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Abstract—This paper proposes UFlood, a flooding protocol
for wireless mesh networks. UFlood targets situations such as
software updates where all nodes need to receive the same
large file of data, and where limited radio range requires
forwarding. UFlood’s goals are high throughput and low airtime,
defined respectively as rate of completion of a flood to the
slowest receiving node and total time spent transmitting. The
key to achieving these goals is good choice of sender for each
transmission opportunity. The best choice evolves as a flood
proceeds in ways that are difficult to predict.

UFlood’s core new idea is a distributed heuristic to dynamically
choose the senders likely to lead to all nodes receiving the
flooded data in the least time. The mechanism takes into account
which data nearby receivers already have as well as inter-
node channel quality. The mechanism includes a novel bit-rate
selection algorithm that trades off the speed of high bit-rates
against the larger number of nodes likely to receive low bit-
rates. Unusually, UFlood uses both random network coding
to increase the usefulness of each transmission and detailed
feedback about what data each receiver already has; the feedback
is critical in deciding which node’s coded transmission will have
the most benefit to receivers. The required feedback is potentially
voluminous, but UFlood includes novel techniques to reduce its
cost.

The paper presents an evaluation on a 25-node 802.11 test-bed.
UFlood achieves 150% higher throughput than MORE, a high-
throughput flooding protocol, using 65% less airtime. UFlood
uses 54% less airtime than MNP, an existing efficient protocol,
and achieves 300% higher throughput.

I. INTRODUCTION

Flooding in wireless mesh networks is a classic problem.

Potential uses include software update in large networks, e.g.,

sensor nets [7, 11], and distribution of information such as

entertainment and surveillance video [3, 6]. Flooding is also

interesting and challenging: its many degrees of freedom along

with interaction with the physical layer have led to much

research [4, 18, 20, 23].

This paper targets situations in which a source node has

a large amount of data to transfer in its entirety to a set of

participating nodes. The nodes are equipped with broadcast

radios, and the network is assumed to be spread out enough to

require multi-hop forwarding. The targeted performance goals

are high throughput (transfer size divided by the time until

all nodes have the data) and low airtime (total time spent

transmitting, a measure of how efficiently the radio channel is

used). Low airtime is important to reduce flooding’s impact on

other uses of the wireless network, as well as to help achieve

high throughput.

A flooding protocol must repeatedly make three big deci-

sions: which nodes should transmit, what data they should

transmit, and what physical-layer bit-rates they should use.

The answers depend on the radio channel quality between

nodes, the number of receivers near each potential sender,

and what data potential receivers already hold. The set of

best senders changes as nodes accumulate data, in ways that

are hard to predict because receptions are not deterministic.

Section II explains these challenges in more detail.

This paper describes a new flooding protocol, UFlood, that

achieves high throughput and low airtime by careful selection

of senders and bit-rates. The core of UFlood’s design is its

utility heuristic, which predicts how much benefit receivers

would derive from a given node transmitting. UFlood includes

a novel bit-rate selection algorithm that trades off the speed

of high bit-rates against the larger number of nodes likely

to receive low bit-rates; the algorithm recognizes that bit-

rates cannot be selected with purely local information. Finally,

UFlood uses a novel technique in which a sender simulates

receptions at receivers in order to reduce the required rate of

feedback from receivers to potential senders.

We have implemented UFlood using the Click software

router toolkit [17]. Experiments on a 25-node 802.11 test-

bed show that UFlood achieves 150% higher throughput than

MORE [4], a high-throughput flooding protocol, using 65%

less airtime. UFlood uses 54% less airtime than MNP [18], a

high-efficiency protocol, and achieves 300% higher through-

put. UFlood’s careful choice of sender via its utility heuristic

and its smart feedback mechanism are responsible for its high

performance.

This paper makes the following contributions. First, it

describes a novel sender selection algorithm for flooding that

quickly spreads useful data. Second, it describes the main

underlying properties of wireless and of flooding that drive

sender selection. Third, the paper proposes the first bit-rate

selection scheme for a flooding protocol. Fourth, the paper

demonstrates that detailed feedback about the data each re-

ceiver possesses is useful even with coding. Finally, the paper

describes novel techniques to to reduce feedback overhead.

II. SENDER AND BIT-RATE SELECTION

This section explains why careful selection of sender and

bit-rate for each transmission are important to good flooding

performance, and outlines the main factors affecting these de-

cisions. The identification of these factors is one contribution

of this paper; previous flooding protocols have incorporated

sender selection, but none have considered the full set of

factors that we have found to be important.

A. Delivery Probabilities

Figure 1 shows an example in which one sender is more

effective than another due to delivery probabilities. Nodes A
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Fig. 1: Illustration of the im-
portance of link-layer packet
delivery probabilities, which
are indicated by the numbers.
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Fig. 2: Illustration of the need
to consider the number of re-
ceivers, including those with
low probability.

and C have each received a particular data packet from S. The

link-layer broadcast packet delivery probabilities from A and

C to each of B and D are indicated by the numbers in the

figure. UFlood must decide whether it is better for A or for C

to transmit the packet.

If A transmits, the expected number of useful receptions

(summed over B and D) is 1.7. If C transmits, the expected

number of useful receptions is 0.5. If A transmits first, in all

likelihood C will not have to transmit at all, but the converse

is unlikely to be true. Thus A is the better sender. This

example illustrates why UFlood must pay attention to delivery

probabilities when selecting the sender.

B. Number of receivers

Figure 2 shows an example in which a sender with low

probabilities to many nodes is a better choice than a sender

with fewer high-probability receivers. If A transmits, the

expected number of useful receptions is 0.5 (just node C).

If B transmits, the expected number is 2.0. B will likely have

to repeat the transmission a few times; in all likelihood C will

hear one of those transmissions, and A will not have to send

at all. The reason is that B has to keep sending until nodes D

through G receive the data. If receptions are independent, the

probability that C will receive one of the transmissions made

by B is over 98%. Thus B is the better sender. This example

illustrates why UFlood must incorporate the number of likely

receivers in its choice of sender.

C. Receiver state

Figure 3 shows a situation in which the best sender changes as

nodes receive packets. A and B have a particular packet, but C

and D do not. At that point, A is the best sender. A transmits

the packet, and C receives it but D does not. Now B is the best

sender: the expected number of useful receptions for A and B

are now 0.2 and 0.8, respectively. This example illustrates why

UFlood senders must be aware of what information receivers

already possess, and must re-evaluate the choice of best sender

as a flood progresses.

D. Correlated reception

The usefulness of a node’s transmissions depends on whether

it has received information that is distinct from other nearby

forwarders. Suppose that nodes B and C in Figure 4 have

both received half of the source’s transmissions, and that D

can hear B and C perfectly but cannot hear the source. At

one extreme, B and C may have received disjoint halves, in

which case each of B and C should forward all the packets
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Fig. 3: Illustration of the best
sender changing as nodes re-
ceive packets.
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Fig. 4: Illustration of the effect
of correlated packet reception.

they hold. At the other extreme, B and C may have received

exactly the same set of packets. In that case they have the same

underlying information to offer, even with coding, so that only

one should send. This example illustrates one reason why each

UFlood node sends feedback indicating what information it

has received.

E. Bit-rate
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Fig. 5: Illustration of bit-rate selection strategy.

Choice of bit-rate can have a large effect on performance,

given the large difference between the slowest and fastest

bit-rates in, for example, 802.11b/g radios. The choice is

difficult because higher bit-rates will deliver data faster to

nearby receivers, but will also increase frame error rates for

more distant receivers. Each receiver typically has a highest-

throughput bit-rate from a given sender that balances bit-rate

with error rate; error rates typically increase dramatically at

bit-rates much above that optimum.

Figure 5 illustrates a typical bit-rate selection problem. Each

link is marked with its optimum bit-rate. Sender X must

choose the bit-rate for its next transmission. Bit-rate 54 would

maximize total receive rate among X’s neighbors: C would

receive at rate 54, and B and A would receive very little due

to errored frames. X might then have to re-send all the data

at rate 5.5 for node B; since C will overhear those packets,

that suggests that the right strategy might be for X to send at

rate 5.5 to begin with in order to satisfy all its neighbors in a

single set of transmissions. However, node B has a higher bit-

rate path from S via Y . Thus it is better for node X to ignore

B, letting Y deliver to B, and choose the rate that’s best for

the slowest neighbor whose best path from S is via X . That

neighbor is A, and X’s best bit-rate is 11. If node A already

has the data that node X would transmit, X should ignore A

in choosing its bit-rate, and send at 54Mbps.

To summarize, a sender should only reduce its bit-rate to

reach receivers that have no faster path from the source via

other potential nearby senders.



III. RELATED WORK

Early work on flooding in wireless mesh networks identi-

fied avoidance of redundant transmissions as the key chal-

lenge [23]. Three main approaches have subsequently been

explored: gossip, trees, and network coding.

Gossip. Gossip-based flooding protocols use local interactions

to propagate data, without any global structure; Trickle [20]

and Deluge [11] are examples. Trickle and Deluge select

senders randomly from the set of nodes that have data needed

by some neighbor. UFlood uses more information in its

sender selection in order to favor senders who will satisfy

the most neighbors. MNP [18] selects senders based on the

number of neighbors that might benefit from each sender.

MNP incorporates one of the considerations used by UFlood’s

utility (number of receivers), but does not consider delivery

probabilities or bit-rate.

Trees. Flooding packets over a tree imposed on the network

can help avoid redundant transmissions and help ensure that

only certain nodes transmit [14, 22]. UFlood avoids using a

tree so that it can exploit opportunistic receptions and adjust

to changing conditions, though these could also be done in the

context of a tree.

Network coding. Coding allows a flooding protocol to sat-

isfy different gaps in the data at different receivers using a

single transmission; random network coding (RNC) allows

intermediate nodes to generate coded packets before they have

received the entire transfer [1, 8, 10, 21].

The MORE protocol [4] uses RNC in order to eliminate

the need for feedback from receivers to senders, except for

an indication at the end of a transfer that the receiver has

all the data. MORE assigns a rate (called TX credit) to each

node that governs what fraction of received data it forwards.

TX credit is based on delivery probabilities, and its calculation

assumes independent reception at different nodes. UFlood, in

contrast, makes dynamic decisions about which nodes should

send, based on feedback about the current states of receivers.

This allows UFlood to adapt to actual reception patterns as a

flood progresses, and also allows it to cope with situations in

which reception is not independent. This paper demonstrates

that UFlood’s combination of coding with detailed feedback

significantly decreases the amount of transmission required for

flooding.

Bit-rate selection Much is known about wireless bit-rate

selection for point-to-point links [2, 9, 19] and for WiFi

multicasting [16, 24], where all the receivers are within the

radio range of the sender. To the best of our knowledge,

there are no existing bit-rate selection mechanisms for wireless

flooding or multicast protocols for multi-hop mesh networks.

IV. DESIGN

The goal of UFlood is to distribute a large quantity of data

from a single source to all nodes in a wireless mesh network.

The design relies on the following assumptions.

• Each node has a radio that operates at a fixed power level,

on a single channel, with a non-directional antenna.

• Some node pairs can communicate directly, but others

must relay through multiple hops.

• Nodes are relatively stationary and are willing to forward

data for each other.

• The network size is on the order of dozens of nodes, and

there is a path with non-zero delivery probability from

the source to every other node.

• The radios have a carrier sense mechanism that avoids

collisions.

A. Design Overview

The main elements in UFlood’s design are: (i) sender selection,

(ii) bit-rate selection, and (iii) efficient handling of feedback

to support sender selection. At a high level, UFlood works as

follows.

The nodes cooperate to measure and distribute the delivery

probability between each node-pair at each possible bit-rate.

Each node runs a bit-rate selection algorithm (Section IV-B)

to calculate the best bit-rate for itself and for each other node.

A UFlood transfer starts at the source node, which has the

data to be flooded. The source considers one batch of K native

packets (uncoded packets) of the original data at a time. The

source starts a batch by transmitting K packets, each coded

over the K native packets in the batch (Section IV-C). All

nodes then go through the following cycle until every node

indicates to the source that it has received the entire batch.

Each node calculates its own utility, and the utility of its

immediate neighbors, roughly once per data packet time; the

utilities reflect how valuable it would be for each node to

transmit (Section IV-D). Each node that decides its utility is

higher than that of all of its neighbors transmits a burst of re-

coded data packets. Each receiver may broadcast a feedback

packet after receiving a burst, describing the coded data it

holds (Sections IV-E IV-F IV-G IV-H); the feedback informs

utility calculations for the next burst.

This process continues until all nodes signal the source node

that they are able to decode the batch, at which time the sender

proceeds to the next batch.

B. Bit-rate Selection

A UFlood sender may have many neighbors, each with a

different optimum bit-rate from that sender. In choosing a bit-

rate, a sender is essentially choosing which neighbors to send

data to, since neighbors with optimum rates much below the

chosen rate will receive mostly corrupted frames. The best

choice depends on whether each low-bit-rate neighbor depends

on the sender: if the sender is a neighbor’s best source of data,

the sender should reduce its bit-rate. For this reason, the core

of UFlood’s bit-rate selection algorithm is a decision about

whether each neighbor depends on the sender as the best path

from the source to that neighbor.

UFlood decides if a neighbor depends on a sender by finding

the highest throughput unicast route from the source to each

node, using the ETT (Expected Transmission Time) metric [5].

If a sender is the last hop in the highest-throughput route from

the source to a neighbor, then the neighbor depends on the

sender for data. A sender chooses the lowest of the optimum



bit-rates to the neighbors that depend on the sender and which

lack data that the sender has. Each node calculates the best

bit-rate for every node, including itself.

C. Network Coding

UFlood uses randomized network coding (RNC) over each

batch. RNC often allows individual transmissions to be useful

at multiple receivers even if those receivers are missing

different parts of the batch. Each of the source’s transmissions

is coded over all the native packets in a batch, forming a

“coded packet,” as in MORE [4]. If the K native packets are

n1 . . .nK , and c1 . . .cK are K randomly chosen integers, then

a data packet transmission is p = c1n1 + c2n2 + . . . + cKnK .

The arithmetic is byte-wise, so that the first byte of p is c1

times the first byte of n1 plus c2 times the first byte of n2

... plus ck times first byte of nk. The arithmetic is carried

out in the finite Galois field GF(28). Each coded broadcast

includes the K coefficients (c1 . . .cK) used to construct p. A

packet coded from the native data is called a first-generation

packet; Fi denotes the ith first-generation packet generated by

the source node.

A non-source sender broadcasts packets re-coded over all

the first generation coded packets it has received in the current

batch, using new random coefficients. These packets are non-

first-generation packets Si. All nodes include, in each transmis-

sion, coefficients relative to the original native packets. Once

a node has received K linearly independent packets in the

current batch, it decodes them to obtain the native packets. At

that point the node starts to act as a source-like node, sending

first-generation packets coded from the native data. The reason

to send first-generation packets when possible is that they are

more likely to be linearly independent of each other than are

re-coded packets.

A node sends an acknowledgment packet via reliable unicast

routing to the source when it is able to decode a batch. Once

the source hears such an acknowledgment from every node

in the network, it moves to the next batch. Each node stops

sending acknowledgments when it receives a packet from a

later batch.

D. Utility

Once the source has sent a full set of K coded packets for a

batch, other nodes will be in a position to send further re-coded

packets to help spread the flood. UFlood’s utility heuristic

chooses good senders based on the factors in Section II.

A node’s utility is the expected total amount of useful data

per unit time that would be received if that node transmitted.

Node A estimates the utility of node B (possibly itself) as

follows:

UA(B) = ∑
C∈NB

PB,C,b∗(B) ·b
∗(B) · IB,C (1)

NB is the set B’s neighbors—nodes with delivery probability

greater than 0.1 from B at B’s best bit-rate b∗(B). PB,C,b∗(B) is

the delivery probability from B to C at bit-rate b∗(B). IB,C is

1 if a coded packet from B would be linearly independent of

the packets C already has, and 0 otherwise.

Equation 1 captures the considerations in Section II. Sum-

ming over neighbors favors senders with many receivers.

Weighting by delivery probabilities favors senders with high-

quality links to receivers. Multiplying by transmit bit-rate

favors senders with faster links to receivers. The IB,C factor

favors transmissions likely to be linearly independent of data

already held by receivers.

UFlood’s utility is a locally greedy heuristic: it does not

account for the possibility that a sender with only a few low-

quality links might deliver packets to nodes that would then

be able to transmit to many receivers on high-quality links.

Equation 1 also assumes that good spatial re-use will result

from allowing high-utility nodes that can’t hear each other to

send concurrently.

E. Feedback Content

UFlood’s feedback helps potential senders calculate IB,C. The

feedback design is particularly challenging:

• Feedback has the potential to consume more bandwidth

than the data itself: the full description of a node’s state

might consist of K coding coefficients for each of up to

K packets, or 4096 coefficients for K = 64. Thus UFlood

uses an abbreviated feedback representation, and spaces

out feedback in time (Section IV-G).

• Delayed and lost feedback can cause nodes to have

inaccurate views of each others’ state. This may cause no

node to think it has the highest utility, leading to idle time.

It can also cause useless transmission of data already pos-

sessed by receivers. Idle time and useless transmissions

can drastically reduce performance, so UFlood predicts

feedback by “interpolating” between periodic feedback

receptions (Section IV-F).

A feedback packet from node B contains:

1) A count of the linearly independent packets B holds,

also called the rank of B.

2) A bitmap identifying each distinct first-generation packet

that contributed (via coding) to any of the packets held

by B.

3) The rank of each of B’s neighbors.

A typical packet with the above contents has about 80 bytes

of payload, far less than would be required for K coefficients

for each packet B holds.

Bitmap=1,2,45
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Bitmap=1,2,4,5
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Fig. 6: Illustration of feedback in UFlood. Fi and Si are first and non-first-
generation packets, respectively.

For example, consider Figure 6. Suppose node W has

received packet F5 directly from the source, and has also



received a packet S1 sent by node X that X generated by

re-coding packets F1, F2, and F4 from the source. Then W ’s

feedback will indicate a rank of two, and its bitmap for the

source will have entries 1, 2, 4, and 5 set.

This feedback is sufficient to conservatively estimate IB,C,

without needing to know the actual coefficients, as follows:

IB,C =

{

1 if LB,C > 0

0 otherwise

LB,C =























0 if rank(C) ≥ K, or

b1 if rank(B) > rank(C) (I1), or

b2 if rank(B) ≤ rank(C) and B has more bits

set in its bitmap than C (I2), or

0 otherwise
(2)

where LB,C is the maximum number of coded packets that

C can receive from B that would be linearly independent of

packets C already has, b1 is rank(B)−rank(C) and b2 is the

number of bits that are set in the bitmap of B but not set in

the bitmap of C. This calculation is a conservative estimate: if

LB,C is greater than zero, then a transmission from B is highly

likely to benefit C, while if zero, there is still some chance

that a transmission would be beneficial.

As an example of condition I1, consider Figure 6. Suppose

node W has two packets, and its bitmap has bits set at positions

1,2, 4, and 5. A transmission from node X with a rank three

is likely useful at W . The only way this could fail to be true is

through an unlucky choice by W of its recoding coefficients.

As an example of I2, consider Figure 6. Suppose node

X has three packets, but none is coded over F5. Then a

transmission from W , which has only two packets will be

linearly independent of the packets X already has since it is

coded over F5. This is the reason why sending the rank of

nodes alone as feedback is not enough information to know

whether a sender’s transmission is useful to its receiver.

Once a node receives K linearly independent coded packets,

the receivers of its transmissions will end up setting many

bits in its feedback bitmap, which will make I2 rarely true.

For example, suppose node X has received F1...FK . X then

transmits twice; Y receives only its first packet and Z receives

only its second packet. Now Y and Z have the same rank

(one) and the same set of bits set in their feedback bitmaps

(1,2, . . . ,K), so neither condition I1 nor I2 is true. However,

they could benefit from each other’s transmissions, because

they each have at least one linearly independent packet for

the other. To address this situation, UFlood nodes that have

received enough packets to decode the whole batch, begin to

transmit first-generation packets, coded from the native data.

Such nodes are called “source-like” nodes. Each feedback

packet contains 256 bits for each source-like node from which

the feedback sender has received packets. Condition I2 applies

to the entire set of bits.

F. Feedback Interpolation

Nodes must often calculate utility using out-of-date feedback,

since feedback can be lost and nodes send feedback rela-

tively infrequently. Nodes attempt to correct stale feedback

by interpolating. For every data transmission that A knows

of since B’s last feedback, A simulates the effect of that

transmission on B’s feedback with probability equal to the

delivery probability from sender to B. If A simulates that B

received the packet, and decides that the packet would have

been linearly independent of the packets B’s feedback indicates

it already has, A increments rank(B), and sets the bits in B’s

feedback bitmap corresponding to the source’s packets that

contributed to the data transmission.

G. Feedback Timing

UFlood sends bursts of data packets without feedback to

reduce feedback overhead. When a node A decides it has

the highest utility, it sends a burst of minC∈NA
LA,C packets.

This is the most packets that A can send without causing

some neighbor to have higher utility than A. A receiver sends

a feedback packet when it detects an idle channel for three

packet durations and it guesses (via interpolation) that at least

one of its neighbors could send a packet that would be useful

for it.

The overall burst sequence is as follows. The current sender

sends a burst of packets. Other nodes calculate the sender’s

burst length (or observe it in the sender’s packet headers) and

wait long enough for the burst to have ended. Then all the

nodes recalculate utilities, and the best node sends a new burst.

This process can proceed for a while without feedback, all

nodes using interpolation instead. At some point interpolation

will predict that all nodes have enough packets to decode the

whole batch. No node will send, nodes that have not in fact

received enough packets will observe an idle channel, they

will send feedback, and that will cause some other node to

become a sender. If all nodes can decode the batch, they will

send acknowledgments to the source, which will start a new

batch.

H. Idle Time

Loss of feedback packets and unlucky packet-loss simulation

in interpolation can cause no node to believe it has the

highest utility, and thus idle time. UFlood has two mechanisms

that help it avoid idle time. First, feedback packets include

neighbor ranks, which increases the likelihood that all nearby

nodes will compute utilities using consistent information even

if they don’t all hear feedback directly from the same set of

nodes. Second, sending bursts of packets without needing to

wait for feedback reduces the opportunities for idle time.

If idle time does occur, UFlood recovers by having any node

that thinks it has the second-highest utility start transmitting if

it hears no packet from the best node for three packet times,

and by having nodes send feedback packets when they detect

an idle channel. Idle time can also occur when most nodes

are able to decode a batch, those nodes’ interpolation has

incorrectly guessed that all other nodes can also decode, and

the rules for sending feedback don’t trigger feedback from the

few nodes that don’t have enough packets. UFlood handles this

problem by arranging nodes in a tree rooted at the source, and

having each parent reset its interpolated state for any children



that do not send an acknowledgment to the source soon after

the parent has decoded the whole batch. This causes the parent

to become a sender and drive the children towards completion.

I. Hidden Terminals

Two nodes that cannot hear each other might both send and

collide at common receivers. UFlood reduces the chances

of this in the following way. As described in Section IV-E,

feedback packets contain the ranks of neighbors. Thus feed-

back from common receivers will cause two-hop neighbors,

and thus potential hidden terminals, to be aware of each

other. When a node is deciding if it has the highest utility,

it compares not just against neighbors but also against two-

hop neighbors with which it shares receivers that could benefit

from both senders. In many cases this suppresses potential

hidden terminals.

V. EVALUATION

This section evaluates the performance of a UFlood implemen-

tation on a 25-node 802.11 test-bed deployed across 3 floors

of an office building. We measure two quantities: throughput

and airtime. The throughput is the transfer size divided by the

time for all the nodes to receive the whole transfer. Airtime is

the sum over the total time each node spends in transmitting

packets.

Our experiments compare UFlood with two existing pro-

tocols: MORE [4] and MNP [18]. Our main result is that

UFlood, on average, achieves 150% higher throughput than

MORE, using 65% less airtime. UFlood achieves 300% higher

throughput than MNP using 54% less airtime.

A. Experimental Setup

The UFlood, MORE, and MNP implementations use the Click

software router toolkit [17], running as a user-space process

on Linux. Each node has a 500 MHz AMD Geode LX800

CPU.

The test-bed nodes use 802.11b/g with a transmit power

level of 12 mW. The test-bed is large enough that many nodes

cannot hear each other. Figure 7 shows the layout of the test-

bed. Figure 8 shows the distribution of inter-node delivery

probabilities at 5.5 Mbits/s. The graph shows that the test-bed

has a wide range of link qualities even at such low bit-rate.

Each run involves the source distributing 2 Mbytes of data.

The default batch size is K = 64 packets and 32 such batches

are flooded. A data packet contains 1024 bytes of coded data

plus protocol overhead (e.g., coding coefficients).

Most of the results below report distributions of results

over all choices of source node, in order to emulate the

effect that different topologies would have. Each point in each

distribution represents the average of seven runs with a given

source. All graphs include the overhead of UFlood’s feedback.

B. Protocols used for Comparison

We compare with MORE because MORE is the highest-

throughput existing flooding protocol known to us. We com-

pare with MNP because it is the most efficient existing

protocol known to us (it has low airtime).
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Fig. 7: Physical layout of the test-bed.
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Fig. 8: CDF of pair-wise delivery probabilities.

The MORE software is the multicast implementation used

in [4]. We re-implemented MNP as described in [18], and

added network coding so that our evaluation could focus on

sender selection alone. The MORE and MNP implementations

use only the 5.5 Mbps bit-rate; that is the fixed bit-rate that

gives them the highest throughput on our test-bed. We also

compare with a version of UFlood that operates at just 5.5

Mbps, called UFlood-R.

C. Throughput and airtime

Figure 9 shows the CDF over all sources of the throughput

achieved while flooding a 2 MByte file, comparing UFlood

with UFlood-R, MORE and MNP over all possible sources.

On average, UFlood’s throughput is 150% higher than that of

MORE. UFlood also achieves 300% higher throughput than

MNP, though it should be noted that MNP is not designed for

throughput.
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Fig. 9: UFlood achieves the highest throughput.
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Fig. 10: UFlood consumes the least airtime.
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Fig. 11: UFlood reaches the most receivers with each transmission.

The gap between UFlood-R and UFlood shows the ben-

efit of bit-rate selection. The gaps between UFlood-R and

MORE and MNP show the benefit of UFlood’s sender se-

lection techniques. UFlood also benefits from better handling

of hidden terminals than MORE, which sometimes suffers

from persistent collisions. The performance improvement of

UFlood over MNP is also due to UFlood’s better handling

of asymmetric links and its efficient feedback implementation

(both interpolation and timing) which allows UFlood to send

packets with less idle time; MNP requires explicit requests

from receivers to trigger each transmission.

Figure 10 shows the airtime used during the 2 MByte

transfer. UFlood uses 54% less airtime than MNP, and 65%

less airtime than MORE. UFlood’s lower airtime contributes

to its higher throughput, and also reduces its impact on other

wireless users.

D. Sender Selection

This section investigates how UFlood-R’s sender selection

(utility) allows it to send fewer packets than MORE or MNP

in order to get the same amount of overall work done. We

examine UFlood-R rather than UFlood in order to focus on

sender selection alone, without bit-rate selection.

1) Number of receivers

One reason for UFlood-R’s good performance is that it selects

senders with many likely receivers. Figure 11 shows the

CDF of the number of nodes that receive each data packet

transmission. On average, UFlood-R transmissions reach 50%

and 20% more nodes than MORE and MNP transmissions,

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes that get benefitted by each data transmission

C
D

F
 o

v
e

r 
c
h

o
ic

e
 o

f 
s
o

u
rc

e

 

 

MORE

UFLOOD−R 

MNP

Fig. 12: UFlood’s transmissions benefit many receivers
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Fig. 13: Throughput of UFlood-R vs. MORE for different network sizes.
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Fig. 14: Throughput in a dense network. CDF over all sources
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respectively. That is, UFlood-R chooses senders with more

receivers.

One reason MNP’s senders reach fewer receivers than

UFlood-R’s is that MNP does not directly account for sender-

to-receiver delivery probabilities. It is true that MNP favors

senders that hear requests from many receivers, but link

asymmetry and accidents of delivery can easily cause poor

senders to receive more requests than good senders. UFlood-

R, in contrast, uses measured forward link probabilities from

sender to receivers in calculating utility.

2) Useful receptions

A second reason for UFlood-R’s good performance is that it

selects senders whose transmissions are likely to be useful

at likely receivers, given the receivers’ previous receptions.

Figure 12 shows the CDF of the number of nodes that bene-

fited from each data transmission. UFlood-R transmissions are

useful to twice as many receivers as those of MORE, and 20%

more than those of MNP. That is, UFlood-R transmissions are

more likely to be linearly independent of data that receivers

already hold, and are thus more likely to be useful in decoding

the batch. This helps UFlood-R use fewer transmissions and

complete flooding more quickly than MORE and MNP.

One reason UFlood-R out-performs MORE is that UFlood-

R’s sender decisions adapt as nodes receive packets. MORE

decides which nodes should send via its TX credit mecha-

nism: the probability with which each MORE node transmits

after receiving a packet (TX credit) is fixed during a transfer.

This causes problems towards the end of each batch, when a

few nodes will likely be missing packets, but which nodes they

are is hard to predict statistically; thus the best sender to satisfy

those nodes is often not the one with the highest TX credit.

In contrast, UFlood-R uses feedback to adjust its choice of

sender as a batch progresses, reflecting actual receptions.

UFlood’s utility establishes priority among senders, rather

than weighting them as with MORE’s TX credit. This helps

in cases where one sender can be heard by a superset of the

nodes that hear another sender. UFlood will usually cause just

the former node to send, while MORE’s TX credit may cause

both to send.

UFlood’s feedback mechanism helps when there is corre-

lated reception. Senders that have received the same packets as

potential receivers suppress themselves. Similarly, when mul-

tiple potential senders have received a similar set of packets,

feedback helps ensure that they do not forward needless copies

of the data.

UFlood-R has an edge over MNP because MNP’s sender

choice is effectively based on more coarse-grained delivery

probability measurements: whether or not senders and re-

ceivers hear single query and response packets.

E. Network density

We studied the effect of density using two 5-node networks:

a dense network where all nodes can hear each other, and a

sparse network where each node has a link to at most two

other nodes. Figures 14 and 15 show the performance of

UFlood-R and MORE in the two networks. The throughput
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Fig. 16: Throughput for various batch sizes.
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Fig. 17: Airtime for various batchsizes.

advantage of UFlood-R is much larger in the sparse network.

The low delivery probabilities in the sparse network cause

different nodes to receive different packets, which increases

the importance of feedback-based sender selection.

F. Batch size

Figures 16 and 17 show the performance of UFlood-R, MORE,

and MNP on a 15-node network, varying the batch size.

The graphs show that larger batches increase throughput and

decrease airtime. Larger batches increase the effectiveness of

coding, and also decrease the effect of the period of time

towards the end of each batch when progress is slow while

satisfying the last few nodes. Some of the latter effect could

be reduced by overlapping successive batches.
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Fig. 18: Detailed Vs. UFlood’s compact feedback representation. Compact
feedback looses only 11% throughput due to conciseness.



G. Efficiency of Compact Feedback

UFlood uses several techniques IV-E- IV-H to reduce feedback

traffic. In order to evaluate whether such techniques compro-

mise UFlood’s performance, we compare it with a detailed

feedback mechanism (DETAILED), where nodes’ feedback

include detailed coefficients instead of compact representa-

tion. As mentioned in Section IV-A, such a feedback packet

might be huge and often require multiple transmissions. Thus,

we transmit the feedback for both UFlood and DETAILED

schemes using ethernet to detach the overhead due to multiple

transmissions.

In DETAILED feedback, each node broadcasts the coeffi-

cients of all its coded packets after every data transmission

in the network. Nodes calculate utility for every transmission

based on the up-to-date feedback from all the nodes in the

network, which means their is no need for either bursty trans-

mission or feedback interpolation. Figure 18 shows that the

combination of techniques used by UFlood to reduce feedback

traffic, leads to a 11% reduction in throughput compared to

DETAILED. Considering the practical difficulties in using

huge and frequent feedback in wireless mesh networks, this

loss is acceptable.

H. Feedback overhead

Measurement shows that the overhead imposed by UFlood’s

feedback is about 3%. This is because, UFlood sends compact

feedback, and sends it only when needed.

VI. CONCLUSION

This paper describes UFlood, a wireless mesh flooding pro-

tocol with a design incorporating the following novel ideas.

First, utility, a heuristic to select senders on the basis of the

expected rate of new information the senders will deliver

to receivers, accounting both for delivery probabilities and

previously received data. Second, the first bit-rate selection

scheme for wireless mesh flooding. Third, a demonstration

that detailed feedback about the data each receiver possesses

is useful even with coding. Fourth, reduced feedback overhead

with a compact representation and mechanisms to send feed-

back only when required. Experiments on a 25-node wireless

mesh test-bed show that UFlood, on average, achieves 150%

higher throughput than MORE, a high-throughput flooding

protocol, using 65% less airtime. UFlood achieves 300%

higher throughput using 54% less airtime than MNP, the

existing flooding protocol to reduce airtime.
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