condition more lkiel happen.

— We demonstrate the use of a PDL to perform fine tuning with aigien of higher
than a fraction of a pico-second.

— Highly accurate delay measurement results for PDL are detretied.

— The proposed TRNG system is implemented on Xilinx Virtex 5534 the hard-
ware evaluation results demonstrate the high throughpupeaand the high qual-
ity (i.e., true randomness) of the produced output bits.

2 Related work

The work in [15] uses sampling of phase jitter in oscillatogs to generate a sequence
of random bits. The output of a group of identical ring ostidrs are fed to a parity
generator function (i.e., a multi-input XOR). The outputcenstantly sampled by a
D-flipflop driven using the system clock. In absence of noise identical phases, the
XOR output would be constant (and deterministic). Howeirepresence of a phase
jitter, glitches with varying non-deterministic lengthgpear at the output. An imple-
mentation of this method on Xilinx Virtex Il FPGAs was demtrated in [12].

Another type of TRNG is introduced in [11] that exploits thmbiter-based Physi-
cal Unclonable Function (PUF) structure. PUF provides apirapfrom a set of input
challenges to a set of output responses based on uniquelepgrrdent manufacturing
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Fig. 1: TRNG based on sampling the ring oscillator phaserjitt

process variability. The arbiter-based PUF structureitiiced in [3], compares the ana-
log delay difference between two parallel timing paths. paths are built identically,
but the physical device imperfections make their timindedént. A working imple-
mentation of the arbiter-based PUF was demonstrated onAfitBs [5] and FPGA [8,
13]. Unlike PUFs where reliable response generation igelésihe PUF-based TRNG
goal is to generate unstable responses by driving the aibttethe metastable state.
This is essentially accomplished through violating thatarksetup/hold time require-
ments. The PUF-based TRNG in [11] searches for challengésdbult in small delay
differences at the arbiter input which then cause unradiabponse bits.

To improve the quality of the output TRNG bitsteam and inseeiis randomness,
various post-processing techniques are often performied.\iork in [15] introduces
resilient functions to filter out deterministic bits. Thesileent function is implemented
by a linear transformation through a generator matrix comiynased in linear codes.
The hardware implementation of resilient function is destoated in [12] on Xilinx
Virtex Il FPGAs. The TRNG after post processing achievegauphput of 2Mbps us-
ing 110 ring oscillators with 3 inverters in each. A post-qgesing may be as simple as
von Neumann corrector [10] or may be more complicated su@mastractor function
[1] or even a one-way hash function such as SHA-1 [4].

Besides improving the statistical properties of the outpusequence and remov-
ing biases in probabilities, post-processing techniqnesease the TRNG resilience
against adversarial manipulation and variations in emritental conditions. An active
adversary may attempt to bias the output bit probabilite®tiuce their entropy. Post-
processing techniques typically govern a trade-off betwise quality (randomness)
of the generated bit versus the throughput. Other onlineitmiong techniques may be
used to assure a higher quality for the generated randomHautsinstance, in [11],
the generated bit probabilities are constantly monitoasdsoon as a bias in the bit se-
quence is observed, the search for a new challenge vectugiray unreliable response
bits is initiated. A comprehensive review of hardware TRNGs be found in [14]. The
TRNG system proposed in this paper simultaneously provalggomness, robustness,
low area overhead, and high throughput.

3 Programmable delay lines

Programmable delay lines (PDLs) alter the signal propagatielay in a controlled
fashion. The common mechanisms used to change the delaydéxl(i) varying



the effective load capacitance, (ii) modifying the deviagrent drive (by increas-
ing/decreasing the effective threshold voltage by bodgib@), or (iii) incrementally
altering the length of the signal propagation path. The fwst methods are often em-
ployed in either analog fashion and/or in application sfetitegrated circuits (ASICs)
and are not amenable to FPGA implementation.

On reconfigurable digital platforms such as FPGAs, PDLs @imtplemented by
only changing the signal propagation path length or by iagethe circuit fanout that
modifies the effective load capacitance. The latter is oedygible if dynamic reconfigu-
ration is available. In other words, changing circuit fahi@guires topological changes
to the circuit which in turn needs a new configuration. In R}echnique is proposed
to alter the propagation path length by letting the signairtoe a few times inside the
switch matrices of FPGA instead of a direct and straight eation. The concept is
illustrated in Figure 2. In the switch matrix on the left sidiee signal bounces three
times off the switch edges before it exits the switch. In igatrswitch, the signal only
bounces once and as a result a shorter propagation patin landta smaller delay is
achieved. However, changing the switch connections paimisroutings require a new
configuration, and doing so during the circuit operation méygossible by dynamic
reconfigurability.

Three bounces > One bounce

D1 Dynamically D,
Reconfigure

Fig. 2: A PDL implemented by altering the signal routing desFPGA switch matrix.

In this paper, we use a novel technique to vary the signalggation path length
in minute increments/decrements by only using a singledpdkble (LUT). The tech-
nique changes the propagation path inside the LUT. We usexam@e to illustrate
the concept. Figure 3 shows a 3-input lookup table. The LUmsists of a set of
SRAM cells that store the intended functionality and a fike-structure of multiplex-
ers (MUXs) that enables selection of each individual SRAMaantent. The inputs to
the MUXs serve as an address that points to the SRAM cell wbostent is selected
to appear at the output of LUT. The LUT in Figure 3 is prograndrt@implement an
inverter, where the LUT output is always an inversion of itstfinput (4,). The other
inputs of LUT, namely4, and A are functionally “don’t-cares”, but their value affect
the signal proposition path from; to the output. For instance, as shown in Figure
3, for A A3 = 00 and A2 A5 = 11 the signal propagation path length (and thus the
propagation delay) from; to O are the shortest and the longest respectively. Xilinx
Virtex 5, Virtex 6, and Spartan 6 devices utilize 6-input L&/ Therefore, by using one
single LUT, a programmable delay inverter/buffer with fianerol inputs can be imple-



mented. The five inputs provid® = 32 discrete levels for controlling the delay. The
measurement data presented in Section 6 obtained fronxXilitex 5 FPGAs suggest
that the maximum delay difference from each LUT is approxahal0 pico seconds.

SRAM Delay control
e~
values A A Ay
4 ? 2 9
‘ Programmable
delay inverter
0
(1
A, A
[0 2 A
[0} Ay ¢—
A,— LUT —0
Az —
3-input LUT

Fig. 3: Precision PDL using a single LUT.

4 Metastability

The proposed TRNG induces metastable conditions in blestabic circuit elements,
i.e., flip-flops and latches. The metastable state evegtresiblves to a stable state, but
the resolution process is extremely sensitive to operatioonditions and circuit noise,
rendering the result highly unpredictable.

A ‘D’ flip-flop samples its input at the rising edge of the clodksampling takes
place within a narrow time window before or after the inpwrsil transitions, a race
condition occurs. The race condition takes the flip-flop iatonetastable oscillat-
ing state. The time window around the sampling moment iscalpi referred to as
setup/hold time. The oscillation eventually settles onstedle final state of either one
or zero. This phenomenon is demonstrated in Figure 4. Natehle probability of set-
tling onto ‘1’ is a monotonic function of the time differen¢d) between the moment
sampling happens and the moment transition occurs at the.ihpfact, as shown in
[16,9, 7], the probability can be accurately modeled by ags@n CDF. If the delay
difference of the arriving signals is representeddwpndo is proportional to the width
of the setup/hold time window, then the probability of theépu being equal to one can

be written as: A
Prob{Out = 1} = Q(;), (1)

whereQ(z) = \/LTW L exp(=£)du. This model can be explained by Central Limit
Theorem. Figure 4 demonstrates four scenarios for diftesgmal arrival times. The



corresponding probabilities for the scenarios are markethk scenario number on
the probability plot. For instance, in scenarios 1 and 4¢esithe delay difference is
larger than the setup/hold time of the flip-flop, the outputasmpletely deterministic.
In order to obtain completely non-deterministic and unpridble output bits with equal
probabilities (ProbOutput=1} = Prob{ Output=0} = 0.5), our method forces the flip-
flop into metastability by tuning sampling and signal arritimes so they occur as
simultaneously as possible (driving) — 0) using the PDLs.

— ST j«— | Metastablgeq
{ — HTj— Region
Probability
1y 24 3t 43 D Q of Q=1
—PcC
—> A -«

(@) (b)

Fig. 4: (a) Flip-flop operation under four sampling scensyig) probability of output
being equal to ‘1’ as a function of the input signals delayedénce (). The numbers
on the probability plot correspond to each signal arrivalnario.

5 TRNG System Design

To drive the flip-flop into its metastable state, we use arpatd monitor-and-control
mechanism that establishes a closed loop feedback systemdnitor module keeps
track of the output bit probabilities over repeated timesimals. It then passes on the
information to the control unit. The control unit based oe thceived probability infor-
mation decides to add/subtract the delay to/from top/bottaths to calibrate the delay
difference so that it gets closer to zero. For instance gifthtput bits are highly skewed
towards 1, then the delay differencd)X must be decreased by increasing the top path
delay to balance the probabilities. Figure 5 (a) demorestretis concept.
A straightforward implementation of the monitoring unitnche realized by using
a counter. The counter value is incremented every time thelfip outputs ‘1’ and is
decremented whenever the flip-flop generates a ‘0’. This éagous to performing
a running sum over the sequence of output bits where zeroseplaced by ~1'. If
zeros and ones are equally likely, the value of the count#rstgy almost constant.
A feedback signal is generated proportional to any dewvidfiom this constant steady
state value. The generated error signal is fed back to tmakig-delay transducer, i.e.,
the PDL. The delay difference)) is updated/corrected based on the feedback signal.
The described system is in effect a proportional-inted?§l ¢ontroller. The system
is depicted in Figure 5 (b). In this figure, is the constant bias/skew in delays caused
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Fig.5: The TRNG system model.

by the routing asymmetries),, is the delay difference induced by changes in environ-
mental and operational conditions such as temperaturetgpdysvoltage, and/or delay
difference imposed by active adversarial attacksg.is the correction feedback delay
difference injected by the PDL based on the counter valueakon 2 expresses the
total delay difference at the input of the flip-flo@. represents transformation carried
out by the PDL from the counter binary value to an analog dditigrence. The arbiter
and integrator refer to the flip-flop and counter respecyivEherefore, the following
relationship holds;

A:Ap-i-Ab—Af. (2)

An example PDL-based implementation of the TRNG system @svehin Figure 6.

+2k +21 +20 output
258 . 218 295 . DFF p
p1 D2 12 p2 D1 i
P LD Q inc/dec
Binary
; Counter
— ¢ LSB MSB
i — g ]
Ck CZ R .

Fig. 6: The TRNG system implementation with a Pl controllef®GA.

The PDLs are depicted as gray triangles which provide thestinad most granular
level of control over the delays. If the resulting delay eifnce from one PDL is equal
to 4, the effective input/output delay of a PDD(4), for the binary input would be:

D(i) =i x de+ (1 —1) x (de +0). 3)

whered, is a constant delay value. Each programmable delay blockistsnof two
PDLs. The control input of top PDL inside each block is the ptement of the bottom
PDL control input in order to make a differential programrgatbelay structure. Based
on Equation 4, the differential delay is:

Daigp(i) = (1 - 2i) x § = (-1)'6, ~ i=0o0rl (4)



In this example, the programmable delay blocks are packegtanps with sizes of
multiples of two to efficiently generate any desirable ded#fference using a binary
control input. In other words, the first programmable delbck consists of two PDLs,
the second one contains 4 PDLs, and so on. With this arrangethe total incurred
delay difference can be written as:

Ap=G(C) =) (-1)927, (5)

whereC; € C is the'™™ counter bit withi = 0 being the least significant bit
(LSB) and: = K being the most significant bit (MSB), an@ represents the
counter value.d is the smallest possible delay difference produced by oné.PD
Let us assume that in the beginning the counter is re,%t - 5

. . . ountef I* | I’ |w
to zero. The resulting feedback delay differencelis =
(2(K+1) — 1) x § according to Equation 5. This large de- 111 |11110000+4
lay difference skews the output of flip-flop toward ‘1’. This 110 01110000+3
keeps raising the counter value, lowering the delay diffet- 101 10011,0009+2
ence A). As A approaches zero, the flip-flop begins ta 100 |00010000+1
output ‘0O's more frequently and lowers the rate at which 000 00000001 -1
the counter value was previously increasing. At the steady 001 ]000G0011—2
state, the counter value will settle around a constant value910 000001113
with a slight oscillatory behavior. Any outside perturloati | 011 000011134
on delays will cause transient fluctuations in bit probabili
ties; however, the automatic adjustment mechanism brifgg. 7: Decoding opera-
the system back to the equilibrium state. tion.

Although the performance of the system in Figure 6
seems ideally flawless, a straightforward hardware impleat@®n was not successful.
This is because the design is based on the assumptioagHedm PDLs are equal.
However, due to manufacturing process variability,daslightly vary from one PDL to
another. As a result, it is not feasible to generate any defsirdelay difference, because
the intended weights are not exactly multiples of two anyenbr particular, the input
to the largest programmable delay block dominates the syst@utput behavior.

Instead, we took an alternative approach and used two sétseaind coarse delay
tuning blocks as shown in Figure 8. Withfine tuning delay lines with a resolution of
dn, andm coarse tuning delay line with resolution &f;, any delay difference in the
range ofR = [nd s, + md.s, —nd s, — md.s) that satisfies Equation 6 can be produced.

Af = wfnéfn + wcs(scs (6)

wherewy, andw., are integer weights (or levels) such that. < w¢, < n and
—m < wes < m. By carefully selectingy,m, d+,,, andd.s, any delay difference with a
resolution ofd s, can be produced within the range

The system in Figure 8 is designed such that the weights arguevels) in Equa-
tion 6 are a function of the difference in the total number®$ ‘at PDL inputs on the



top and bottom paths;

n

win = D10 = 3L wes = D1 = YOI (7)

i=1

wherelt[i] € {0,1} andI®[i] € {0, 1} are the input signals to PDLs as demonstrated in
Figure 8. Thus, decoder block in Figure 8 needs to performping from the counter
value to the number of ‘1's at PDL inputs. For example; iE 4, the counter value of
‘111’ corresponds to -4 and ‘000’ corresponds to +4. TabladWs an example of de-
coding operation and corresponding tuning weights for d 8dunter. The conversion
from the counter value to the effective tuning weight is egsed by Equation 8.

K-1

wey, = (—1)9% x (1 + Z C’i2i> , K =|logan]. (8)

i=0

The fundamentals of the system’s operation shown in Figusee8the same as the
system in Figure 6 with the only difference lying in how thedback signal is generated
based on the counter states.

<«—Course Tuning Blocks —) <—— Fine Tuning Blocks —»

. DFF
P P2 i Pi1 Pn i P2 pr i
J_ : T ; B ; B : —D 9 Prob. || _O
i Analyzer Post c
_ L _ >C & Processing §
i i : Filter -
a1, I AN P, 1.'2 P, l.’/
1 Cy, inc/dec
Decoder | Z LSB Binary
Decoder I —- Msp Counter

Fig. 8: The complete TRNG system.

Notice that the controller type determines the response tinthanges in delays as
well as the error in the steady state response. Proportintegral (P1) controllers as
opposed to proportional integral derivative (PID) corrotiue to the lack of derivative
function can make the system more stable in the steady st#he icase of noisy data.
This is because derivative action is more sensitive to hiffeguency terms in the
inputs. Additionally, a PI-controlled system is less rasgige to inputs (including noise)
and so the system will be slower to respond to quick pertishaion the delays than a
well-tuned PID system.

The following two observations are important from a segusiandpoint. First, in
the steady state, the counter value oscillates around dacdreenter value(ccner)-
Let us define the oscillation amplitude as the peak-to-paage of the oscillations, i.e.
the maximum counter value minus the minimum counter vaftig,. — Cinin)- The
oscillation is not as periodic as one might think. It is ratagandom walk around the



center value. Each step in the random walk involves goingnfome counter value to a
one lower or higher value:

Step: Ccurrent — Ccurrent +1

The probability of each step (move) is a function of the caritecation. Intuitively the
probability of going outside the range is almost zero:

Prob{Cpee = Crgae +1} ~0
Prob{C)nin, = Crin — 1} =0 (9

Also assuming a smooth monotonically increasing prob@bilurve as shown in
Figure 4 for the flip-flop, the farther the current counteruelis from the center
(Ceenter), the lower the probability of moving farther away from thenter:

Prob{Ci — C; + 1} < P’I“Ob{Cj — Cj + 1} for Cj < C;
Prob{Ci - C; — 1} < P’I“Ob{Cj — Cj — 1} for Cj < C; (10)

Each generated output bit corresponds to a counter value pidbability of the
output being to ‘1’ is a function of the feedback counter eallihe maximum counter
value almost always results in a ‘0’ output, since a ‘0’ vatieerements the counter
value. Based on Equation 9, transiti6h),,.. — Cia. + 1 is unlikely, thusr(Ch,a.)
can almost never be ‘1’. The following deductions can be &xygld similarly:

Prob{r(Ceenter) =1} ~ 0.5
Prob{r(Cpmin) =1} ~ 1
Prob{r(Cmaez) =1} ~0 (11)

In other words, during the random walk only those steps thasglose at the center
point will result in high entropy and non-deterministic pesises. A smaller error in
the steady state response means oscillations happen tdasemter of the probability
transition curve which in turn leads to higher randomneggeinerated output bits.

In addition, it is desired that the system responds as quiakipossible to external
perturbations since the during the recovery time the TRNfegates output bits with
highly skewed probabilities.

6 Experimental results

In this section, we present the LUT-based PDL delay measemeevaluations and
TRNG hardware implementation results obtained from Xilifitex 5 LX50T FPGA.

Before moving onto the TRNG system performance evaluatienshall first dis-
cuss the results of our investigation on the maximum achiev&solution of the PDLs.
We set up a highly accurate delay measurement system similae delay characteri-
zation systems presented in [9, 7, 6].

The circuit under test consists of four PDLs each implenebiea single 6-input
LUT. The delay measurement circuit as shown in Figure 9 atssif three flip-flops:



launch, sample, and capture flip-flops. At each rising eddke€lock, the launch flip-
flop successively sends a low-to-high and high-to-low digim@ugh the PDLs. At the
falling edge of the clock, the output from the last PDL is séedby the sample flip-
flop. At the last PDL's output, the sampled signal is compawittl the steady state
signal. If the signal has already arrived at the sample fbp-fthen the sampling takes
place, then these two values will be the same; Otherwisetttkeyon different values. In
case of inconsistency in sampled and actual values, XORubbgromes high, which
indicates a timing error. The capture flip-flop holds the XQRput for one clock cycle.
To measure the absolute delays, the clock frequency is dwepta low frequency

to a high target frequency and the rate at which timing eroour are monitored and
recorded. Timing errors start to emerge when the clock el (T/2) approaches the
delay of the circuit under test. Around this point, the tignarror rate begins to increase
from 0% and reaches 100%. The center of this transition coraeks the point where
the clock half period (T/2) is equal to the effective delayted circuit under test.

Launch S I
Flip-flop Ay=l1111 ample Capt
Ap=l1111 Ase11111 Ane=11111  A»¢=00000  Flip-flop Fl?;’_ t‘]’;;
DQ s E s 2 H = s B D Q D Q—
i
5 Iy ;2 3 g 3 3
clk 2 2 ) 2o clk clk
{ i |

Fig. 9: The delay measurement circuit. The circuit unddrdessists of four LUTs each
implementing a PDL.

To measure the delay difference incurred by the LUT-baseld, fi2 measurement
is performed twice using different inputs. In the first rowsfdneasurement, the inputs
to the four PDLs are fixed talo_¢ = 11111. In the second measurement the inputs to
the last PDL are changed t, ¢ = 00000. In our setup, a 3232 array of the circuit
shown on Figure 9 is implemented on a Xilinx Virtex 5 LX110 FR&nd the delay
from our setup is measured under the two input settings. Tdek drequency is swept
linearly from 8MHz to 20MHz using a desktop function generatnd this frequency
is shifted up by 34 times inside the FPGA using the built-in.PL

The results of the measurement are shown on Figure 10. Eaehipithe image
corresponds to one measured delay value across the armgcale next to the color-
map is in nano-seconds. Figure 10 (c) depicts the differdmeteeen the measured
delays in (a) and (b). As can be seen, the delay values in ébyraaverage about 10
pico-seconds larger than the corresponding pixel valugg i his is in fact equal to the
amount of delay difference caused by the coarse PDLsjji.e.The delay difference
induced by the fine PDL of Figure 11 (&), is approximately equal to 1/16 of..

To evaluate the performance of the TRNG system, we implethergystem shown
in Figure 8 using 32 coarse and fine programmable delay lines (n = 32). A 12-
bit counter performs the running sum operation on the ougeaerated bits. The first
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Fig. 10: The measured delay of 832 circuit under tests containing a PDL with PDL
control inputs being set to (8)2_¢ = 00000 and (b)A>_¢ = 11111 respectively. The
difference between the delays in these two cases is shovei.in (

six (LSB) bits control the finely tunable PDLs, and the next(81SB) bits control the
coarsely tunable PDLs. Both fine and coarse PDLs are implezdday using one LUT
as shown in Figure 11. As illustrated in Figure 11, to implairtee fine PDL, the LUT
inputs Az to Ag are fixed to zero and the only input that controls the delagdsFor
the coarse PDL, all of the LUT inputs are tied and controltegkther.

0 ¢ o ¢
o ol i
O—Ei S |- o . Z c | 0
s | = s [ =
¢ 2 & 2 &
i —1 i—1
(a) Fine PDL (b) Coarse PDL

Fig.11: Coarse and fine PDLs implemented by a single 6-inplit L

In the first experiment, we only examine the forward systerhictv consists of
the PDLs, the flip-flop, and the decoders. The tuning weitgvsks are swept from
the minimum to maximum, and the probability of the flip-flopgucing a ‘1’ output
is measured at each level. This probability is measured pgating each experiment
over 100 times and counting the number of times the flip-flofpots a ‘1’. Since
n = m = 32, both the fine and coarse tuning levels can go fres2 to 32. Recall that
the tuning level represents the difference in the total nemalh ones at PDL inputs on
the top path minus those on the bottom path (see Equatiors@ahA be observed from
Figure 12, increasing both the coarse and fine tuning levelsease the probability
of output being equal to ‘1’. The non-smoothness of the podita curve is due to
variability in the manufacturing process which createsalamn-monotonicity. With
these observations, we expect the feedback system behavatabilize somewhere
close to the center of the transition point. Next, we clogg#rdback loop and initialize
the operation. At the beginning, the counter is loaded wiithl& (which results in a
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Fig. 12: The probability of flip-flip generating a ‘1’ outpus @ function of the fine and
coarse tuning levels.

decimal value of'2-1 = 4095). Figure 13 shows the counter value as the operation
progresses. The x-axis is the number of clock cycles. Oneefferation starts, the
counter value keeps decreasing until it reaches the valappifoximately 700 after
about 3,400 clock cycles. From this point further, the ceuntlue reaches a steady
state with a slight oscillatory behavior around a constahie. A close-up of the steady
state behavior is depicted in the lower plot of Figure 13. €lese-up zooms into the
segment between 25,000 to 30,000 clock cycles. As can bevalolsie the steady state,
the counter value oscillates between 559 and 564.

Next, we investigate the frequencies at which counter wappear in the steady
state. In this experiment, we collect 1,000,000 counteueslin the steady state and
plot the histogram of the observed values as shown in the Imioldt (b) in Figure
14. The normalized histogram suggests that the counteshbklvalue of 561 more
than 40% of the time. Next, it is critical to investigate threlpabilities associated with
each courter value. In other words, we would like to know far given counter values
— which produce a feedback input to the TRNG cereghe probability of the flip-
flop output being equal to ‘1’. The top plot (a) in Figure 14 g@ats this result. It is
interesting to see that most of the counter values produgidyhskewed probabilities.
Among these counter values, 561 leads to a ‘1’ output sighibre than 40% of the
time. We define a metric which is the multiplication of the nter values’ frequency
of occurrence with the probability of output being equal teedor each counter value.
This metric represents the contribution of each countarevéd the total number of ‘1’
in the output sequence. The metric values are shown in baitohic) in Figure 14.

To remove the bias in the output sequence in a systematic svaxekh as to elim-
inate predictable patterns, we propose a filtering mechab&sed on the steady state
counter values. The filter unit analyzes the output bit pbaliiges for each counter value
within a window of specific size and flags the counter values ad to outputs bits
with skewed probabilities. Next, it filters out the outputsbhssociated with the flagged
counter values. For example, in our implementation, therfitinly allows output bits
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Fig. 13: The transient counter value (decimal) versus tbekctycles.

associated with the counter value of 561 to pass through. Aesuat, the bit-rate is
lowered to almost half of the original bit-rate. Howeves thutput bits may still suffer
from bias in the bit probabilities. Therefore, a post-piEging unit after the filter unit
is used to remove any localized biases from the bitstrearautrimplementation, we
use a von Neumann corrector to perform the post-procesaslg The results of the
NIST randomness test from running on megabytes of data sl Table 1. The
comprehensive test results are available online at hitww.ruf.rice.edu/ mm7/trng/.

Table 1 includes the results of the NIST statistical testeson megabytes of col-
lected data after counter-based filtering and von Neumarection are performed on
the TRNG output bitstream. Due to the large bias in the priditiab, most of the ran-
domness failed when the test was run on the output bitstresoreédthe filtering and
correction were carried out.

Finally, according to the ISE Synthesis report, the progiagadelay through the
TRNG core is equal to 61.06ns which achieves a bit-rate of Hi6bec. The bit-rate
drops to 1/8 of the original bit-rate (to 2Mbit/sec) aftetdiing and von Neumann
correction. The TRNG core consumes 128 LUTs that are pacitedb Virtex 5 CLBs.
Note that in practice multiple TRNG cores can run in parabebdffer a higher bit-rate.

7 Conclusion

A novel FPGA-based technique to generate true random nwrthesugh flip-flop

metastability was introduced. The presented method toghraege of highly precise
programmable delay lines (PDL) to accurately equalize igaas arriving times to

flip-flops, thus enforcing a metastable behavior. PDLs asothstnated in the paper are
capable of adjusting signal propagation delays with sub-p&cond resolution. With
the help of a closed-loop proportional integral (P1) cohsgstem, the output bit proba-
bilities are constantly monitored and as soon as any skeprolabilities are observed,
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feedback signal instantly adjusts the delay taps to rewettié metastable condition.
The feedback systems provides resilience against fluonstn environmental condi-
tions, as well as robustness against active adversasakattimplementation on Xilinx
Virtex 5 FPGAs and results of NIST randomness tests showftbetiweness of our true
random number generator. The proposed TRNG is capable déipiog a throughput of
2 Mbit/sec after post-processing and filtering with a lowrnad, using only 5 CLBs.
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