
Non-Linear Monte-Carlo Search in Civilization II
S.R.K. Branavan David Silver * Regina Barzilay

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{branavan, regina}@csail.mit.edu

* Department of Computer Science
University College London

d.silver@cs.ucl.ac.uk

Abstract

This paper presents a new Monte-Carlo search al-
gorithm for very large sequential decision-making
problems. We apply non-linear regression within
Monte-Carlo search, online, to estimate a state-
action value function from the outcomes of ran-
dom roll-outs. This value function generalizes be-
tween related states and actions, and can therefore
provide more accurate evaluations after fewer roll-
outs. A further significant advantage of this ap-
proach is its ability to automatically extract and
leverage domain knowledge from external sources
such as game manuals. We apply our algorithm
to the game of Civilization II, a challenging multi-
agent strategy game with an enormous state space
and around 1021 joint actions. We approximate the
value function by a neural network, augmented by
linguistic knowledge that is extracted automatically
from the official game manual. We show that this
non-linear value function is significantly more ef-
ficient than a linear value function, which is itself
more efficient than Monte-Carlo tree search. Our
non-linear Monte-Carlo search wins over 78% of
games against the built-in AI of Civilization II. 1

1 Introduction
Monte-Carlo search is a simulation-based search paradigm
that has been successfully applied to complex games such as
Go, Poker, Scrabble, multi-player card games, and real-time
strategy games, among others [Gelly et al., 2006; Tesauro
and Galperin, 1996; Billings et al., 1999; Sheppard, 2002;
Schäfer, 2008; Sturtevant, 2008; Balla and Fern, 2009]. In
this framework, the values of game states and actions are
estimated by the mean outcome of roll-outs, i.e., simulated
games. These values are used to guide the selection of the
best action. However, in complex games such as Civiliza-
tion II, the extremely large action space makes simple Monte-
Carlo search impractical, as prohibitively many roll-outs are
needed to determine the best action. To achieve good perfor-
mance in such domains, it is crucial to generalize from the
outcome of roll-outs to the values of other states and actions.

1The code and data for this work are available from
http://groups.csail.mit.edu/rbg/code/civ/

Several factors influence a city's production of shields:
the terrain within your city radius is most important.

You might find it worthwhile to set Settlers to improving
the terrain squares within your city radius.

Beyond terrain , the form of government your civilization
chooses can cause each city to spend some of its raw
materials as maintenance

Figure 1: An extract from the game manual of Civilization II.

A common approach to value generalization is value func-
tion approximation (VFA), in which the values of all states
and actions are approximated using a smaller number of pa-
rameters. Monte-Carlo search can use VFA to estimate state
and action values from the roll-out scores. For instance, lin-
ear Monte-Carlo search [Silver et al., 2008] uses linear VFA:
it approximates the value function by a linear combination of
state features and weights.

In this paper, we investigate the use of Non-linear VFA
within Monte-Carlo search to provide a richer and more com-
pact representation of value. This value approximation re-
sults in better generalization between related game states and
actions, thus providing accurate evaluations after fewer roll-
outs. We apply non-linear VFA locally in time, to fit an ap-
proximate value function to the scores from the current set of
roll-outs. These roll-outs are all generated from the current
state, i.e., they are samples from the sub game starting from
now. The key features of our method are:
• Fitting Non-Linear VFA to local game context Pre-

vious applications of non-linear VFA [Tesauro, 1994]
estimated a global approximation of the value function.
While effective for games with relatively small state
spaces and smooth value functions, this approach has so
far not been successful in larger, more complex games,
such as Go or Civilization II. Non-linear VFA, applied
globally, does not provide a sufficiently accurate repre-
sentation in these domains. In contrast, the local value
function which focuses solely on the dynamics of the
current subgame, which may be quite specialized, can be
considerably easier to approximate than the full global
value function which models the entire game.
• Leveraging domain knowledge automatically ex-

tracted from text Game manuals and other textual re-
sources provide valuable sources of information for se-
lecting a game strategy. An example of such advice is
shown in Figure 1. For instance, the system may learn

that the action irrigate-land should be selected if the
words “improve terrain” are present in text. However,
the challenge in using such information is in identify-
ing which segments of text are relevant for the current
game context; for example, the system needs to identify
the second sentence in Figure 1 as advice pertinent to
the irrigation action. These decisions can be effectively
modeled via hidden variables in a non-linear VFA.

We model our non-linear VFA using a four-layer neural
network, and estimate its parameters via reinforcement learn-
ing within the Monte-Carlo search framework. The first layer
of this network represents features of the game state, action,
and the game manual. The second layer represents a linguis-
tic model of the game manual, which encodes sentence rele-
vance and the predicate structure of sentences. The third layer
corresponds to a set of fixed features which perform simple,
predefined transformations on the outputs of the first two lay-
ers. The fourth and final layer represents the value function.
During Monte-Carlo search, the roll-out scores are used to
train the entire value function online, including the linguis-
tic model. The weights of the neural network are updated by
error backpropagation, so as to minimize the mean squared
error between the value function (the network output) and the
roll-out scores.

We apply our technique to Civilization II, a notoriously
large and challenging game.2 It is a cooperative, multi-agent
decision-making problem with around 1021 joint actions and
an enormous state space of over 10188 states.3 To make the
game tractable, we assume that actions of agents are indepen-
dent of each other given the game state. We use the official
game manual as a source of domain knowledge in natural lan-
guage form, and demonstrate a significant boost to the perfor-
mance of our non-linear Monte-Carlo search. In full-length
games, our method wins over 78% of games against the built-
in, hand-crafted AI of Civilization II.

2 Related Work
Monte-Carlo search has previously been combined with
global non-linear VFA. The original TD-Gammon [Tesauro,
1994] used a multilayer neural network that was trained from
games of self-play to approximate the value function. Tesauro
and Galperin [1996] subsequently used TD-Gammon’s neural
network to score the roll-outs in a simple Monte-Carlo search
algorithm; however, the neural network was not adjusted on-
line from these roll-outs. In contrast, our algorithm re-learns
its value function, online, from each new set of roll-outs – just
as if TD-Gammon had re-trained its neural network after each
move, specifically for the subgame of Backgammon starting
from that new position.

Monte-Carlo search has previously been extended to the
special case of linear VFA [Silver et al., 2008]. Generaliz-
ing to non-linear VFA provides two fundamental advantages.

2Civilization II was placed #3 in IGN’s 2007 list of the top 100
video games of all time (http://top100.ign.com/2007)

3These measures of the state and action spaces are empirical es-
timates from our experimental setup. They are based on the average
number of units, available unit actions, state attributes and the ob-
served state attribute values.

Firstly, due to its greater representational power, it general-
izes better from small numbers of roll-outs. This is partic-
ularly important in complex games, such as Civilization II,
in which simulation is computationally intensive, severely
limiting the number of roll-outs. Secondly, non-linear VFA
allows for multi-layered representations, such as neural net-
works, which can automatically learn features of the game
state. Furthermore, we show that a multi-layered, non-linear
VFA can automatically incorporate domain knowledge from
natural language documents, so as to produce better features
of the game state, and therefore a better value function and
better overall performance.

A number of other approaches have previously been ap-
plied to turn-based strategy games [Amato and Shani, 2010;
Wender and Watson, 2008; Bergsma and Spronck, 2008;
Madeira et al., 2006; Balla and Fern, 2009]. However, given
the enormous state and action space in most strategy games,
much of this previous work has focused on smaller, simplified
or limited components of the game. For example, Amato and
Shani [2010] use reinforcement learning to dynamically se-
lect between two hard-coded strategies in the game Civiliza-
tion IV. Wender and Watson [2008] focus on city building in
Civilization IV. Madeira et al. [2006] address only the com-
bat aspect of strategy games, learning high-level strategies,
and using hard-coded algorithms for low-level control. Balla
and Fern [2009] apply Monte-Carlo tree search with some
success, but focus only on a tactical assault planning task. In
contrast to such previous work, our algorithm learns to con-
trol all aspects of the game Civilization II, and significantly
outperforms the hand-engineered, built-in AI player.

3 Background
Our task is to play and win a strategy game against a given
opponent. Formally, we represent the game as a Markov De-
cision Process (MDP) 〈S,A, T,R〉, where S is the set of pos-
sible states and A is the space of legal actions. Each state
s ∈ S represents a complete configuration of the game world,
including attributes such as available resources and the loca-
tions of cities and units. Each action a ∈ A represents a joint
assignment of actions to each city and each unit. At each step
of the game, the agent executes an action a in state s, which
changes the state to s′ according to the state transition distri-
bution T (s′|s, a). This distribution incorporates both the op-
ponent’s action selection policy, and the game rules. It is not
known explicitly; however, state transitions can be sampled
by invoking the game code as a black-box simulator. Each
state s has a reward R(s) ∈ R associated with it, also pro-
vided implicitly by the game code.

A policy π(s, a) is a stochastic action selection strategy
that gives the probability of selecting action a in state s. The
action-value function Qπ(s, a) is the expected final reward
after executing action a in state s and then following policy π.
In large MDPs, it is impractical to represent action-values by
table-lookup, with a distinct value for every state and action.
In such cases, the action-values can be represented by value
function approximation – i.e., Q(s, a) = f(s, a; θ), where f
is a differentiable function with parameter vector θ. These
parameters can be updated by applying non-linear regression

to the final utilities. Specifically, the parameters are adjusted
by gradient descent to minimize the mean-squared error be-
tween the action-value and the reward R(sτ) at final state sτ
for every observed state s and action a.

∆θ = −α
2
∇θ [R(sτ)−Q(s, a)]

2

= α [R(sτ)−Q(s, a)]∇θf(s, a; θ) (1)

Monte-Carlo Search Monte-Carlo search is a simulation-
based search paradigm for dynamically estimating the action-
values from a root state st. This estimate is based on the re-
sults of multiple roll-outs, each of which samples the final
reward in a simulated game that starts from st.4 Specifically,
in each roll-out, actions are selected according to a simulation
policy π, and state transitions are sampled from the transition
distribution T . At the end of the simulation, the rewardR(sτ)
at the final state sτ is measured, and the action-value func-
tion is updated accordingly. As in Monte-Carlo control [Sut-
ton and Barto, 1998], the simulation policy may then be im-
proved, to take account of this new information and direct the
simulations towards the highest scoring regions of the state
space. After n simulations have been executed, the actual ac-
tion with highest final reward is selected and played, and a
new search begins from root state st+1.

Monte-Carlo tree search (MCTS) [Coulom, 2006] uses a
search tree to represent the action-value function. Each node
of the search tree contains a single value for the state corre-
sponding to that node. Each simulation traverses the search
tree without backtracking. After each simulation, the action-
values of all traversed nodes are updated to reflect the new
mean reward. If all nodes of the search tree are expanded, this
algorithm is equivalent to Monte-Carlo control with table-
lookup, applied to the subgame starting from st. Monte-Carlo
tree search has achieved human master-level performance in
9× 9 Go [Gelly et al., 2006].

In linear Monte-Carlo search5 [Silver et al., 2008] the
value function is represented by a linear combination of fea-
tures φ(s, a) and a parameter vector θ: Q(s, a) = θ · φ(s, a).
The parameters are updated by applying online linear re-
gression to the final simulation utilities via gradient descent:
∆θ = α [R(sτ)−Q(s, a)]φ(s, a). This algorithm is equiv-
alent to Monte-Carlo control with linear function approxima-
tion [Sutton and Barto, 1998], again applied to the subgame
starting from st. Often, a linear approximation that is spe-
cialized to the current subgame can be much more accurate
than a global linear approximation; it outperforms a simple
Monte-Carlo tree search in 9× 9 Go [Silver et al., 2008].

4 Non-linear Monte-Carlo Search
Non-linear Monte-Carlo search combines Monte-Carlo
search with non-linear VFA. The value function is repre-
sented by an arbitrary, smooth function approximator. At the
end of each roll-out, the parameters of the function approx-
imator are updated online by Equation 1. This produces a

4These simulated games may be played against a given heuristic
game AI. In our experiments, the built-in AI is used as the opponent.

5Linear Monte-Carlo search is a special case of linear temporal-
difference search with λ = 1.

You might find it worthwhile to set Settlers to improving
the terrain squares within your city radius.

Within each city, you can order the construction of
improvements such as a Factory, Hydro Plant, or Offshore
Platform that increase shield production.

✗
✓

Figure 2: An example sentence relevance decision – if we are
attempting to select the best action for a “Settler” unit located
near a city, the first of these two sentences is the most relevant.

You might find it worthwhile to set Settlers to improving

the terrain squares within your city radius.

Figure 3: An example predicate labeling of a sentence: words
labeled as action description are shown in bold, and words
labeled as state description are underlined. The remaining
background words are grayed out.

non-linear approximation to the current roll-out scores, spe-
cialized to the subgame starting from st. As in other Monte-
Carlo search algorithms, the value function is used to improve
the simulation policy and guide roll-outs towards the highest
reward regions of the search space.

We now describe a our approach to non-linear VFA which
can be applied effectively in the context of Monte-Carlo
search. We represent the action-value function by the out-
put of a multi-layer neural network. The architecture of this
network incorporates a linguistic model that is designed to au-
tomatically extract and incorporate domain knowledge from
game manuals.

Incorporating Text into MC Search Consider the text
shown in Figure 1, which suggests that within your city radius
“settlers” should take the action “improve the terrain.” One
way to incorporate this kind of textual information is to en-
rich the action-value function with word features in addition
to state and action features. However, adding all the words
from a manual is unlikely to help, since only a small portion
of the document is likely to be relevant for a given state (see
example in Figure 2). Therefore, the linguistic model needs to
identify the most relevant text segment for each state. More-
over, even when the relevant sentence is known, it is impor-
tant to discriminate between words that describe actions from
words that describe state (see Figure 3).

Rather than flooding the representation with all possible
text features, we automatically extract, from a natural lan-
guage document, the feature vector that is most effective in
predicting the roll-out rewards. We learn these text features
jointly with the action-value function approximation, where
both processes are guided by backpropagation of error.

Network Architecture As shown in Figure 4, our architec-
ture is a four layer neural network. The input layer ~x consists
of deterministic, real-valued features ~x(st, at, d) of the cur-
rent game state st, candidate action at, and document d.

The second layer consists of two sets of disjoint units ~y and
~z which encode the sentence-relevance and predicate-labeling
decisions respectively. These sets of units operate as stochas-

Hidden layer encoding
sentence relevance

Output layer

Input layer: Deterministic feature

layer:

Hidden layer encoding
predicate labeling

Figure 4: The structure of our network architecture. Each
rectangle represents a collection of units in a layer, and the
shaded trapezoids show the connections between layers. A
fixed, real-valued feature function ~x(s, a, d) transforms the
game state s, action a, and strategy document d into the input
vector ~x. The first hidden layer contains two disjoint sets
of units ~y and ~z corresponding to linguistic analyses of the
strategy document. These are softmax layers, where only one
unit is active at any time. The units of the second hidden layer
~f(s, a, d, yi, zi) are a set of fixed real valued feature functions
on s, a, d and the active units yi and zi of ~y and ~z respectively.

tic 1-of-n softmax selection layers [Bridle, 1990] where only
a single unit is activated. The activation function for units in
this layer is the standard softmax function:

p(yi|~x) = e~ui·~x
/ ∑

k

e~uk·~x,

where yi is the ith hidden unit of ~y, and ~ui is the weight vector
corresponding to yi. The activation function for ~z is similar.

Each unit in layer ~y represents a single sentence from the
game manual, allowing 1-of-n selection to directly model the
sentence relevance decision. Similarly, each unit in ~z repre-
sents a unique candidate predicate label for a single word in a
sentence, with all units zi associated with the same word op-
erating in a 1-of-n selection manner. This allows the model-
ing of the predicate labeling decisions for each sentence word.

The third feature layer ~f is deterministically computed
given the active units yi and zj of the softmax layers, and the
values of the input layer. Each unit in this layer corresponds
to a fixed feature function fk(st, at, d, yi, zj) ∈ R. Finally
the output layer encodes the action-value function Q(s, a, d),
which we modify to also depend on the document d, as a
weighted linear combination of the units in the feature layer:

Q(st, at, d) = ~w · ~f.

Here ~w is the weight vector.

Parameter Estimation Learning in our method is performed
in an online fashion: at each game state st, the algorithm per-
forms a simulated game roll-out, observes the outcome of the
game, and updates the parameters ~u and ~w of the non-linear
action-value function Q(st, at, d). These three steps are re-
peated a fixed number of times at each actual game state st.

The information from these roll-outs is used to select the ac-
tual game action. The algorithm re-learns the function ap-
proximation for every new game state st. This specializes the
action-value function to the subgame starting from st.

As described in Section 3, we estimate the neural net-
work parameters via gradient descent to minimize the mean-
squared error of our function approximation. We perform this
minimization by standard error backpropagation, which re-
sults in the following online updates for the output layer pa-
rameters ~w:

~w ← ~w + αw [Q−R(sτ)] ~f(s, a, d, yi, zj), (2)

where αw is a learning rate, and Q = Q(s, a, d). The corre-
sponding updates for the softmax layer parameters ~u are:

~ui ← ~ui + αu [Q−R(sτ)] Q ~x [1− p(yi|~x)]. (3)

5 Application to Civilization II
We apply our non-linear Monte-Carlo search algorithm to the
game of Civilization II, using the official game manual6 as
the source of domain knowledge.

Civilization II is a multi-player turn-based strategy game.
Each grid location on the map is a tile of either land or sea,
and each tile can have multiple terrain and resource attributes
– for example hills, rivers, or coal deposits. Each player in the
game controls a civilization consisting of multiple cities and
units such as workers, explorers and archers. The player who
gains control of the entire world by capturing or destroying
all opposing cities and units wins the game.7 We test our
algorithms on the small size two-player game, which is set
in a 1000 square map, and we play our algorithm against the
built-in AI player.8

Strategy documents We use the official game manual of
Civilization II as our source of domain knowledge, which
contains 2083 sentences of average length 17 words, and
has a large vocabulary of 3638 words. We use the Stanford
parser [de Marneffe et al., 2006] to generate the dependency
parse information for the sentences of this document.

States and Actions We define the game state to be the at-
tributes of each tile in the world map, and the attributes of
each player’s civilization, cities and units. The the set of le-
gal actions for each civilization, city and unit is state depen-
dent and is defined by the rules. In a 1000 tile Civilization
II game, there are 1021 joint actions. To deal with this large
action space, we assume that the actions of each unit and city
are conditionally independent given the state. Actions of the
civilization, cities and units are selected using a ε-greedy pol-
icy with respect to the action-value function approximation.
Although our approach does not explicitly coordinate the ac-
tions of different units, it can still achieve a certain degree

6www.civfanatics.com/content/civ2/reference/Civ2manual.zip
7Civilization games can be won by diplomacy, space flight, or

war. While for reasons of manageability we focus on the latter, our
method can be applied to all three via a suitable reward function.

8The built-in AI of Civilization II is allowed bypass game rules
to provide challenging opposition to human players. However, both
Freeciv – the open-source reimplementation used in this work – and
our algorithm are constrained to follow the rules of the game.

1 if action=build-city
 & tile-has-river=true
 & text-has-word={build}

0 otherwise

1 if action=build-mine
 & tile-has-coal=true
 & action-words={mine}
 & state-words={coal,hill}

0 otherwise

Figure 5: Some example features used by our linguistically
guided method: x1(·) is a feature used to identify the sen-
tence most relevant to the current game state s, and candidate
action a. This feature would be active if a = “build-city”, the
tile in s where the action is being considered has a river, and
the candidate sentence has the word “build”. Feature f1(·)
combines state, action, and predicate information of the rele-
vant sentence as input to the final layer.

of coordination implicitly, via the roll-outs. For example, if
transport-ship A typically selects action “move to city port X”
in the roll-outs, then land-unit B can adapt its action to find
the best action (e.g., “board transport-ship at port X”) in the
context of A’s usual action.9

Reward Function Due to the length and complexity of the
game, we truncate all roll-outs after 20 steps. At the end of
each roll-out we use the ratio of the game scores between the
two players as the reward function.

Features We use three sets of predefined feature functions to
convert the attributes of the game state, actions and text into
real valued inputs to layers ~y, ~z and Q of the neural network.

• Sentence relevance features consider attributes of the
state, action and document. Some of these features com-
pute text overlap between document words and text la-
bels in the game state and action (e.g., feature x1(·) in
Figure 5).

• Predicate labeling features operate on the words and
dependency parse information of the document. These
features include the Cartesian product of the candidate
predicate label with word attributes such as type, part-
of-speech tag, and dependency type.

• Output layer features are computed based on the sen-
tence relevance decision yi and the predicate labeling
zj , in addition to state s and action a (e.g., feature f1(·)
in Figure 5).

Overall, our method computes 473,200 features, some exam-
ples of which are shown in Figure 5. The set of possible fea-
tures results from taking the Cartesian product of all observed
game attributes, all unique words in the game manual, and all
possible predicate labels – no explicit feature selection was
done.

9While explicit coordination is clearly desirable, it is not the fo-
cus of this paper. We leave it as an avenue for potential future work.

6 Experimental Setup

Experimental Framework We test our method on the open
source implementation of Civilization II, FreeCiv.10 We use
a single randomly generated game start state as the initial
state in all experiments. For each actual step in state st, 500
Monte-Carlo roll-outs are executed from state st, with each
roll-out lasting 20 simulated steps. The action-value function
is updated by Equation 2 and 3 for the first 3 steps of each
roll-out. Additionally, each update step iterates 7 times over
the current set of roll-outs. Each civilization, city or unit pol-
icy selects its action by an ε-greedy algorithm that maximizes
Q(s, a) with probability 1 − ε and selects a random action
with probability ε. For all methods, all model parameters are
initialized to zero.

Experiments were run on typical desktop PCs with single
Intel Core i7 CPUs (4 hyper-threaded cores per CPU). All
algorithms were implemented to execute 8 simulation roll-
outs in parallel. In this setup, a single 100 step game runs in
approximately 1.5 hours.

Baselines We compare our method against four baselines.
The first, MC Tree Search, is a Monte-Carlo tree search algo-
rithm, where each civilization, city and unit in the game has a
separate search tree. Each node in the tree represents a unique
sequence of actions for the agent, ignoring all other agents. A
node’s value is the average outcome of all simulations start-
ing at that node. We use a uniform roll-out policy beyond the
periphery of the tree. Among all the approaches we tested,
this was the only algorithm which constructs a search tree.

The second baseline, Linear MC, implements a linear
action-value function approximation in the Monte-Carlo
search framework, and is similar to Silver et al. [2008]. The
third baseline, Non-linear MC, uses a non-linear action-value
approximation with Monte-Carlo search. This baseline’s
model structure is similar to our method, and is implemented
as a four layer neural network. However, it is not given any
documents as part of its input. These two baselines use ap-
proximately 340 and 2450 features respectively.

The final baseline, Random-Text, is identical to our
method, except it is given a document constructed by ran-
domly permuting the words of the original strategy guide.
This ensures that the overall statistics of the document are
preserved, while removing the semantic content.

Evaluation Metrics We evaluate the performance of our al-
gorithms by their average win rate against the built-in AI of
FreeCiv. The built-in AI is a hand-engineered algorithm, de-
signed with extensive knowledge of the game to provide a
challenging opponent for human players. We perform two
separate evaluations on full and 100-step games. The 100 step
game evaluation is computed by the percentage of games won
within the first 100 game steps, treating unfinished games as
a loss, averaged over 200 independent runs for each method.
The full game evaluation is computed by the percentage of
full games won, where each game is run to completion, aver-
aged over 50 independent runs for each method.

10http://freeciv.wikia.com. Game version 2.2

Method % Wins Standard Error
MC Tree Search 0 0.7
Linear MC 17.3 2.7
Non-linear MC 26.1 3.1
Random text 40.3 3.4
Non-Linear Text MC 53.7 3.5

Table 1: Percentage of victories in 100-step games while
playing against the built-in game AI. Results are averaged
across 200 independent game runs. All differences are sta-
tistically significant.

Method % Wins Standard Error
Linear MC 45.7 7.0
Non-linear MC 62.2 6.9
Non-Linear Text MC 78.8 5.8

Table 2: Percentage of victories in full games played against
the built-in AI. Results are averaged across 50 games each.

7 Results
Tables 1 and 2 compare the performance of our model (Non-
Linear Text MC) against several baselines. In both the 100-
step game and full game evaluations, Non-Linear Text MC
significantly outperforms all baselines, winning 53.7% and
78.8% of games respectively. The substantial gain obtained
by Non-linear MC over Linear MC further demonstrates the
advantages of non-linear value function approximation. Fig-
ure 7 shows examples of feature combinations learned by
Non-linear MC, providing some intuition for the reasons be-
hind the method’s improved performance. Surprisingly, MC
Tree Search failed to win a single game. This illustrates the
difficulties faced by search-tree based algorithms in domains
with large branching factors. However, it is possible that a
more sophisticated MC tree search algorithm could perform
better, for example by improving the roll-out policy or con-
trolling the exploration/exploitation trade-off [Gelly et al.,
2006]; or by incorporating prior knowledge or using rapid
action value estimation [Gelly and Silver, 2007].

Model Complexity vs Computation Time Trade-off One
potential disadvantage of non-linear models is the increase
in computation time required for action-value function es-
timation. To explore this trade-off, we vary the number of
simulation roll-outs allowed at each game step, recording the
win-rate and average computation time per game. Figure 6
shows the results of this evaluation for 100, 200 and 500 roll-
outs. Not surprisingly, these results show that the more com-
plex methods have higher computational demands. However,
given a limited amount of time per game step, Non-Linear
Text MC still produces the best performance, followed by
Non-linear MC.

The benefits of automatically extracted domain knowl-
edge The performance gain of Non-Linear Text MC over Non-
Linear MC suggests that information extracted from manuals
is useful. To further validate this hypothesis, we introduce an
additional baseline, Random Text, that mirrors the structure
of the Non-Linear Text MC network, but is given a randomly

0 20 40 60 80 100 120 140

Computation time per game step (s)

0%

10%

20%

30%

40%

50%

60%

W
in

ra
te

Non-Linear Text MC
Non-Linear MC
Linear MC

500 ro
ll-

ou
ts

20
0

ro
ll-

ou
ts

10
0

ro
ll-

ou
ts

Figure 6: Win rate as a function of computation time per
game step. For each Monte-Carlo search method, win rate
and computation time were measured for 100, 200 and 500
roll-outs per game step, respectively.

state
unit
action

latent variable 0

: grassland
: settlers
: build city

state
unit
action

latent variable 1

: city, grassland, river
: workers
: irrigate-land

Figure 7: Examples of groups of features with high positive
weights when two different latent variables are activated in
the Non-Linear MC model. These positively weighted fea-
tures under latent variable 0 would encourage using settlers
to build cities on grassland, while the features under latent
variable 1 would encourage irrigation of grassland close to
both cities and rivers.

generated document as input. The low performance of this
baseline confirms our hypothesis that the algorithm does ben-
efit from automatically extracted domain knowledge. For a
comprehensive evaluation and analysis of the linguistic as-
pects of our method, see Branavan et al. [2011].

8 Conclusions and Future Work
This paper presented a new Monte-Carlo search algorithm for
large sequential decision-making problems. The key innova-
tion is to apply non-linear VFA, locally in time, to the cur-
rent set of roll-outs. Our non-linear architecture leverages
domain knowledge that is automatically extracted from text.
Our learning algorithm simultaneously constructs a linguis-
tic model, computes features of the game state, and estimates
the value function, by backpropagation of error. We show
that non-linear VFA is significantly more efficient than linear
VFA, and that incorporating a linguistic model is significantly
more efficient than an equivalent non-linguistic architecture.
Our non-linear Monte-Carlo search algorithm wins over 78%
of games against the built-in AI of Civilization II.

Our present method makes the strong assumption that units
in the game operate independently of each other. While this
assumption enables our method to operate tractably, it also
limits the type of strategies that can be learned. For example,

due to this assumption, our model has limited unit coordina-
tion ability. It attempts to bypass this limitation by learning an
early rush strategy—attacking and conquering the opponent
early in the game before unit coordination becomes a key re-
quirement. Modeling the value function without this assump-
tion, while challenging, would greatly strengthen the method
by allowing it to learn a broader and more robust range of
game strategies.

Acknowledgments
The authors acknowledge the support of the NSF (CA-
REER grant IIS-0448168, grant IIS-0835652), DARPA Ma-
chine Reading Program (FA8750-09-C-0172) and the Mi-
crosoft Research New Faculty Fellowship. Thanks to Michael
Collins, Tommi Jaakkola, Leslie Kaelbling, Nate Kushman,
Sasha Rush, Luke Zettlemoyer, the MIT NLP group, and
the IJCAI reviewers for their suggestions and comments.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this paper are those of the authors, and do not nec-
essarily reflect the views of the funding organizations.

References
[Amato and Shani, 2010] Christopher Amato and Guy Shani.

High-level reinforcement learning in strategy games. In Proceed-
ings of AAMAS, pages 75–82, 2010.

[Balla and Fern, 2009] R. Balla and A. Fern. UCT for tactical as-
sault planning in real-time strategy games. In 21st International
Joint Conference on Artificial Intelligence, 2009.

[Bergsma and Spronck, 2008] Maurice Bergsma and Pieter
Spronck. Adaptive spatial reasoning for turn-based strategy
games. In Proceedings of AIIDE, 2008.

[Billings et al., 1999] Darse Billings, Lourdes Peña Castillo,
Jonathan Schaeffer, and Duane Szafron. Using probabilistic
knowledge and simulation to play poker. In 16th National Con-
ference on Artificial Intelligence, pages 697–703, 1999.

[Branavan et al., 2011] S.R.K Branavan, David Silver, and Regina
Barzilay. Learning to win by reading manuals in a monte-carlo
framework. In Proceedings of ACL, 2011.

[Bridle, 1990] John S. Bridle. Training stochastic model recogni-
tion algorithms as networks can lead to maximum mutual infor-
mation estimation of parameters. In Advances in NIPS, pages
211–217, 1990.

[Coulom, 2006] R. Coulom. Efficient selectivity and backup opera-
tors in Monte-Carlo tree search. In 5th International Conference
on Computer and Games, pages 72–83, 2006.

[de Marneffe et al., 2006] Marie-Catherine de Marneffe, Bill Mac-
Cartney, and Christopher D. Manning. Generating typed depen-
dency parses from phrase structure parses. In LREC 2006, 2006.

[Gelly and Silver, 2007] S. Gelly and D. Silver. Combining online
and offline learning in UCT. In 17th International Conference on
Machine Learning, pages 273–280, 2007.

[Gelly et al., 2006] S. Gelly, Y. Wang, R. Munos, and O. Teytaud.
Modification of UCT with patterns in Monte-Carlo Go. Technical
Report 6062, INRIA, 2006.

[Madeira et al., 2006] Charles Madeira, Vincent Corruble, and
Geber Ramalho. Designing a reinforcement learning-based adap-
tive ai for large-scale strategy games. In Proceedings of AIIDE,
pages 121–123, 2006.

[Schäfer, 2008] J. Schäfer. The UCT algorithm applied to games
with imperfect information. Diploma Thesis. Otto-von-Guericke-
Universität Magdeburg, 2008.

[Sheppard, 2002] B. Sheppard. World-championship-caliber
Scrabble. Artificial Intelligence, 134(1-2):241–275, 2002.

[Silver et al., 2008] D. Silver, R. Sutton, and M. Müller. Sample-
based learning and search with permanent and transient mem-
ories. In 25th International Conference on Machine Learning,
pages 968–975, 2008.

[Sturtevant, 2008] N. Sturtevant. An analysis of UCT in multi-
player games. In 6th International Conference on Computers and
Games, pages 37–49, 2008.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. The MIT Press, 1998.

[Tesauro and Galperin, 1996] G. Tesauro and G. Galperin. On-line
policy improvement using Monte-Carlo search. In Advances in
Neural Information Processing 9, pages 1068–1074, 1996.

[Tesauro, 1994] G. Tesauro. TD-gammon, a self-teaching
backgammon program, achieves master-level play. Neural Com-
putation, 6:215–219, 1994.

[Wender and Watson, 2008] Stefan Wender and Ian Watson. Using
reinforcement learning for city site selection in the turn-based
strategy game civilization iv. In Proceedings of CIG, pages 372–
377, 2008.

