-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk
provided by DSpace@MIT

Code In The Air: Simplifying Sensing and Coordination
Tasks on Smartphones

Lenin Ravindranath, Arvind Thiagarajan, Hari Balakrishnan, and Samuel Madden
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

ABSTRACT

A growing class of smartphone applications are tasking appli-
cations that run continuously, process data from sensors to
determine the user’s context (such as location) and activity,
and optionally trigger certain actions when the right condi-
tions occur. Many such tasking applications also involve co-
ordination between multiple users or devices. Example task-
ing applications include location-based reminders, changing
the ring-mode of a phone automatically depending on loca-
tion, notifying when friends are nearby, disabling WiFi in
favor of cellular data when moving at more than a certain
speed outdoors, automatically tracking and storing move-
ment tracks when driving, and inferring the number of steps
walked each day. Today, these applications are non-trivial
to develop, although they are often trivial for end users to
state. Additionally, simple implementations can consume
excessive amounts of energy. This paper proposes Code in
the Air (CITA), a system which simplifies the rapid devel-
opment of tasking applications. It enables non-expert end
users to easily express simple tasks on their phone, and more
sophisticated developers to write code for complex tasks by
writing purely server-side scripts. CITA provides a task ex-
ecution framework to automatically distribute and coordi-
nate tasks, energy-efficient modules to infer user activities
and compose them, and a push communication service for
mobile devices that overcomes some shortcomings in existing
push services.

1. INTRODUCTION

Smartphones and other mobile devices now come equipped
with an impressive array of sensors: multiple position sen-
sors (GPS, WiFi, cellular radios), inertial sensors (accelerom-
eters and gyroscopes), magnetic compass, microphone, light
sensors, proximity sensors, and many more. These capabili-
ties provide smartphones the ability to discover more about
users and their activities than any other commodity com-
puting device ever invented.

Application developers have recently started taking ad-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HotMobile’12 February 28-29, 2012, San Diego, CA, USA.

Copyright 2012 ACM 978-1-4503-1207-3 ...$10.00.

vantage of these powerful capabilities, leading to the first
signs of a new class of tasking applications. These appli-
cations process data from multiple sensors, in a continuous
fashion, to determine the user’s context and activity, and
take actions when certain conditions are met. They usually
operate with almost no user input, and may require applica-
tions to coordinate their state with external conditions (e.g.,
turn off the ringer if I'm inside a movie theater) or with
the state of other devices (e.g., send my phone a message if
my spouse leaves work by 5 pm). Tasking applications are
starting to get popular with end users [3, 8]. For example,
Apple has integrated location-based reminders into its latest
iPhone OS (i0S5) [4].

Our goal is to make it easy to develop and run new task-
ing applications. We believe that most tasking applications
are relatively easy to state, often in a few words as “condi-
tion/action” rules, but are extremely difficult to implement
today. In fact, this hypothesis is borne out by existing prod-
ucts, which only come with a set of pre-defined conditions
and actions that users can configure, but cannot extend or
personalize effectively.

Current approaches suffer from two problems:

1. Poor abstractions. Today, writing tasking appli-
cations requires grappling with low-level sensor data.
Even something as easy to express as “is the user rid-
ing a bicycle” is difficult because one needs to process
data from position, accelerometer, and/or gyroscope
sensors to make this determination. An ideal solution
would allow developers, and even end users, to use
(and reuse) an isBiking primitive.

2. Poor programming support. Tasking applications
are often inherently distributed. Writing them involves
both server-side and smartphone code, and figuring
out how to partition that code. A better approach
for this type of application would be a macroprogram-
ming approach, which only requires developers to write
server-side code, with an execution framework that
automatically partitions the code across one or more
smartphones and the server. Additionally, a devel-
opment framework that also supports end users, who
have no interest or ability to write tasking code, is de-
sirable. Such users should be able to combine existing
capabilities to specify their own tasks. In this way, a
user need not be dependent on, or wait for, a developer
to create the task.

This paper addresses these shortcomings by proposing

Code In The Air (CITA), a system that lowers the barrier

https://core.ac.uk/display/9590459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

l Users/Developers
Tasking

Ul Scripting

Task J:

Task Runtime

Task Compiler

Activity Layer
Sub task

Server

Push Service

Task Runtime Push Client

Activity Layer

Phone
[semsors]

Figure 1: Code In The Air Architecture.

for programming and executing tasking applications. CITA
helps two groups of people:

e Developers, who can create tasks by writing only server-
side code, even for tasks that involve multiple end users
and their devices, a variety of sensors, and the server.
In our current implementation, these tasks are written
in JavaScript.

e End users, who are able to specify their own tasks by
“mixing and matching” available activities and tasks
via a web UI (or a smartphone UT).

The CITA architecture, shown in Figure 1, has three inter-
esting components. First, the tasking framework (in green)
allows developers to write task scripts, compiles them into
server-side and mobile code, and manages the task execution
run-time on mobile devices. CITA provides a JavaScript in-
terface in which developers can manipulate different phone
devices as objects within a single program. The CITA back-
end automatically partitions the code, deals with device
coordination, and efficiently executes code on the devices.
Second, the activity layer (in red) raises the abstraction for
tasks from “sensor data hacking” to “activity composition”
by providing extensible modules for higher-level activities
(isBiking, isDriving, isOutside, enterPlace, leavePlace, and
many more). The activity layer provides accurate, energy-
efficient activity recognition. Third, the efficient push com-
munication service (in blue) improves on the energy and load
shortcomings of existing systems like the i0S and Android
push services.

Using CITA, a variety of tasks become easier to express
and run. These include single-device tasks (e.g., don’t con-
nect to WiFi when I’'m outside and moving), multi-user tasks
(make my phone silent when I'm meeting with my boss),
tasks with complex activities (map my path when I bike or
run but not when I drive or ride the bus), and multi-device
tasks (put my laptop to sleep if I’'ve not been in the same
room for more than 15 minutes).

This paper outlines the CITA architecture and the three
components. In addition to enabling novel tasking applica-
tions, our vision is to create an ecosystem where develop-
ers write interesting activity and task modules, and provide

them in a marketplace for other developers as well as end
users to use. The ability to “componentize” activities and
compose them will enrich the tasks available to end users.

2. ACTIVITY LAYER

CITA includes an activity layer which makes it easy for
developers to express conditions that reference high-level ac-
tivities, such as the fact that the user is “in a meeting” or
“leaving her workplace”. It also provides an easy way to
compose primitive activities to build useful higher-level ac-
tivities.

Both accuracy and energy efficiency are non-trivial chal-
lenges. Our system recognizes a number of low-level ac-
tivities such as is Walking, isDriving, enterPlace, and leave-
Place. Other researchers have previously worked on many
of these activity recognition problems in isolation [19, 20,
17, 12, 16, 11], and we use many of these techniques in
CITA. Rather than describing each individual activity in
detail, we describe two key new pieces of our system: accu-
rate and energy-efficient place detection with location hier-
archies, and activity composition.

2.1 Place Hierarchies

Consider the example of detecting that a person has left
her office, and alerting her spouse when this happens. This
is a subjective condition because the intent of the user can
differ based on the context. If the goal is to alert her spouse
when she leaves her office building for the day, the system
should not alert her spouse each time she steps out of her
office room for a walk or a meeting. On the other hand, if
the goal is to recognize when she is in a meeting and not in
her office room, this is exactly the behavior we want.

Hence, CITA uses an in-built location hierarchy that rec-
ognizes three different granularities of locations, in increas-
ing order of “coarseness”: room level, floor level, and bound-
ing boz or building level.

End users use the CITA Ul to mark named locations, or
“places” on a map and label them as ‘office’ or ‘workplace’ or
‘home’. Developers can also programmatically create named
locations in their apps using a special API. The phone col-
lects sample localization information while creating the loca-
tion (such as WiF1i access point, cell tower, GPS and network
location information) that it uses later to identify if the user
is at the named location.

We require that a user or developer explicitly specify or
choose the level in the location hierarchy that a named loca-
tion refers to when creating it. For example, a user might
go to their office and create 3 levels of named locations: one
called ‘My Office Room’ that refers exclusively to his/her
room, one called ‘5th floor’ that refers to his/her floor or
wing, and one called ‘Convention Center’ that refers to his/her
entire office building.

The three levels of the hierarchy have different underlying
implementations. Room-level location matches a named lo-
cation if the WiFi signal strength signature is within some
“distance” of the signature(s) observed when creating the
named location.

Floor-level location is usually recognized by looking for
any overlap in WiFi signal strengths i.e. if any access point
matches any of the access points seen when creating the
named location.

A bounding box is the most coarse-grained level of loca-
tion that refers to an entire building, set of buildings or a

larger bounding box on a map. The implementation explic-
itly obtains a GPS or network location request and checks
if it lies in the bounding box. A user explicitly draws the
bounding box on the UI to specify how big they want the
named location to be. It could span anywhere from a single
building to an entire city.

CITA provides two in-built activity detectors for each
named location: enterPlace and leavePlace that are
triggered when a user enters and leaves a named location
respectively. In the example mentioned, if “office” is a room-
level location, the leavePlace (office) condition is trig-
gered when the phone’s WiFi signature is no longer close to
any of the observed signature(s) in “office”, and CITA ex-
ecutes the action (alerting the user’s spouse). If office is a
floor-level location, CITA alerts her spouse only if none of
the access points seen in her “office” are currently seen by
the phone. If office is a larger bounding box, CITA alerts
her spouse only if the GPS or network location coordinate
goes outside the bounding box.

Energy. Energy efficiency is a key challenge in location

detection. It is not desirable to continuously sample GPS
location, or to continuously scan WiFi on a smartphone be-
cause it drains the battery quickly. CITA uses a simple
energy-efficient algorithm to detect when a user enters or
leaves a named location. The location can fall into any of
the above three levels in the hierarchy.

We begin by sampling location sensors with the lowest en-
ergy cost first to find approximate location. The algorithm
switches to a more energy-intensive sensor only if the user
gets closer to the named location than the mazimum possi-
ble error in the location sensor being currently used. The
algorithm also uses adaptive sampling to vary the sampling
rate for a given sensor each time we get a new location sam-
ple. It estimates the minimum amount of time to reach the
named location, and samples only after that period of time
has elapsed.

For example, if trying to detect whether a user has entered
the Empire State building, the system first uses the cheapest
sensor, cellular localization, to find approximate location,
and estimate the minimum time to reach the location of
interest. For example, if cellular location reveals the user to
be in Japan, it would take at least 24 hours to reach New
York by air, so it is sufficient to obtain a location sample
after 24 hours. When the system finds a location sample
less than a kilometer from Empire State, it switches to using
WiFi localization because the expected error from cellular
location is greater than the estimated distance to Empire
State. The system switches to using the most expensive
location sensor — GPS only when close enough to the named
location “Empire State”.

An additional optimization we use is to use the accelerom-
eter to detect movement: we only obtain new location sam-
ples if a user has moved since the last location sample.

2.2 Activity Composition

CITA allows developers and users to compose lower-level
activities using logical predicates to create high-level activi-
ties. This is very powerful because it allows developers and
end users to reuse activity modules created by other devel-
opers to quickly write their own activities.

For example, consider the problem of detecting that a user
is outdoors and walking, and switching to 3G from WiFi
when that happens. Since “user is outdoors” and “user is

walking” are primitive activities, we can compose them us-
ing an AND predicate in CITA to build the complex event
“outdoors and walking”.

Another example: Alice wants her phone to go into silent
mode automatically if she is in the meeting room of her
building with either her boss John or her colleague Bob.
This is a multi-phone activity predicate, which can be ex-
pressed in CITA as follows:

o If Alice is in the meeting room, AND

e John is in the meeting room, OR Bob is in the meeting
room.

then make Alice’s phone silent.
CITA supports AND, OR, NOT as well as the following ad-
ditional composition primitives:

e WITHIN: The event A WITHIN 10 sec remains true
for 10 seconds after the time when A becomes true. A
WITHIN clause is usually used with an AND clause to
permit some leeway when event detection has a time
lag (such as a user leaving a building). For example,
theevent A WITHIN 10 sec AND B WITHIN 10 sec
is true if both A and B were true within a 10 second
window of each other.

e FOR: The event A FOR 10 sec becomes true when-
ever A is true for at least 10 seconds, and is triggered
once when this happens. This is useful to express tasks
like “turn the computer screen off if Mary has been
away from her office for at least ten minutes”.

e NEXT: The event A NEXT B becomes true if A changes
its state from true to false, and B is true now. This is
usually used to monitor state changes — for example,
to trigger a task to execute whenever a user commuted
from home to work.

CITA implements composed activities by continuously run-
ning activity detectors for all parts of the predicate. If an
activity spans multiple users as in the example with Alice,
John and Bob above, the compiler uses static analysis on
the activity predicate (based on which phone objects are
referenced) to divide it into individual lower-level predicates
among phones, and only send back data to the central server
when a predicate actually becomes true.

In addition to in-built primitive activity detectors and
composed activities, CITA’s extensible activity layer also
provides a way for sophisticated developers to build new
primitive activity detectors by accessing raw sensor data (us-
ing JavaScript).

3. TASKING FRAMEWORK

In CITA, developers can write scripts using a web inter-
face to build complex tasking applications. Activities and
tasks contributed by developers are added to a UI (available
on web and on phones) for end users to use. The end user
interface allows users to specify complex conditions (using
the Activity composition framework) and build “condition-
action” tasks. (Figure 2 shows a mockup of the end user
interface). The UI generates scripts written using the devel-
oper programming model. In this section, we focus on the
developer’s programming model.

onaitions) @

[Outdoors = J
Walking t%%i "
Driving e e’
o) ®
Turn off Wi-Fi ‘

Figure 2: Mockup of the end user interface to specify
“condition-action” tasks.

Tasks are represented as JavaScript programs. The CITA
interpreter provides a way for JavaScript to deal with Java
objects and call methods on them [7]. CITA exposes phone
devices as objects — a developer can simply call methods on
the object to manipulate it. This object model is convenient
because it enables a developer to work with multiple phones
in a single script. When a script creates multi-device tasks,
CITA partitions the task into sub-tasks, and executes and
coordinates sub-tasks across the devices.

We explain our programming model using three simple
tasking applications: a single device task, a cloud-enabled
task, and a multi-device task.

A Single-Device Task. The following shows a CITA
script to express a simple application: “Bob wants his phone
to use 3G rather than WiFi when outdoors™

p = getDevice ("Bob", "Phone");

p.registerActivityCallback ("outdoor", "
trueAction", "falseAction");

var oldState;

function trueAction (e)

{
oldState = p.wifi.getState();
p.wifi.disable();

}

function falseAction (e)

{
p.wifi.setState(oldState);

}

An end user can register multiple devices with CITA. The
getDevice function accepts a userName and deviceName
and returns the device object to work with.

The tasking runtime provides two types of event callbacks
one can register for - an activity callback and a data callback.
When registering for activity callbacks, developers can spec-
ify two callback functions - the function to be called when
an activity condition changes from false to true, and a func-
tion to be called when the activity condition changes from
true to false. The above example registers for an “outdoor”
activity event requesting both callback functions.

trueAction function is called when the “outdoor” activ-
ity becomes true. The function saves the old WiFi state and
disables WiFi. falseAction is called when “outdoor” be-
comes false, in which the previous state of WiF1i is restored.

It is also possible to register callbacks for high-level or
composed activities. Composed activities are created from
basic activities or other composed activities using the Ac-
tivity Composition framework described in Section 2. An
example could be “if the user is outdoors and is near his
office and is walking, then invoke a callback function that
disconnects from WiFi”.

When a developer creates such a task, the Task Compiler

analyses the code and pushes the entire JavaScript code into
the device since it involves only a single device (see Sec-
tion 3.1). The phone object (p) is replaced with a local
device interface object on the device.

A Cloud-Enabled Task. In this task “Eve wants her
phone to map her bike path whenever she goes for a long
bike ride and store it on the server”.

p = getDevice ("Eve", "Phone");
p.registerActivityCallback ("biking", "
trueAction", "falseAction");
function trueAction (e)
{
params = new Object ();
params.samplePeriod = 1;
params.tag = getUniqueld() ;
p.registerDataCallback ("gps.data", "
dataAction", params);

}

function falseAction (e)
{
p.unregisterCallback ("gps.data", "
dataAction");

}

function dataAction (e)
{
Server.store.add ("bikingTracks", e.tag
, e.data.time, e.data.lat, e.data.
1ng);
}

The script registers for a “biking” activity callback. When
“biking” becomes true, t rueAction function is called which
in turn registers for a GPS data callback. It passes two pa-
rameters to the GPS data callback - samplePeriod tells
the GPS sampling period and parameter tag which is passed
back unmodified into the callback function. Here tag is ini-
tialized to a unique id (to represent a biking track).

In the dataAction function, the received GPS data is
pushed into a server store. Server is a special object that
lets the developer work with utilities on the server. CITA
provides a primitive server store that lets developers store
data.

The Task Compiler partitions this task into two sub-tasks.
Tasks are partitioned at the function level into two sepa-
rate JavaScript programs (see Section 3.1). In the above
example, dataAction is placed on the server since it works
with the Server object. The rest of the code runs on the
phone. The registerDataCallback call in the phone
code is rewritten to call the dataAction function in the
server i.e, during “gps.data” callbacks, the callback data is
serialized, sent to the server and the dataAction function
is called on the server.

A Multi-Device Task. In this example, “Jim would
like to be alerted whenever his spouse Alice leaves her work-
place”.

p = getDevice ("Alice", "Phone");

g = getDevice ("Jim", "Phone");

p.registerActivityCallback ("leavePlace (

work)", "trueAction", null);

function trueAction ()

{

g.vibrate();

g.alert ("Alice left work");
}

Here, the Task Compiler produces two sub-tasks to run
on each phone and spawns a Task Coordinator at the server
to coordinate the calls and callbacks between the subtasks.

We show the code produced by the compiler for the two
sub-tasks below:
On Alice’s phone

this.registerActivityCallback ("leavePlace (
work)", null, "Bob.Phone:trueAction");

On Jim’s phone

function trueAction ()
{

this.vibrate();

this.alert ("Alice left work");
}

When the “leavePlace(work)” condition becomes true on

Alice’s phone, the sub task contacts the server to call t rueAction

on Bob’s phone. The server delegates the call to Bob’s phone
which creates an alert.

When a task is created using the smartphone end user
UI, the tasking runtime in the phone is capable of identi-
fing whether the task involves only the current phone. If
so, the execution stays completely local and does not make
any round trips to the server. If the task involves multiple
devices, the execution is delegated to the Task Compiler at
the server.

3.1 Code Partitioning

Currently, the Task Compiler uses two heuristics to par-
tition the code into sub tasks.

1. If a function works with only one device object, that
function always runs on that device. If a function works
with multiple device objects, it runs on the server.

2. If a function does not work with any device objects, we
look at the call graph. If it is a callback function for a device
activity or it lies in the sub-tree of such a callback function,
we record that the function depends on that device. If a
function depends on a single device, it runs on that device,
otherwise it runs on the server.

When functions are partitioned, phone objects and call-
back methods are rewritten if necessary to inform the task-
ing runtime to delegate the calls. For example, in the multi-
device task shown in the last section, note that the callback
function in register callback was prefixed with where the
function is present.

Even if the code partitioning heuristic does not efficiently
partition the code, it does not affect the correctness of the
task execution. For instance, in the single task example,
the entire code could run at the server or even on some
other phone. CITA would delegate the calls, callbacks to
and from the phone and the server, and properly serialize
the parameters and data. It would just be inefficient since
it incurs unnecessary roundtrips across the network.

In addition to call-graph based partitioning, we are cur-

rently working on profiling-based partitioning techniques ([13],

[18]) that would reduce bandwidth, computation and energy
costs.
Handling Disconnections. One challenge in distributed

task execution is handling disconnections between devices.
When devices become disconnected, the callbacks between
them cannot be done in real-time. In such scenarios, call-
backs can either be delayed or dropped depending on the
task. In the “bike path mapping” example shown above, it
would be best to delay the client callbacks until the con-
nection is restored to the server (so that no GPS data is
lost). In the “alerting spouse” example, it might be better

to drop the callback after a certain amount of time. CITA
allows task developers to set both task-wide policies and
fine-grained callback specific policies on how to deal with
disconnections.

Privacy Model. End users must explicitly grant fine-

grained permissions to other users to register for activities
or run specific tasks on their mobile device. For exam-
ple, Alice must grant permission to her spouse to monitor
leaves (work) . Permissions are currently enforced dynam-
ically, at run time.

4. DIAL-TO-DELIVER PUSH SERVICE

CITA provides an asynchronous message delivery service
from the CITA server to the mobile devices, similar to the
way in which “push notifications” work on current smart-
phones. However, current approaches suffer from three prob-
lems. First, when the amount of information to be pushed
is tiny compared to the typical web page download, as is
commonly the case, the current approach of using a long-
running TCP connection initiated from the mobile ties up a
data channel in the wide-area cellular wireless network for
much longer than is needed, and is inefficient.

Second, because many mobile devices connect to the server
from behind a NAT, long-standing TCP connections with-
out application-level keep-alives time out because the NAT
clears out state in a way that may be hard for the mobile
device to predict. The server, which generally sends “push”
data gets a TCP RST, but the mobile has no knowledge
that the connection has timed out. Periodic keep-alives are
one solution, but they consume excess energy and also tie
up data channels. Moreover, the timers used in these keep-
alives depend on the specific timeouts used in the NATSs
in different carriers, and are not easily visible to the ends
(current practice is to try and reverse-engineer these values
for each provider/city combination!). Third, current push
notifications heavily restrict notifications to specific types,
whereas we are interested in task-specified notifications.

To avoid these three problems, we developed the dial-to-
deliver service, which uses the signaling mechanism in the
cell telephone network. It works as follows.

CITA has a set of registered phone numbers. Using a
standard IP telephony service, the CITA server initiates a
call to any smartphone with a voice plan or VoIP capabil-
ity. On the smartphone, the CITA client has a hook into
the OS to listen for phone calls (we have implemented it
currently in Android). When a phone call is received, the
CITA client gets a callback; it checks for the phone number
and if the phone number matches a registered CITA num-
ber, then it rejects the call right away, wakes up the CITA
client, and processes the call. The task can encode a small
amount of information in the phone number used; if there
are k CITA numbers, up to log, k bits of information can
be encoded in a task-specific way to notify the client sub-
tasks of the event. Some of these notifications may cause
the CITA client to initiate a TCP connection to the CITA
server to deliver or download data, which will cause the 3G
or WiFi radio to turn on. But in many applications where
the server notifies the client, the client may only need the
notification and may find that local conditions don’t require
any further data transfers; in these cases, dial-to-deliver re-
duces the load on the 3G data network and also reduces the
energy consumption on the mobile.

In our measurements, the latency of pushing data using
this technique is around 5 seconds; this value is consistent
with the typical latency between the initiation of a tele-
phone call and the establishment of the call. As such, dial-
to-deliver is suitable for cases when a few seconds of latency
is tolerable. Examples including notifying the mobile of new
tasks being available, and cases when the local conditions to
be checked don’t change fast enough (e.g., whether the user
is outside or inside a building), etc.

One potential issue with dial-to-deliver is that it increases
the signaling load on the voice network, though it reduces
the load on the data network. We believe that this trade-off
is the right one with current designs because the data net-
works seem to reserve resources anticipating that the data
transfer will last a while and only rely on timeouts to clear
this state, while a rejected call clears out the state in the
voice network immediately. That said, a more careful inves-
tigation of the resulting load is required before concluding
that dial-to-deliver is not only energy-efficient (which it is),
but also more scalable in today’s networks.

S. RELATED WORK

Tasking applications are getting popular with end users.
Locale [3] and Tasker [8] are Android applications that let
users specify context aware single-device tasks. TouchDe-
velop [9] is a Windows Phone Application that lets users
“script” simple tasks. These applications come with many
pre-defined conditions and actions that users can select to
build tasks. Unlike CITA, these applications expose only
raw sensor data (or primitive activities) and hence haven’t
gained popularity outside of power users. In contrast, CITA
exposes higher level activities that normal users can under-
stand and lets them build complex activities. CITA also
dramatically simplifies cloud-enabled and multi-device pro-
gramming.

Simplifying smartphone programming in general has been
the focus of some commercial and research efforts. Google’s
AppInventor [1] provides a visual programming interface,
PhoneGap [6] provides an HTML/Javascript framework, and
AppMakr [2] lets users program web-feed based apps with-
out writing traditional code. Research efforts have focused

on crowdsourcing and remote sensing applications (e.g., mCrowd

[5] and PRISM [14]). CITA provides explicit tasking support
unlike many commercial efforts, and targets both developers
and end users with its tasking and activity framework unlike
all these efforts.

Researchers have worked on activity detection algorithms
for many kinds of activities on mobile phones [19, 20, 17,
12, 16, 11]. SeeMon [15] provides a composition framework
using a query language for detecting multiple activities to-
gether. CITA’s contribution is a multi-device programming
model that can be layered on top of an energy-efficient ac-
tivity detection and composition layer.

Cell2Notify [10] uses GSM signaling similar to CITA’s
Dial-to-deliver to wake up WiFi on the phone for VoIP calls.
Dial-to-Deliver is a more generic push mechanism that can
be used to transmit tiny bits of information to applications.

6. CONCLUSION

We introduced CITA, a system that eases the development
and running of tasking applications on smartphones. These
applications combine sensing and coordination. The key

components of the CITA architecture are a tasking frame-
work that enables developers to write server-side programs
in lieu of distributed programs, an energy-efficient activity
layer, and a dial-to-deliver push service. We are currently
completing the implementation of the system and will soon
make it available to developers and end users.

Acknowledgments
This work was supported in part by NSF Grant 0931550.

7. REFERENCES

[1] App Inventor. http://appinventor.googlelabs.com/about/.

[2] Appmakr. http://www.appmakr.com/.

[3] Locale. http://www.twofortyfouram.com/.

[4] Location based reminders in iOS5.
http://www.apple.com/ios/features.html.

[5] mCrowd. http://crowd.cs.umass.edu/.

(6] PhoneGap. http://www.phonegap.com/.

[7] Scripting for the Java Platform.
http://java.sun.com/developer/
technical Articles/J2SE/Desktop/scripting/.

[8] Tasker. http://tasker.dinglisch.net/.

[9] Touch Develop. https://www.touchdevelop.com/.

[10] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and
R. Gupta. Wireless wakeups revisited: energy management
for voip over wi-fi smartphones. In MobiSys, 2007.

[11] B. N. Waber and D. O. Olguin and T. Kim and A. Mohan
and K. Ara and A. Pentland. Organizational Engineering
Using Sociometric Badges. In NetSci, 2007.

[12] Consolvo, S. and McDonald, D. and Toscos, T. and Chen,
M. and Froehlich, J. and Harrison, B. and Klasnja, P. and
LaMarca, A. and LeGrand, L. and Libby, R. Activity
Sensing in the Wild: A Field Trial of UbiFit Garden. In
SIGCHI, 2008.

[13] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,

S. Saroiu, R. Chandra, and P. Bahl. Maui: Making
smartphones last longer with code offload. In MobiSys,
2010.

[14] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and
A. Sharma. PRISM: Platform for Remote Sensing using
Smartphones. In Mobisys, 2010.

[15] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park,
and J. Song. Seemon: Scalable and energy-efficient context
monitoring framework for sensor-rich mobile environments.
In MobiSys, 2008.

[16] H. Lu, W. Pan, N. Lane, T. Choudhury, and A. T.
Campbell. Soundsense: Scalable sound sensing for
people-centric applications on mobile phones. In MobiSys,
2009.

[17] Miluzzo, E. and Lane, N. and Fodor, K. and Peterson, R.
and Lu, H. and Musolesi, M. and Eisenman, S. and Zheng,
X. and Campbell, A. Sensing meets mobile social networks:
The design, implementation and evaluation of the CenceMe
application. In SenSys, 2008.

[18] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and
S. Madden. Wishbone: Profile-based Partitioning for
Sensornet Applications. In NSDI, 2009.

[19] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and
M. Srivastava. Using Mobile Phones to Determine
Transportation Modes. Transactions on Sensor Networks,
6(2), 2010.

[20] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson.
Cooperative Transit Tracking Using GPS-enabled
Smart-phones. In SenSys, 2010.

