
CryptDB: Protecting Confidentiality with
Encrypted Query Processing

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan
MIT CSAIL

ABSTRACT
Online applications are vulnerable to theft of sensitive information
because adversaries can exploit software bugs to gain access to
private data, and because curious or malicious administrators may
capture and leak data. CryptDB is a system that provides practical
and provable confidentiality in the face of these attacks for applica-
tions backed by SQL databases. It works by executing SQL queries
over encrypted data using a collection of efficient SQL-aware en-
cryption schemes. CryptDB can also chain encryption keys to user
passwords, so that a data item can be decrypted only by using the
password of one of the users with access to that data. As a result,
a database administrator never gets access to decrypted data, and
even if all servers are compromised, an adversary cannot decrypt
the data of any user who is not logged in. An analysis of a trace of
126 million SQL queries from a production MySQL server shows
that CryptDB can support operations over encrypted data for 99.5%
of the 128,840 columns seen in the trace. Our evaluation shows
that CryptDB has low overhead, reducing throughput by 14.5% for
phpBB, a web forum application, and by 26% for queries from TPC-
C, compared to unmodified MySQL. Chaining encryption keys to
user passwords requires 11–13 unique schema annotations to secure
more than 20 sensitive fields and 2–7 lines of source code changes
for three multi-user web applications.

Categories and Subject Descriptors: H.2.7 [Database Man-
agement]: Database Administration—Security, integrity, and pro-
tection.

General Terms: Security, design.

1 INTRODUCTION
Theft of private information is a significant problem, particularly
for online applications [40]. An adversary can exploit software
vulnerabilities to gain unauthorized access to servers [32]; curious
or malicious administrators at a hosting or application provider can
snoop on private data [6]; and attackers with physical access to
servers can access all data on disk and in memory [23].

One approach to reduce the damage caused by server compro-
mises is to encrypt sensitive data, as in SUNDR [28], SPORC [16],
and Depot [30], and run all computations (application logic) on
clients. Unfortunately, several important applications do not lend
themselves to this approach, including database-backed web sites
that process queries to generate data for the user, and applications

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP ’11, October 23–26, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0977-6/11/10 . . . $10.00.

that compute over large amounts of data. Even when this approach
is tenable, converting an existing server-side application to this form
can be difficult. Another approach would be to consider theoret-
ical solutions such as fully homomorphic encryption [19], which
allows servers to compute arbitrary functions over encrypted data,
while only clients see decrypted data. However, fully homomorphic
encryption schemes are still prohibitively expensive by orders of
magnitude [10, 21].

This paper presents CryptDB, a system that explores an interme-
diate design point to provide confidentiality for applications that use
database management systems (DBMSes). CryptDB leverages the
typical structure of database-backed applications, consisting of a
DBMS server and a separate application server, as shown in Figure 1;
the latter runs the application code and issues DBMS queries on be-
half of one or more users. CryptDB’s approach is to execute queries
over encrypted data, and the key insight that makes it practical is
that SQL uses a well-defined set of operators, each of which we are
able to support efficiently over encrypted data.

CryptDB addresses two threats. The first threat is a curious
database administrator (DBA) who tries to learn private data (e.g.,
health records, financial statements, personal information) by snoop-
ing on the DBMS server; here, CryptDB prevents the DBA from
learning private data. The second threat is an adversary that gains
complete control of application and DBMS servers. In this case,
CryptDB cannot provide any guarantees for users that are logged
into the application during an attack, but can still ensure the confi-
dentiality of logged-out users’ data.

There are two challenges in combating these threats. The first lies
in the tension between minimizing the amount of confidential infor-
mation revealed to the DBMS server and the ability to efficiently
execute a variety of queries. Current approaches for computing
over encrypted data are either too slow or do not provide adequate
confidentiality, as we discuss in §9. On the other hand, encrypting
data with a strong and efficient cryptosystem, such as AES, would
prevent the DBMS server from executing many SQL queries, such
as queries that ask for the number of employees in the “sales” de-
partment or for the names of employees whose salary is greater than
$60,000. In this case, the only practical solution would be to give
the DBMS server access to the decryption key, but that would allow
an adversary to also gain access to all data.

The second challenge is to minimize the amount of data leaked
when an adversary compromises the application server in addition to
the DBMS server. Since arbitrary computation on encrypted data is
not practical, the application must be able to access decrypted data.
The difficulty is thus to ensure that a compromised application can
obtain only a limited amount of decrypted data. A naı̈ve solution of
assigning each user a different database encryption key for their data
does not work for applications with shared data, such as bulletin
boards and conference review sites.

CryptDB addresses these challenges using three key ideas:

• The first is to execute SQL queries over encrypted data. CryptDB
implements this idea using a SQL-aware encryption strategy,
which leverages the fact that all SQL queries are made up of a

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/9590457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

User 1

Application Unmodified DBMS

DBMS server

Key setup

Password P1

Data
(encrypted)

Encrypted
key table

CryptDB UDFs

Application serverUsers' computers

Threat 1

User 2

Password P2

Active
session

Threat 2

Database proxy

Active keys:
P1

Annotated
schema

CryptDB proxy server

Figure 1: CryptDB’s architecture consisting of two parts: a database proxy and an unmodified DBMS. CryptDB uses user-defined functions (UDFs)
to perform cryptographic operations in the DBMS. Rectangular and rounded boxes represent processes and data, respectively. Shading indicates
components added by CryptDB. Dashed lines indicate separation between users’ computers, the application server, a server running CryptDB’s database
proxy (which is usually the same as the application server), and the DBMS server. CryptDB addresses two kinds of threats, shown as dotted lines. In
threat 1, a curious database administrator with complete access to the DBMS server snoops on private data, in which case CryptDB prevents the DBA
from accessing any private information. In threat 2, an adversary gains complete control over both the software and hardware of the application, proxy,
and DBMS servers, in which case CryptDB ensures the adversary cannot obtain data belonging to users that are not logged in (e.g., user 2).

well-defined set of primitive operators, such as equality checks,
order comparisons, aggregates (sums), and joins. By adapt-
ing known encryption schemes (for equality, additions, and or-
der checks) and using a new privacy-preserving cryptographic
method for joins, CryptDB encrypts each data item in a way that
allows the DBMS to execute on the transformed data. CryptDB is
efficient because it mostly uses symmetric-key encryption, avoids
fully homomorphic encryption, and runs on unmodified DBMS
software (by using user-defined functions).

• The second technique is adjustable query-based encryption.
Some encryption schemes leak more information than others
about the data to the DBMS server, but are required to process
certain queries. To avoid revealing all possible encryptions of
data to the DBMS a priori, CryptDB carefully adjusts the SQL-
aware encryption scheme for any given data item, depending
on the queries observed at run-time. To implement these adjust-
ments efficiently, CryptDB uses onions of encryption. Onions
are a novel way to compactly store multiple ciphertexts within
each other in the database and avoid expensive re-encryptions.

• The third idea is to chain encryption keys to user passwords, so
that each data item in the database can be decrypted only through
a chain of keys rooted in the password of one of the users with
access to that data. As a result, if the user is not logged into
the application, and if the adversary does not know the user’s
password, the adversary cannot decrypt the user’s data, even if
the DBMS and the application server are fully compromised.
To construct a chain of keys that captures the application’s data
privacy and sharing policy, CryptDB allows the developer to
provide policy annotations over the application’s SQL schema,
specifying which users (or other principals, such as groups) have
access to each data item.

We have implemented CryptDB on both MySQL and Postgres;
our design and most of our implementation should be applicable
to most standard SQL DBMSes. An analysis of a 10-day trace of
126 million SQL queries from many applications at MIT suggests
that CryptDB can support operations over encrypted data for 99.5%
of the 128,840 columns seen in the trace. Our evaluation shows
that CryptDB has low overhead, reducing throughput by 14.5% for
the phpBB web forum application, and by 26% for queries from
TPC-C, compared to unmodified MySQL. We evaluated the security
of CryptDB on six real applications (including phpBB, the HotCRP
conference management software [27], and the OpenEMR medical
records application); the results show that CryptDB protects most
sensitive fields with highly secure encryption schemes. Chaining
encryption keys to user passwords requires 11–13 unique schema
annotations to enforce privacy policies on more than 20 sensitive

fields (including a new policy in HotCRP for handling papers in
conflict with a PC chair) and 2–7 lines of source code changes for
three multi-user web applications.

The rest of this paper is structured as follows. In §2, we discuss
the threats that CryptDB defends against in more detail. Then, we
describe CryptDB’s design for encrypted query processing in §3
and for key chaining to user passwords in §4. In §5, we present
several case studies of how applications can use CryptDB, and in
§6, we discuss limitations of our design, and ways in which it can
be extended. Next, we describe our prototype implementation in §7,
and evaluate the performance and security of CryptDB, as well as
the effort required for application developers to use CryptDB, in §8.
We compare CryptDB to related work in §9 and conclude in §10.

2 SECURITY OVERVIEW
Figure 1 shows CryptDB’s architecture and threat models. CryptDB
works by intercepting all SQL queries in a database proxy, which
rewrites queries to execute on encrypted data (CryptDB assumes that
all queries go through the proxy). The proxy encrypts and decrypts
all data, and changes some query operators, while preserving the
semantics of the query. The DBMS server never receives decryption
keys to the plaintext so it never sees sensitive data, ensuring that a
curious DBA cannot gain access to private information (threat 1).

To guard against application, proxy, and DBMS server compro-
mises (threat 2), developers annotate their SQL schema to define
different principals, whose keys will allow decrypting different parts
of the database. They also make a small change to their applications
to provide encryption keys to the proxy, as described in §4. The
proxy determines what parts of the database should be encrypted
under what key. The result is that CryptDB guarantees the confi-
dentiality of data belonging to users that are not logged in during a
compromise (e.g., user 2 in Figure 1), and who do not log in until
the compromise is detected and fixed by the administrator.

Although CryptDB protects data confidentiality, it does not ensure
the integrity, freshness, or completeness of results returned to the
application. An adversary that compromises the application, proxy,
or DBMS server, or a malicious DBA, can delete any or all of the
data stored in the database. Similarly, attacks on user machines,
such as cross-site scripting, are outside of the scope of CryptDB.

We now describe the two threat models addressed by CryptDB,
and the security guarantees provided under those threat models.

2.1 Threat 1: DBMS Server Compromise
In this threat, CryptDB guards against a curious DBA or other exter-
nal attacker with full access to the data stored in the DBMS server.
Our goal is confidentiality (data secrecy), not integrity or availability.
The attacker is assumed to be passive: she wants to learn confidential

2

data, but does not change queries issued by the application, query
results, or the data in the DBMS. This threat includes DBMS soft-
ware compromises, root access to DBMS machines, and even access
to the RAM of physical machines. With the rise in database consol-
idation inside enterprise data centers, outsourcing of databases to
public cloud computing infrastructures, and the use of third-party
DBAs, this threat is increasingly important.

Approach. CryptDB aims to protect data confidentiality against
this threat by executing SQL queries over encrypted data on the
DBMS server. The proxy uses secret keys to encrypt all data inserted
or included in queries issued to the DBMS. Our approach is to allow
the DBMS server to perform query processing on encrypted data
as it would on an unencrypted database, by enabling it to compute
certain functions over the data items based on encrypted data. For
example, if the DBMS needs to perform a GROUP BY on column c,
the DBMS server should be able to determine which items in that
column are equal to each other, but not the actual content of each
item. Therefore, the proxy needs to enable the DBMS server to
determine relationships among data necessary to process a query.
By using SQL-aware encryption that adjusts dynamically to the
queries presented, CryptDB is careful about what relations it reveals
between tuples to the server. For instance, if the DBMS needs to
perform only a GROUP BY on a column c, the DBMS server should
not know the order of the items in column c, nor should it know any
other information about other columns. If the DBMS is required to
perform an ORDER BY, or to find the MAX or MIN, CryptDB reveals
the order of items in that column, but not otherwise.

Guarantees. CryptDB provides confidentiality for data content
and for names of columns and tables; CryptDB does not hide the
overall table structure, the number of rows, the types of columns,
or the approximate size of data in bytes. The security of CryptDB
is not perfect: CryptDB reveals to the DBMS server relationships
among data items that correspond to the classes of computation
that queries perform on the database, such as comparing items for
equality, sorting, or performing word search. The granularity at
which CryptDB allows the DBMS to perform a class of computations
is an entire column (or a group of joined columns, for joins), which
means that even if a query requires equality checks for a few rows,
executing that query on the server would require revealing that class
of computation for an entire column. §3.1 describes how these
classes of computation map to CryptDB’s encryption schemes, and
the information they reveal.

More intuitively, CryptDB provides the following properties:

• Sensitive data is never available in plaintext at the DBMS server.

• The information revealed to the DBMS server depends on the
classes of computation required by the application’s queries,
subject to constraints specified by the application developer in
the schema (§3.5.1):

1. If the application requests no relational predicate filtering
on a column, nothing about the data content leaks (other
than its size in bytes).

2. If the application requests equality checks on a column,
CryptDB’s proxy reveals which items repeat in that column
(the histogram), but not the actual values.

3. If the application requests order checks on a column, the
proxy reveals the order of the elements in the column.

• The DBMS server cannot compute the (encrypted) results for
queries that involve computation classes not requested by the
application.

How close is CryptDB to “optimal” security? Fundamentally, op-
timal security is achieved by recent work in theoretical cryptography
enabling any computation over encrypted data [18]; however, such
proposals are prohibitively impractical. In contrast, CryptDB is prac-
tical, and in §8.3, we demonstrate that it also provides significant
security in practice. Specifically, we show that all or almost all of
the most sensitive fields in the tested applications remain encrypted
with highly secure encryption schemes. For such fields, CryptDB
provides optimal security, assuming their value is independent of
the pattern in which they are accessed (which is the case for medical
information, social security numbers, etc). CryptDB is not optimal
for fields requiring more revealing encryption schemes, but we find
that most such fields are semi-sensitive (such as timestamps).

Finally, we believe that a passive attack model is realistic because
malicious DBAs are more likely to read the data, which may be
hard to detect, than to change the data or query results, which is
more likely to be discovered. In §9, we cite related work on data
integrity that could be used in complement with our work. An active
adversary that can insert or update data may be able to indirectly
compromise confidentiality. For example, an adversary that modifies
an email field in the database may be able to trick the application
into sending a user’s data to the wrong email address, when the user
asks the application to email her a copy of her own data. Such active
attacks on the DBMS fall under the second threat model, which we
now discuss.

2.2 Threat 2: Arbitrary Threats
We now describe the second threat where the application server,
proxy, and DBMS server infrastructures may be compromised arbi-
trarily. The approach in threat 1 is insufficient because an adversary
can now get access to the keys used to encrypt the entire database.

The solution is to encrypt different data items (e.g., data belong-
ing to different users) with different keys. To determine the key
that should be used for each data item, developers annotate the ap-
plication’s database schema to express finer-grained confidentiality
policies. A curious DBA still cannot obtain private data by snooping
on the DBMS server (threat 1), and in addition, an adversary who
compromises the application server or the proxy can now decrypt
only data of currently logged-in users (which are stored in the proxy).
Data of currently inactive users would be encrypted with keys not
available to the adversary, and would remain confidential.

In this configuration, CryptDB provides strong guarantees in
the face of arbitrary server-side compromises, including those that
gain root access to the application or the proxy. CryptDB leaks
at most the data of currently active users for the duration of the
compromise, even if the proxy behaves in a Byzantine fashion. By
“duration of a compromise”, we mean the interval from the start of
the compromise until any trace of the compromise has been erased
from the system. For a read SQL injection attack, the duration of the
compromise spans the attacker’s SQL queries. In the above example
of an adversary changing the email address of a user in the database,
we consider the system compromised for as long as the attacker’s
email address persists in the database.

3 QUERIES OVER ENCRYPTED DATA
This section describes how CryptDB executes SQL queries over
encrypted data. The threat model in this section is threat 1 from
§2.1. The DBMS machines and administrators are not trusted, but
the application and the proxy are trusted.

CryptDB enables the DBMS server to execute SQL queries on
encrypted data almost as if it were executing the same queries on
plaintext data. Existing applications do not need to be changed. The
DBMS’s query plan for an encrypted query is typically the same as

3

for the original query, except that the operators comprising the query,
such as selections, projections, joins, aggregates, and orderings, are
performed on ciphertexts, and use modified operators in some cases.

CryptDB’s proxy stores a secret master key MK, the database
schema, and the current encryption layers of all columns. The
DBMS server sees an anonymized schema (in which table and col-
umn names are replaced by opaque identifiers), encrypted user data,
and some auxiliary tables used by CryptDB. CryptDB also equips
the server with CryptDB-specific user-defined functions (UDFs) that
enable the server to compute on ciphertexts for certain operations.

Processing a query in CryptDB involves four steps:

1. The application issues a query, which the proxy intercepts and
rewrites: it anonymizes each table and column name, and, using
the master key MK, encrypts each constant in the query with an
encryption scheme best suited for the desired operation (§3.1).

2. The proxy checks if the DBMS server should be given keys to
adjust encryption layers before executing the query, and if so,
issues an UPDATE query at the DBMS server that invokes a UDF
to adjust the encryption layer of the appropriate columns (§3.2).

3. The proxy forwards the encrypted query to the DBMS server,
which executes it using standard SQL (occasionally invoking
UDFs for aggregation or keyword search).

4. The DBMS server returns the (encrypted) query result, which the
proxy decrypts and returns to the application.

3.1 SQL-aware Encryption
We now describe the encryption types that CryptDB uses, including
a number of existing cryptosystems, an optimization of a recent
scheme, and a new cryptographic primitive for joins. For each
encryption type, we explain the security property that CryptDB
requires from it, its functionality, and how it is implemented.

Random (RND). RND provides the maximum security in
CryptDB: indistinguishability under an adaptive chosen-plaintext
attack (IND-CPA); the scheme is probabilistic, meaning that two
equal values are mapped to different ciphertexts with overwhelming
probability. On the other hand, RND does not allow any compu-
tation to be performed efficiently on the ciphertext. An efficient
construction of RND is to use a block cipher like AES or Blowfish
in CBC mode together with a random initialization vector (IV). (We
mostly use AES, except for integer values, where we use Blowfish
for its 64-bit block size because the 128-bit block size of AES would
cause the ciphertext to be significantly longer).

Since, in this threat model, CryptDB assumes the server does not
change results, CryptDB does not require a stronger IND-CCA2
construction (which would be secure under a chosen-ciphertext
attack). However, it would be straightforward to use an IND-CCA2-
secure implementation of RND instead, such as a block cipher in
UFE mode [13], if needed.

Deterministic (DET). DET has a slightly weaker guarantee, yet
it still provides strong security: it leaks only which encrypted values
correspond to the same data value, by deterministically generating
the same ciphertext for the same plaintext. This encryption layer
allows the server to perform equality checks, which means it can
perform selects with equality predicates, equality joins, GROUP BY,
COUNT, DISTINCT, etc.

In cryptographic terms, DET should be a pseudo-random permu-
tation (PRP) [20]. For 64-bit and 128-bit values, we use a block
cipher with a matching block size (Blowfish and AES respectively);
we make the usual assumption that the AES and Blowfish block
ciphers are PRPs. We pad smaller values out to 64 bits, but for
data that is longer than a single 128-bit AES block, the standard

CBC mode of operation leaks prefix equality (e.g., if two data items
have an identical prefix that is at least 128 bits long). To avoid this
problem, we use AES with a variant of the CMC mode [24], which
can be approximately thought of as one round of CBC, followed by
another round of CBC with the blocks in the reverse order. Since the
goal of DET is to reveal equality, we use a zero IV (or “tweak” [24])
for our AES-CMC implementation of DET.

Order-preserving encryption (OPE). OPE allows order rela-
tions between data items to be established based on their en-
crypted values, without revealing the data itself. If x < y, then
OPEK(x)< OPEK(y), for any secret key K. Therefore, if a column
is encrypted with OPE, the server can perform range queries when
given encrypted constants OPEK(c1) and OPEK(c2) corresponding
to the range [c1,c2]. The server can also perform ORDER BY, MIN,
MAX, SORT, etc.

OPE is a weaker encryption scheme than DET because it reveals
order. Thus, the CryptDB proxy will only reveal OPE-encrypted
columns to the server if users request order queries on those columns.
OPE has provable security guarantees [4]: the encryption is equiva-
lent to a random mapping that preserves order.

The scheme we use [4] is the first provably secure such scheme.
Until CryptDB, there was no implementation nor any measure of the
practicality of the scheme. The direct implementation of the scheme
took 25 ms per encryption of a 32-bit integer on an Intel 2.8 GHz
Q9550 processor. We improved the algorithm by using AVL binary
search trees for batch encryption (e.g., database loads), reducing the
cost of OPE encryption to 7 ms per encryption without affecting its
security. We also implemented a hypergeometric sampler that lies at
the core of OPE, porting a Fortran implementation from 1988 [25].

Homomorphic encryption (HOM). HOM is a secure probabilis-
tic encryption scheme (IND-CPA secure), allowing the server to
perform computations on encrypted data with the final result de-
crypted at the proxy. While fully homomorphic encryption is pro-
hibitively slow [10], homomorphic encryption for specific operations
is efficient. To support summation, we implemented the Paillier
cryptosystem [35]. With Paillier, multiplying the encryptions of
two values results in an encryption of the sum of the values, i.e.,
HOMK(x) ·HOMK(y) = HOMK(x+ y), where the multiplication is
performed modulo some public-key value. To compute SUM aggre-
gates, the proxy replaces SUM with calls to a UDF that performs
Paillier multiplication on a column encrypted with HOM. HOM can
also be used for computing averages by having the DBMS server
return the sum and the count separately, and for incrementing values
(e.g., SET id=id+1), on which we elaborate shortly.

With HOM, the ciphertext is 2048 bits. In theory, it should be
possible to pack multiple values from a single row into one HOM
ciphertext for that row, using the scheme of Ge and Zdonik [17],
which would result in an amortized space overhead of 2× (e.g., a
32-bit value occupies 64 bits) for a table with many HOM-encrypted
columns. However, we have not implemented this optimization
in our prototype. This optimization would also complicate partial-
row UPDATE operations that reset some—but not all—of the values
packed into a HOM ciphertext.

Join (JOIN and OPE-JOIN). A separate encryption scheme is
necessary to allow equality joins between two columns, because
we use different keys for DET to prevent cross-column correlations.
JOIN also supports all operations allowed by DET, and also en-
ables the server to determine repeating values between two columns.
OPE-JOIN enables joins by order relations. We provide a new cryp-
tographic scheme for JOIN and we discuss it in §3.4.

4

Onion Eq Onion Ord Onion Add

OPE-JOIN:
range join

OPE: order

any value

RND: no functionality

any value

DET: equality selection

RND: no functionality

JOIN: equality join

int value

HOM: add

Onion Search

SEARCH

text value

Figure 2: Onion encryption layers and the classes of computation they
allow. Onion names stand for the operations they allow at some of their
layers (Equality, Order, Search, and Addition). In practice, some onions
or onion layers may be omitted, depending on column types or schema
annotations provided by application developers (§3.5.2). DET and JOIN
are often merged into a single onion layer, since JOIN is a concatenation
of DET and JOIN-ADJ (§3.4). A random IV for RND (§3.1), shared by
the RND layers in Eq and Ord, is also stored for each data item.

Word search (SEARCH). SEARCH is used to perform searches
on encrypted text to support operations such as MySQL’s LIKE oper-
ator. We implemented the cryptographic protocol of Song et al. [46],
which was not previously implemented by the authors; we also use
their protocol in a different way, which results in better security
guarantees. For each column needing SEARCH, we split the text
into keywords using standard delimiters (or using a special keyword
extraction function specified by the schema developer). We then
remove repetitions in these words, randomly permute the positions
of the words, and then encrypt each of the words using Song et al.’s
scheme, padding each word to the same size. SEARCH is nearly as
secure as RND: the encryption does not reveal to the DBMS server
whether a certain word repeats in multiple rows, but it leaks the
number of keywords encrypted with SEARCH; an adversary may
be able to estimate the number of distinct or duplicate words (e.g.,
by comparing the size of the SEARCH and RND ciphertexts for the
same data).

When the user performs a query such as SELECT * FROM
messages WHERE msg LIKE "% alice %", the proxy gives the
DBMS server a token, which is an encryption of alice. The server
cannot decrypt the token to figure out the underlying word. Using a
user-defined function, the DBMS server checks if any of the word
encryptions in any message match the token. In our approach, all
the server learns from searching is whether a token matched a mes-
sage or not, and this happens only for the tokens requested by the
user. The server would learn the same information when returning
the result set to the users, so the overall search scheme reveals the
minimum amount of additional information needed to return the
result.

Note that SEARCH allows CryptDB to only perform full-word
keyword searches; it cannot support arbitrary regular expressions.
For applications that require searching for multiple adjacent words,
CryptDB allows the application developer to disable duplicate re-
moval and re-ordering by annotating the schema, even though this
is not the default. Based on our trace evaluation, we find that most
uses of LIKE can be supported by SEARCH with such schema an-
notations. Of course, one can still combine multiple LIKE operators
with AND and OR to check whether multiple independent words are
in the text.

3.2 Adjustable Query-based Encryption
A key part of CryptDB’s design is adjustable query-based encryp-
tion, which dynamically adjusts the layer of encryption on the DBMS
server. Our goal is to use the most secure encryption schemes that
enable running the requested queries. For example, if the application
issues no queries that compare data items in a column, or that sort a

column, the column should be encrypted with RND. For columns
that require equality checks but not inequality checks, DET suf-
fices. However, the query set is not always known in advance. Thus,
we need an adaptive scheme that dynamically adjusts encryption
strategies.

Our idea is to encrypt each data item in one or more onions: that
is, each value is dressed in layers of increasingly stronger encryption,
as illustrated in Figures 2 and 3. Each layer of each onion enables
certain kinds of functionality as explained in the previous subsection.
For example, outermost layers such as RND and HOM provide
maximum security, whereas inner layers such as OPE provide more
functionality.

Multiple onions are needed in practice, both because the compu-
tations supported by different encryption schemes are not always
strictly ordered, and because of performance considerations (size of
ciphertext and encryption time for nested onion layers). Depending
on the type of the data (and any annotations provided by the appli-
cation developer on the database schema, as discussed in §3.5.2),
CryptDB may not maintain all onions for each column. For instance,
the Search onion does not make sense for integers, and the Add
onion does not make sense for strings.

For each layer of each onion, the proxy uses the same key for
encrypting values in the same column, and different keys across
tables, columns, onions, and onion layers. Using the same key for
all values in a column allows the proxy to perform operations on
a column without having to compute separate keys for each row
that will be manipulated. (We use finer-grained encryption keys
in §4 to reduce the potential amount of data disclosure in case of
an application or proxy server compromise.) Using different keys
across columns prevents the server from learning any additional
relations. All of these keys are derived from the master key MK. For
example, for table t, column c, onion o, and encryption layer l, the
proxy uses the key

Kt,c,o,l = PRPMK(table t, column c, onion o, layer l), (1)

where PRP is a pseudorandom permutation (e.g., AES).
Each onion starts out encrypted with the most secure encryption

scheme (RND for onions Eq and Ord, HOM for onion Add, and
SEARCH for onion Search). As the proxy receives SQL queries
from the application, it determines whether layers of encryption need
to be removed. Given a predicate P on column c needed to execute
a query on the server, the proxy first establishes what onion layer is
needed to compute P on c. If the encryption of c is not already at
an onion layer that allows P, the proxy strips off the onion layers to
allow P on c, by sending the corresponding onion key to the server.
The proxy never decrypts the data past the least-secure encryption
onion layer (or past some other threshold layer, if specified by the
application developer in the schema, §3.5.1).

CryptDB implements onion layer decryption using UDFs that run
on the DBMS server. For example, in Figure 3, to decrypt onion Ord
of column 2 in table 1 to layer OPE, the proxy issues the following
query to the server using the DECRYPT RND UDF:

UPDATE Table1 SET

C2-Ord = DECRYPT RND(K, C2-Ord, C2-IV)

where K is the appropriate key computed from Equation (1). At
the same time, the proxy updates its own internal state to remember
that column C2-Ord in Table1 is now at layer OPE in the DBMS.
Each column decryption should be included in a transaction to avoid
consistency problems with clients accessing columns being adjusted.

Note that onion decryption is performed entirely by the DBMS
server. In the steady state, no server-side decryptions are needed,
because onion decryption happens only when a new class of com-
putation is requested on a column. For example, after an equality

5

Employees

ID Name
23 Alice

Table1

C1-IV C1-Eq C1-Ord C1-Add C2-IV C2-Eq C2-Ord C2-Search
x27c3 x2b82 xcb94 xc2e4 x8a13 xd1e3 x7eb1 x29b0

Figure 3: Data layout at the server. When the application creates the
table shown on the left, the table created at the DBMS server is the one
shown on the right. Ciphertexts shown are not full-length.

check is requested on a column and the server brings the column to
layer DET, the column remains in that state, and future queries with
equality checks require no decryption. This property is the insight
into why CryptDB’s overhead is modest in the steady state (see §8):
the server mostly performs typical SQL processing.

3.3 Executing over Encrypted Data
Once the onion layers in the DBMS are at the layer necessary to
execute a query, the proxy transforms the query to operate on these
onions. In particular, the proxy replaces column names in a query
with corresponding onion names, based on the class of computation
performed on that column. For example, for the schema shown in
Figure 3, a reference to the Name column for an equality comparison
will be replaced with a reference to the C2-Eq column.

The proxy also replaces each constant in the query with a corre-
sponding onion encryption of that constant, based on the compu-
tation in which it is used. For instance, if a query contains WHERE
Name = ‘Alice’, the proxy encrypts ‘Alice’ by successively ap-
plying all encryption layers corresponding to onion Eq that have not
yet been removed from C2-Eq.

Finally, the server replaces certain operators with UDF-based
counterparts. For instance, the SUM aggregate operator and the +
column-addition operator must be replaced with an invocation of a
UDF that performs HOM addition of ciphertexts. Equality and order
operators (such as = and <) do not need such replacement and can
be applied directly to the DET and OPE ciphertexts.

Once the proxy has transformed the query, it sends the query to
the DBMS server, receives query results (consisting of encrypted
data), decrypts the results using the corresponding onion keys, and
sends the decrypted result to the application.

Read query execution. To understand query execution over ci-
phertexts, consider the example schema shown in Figure 3. Initially,
each column in the table is dressed in all onions of encryption, with
RND, HOM, and SEARCH as outermost layers, as shown in Fig-
ure 2. At this point, the server can learn nothing about the data other
than the number of columns, rows, and data size.

To illustrate when onion layers are removed, consider the query:

SELECT ID FROM Employees WHERE Name = ‘Alice’,

which requires lowering the encryption of Name to layer DET. To
execute this query, the proxy first issues the query

UPDATE Table1 SET

C2-Eq = DECRYPT RND(KT1,C2,Eq,RND, C2-Eq, C2-IV),

where column C2 corresponds to Name. The proxy then issues

SELECT C1-Eq, C1-IV FROM Table1 WHERE C2-Eq = x7..d,

where column C1 corresponds to ID, and where x7..d is the Eq onion
encryption of “Alice” with keys KT1,C2,Eq,JOIN and KT1,C2,Eq,DET
(see Figure 2). Note that the proxy must request the random IV from
column C1-IV in order to decrypt the RND ciphertext from C1-Eq.
Finally, the proxy decrypts the results from the server using keys
KT1,C1,Eq,RND, KT1,C1,Eq,DET, and KT1,C1,Eq,JOIN, obtains the result
23, and returns it to the application.

If the next query is SELECT COUNT(*) FROM Employees
WHERE Name = ‘Bob’, no server-side decryptions are necessary,
and the proxy directly issues the query SELECT COUNT(*) FROM

Table1 WHERE C2-Eq = xbb..4a, where xbb..4a is the Eq onion
encryption of “Bob” using KT1,C2,Eq,JOIN and KT1,C2,Eq,DET.

Write query execution. To support INSERT, DELETE, and
UPDATE queries, the proxy applies the same processing to the predi-
cates (i.e., the WHERE clause) as for read queries. DELETE queries re-
quire no additional processing. For all INSERT and UPDATE queries
that set the value of a column to a constant, the proxy encrypts each
inserted column’s value with each onion layer that has not yet been
stripped off in that column.

The remaining case is an UPDATE that sets a column value based
on an existing column value, such as salary=salary+1. Such an
update would have to be performed using HOM, to handle addi-
tions. However, in doing so, the values in the OPE and DET onions
would become stale. In fact, any hypothetical encryption scheme
that simultaneously allows addition and direct comparison on the
ciphertext is insecure: if a malicious server can compute the order
of the items, and can increment the value by one, the server can
repeatedly add one to each field homomorphically until it becomes
equal to some other value in the same column. This would allow
the server to compute the difference between any two values in the
database, which is almost equivalent to knowing their values.

There are two approaches to allow updates based on existing
column values. If a column is incremented and then only projected
(no comparisons are performed on it), the solution is simple: when a
query requests the value of this field, the proxy should request the
HOM ciphertext from the Add onion, instead of ciphertexts from
other onions, because the HOM value is up-to-date. For instance,
this approach applies to increment queries in TPC-C. If a column is
used in comparisons after it is incremented, the solution is to replace
the update query with two queries: a SELECT of the old values to
be updated, which the proxy increments and encrypts accordingly,
followed by an UPDATE setting the new values. This strategy would
work well for updates that affect a small number of rows.

Other DBMS features. Most other DBMS mechanisms, such as
transactions and indexing, work the same way with CryptDB over
encrypted data as they do over plaintext, with no modifications.
For transactions, the proxy passes along any BEGIN, COMMIT, and
ABORT queries to the DBMS. Since many SQL operators behave
differently on NULLs than on non-NULL values, CryptDB exposes
NULL values to the DBMS without encryption. CryptDB does
not currently support stored procedures, although certain stored
procedures could be supported by rewriting their code in the same
way that CryptDB’s proxy rewrites SQL statements.

The DBMS builds indexes for encrypted data in the same way
as for plaintext. Currently, if the application requests an index on a
column, the proxy asks the DBMS server to build indexes on that
column’s DET, JOIN, OPE, or OPE-JOIN onion layers (if they are
exposed), but not for RND, HOM, or SEARCH. More efficient
index selection algorithms could be investigated.

3.4 Computing Joins
There are two kinds of joins supported by CryptDB: equi-joins, in
which the join predicate is based on equality, and range joins, which
involve order checks. To perform an equi-join of two encrypted
columns, the columns should be encrypted with the same key so that
the server can see matching values between the two columns. At the
same time, to provide better privacy, the DBMS server should not
be able to join columns for which the application did not request a
join, so columns that are never joined should not be encrypted with
the same keys.

If the queries that can be issued, or the pairs of columns that can
be joined, are known a priori, equi-join is easy to support: CryptDB

6

can use the DET encryption scheme with the same key for each
group of columns that are joined together. §3.5 describes how the
proxy learns the columns to be joined in this case. However, the
challenging case is when the proxy does not know the set of columns
to be joined a priori, and hence does not know which columns should
be encrypted with matching keys.

To solve this problem, we introduce a new cryptographic primi-
tive, JOIN-ADJ (adjustable join), which allows the DBMS server to
adjust the key of each column at runtime. Intuitively, JOIN-ADJ can
be thought of as a keyed cryptographic hash with the additional prop-
erty that hashes can be adjusted to change their key without access
to the plaintext. JOIN-ADJ is a deterministic function of its input,
which means that if two plaintexts are equal, the corresponding
JOIN-ADJ values are also equal. JOIN-ADJ is collision-resistant,
and has a sufficiently long output length (192 bits) to allow us to
assume that collisions never happen in practice.

JOIN-ADJ is non-invertible, so we define the JOIN encryption
scheme as JOIN(v) = JOIN-ADJ(v)‖DET(v), where ‖ denotes con-
catenation. This construction allows the proxy to decrypt a JOIN(v)
column to obtain v by decrypting the DET component, and allows
the DBMS server to check two JOIN values for equality by compar-
ing the JOIN-ADJ components.

Each column is initially encrypted at the JOIN layer using a
different key, thus preventing any joins between columns. When a
query requests a join, the proxy gives the DBMS server an onion
key to adjust the JOIN-ADJ values in one of the two columns, so
that it matches the JOIN-ADJ key of the other column (denoted the
join-base column). After the adjustment, the columns share the same
JOIN-ADJ key, allowing the DBMS server to join them for equality.
The DET components of JOIN remain encrypted with different keys.

Note that our adjustable join is transitive: if the user joins columns
A and B and then joins columns B and C, the server can join A and
C. However, the server cannot join columns in different “transitivity
groups”. For instance, if columns D and E were joined together, the
DBMS server would not be able to join columns A and D on its own.

After an initial join query, the JOIN-ADJ values remain trans-
formed with the same key, so no re-adjustments are needed for
subsequent join queries between the same two columns. One ex-
ception is if the application issues another query, joining one of the
adjusted columns with a third column, which causes the proxy to re-
adjust the column to another join-base. To avoid oscillations and to
converge to a state where all columns in a transitivity group share the
same join-base, CryptDB chooses the first column in lexicographic
order on table and column name as the join-base. For n columns, the
overall maximum number of join transitions is n(n−1)/2.

For range joins, a similar dynamic re-adjustment scheme is diffi-
cult to construct due to lack of structure in OPE schemes. Instead,
CryptDB requires that pairs of columns that will be involved in such
joins be declared by the application ahead of time, so that matching
keys are used for layer OPE-JOIN of those columns; otherwise, the
same key will be used for all columns at layer OPE-JOIN. Fortu-
nately, range joins are rare; they are not used in any of our example
applications, and are used in only 50 out of 128,840 columns in a
large SQL query trace we describe in §8, corresponding to just three
distinct applications.

JOIN-ADJ construction. Our algorithm uses elliptic-curve cryp-
tography (ECC). JOIN-ADJK(v) is computed as

JOIN-ADJK(v) := PK·PRFK0 (v), (2)

where K is the initial key for that table, column, onion, and layer, P is
a point on an elliptic curve (being a public parameter), and PRFK0 is
a pseudo-random function [20] mapping values to a pseudorandom
number, such as AESK0(SHA(v)), with K0 being a key that is the

same for all columns and derived from MK. The “exponentiation”
is in fact repeated geometric addition of elliptic curve points; it is
considerably faster than RSA exponentiation.

When a query joins columns c and c′, each having keys K and K′

at the join layer, the proxy computes ∆K = K/K′ (in an appropriate
group) and sends it to the server. Then, given JOIN-ADJK′(v) (the
JOIN-ADJ values from column c′) and ∆K, the DBMS server uses a
UDF to adjust the key in c′ by computing:

(JOIN-ADJK′(v))
∆K = PK′·PRFK0 (v)·(K/K′)

= PK·PRFK0 (v) = JOIN-ADJK(v).

Now columns c and c′ share the same JOIN-ADJ key, and the DBMS
server can perform an equi-join on c and c′ by taking the JOIN-ADJ
component of the JOIN onion ciphertext.

At a high level, the security of this scheme is that the server
cannot infer join relations among groups of columns that were not
requested by legitimate join queries, and that the scheme does not
reveal the plaintext. We proved the security of this scheme based on
the standard Elliptic-Curve Decisional Diffie-Hellman hardness as-
sumption, and implemented it using a NIST-approved elliptic curve.
We plan to publish a more detailed description of this algorithm and
the proof on our web site [37].

3.5 Improving Security and Performance
Although CryptDB can operate with an unmodified and unannotated
schema, as described above, its security and performance can be
improved through several optional optimizations, as described below.

3.5.1 Security Improvements
Minimum onion layers. Application developers can specify the
lowest onion encryption layer that may be revealed to the server for
a specific column. In this way, the developer can ensure that the
proxy will not execute queries exposing sensitive relations to the
server. For example, the developer could specify that credit card
numbers should always remain at RND or DET.

In-proxy processing. Although CryptDB can evaluate a number
of predicates on the server, evaluating them in the proxy can improve
security by not revealing additional information to the server. One
common use case is a SELECT query that sorts on one of the selected
columns, without a LIMIT on the number of returned columns. Since
the proxy receives the entire result set from the server, sorting these
results in the proxy does not require a significant amount of compu-
tation, and does not increase the bandwidth requirements. Doing so
avoids revealing the OPE encryption of that column to the server.

Training mode. CryptDB provides a training mode, which allows
a developer to provide a trace of queries and get the resulting onion
encryption layers for each field, along with a warning in case some
query is not supported. The developer can then examine the resulting
encryption levels to understand what each encryption scheme leaks,
as described in §2.1. If some onion level is too low for a sensitive
field, she should arrange to have the query processed in the proxy
(as described above), or to process the data in some other fashion,
such as by using a local instance of SQLite.

Onion re-encryption. In cases when an application performs in-
frequent queries requiring a low onion layer (e.g., OPE), CryptDB
could be extended to re-encrypt onions back to a higher layer after
the infrequent query finishes executing. This approach reduces leak-
age to attacks happening in the time window when the data is at the
higher onion layer.

7

3.5.2 Performance Optimizations
Developer annotations. By default, CryptDB encrypts all fields
and creates all applicable onions for each data item based on its type.
If many columns are not sensitive, the developer can instead provide
explicit annotations indicating the sensitive fields (as described in
§4), and leave the remaining fields in plaintext.

Known query set. If the developer knows some of the queries
ahead of time, as is the case for many web applications, the developer
can use the training mode described above to adjust onions to the
correct layer a priori, avoiding the overhead of runtime onion adjust-
ments. If the developer provides the exact query set, or annotations
that certain functionality is not needed on some columns, CryptDB
can also discard onions that are not needed (e.g., discard the Ord
onion for columns that are not used in range queries, or discard the
Search onion for columns where keyword search is not performed),
discard onion layers that are not needed (e.g., the adjustable JOIN
layer, if joins are known a priori), or discard the random IV needed
for RND for some columns.

Ciphertext pre-computing and caching. The proxy spends a sig-
nificant amount of time encrypting values used in queries with OPE
and HOM. To reduce this cost, the proxy pre-computes (for HOM)
and caches (for OPE) encryptions of frequently used constants under
different keys. Since HOM is probabilistic, ciphertexts cannot be
reused. Therefore, in addition, the proxy pre-computes HOM’s Pail-
lier rn randomness values for future encryptions of any data. This
optimization reduces the amount of CPU time spent by the proxy
on OPE encryption, and assuming the proxy is occasionally idle to
perform HOM pre-computation, it removes HOM encryption from
the critical path.

4 MULTIPLE PRINCIPALS
We now extend the threat model to the case when the application
infrastructure and proxy are also untrusted (threat 2). This model
is especially relevant for a multi-user web site running a web and
application server. To understand both the problems faced by a multi-
user web application and CryptDB’s solution to these problems,
consider phpBB, a popular online web forum. In phpBB, each user
has an account and a password, belongs to certain groups, and can
send private messages to other users. Depending on their groups’
permissions, users can read entire forums, only forum names, or not
be able to read a forum at all.

There are several confidentiality guarantees that would be useful
in phpBB. For example, we would like to ensure that a private
message sent from one user to another is not visible to anyone else;
that posts in a forum are accessible only to users in a group with
access to that forum; and that the name of a forum is shown only
to users belonging to a group that’s allowed to view it. CryptDB
provides these guarantees in the face of arbitrary compromises,
thereby limiting the damage caused by a compromise.

Achieving these guarantees requires addressing two challenges.
First, CryptDB must capture the application’s access control policy
for shared data at the level of SQL queries. To do this, CryptDB
requires developers to annotate their database schema to specify
principals and the data that each principal has access to, as described
in §4.1.

The second challenge is to reduce the amount of information that
an adversary can gain by compromising the system. Our solution
limits the leakage resulting from a compromised application or proxy
server to just the data accessible to users who were logged in during
the compromise. In particular, the attacker cannot access the data of
users that were not logged in during the compromise. Leaking the

data of active users in case of a compromise is unavoidable: given
the impracticality of arbitrary computation on encrypted data, some
data for active users must be decrypted by the application.

In CryptDB, each user has a key (e.g., her application-level pass-
word) that gives her access to her data. CryptDB encrypts different
data items with different keys, and enforces the access control policy
using chains of keys starting from user passwords and ending in the
encryption keys of SQL data items, as described in §4.2. When a
user logs in, she provides her password to the proxy (via the applica-
tion). The proxy uses this password to derive onion keys to process
queries on encrypted data, as presented in the previous section, and
to decrypt the results. The proxy can decrypt only the data that the
user has access to, based on the access control policy. The proxy
gives the decrypted data to the application, which can now compute
on it. When the user logs out, the proxy deletes the user’s key.

4.1 Policy Annotations
To express the data privacy policy of a database-backed application
at the level of SQL queries, the application developer can annotate
the schema of a database in CryptDB by specifying, for any subset of
data items, which principal has access to it. A principal is an entity,
such as a user or a group, over which it is natural to specify an access
policy. Each SQL query involving an annotated data item requires
the privilege of the corresponding principal. CryptDB defines its own
notion of principals instead of using existing DBMS principals for
two reasons: first, many applications do not map application-level
users to DBMS principals in a sufficiently fine-grained manner, and
second, CryptDB requires explicit delegation of privileges between
principals that is difficult to extract in an automated way from an
access control list specification.

An application developer annotates the schema using the three
steps described below and illustrated in Figure 4. In all examples
we show, italics indicate table and column names, and bold text
indicates annotations added for CryptDB.

Step 1. The developer must define the principal types (using
PRINCTYPE) used in her application, such as users, groups, or mes-
sages. A principal is an instance of a principal type, e.g., principal
5 of type user. There are two classes of principals: external and
internal. External principals correspond to end users who explicitly
authenticate themselves to the application using a password. When
a user logs into the application, the application must provide the
user password to the proxy so that the user can get the privileges of
her external principal. Privileges of other (internal) principals can
be acquired only through delegation, as described in Step 3. When
the user logs out, the application must inform the proxy, so that the
proxy forgets the user’s password as well as any keys derived from
the user’s password.

Step 2. The developer must specify which columns in her SQL
schema contain sensitive data, along with the principals that should
have access to that data, using the ENC FOR annotation. CryptDB
requires that for each private data item in a row, the name of the
principal that should have access to that data be stored in another
column in the same row. For example, in Figure 4, the decryption of
msgtext x37a21f is available only to principal 5 of type msg.

Step 3. Programmers can specify rules for how to delegate the
privileges of one principal to other principals, using the speaks-
for relation [49]. For example, in phpBB, a user should also have
the privileges of the groups she belongs to. Since many applica-
tions store such information in tables, programmers can specify to
CryptDB how to infer delegation rules from rows in an existing
table. In particular, programmers can annotate a table T with (a
x) SPEAKS FOR (b y). This annotation indicates that each row
present in that table specifies that principal a of type x speaks for

8

PRINCTYPE physical user EXTERNAL;
PRINCTYPE user, msg;

CREATE TABLE privmsgs (
msgid int,
subject varchar(255) ENC FOR (msgid msg),
msgtext text ENC FOR (msgid msg));

CREATE TABLE privmsgs to (
msgid int, rcpt id int, sender id int,
(sender id user) SPEAKS FOR (msgid msg),
(rcpt id user) SPEAKS FOR (msgid msg));

CREATE TABLE users (
userid int, username varchar(255),
(username physical user) SPEAKS FOR (userid user));

Example table contents, without anonymized column names:

Table privmsgs
msgid subject msgtext
5 xcc82fa x37a21f

Table privmsgs to
msgid rcpt id sender id
5 1 2

Table users
userid username

1 ‘Alice’
2 ‘Bob’

Figure 4: Part of phpBB’s schema with annotations to secure private
messages. Only the sender and receiver may see the private message.
An attacker that gains complete access to phpBB and the DBMS can
access private messages of only currently active users.

principal b of type y, meaning that a has access to all keys that b has
access to. Here, x and y must always be fixed principal types. Princi-
pal b is always specified by the name of a column in table T . On the
other hand, a can be either the name of another column in the same
table, a constant, or T2.col, meaning all principals from column
col of table T2. For example, in Figure 4, principal “Bob” of type
physical user speaks for principal 2 of type user, and in Figure 6, all
principals in the contactId column from table PCMember (of type
contact) speak for the paperId principal of type review. Optionally,
the programmer can specify a predicate, whose inputs are values in
the same row, to specify a condition under which delegation should
occur, such as excluding conflicts in Figure 6. §5 provides more
examples of using annotations to secure applications.

4.2 Key Chaining
Each principal (i.e., each instance of each principal type) is asso-
ciated with a secret, randomly chosen key. If principal B speaks
for principal A (as a result of some SPEAKS FOR annotation), then
principal A’s key is encrypted using principal B’s key, and stored as
a row in the special access keys table in the database. This allows
principal B to gain access to principal A’s key. For example, in
Figure 4, to give users 1 and 2 access to message 5, the key of msg
5 is encrypted with the key of user 1, and also separately encrypted
with the key of user 2.

Each sensitive field is encrypted with the key of the principal in
the ENC FOR annotation. CryptDB encrypts the sensitive field with
onions in the same way as for single-principal CryptDB, except that
onion keys are derived from a principal’s key as opposed to a global
master key.

The key of each principal is a combination of a symmetric key and
a public–private key pair. In the common case, CryptDB uses the
symmetric key of a principal to encrypt any data and other principals’
keys accessible to this principal, with little CPU cost. However, this

is not always possible, if some principal is not currently online. For
example, in Figure 4, suppose Bob sends message 5 to Alice, but
Alice (user 1) is not online. This means that CryptDB does not have
access to user 1’s key, so it will not be able to encrypt message
5’s key with user 1’s symmetric key. In this case, CryptDB looks
up the public key of the principal (i.e., user 1) in a second table,
public keys, and encrypts message 5’s key using user 1’s public key.
When user 1 logs in, she will be able to use the secret key part of her
key to decrypt the key for message 5 (and re-encrypt it under her
symmetric key for future use).

For external principals (i.e., physical users), CryptDB assigns a
random key just as for any other principal. To give an external user
access to the corresponding key on login, CryptDB stores the key of
each external principal in a third table, external keys, encrypted with
the principal’s password. This allows CryptDB to obtain a user’s
key given the user’s password, and also allows a user to change her
password without changing the key of the principal.

When a table with a SPEAKS FOR relation is updated, CryptDB
must update the access keys table accordingly. To insert a new
row into access keys for a new SPEAKS FOR relation, the proxy
must have access to the key of the principal whose privileges are
being delegated. This means that an adversary that breaks into an
application or proxy server cannot create new SPEAKS FOR relations
for principals that are not logged in, because neither the proxy nor
the adversary have access to their keys. If a SPEAKS FOR relation is
removed, CryptDB revokes access by removing the corresponding
row from access keys.

When encrypting data in a query or decrypting data from a result,
CryptDB follows key chains starting from passwords of users logged
in until it obtains the desired keys. As an optimization, when a user
logs in, CryptDB’s proxy loads the keys of some principals to which
the user has access (in particular, those principal types that do not
have too many principal instances—e.g., for groups the user is in,
but not for messages the user received).

Applications inform CryptDB of users logging in or out by issuing
INSERT and DELETE SQL queries to a special table cryptdb active
that has two columns, username and password. The proxy intercepts
all queries for cryptdb active, stores the passwords of logged-in
users in memory, and never reveals them to the DBMS server.

CryptDB guards the data of inactive users at the time of an attack.
If a compromise occurs, CryptDB provides a bound on the data
leaked, allowing the administrators to not issue a blanket warning
to all the users of the system. In this respect, CryptDB is different
from other approaches to database security (see §9). However, some
special users such as administrators with access to a large pool of
data enable a larger compromise upon an attack. To avoid attacks
happening when the administrator is logged in, the administrator
should create a separate user account with restricted permissions
when accessing the application as a regular user. Also, as good
practice, an application should automatically log out users who have
been inactive for some period of time.

5 APPLICATION CASE STUDIES
In this section, we explain how CryptDB can be used to secure
three existing multi-user web applications. For brevity, we show
simplified schemas, omitting irrelevant fields and type specifiers.
Overall, we find that once a programmer specifies the principals
in the application’s schema, and the delegation rules for them us-
ing SPEAKS FOR, protecting additional sensitive fields just requires
additional ENC FOR annotations.

phpBB is a widely used open source forum with a rich set of
access control settings. Users are organized in groups; both users
and groups have a variety of access permissions that the application

9

PRINCTYPE physical user EXTERNAL;
PRINCTYPE user, group, forum post, forum name;

CREATE TABLE users (userid int, username varchar(255),
(username physical user) SPEAKS FOR (userid user));

CREATE TABLE usergroup (userid int, groupid int,
(userid user) SPEAKS FOR (groupid group));

CREATE TABLE aclgroups (groupid int, forumid int, optionid int,
(groupid group) SPEAKS FOR (forumid forum post)

IF optionid=20,
(groupid group) SPEAKS FOR (forumid forum name)

IF optionid=14);

CREATE TABLE posts (postid int, forumid int,
post text ENC FOR (forumid forum post));

CREATE TABLE forum (forumid int,
name varchar(255) ENC FOR (forumid forum name));

Figure 5: Annotated schema for securing access to posts in phpBB.
A user has access to see the content of posts in a forum if any of the
groups that the user is part of has such permissions, indicated by optionid
20 in the aclgroups table for the corresponding forumid and groupid.
Similarly, optionid 14 enables users to see the forum’s name.

administrator can choose. We already showed how to secure private
messages between two users in phpBB in Figure 4. A more detailed
case is securing access to posts, as shown in Figure 5. This example
shows how to use predicates (e.g., IF optionid=...) to imple-
ment a conditional speaks-for relation on principals, and also how
one column (forumid) can be used to represent multiple principals
(of different type) with different privileges. There are more ways to
gain access to a post, but we omit them here for brevity.

HotCRP is a popular conference review application [27]. A key
policy for HotCRP is that PC members cannot see who reviewed
their own (or conflicted) papers. Figure 6 shows CryptDB annota-
tions for HotCRP’s schema to enforce this policy. Today, HotCRP
cannot prevent a curious or careless PC chair from logging into
the database server and seeing who wrote each review for a paper
that she is in conflict with. As a result, conferences often set up a
second server to review the chair’s papers or use inconvenient out-
of-band emails. With CryptDB, a PC chair cannot learn who wrote
each review for her paper, even if she breaks into the application or
database, since she does not have the decryption key.1 The reason
is that the SQL predicate “NoConflict” checks if a PC member is
conflicted with a paper and prevents the proxy from providing access
to the PC chair in the key chain. (We assume the PC chair does not
modify the application to log the passwords of other PC members to
subvert the system.)

grad-apply is a graduate admissions system used by MIT EECS.
We annotated its schema to allow an applicant’s folder to be
accessed only by the respective applicant and any faculty us-
ing (reviewers.reviewer id reviewer), meaning all review-
ers, SPEAKS FOR (candidate id candidate) in table candi-
dates, and ... SPEAKS FOR (letter id letter) in table let-
ters. The applicant can see all of her folder data except for letters of
recommendation. Overall, grad-apply has simple access control and
therefore simple annotations.

1Fully implementing this policy would require setting up two PC
chairs: a main chair, and a backup chair responsible for reviews of the
main chair’s papers. HotCRP allows the PC chair to impersonate other
PC members, so CryptDB annotations would be used to prevent the main
chair from gaining access to keys of reviewers assigned to her paper.

PRINCTYPE physical user EXTERNAL;
PRINCTYPE contact, review;

CREATE TABLE ContactInfo (contactId int, email varchar(120),
(email physical user) SPEAKS FOR (contactId contact));

CREATE TABLE PCMember (contactId int);
CREATE TABLE PaperConflict (paperId int, contactId int);
CREATE TABLE PaperReview (

paperId int,
reviewerId int ENC FOR (paperId review),
commentsToPC text ENC FOR (paperId review),
(PCMember.contactId contact) SPEAKS FOR

(paperId review) IF NoConflict(paperId, contactId));

NoConflict (paperId, contactId): /* Define a SQL function */
(SELECT COUNT(*) FROM PaperConflict c WHERE

c.paperId = paperId AND c.contactId = contactId) = 0;

Figure 6: Annotated schema for securing reviews in HotCRP. Reviews
and the identity of reviewers providing the review will be available
only to PC members (table PCMember includes PC chairs) who are not
conflicted, and PC chairs cannot override this restriction.

6 DISCUSSION
CryptDB’s design supports most relational queries and aggregates
on standard data types, such as integers and text/varchar types. Addi-
tional operations can be added to CryptDB by extending its existing
onions, or adding new onions for specific data types (e.g., spatial and
multi-dimensional range queries [43]). Alternatively, in some cases,
it may be possible to map complex unsupported operation to simpler
ones (e.g., extracting the month out of an encrypted date is easier if
the date’s day, month, and year fields are encrypted separately).

There are certain computations CryptDB cannot support on en-
crypted data. For example, it does not support both computation
and comparison on the same column, such as WHERE salary >
age*2+10. CryptDB can process a part of this query, but it would
also require some processing on the proxy. In CryptDB, such a
query should be (1) rewritten into a sub-query that selects a whole
column, SELECT age*2+10 FROM . . ., which CryptDB computes
using HOM, and (2) re-encrypted in the proxy, creating a new col-
umn (call it aux) on the DBMS server consisting of the newly en-
crypted values. Finally, the original query with the predicate WHERE
salary > aux should be run. We have not been affected by this
limitation in our test applications (TPC-C, phpBB, HotCRP, and
grad-apply).

In multi-principal mode, CryptDB cannot perform server-side
computations on values encrypted for different principals, even if
the application has the authority of all principals in question, be-
cause the ciphertexts are encrypted with different keys. For some
computations, it may be practical for the proxy to perform the com-
putation after decrypting the data, but for others (e.g., large-scale
aggregates) this approach may be too expensive. A possible exten-
sion to CryptDB to support such queries may be to maintain multiple
ciphertexts for such values, encrypted under different keys.

7 IMPLEMENTATION
The CryptDB proxy consists of a C++ library and a Lua module. The
C++ library consists of a query parser; a query encryptor/rewriter,
which encrypts fields or includes UDFs in the query; and a re-
sult decryption module. To allow applications to transparently use
CryptDB, we used MySQL proxy [47] and implemented a Lua mod-
ule that passes queries and results to and from our C++ module. We
implemented our new cryptographic protocols using NTL [44]. Our

10

Databases Tables Columns
Complete schema 8,548 177,154 1,244,216
Used in query 1,193 18,162 128,840

Figure 7: Number of databases, tables, and columns on the
sql.mit.edu MySQL server, used for trace analysis, indicating the
total size of the schema, and the part of the schema seen in queries
during the trace period.

CryptDB implementation consists of∼18,000 lines of C++ code and
∼150 lines of Lua code, with another ∼10,000 lines of test code.

CryptDB is portable and we have implemented versions for both
Postgres 9.0 and MySQL 5.1. Our initial Postgres-based imple-
mentation is described in an earlier technical report [39]. Porting
CryptDB to MySQL required changing only 86 lines of code, mostly
in the code for connecting to the MySQL server and declaring UDFs.
As mentioned earlier, CryptDB does not change the DBMS; we
implement all server-side functionality with UDFs and server-side
tables. CryptDB’s design, and to a large extent our implementation,
should work on top of any SQL DBMS that supports UDFs.

8 EXPERIMENTAL EVALUATION
In this section, we evaluate four aspects of CryptDB: the difficulty
of modifying an application to run on top of CryptDB, the types
of queries and applications CryptDB is able to support, the level of
security CryptDB provides, and the performance impact of using
CryptDB. For this analysis, we use seven applications as well as a
large trace of SQL queries.

We evaluate the effectiveness of our annotations and the needed
application changes on the three applications we described in §5
(phpBB, HotCRP, and grad-apply), as well as on a TPC-C query mix
(a standard workload in the database industry). We then analyze the
functionality and security of CryptDB on three more applications,
on TPC-C, and on a large trace of SQL queries. The additional three
applications are OpenEMR, an electronic medical records applica-
tion storing private medical data of patients; the web application of
an MIT class (6.02), storing students’ grades; and PHP-calendar,
storing people’s schedules. The large trace of SQL queries comes
from a popular MySQL server at MIT, sql.mit.edu. This server is
used primarily by web applications running on scripts.mit.edu,
a shared web application hosting service operated by MIT’s Student
Information Processing Board (SIPB). In addition, this SQL server is
used by a number of applications that run on other machines and use
sql.mit.edu only to store their data. Our query trace spans about
ten days, and includes approximately 126 million queries. Figure 7
summarizes the schema statistics for sql.mit.edu; each database
is likely to be a separate instance of some application.

Finally, we evaluate the overall performance of CryptDB on the
phpBB application and on a query mix from TPC-C, and perform a
detailed analysis through microbenchmarks.

In the six applications (not counting TPC-C), we only encrypt sen-
sitive columns, according to a manual inspection. Some fields were
clearly sensitive (e.g., grades, private message, medical information),
but others were only marginally so (e.g., the time when a message
was posted). There was no clear threshold between sensitive or
not, but it was clear to us which fields were definitely sensitive. In
the case of TPC-C, we encrypt all the columns in the database in
single-principal mode so that we can study the performance and
functionality of a fully encrypted DBMS. All fields are considered
for encryption in the large query trace as well.

8.1 Application Changes
Figure 8 summarizes the amount of programmer effort required to
use CryptDB in three multi-user web applications and in the single-

principal TPC-C queries. The results show that, for multi-principal
mode, CryptDB required between 11 and 13 unique schema annota-
tions (29 to 111 in total), and 2 to 7 lines of code changes to provide
user passwords to the proxy, in order to secure sensitive information
stored in the database. Part of the simplicity is because securing
an additional column requires just one annotation in most cases.
For the single-principal TPC-C queries, using CryptDB required no
application annotations at all.

8.2 Functional Evaluation
To evaluate what columns, operations, and queries CryptDB can
support, we analyzed the queries issued by six web applications
(including the three applications we analyzed in §8.1), the TPC-C
queries, and the SQL queries from sql.mit.edu. The results are
shown in the left half of Figure 9.

CryptDB supports most queries; the number of columns in the
“needs plaintext” column, which counts columns that cannot be
processed in encrypted form by CryptDB, is small relative to the total
number of columns. For PHP-calendar and OpenEMR, CryptDB
does not support queries on certain sensitive fields that perform
string manipulation (e.g., substring and lowercase conversions) or
date manipulation (e.g., obtaining the day, month, or year of an
encrypted date). However, if these functions were precomputed with
the result added as standalone columns (e.g., each of the three parts
of a date were encrypted separately), CryptDB would support these
queries.

The next two columns, “needs HOM” and “needs SEARCH”,
reflect the number of columns for which that encryption scheme is
needed to process some queries. The numbers suggest that these
encryption schemes are important; without these schemes, CryptDB
would be unable to support those queries.

Based on an analysis of the larger sql.mit.edu trace, we found
that CryptDB should be able to support operations over all but
1,094 of the 128,840 columns observed in the trace. The “in-proxy
processing” shows analysis results where we assumed the proxy can
perform some lightweight operations on the results returned from
the DBMS server. Specifically, this included any operations that
are not needed to compute the set of resulting rows or to aggregate
rows (that is, expressions that do not appear in a WHERE, HAVING,
or GROUP BY clause, or in an ORDER BY clause with a LIMIT, and
are not aggregate operators). With in-proxy processing, CryptDB
should be able to process queries over encrypted data over all but
571 of the 128,840 columns, thus supporting 99.5% of the columns.

Of those 571 columns, 222 use a bitwise operator in a WHERE
clause or perform bitwise aggregation, such as the Gallery2 applica-
tion, which uses a bitmask of permission fields and consults them in
WHERE clauses. Rewriting the application to store the permissions
in a different way would allow CryptDB to support such opera-
tions. Another 205 columns perform string processing in the WHERE
clause, such as comparing whether lowercase versions of two strings
match. Storing a keyed hash of the lowercase version of each string
for such columns, similar to the JOIN-ADJ scheme, could support
case-insensitive equality checks for ciphertexts. 76 columns are
involved in mathematical transformations in the WHERE clause, such
as manipulating dates, times, scores, and geometric coordinates. 41
columns invoke the LIKE operator with a column reference for the
pattern; this is typically used to check a particular value against a
table storing a list of banned IP addresses, usernames, URLs, etc.
Such a query can also be rewritten if the data items are sensitive.

8.3 Security Evaluation
To understand the amount of information that would be revealed to
the adversary in practice, we examine the steady-state onion levels
of different columns for a range of applications and queries. To

11

Application Annotations Login/logout code Sensitive fields secured, and examples of such fields
phpBB 31 (11 unique) 7 lines 23: private messages (content, subject), posts, forums

HotCRP 29 (12 unique) 2 lines 22: paper content and paper information, reviews
grad-apply 111 (13 unique) 2 lines 103: student grades (61), scores (17), recommendations, reviews

TPC-C (single princ.) 0 0 92: all the fields in all the tables encrypted

Figure 8: Number of annotations the programmer needs to add to secure sensitive fields, lines of code to be added to provide CryptDB with the
passwords of users, and the number of sensitive fields that CryptDB secures with these annotations, for three different applications. We count as one
annotation each invocation of our three types of annotations and any SQL predicate used in a SPEAKS FOR annotation. Since multiple fields in the same
table are usually encrypted for the same principal (e.g., message subject and content), we also report unique annotations.

Application Total Consider Needs Needs Needs Non-plaintext cols. with MinEnc: Most sensitive
cols. for enc. plaintext HOM SEARCH RND SEARCH DET OPE cols. at HIGH

phpBB 563 23 0 1 0 21 0 1 1 6 / 6
HotCRP 204 22 0 2 1 18 1 1 2 18 / 18
grad-apply 706 103 0 0 2 95 0 6 2 94 / 94
OpenEMR 1,297 566 7 0 3 526 2 12 19 525 / 540
MIT 6.02 15 13 0 0 0 7 0 4 2 1 / 1
PHP-calendar 25 12 2 0 2 3 2 4 1 3 / 4
TPC-C 92 92 0 8 0 65 0 19 8 —
Trace from sql.mit.edu 128,840 128,840 1,094 1,019 1,125 80,053 350 34,212 13,131 —
. . . with in-proxy processing 128,840 128,840 571 1,016 1,135 84,008 398 35,350 8,513 —
. . . col. name contains pass 2,029 2,029 2 0 0 1,936 0 91 0 —
. . . col. name contains content 2,521 2,521 0 0 52 2,215 52 251 3 —
. . . col. name contains priv 173 173 0 4 0 159 0 12 2 —

Figure 9: Steady-state onion levels for database columns required by a range of applications and traces. “Needs plaintext” indicates that CryptDB
cannot execute the application’s queries over encrypted data for that column. For the applications in the top group of rows, sensitive columns were
determined manually, and only these columns were considered for encryption. For the bottom group of rows, all database columns were automatically
considered for encryption. The rightmost column considers the application’s most sensitive database columns, and reports the number of them that have
MinEnc in HIGH (both terms are defined in §8.3).

quantify the level of security, we define the MinEnc of a column
to be the weakest onion encryption scheme exposed on any of the
onions of a column when onions reach a steady state (i.e., after the
application generates all query types, or after running the whole
trace). We consider RND and HOM to be the strongest schemes,
followed by SEARCH, followed by DET and JOIN, and finishing
with the weakest scheme which is OPE. For example, if a column
has onion Eq at RND, onion Ord at OPE and onion Add at HOM,
the MinEnc of this column is OPE.

The right side of Figure 9 shows the MinEnc onion level for
a range of applications and query traces. We see that most fields
remain at RND, which is the most secure scheme. For example,
OpenEMR has hundreds of sensitive fields describing the medical
conditions and history of patients, but these fields are mostly just
inserted and fetched, and are not used in any computation. A num-
ber of fields also remain at DET, typically to perform key lookups
and joins. OPE, which leaks order, is used the least frequently,
and mostly for fields that are marginally sensitive (e.g., timestamps
and counts of messages). Thus, CryptDB’s adjustable security pro-
vides a significant improvement in confidentiality over revealing all
encryption schemes to the server.

To analyze CryptDB’s security for specific columns that are par-
ticularly sensitive, we define a new security level, HIGH, which
includes the RND and HOM encryption schemes, as well as DET
for columns having no repetitions (in which case DET is logically
equivalent to RND). These are highly secure encryption schemes
leaking virtually nothing about the data. DET for columns with
repeats and OPE are not part of HIGH as they reveal relations to the
DBMS server. The rightmost column in Figure 9 shows that most
of the particularly sensitive columns (again, according to manual
inspection) are at HIGH.

For the sql.mit.edu trace queries, approximately 6.6% of
columns were at OPE even with in-proxy processing; other en-
crypted columns (93%) remain at DET or above. Out of the columns
that were at OPE, 3.9% are used in an ORDER BY clause with a

LIMIT, 3.7% are used in an inequality comparison in a WHERE clause,
and 0.25% are used in a MIN or MAX aggregate operator (some of the
columns are counted in more than one of these groups). It would
be difficult to perform these computations in the proxy without
substantially increasing the amount of data sent to it.

Although we could not examine the schemas of applications us-
ing sql.mit.edu to determine what fields are sensitive—mostly
due to its large scale—we measured the same statistics as above for
columns whose names are indicative of sensitive data. In particular,
the last three rows of Figure 9 show columns whose name contains
the word “pass” (which are almost all some type of password), “con-
tent” (which are typically bulk data managed by an application), and
“priv” (which are typically some type of private message). CryptDB
reveals much less information about these columns than an average
column, almost all of them are supported, and almost all are at RND
or DET.

Finally, we empirically validated CryptDB’s confidentiality guar-
antees by trying real attacks on phpBB that have been listed in the
CVE database [32], including two SQL injection attacks (CVE-2009-
3052 & CVE-2008-6314), bugs in permission checks (CVE-2010-
1627 & CVE-2008-7143), and a bug in remote PHP file inclusion
(CVE-2008-6377). We found that, for users not currently logged
in, the answers returned from the DBMS were encrypted; even with
root access to the application server, proxy, and DBMS, the answers
were not decryptable.

8.4 Performance Evaluation
To evaluate the performance of CryptDB, we used a machine with
two 2.4 GHz Intel Xeon E5620 4-core processors and 12 GB of RAM
to run the MySQL 5.1.54 server, and a machine with eight 2.4 GHz
AMD Opteron 8431 6-core processors and 64 GB of RAM to run the
CryptDB proxy and the clients. The two machines were connected
over a shared Gigabit Ethernet network. The higher-provisioned
client machine ensures that the clients are not the bottleneck in any
experiment. All workloads fit in the server’s RAM.

12

 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5 6 7 8

Q
u
er
ie
s
/
se
c

Number of server cores

MySQL

CryptDB

Figure 10: Throughput for TPC-C queries, for a varying number of
cores on the underlying MySQL DBMS server.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Equality

Join
R
ange

Sum
D
elete

Insert

U
pd. set

U
pd. inc

Q
u
er
ie
s
/
se
c

MySQL

CryptDB

Strawman

Figure 11: Throughput of different types of SQL queries from the TPC-
C query mix running under MySQL, CryptDB, and the strawman design.
“Upd. inc” stands for UPDATE that increments a column, and “Upd. set”
stands for UPDATE which sets columns to a constant.

8.4.1 TPC-C

We compare the performance of a TPC-C query mix when running
on an unmodified MySQL server versus on a CryptDB proxy in front
of the MySQL server. We trained CryptDB on the query set (§3.5.2)
so there are no onion adjustments during the TPC-C experiments.
Figure 10 shows the throughput of TPC-C queries as the number of
cores on the server varies from one to eight. In all cases, the server
spends 100% of its CPU time processing queries. Both MySQL and
CryptDB scale well initially, but start to level off due to internal
lock contention in the MySQL server, as reported by SHOW STATUS
LIKE ’Table%’. The overall throughput with CryptDB is 21–26%
lower than MySQL, depending on the exact number of cores.

To understand the sources of CryptDB’s overhead, we measure
the server throughput for different types of SQL queries seen in
TPC-C, on the same server, but running with only one core enabled.
Figure 11 shows the results for MySQL, CryptDB, and a strawman
design; the strawman performs each query over data encrypted with
RND by decrypting the relevant data using a UDF, performing the
query over the plaintext, and re-encrypting the result (if updating
rows). The results show that CryptDB’s throughput penalty is great-
est for queries that involve a SUM (2.0× less throughput) and for
incrementing UPDATE statements (1.6× less throughput); these are
the queries that involve HOM additions at the server. For the other
types of queries, which form a larger part of the TPC-C mix, the
throughput overhead is modest. The strawman design performs
poorly for almost all queries because the DBMS’s indexes on the

Query (& scheme) MySQL CryptDB
Server Server Proxy Proxy?

Select by = (DET) 0.10 ms 0.11 ms 0.86 ms 0.86 ms
Select join (JOIN) 0.10 ms 0.11 ms 0.75 ms 0.75 ms
Select range (OPE) 0.16 ms 0.22 ms 0.78 ms 28.7 ms
Select sum (HOM) 0.11 ms 0.46 ms 0.99 ms 0.99 ms
Delete 0.07 ms 0.08 ms 0.28 ms 0.28 ms
Insert (all) 0.08 ms 0.10 ms 0.37 ms 16.3 ms
Update set (all) 0.11 ms 0.14 ms 0.36 ms 3.80 ms
Update inc (HOM) 0.10 ms 0.17 ms 0.30 ms 25.1 ms
Overall 0.10 ms 0.12 ms 0.60 ms 10.7 ms

Figure 12: Server and proxy latency for different types of SQL queries
from TPC-C. For each query type, we show the predominant encryption
scheme used at the server. Due to details of the TPC-C workload, each
query type affects a different number of rows, and involves a different
number of cryptographic operations. The left two columns correspond to
server throughput, which is also shown in Figure 11. “Proxy” shows the
latency added by CryptDB’s proxy; “Proxy?” shows the proxy latency
without the ciphertext pre-computing and caching optimization (§3.5).
Bold numbers show where pre-computing and caching ciphertexts helps.
The “Overall” row is the average latency over the mix of TPC-C queries.
“Update set” is an UPDATE where the fields are set to a constant, and
“Update inc” is an UPDATE where some fields are incremented.

Scheme Encrypt Decrypt Special operation
Blowfish (1 int.) 0.0001 ms 0.0001 ms —
AES-CBC (1 KB) 0.008 ms 0.007 ms —
AES-CMC (1 KB) 0.016 ms 0.015 ms —
OPE (1 int.) 9.0 ms 9.0 ms Compare: 0 ms
SEARCH (1 word) 0.01 ms 0.004 ms Match: 0.001 ms
HOM (1 int.) 9.7 ms 0.7 ms Add: 0.005 ms
JOIN-ADJ (1 int.) 0.52 ms — Adjust: 0.56 ms

Figure 13: Microbenchmarks of cryptographic schemes, per unit of
data encrypted (one 32-bit integer, 1 KB, or one 15-byte word of text),
measured by taking the average time over many iterations.

RND-encrypted data are useless for operations on the underlying
plaintext data. It is pleasantly surprising that the higher security of
CryptDB over the strawman also brings better performance.

To understand the latency introduced by CryptDB’s proxy, we
measure the server and proxy processing times for the same types
of SQL queries as above. Figure 12 shows the results. We can
see that there is an overall server latency increase of 20% with
CryptDB, which we consider modest. The proxy adds an average
of 0.60 ms to a query; of that time, 24% is spent in MySQL proxy,
23% is spent in encryption and decryption, and the remaining 53% is
spent parsing and processing queries. The cryptographic overhead is
relatively small because most of our encryption schemes are efficient;
Figure 13 shows their performance. OPE and HOM are the slowest,
but the ciphertext pre-computing and caching optimization (§3.5)
masks the high latency of queries requiring OPE and HOM. Proxy?
in Figure 12 shows the latency without these optimizations, which
is significantly higher for the corresponding query types. SELECT
queries that involve a SUM use HOM but do not benefit from this
optimization, because the proxy performs decryption, rather than
encryption.

In all TPC-C experiments, the proxy used less than 20 MB of
memory. Caching ciphertexts for the 30,000 most common values
for OPE accounts for about 3 MB, and pre-computing ciphertexts
and randomness for 30,000 values at HOM required 10 MB.

8.4.2 Multi-User Web Applications
To evaluate the impact of CryptDB on application performance, we
measure the throughput of phpBB for a workload with 10 parallel
clients, which ensured 100% CPU load at the server. Each client
continuously issued HTTP requests to browse the forum, write and

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

MySQL MySQL+proxy CryptDB

T
h
ro

u
g
h
p
u
t
(H

T
T

P
 r

eq
.
/
se

c)
-8.3%

-14.5%

Figure 14: Throughput comparison for phpBB. “MySQL” denotes
phpBB running directly on MySQL. “MySQL+proxy” denotes phpBB
running on an unencrypted MySQL database but going through MySQL
proxy. “CryptDB” denotes phpBB running on CryptDB with notably
sensitive fields annotated and the database appropriately encrypted. Most
HTTP requests involved tens of SQL queries each. Percentages indicate
throughput reduction relative to MySQL.

DB Login R post W post R msg W msg
MySQL 60 ms 50 ms 133 ms 61 ms 237 ms
CryptDB 67 ms 60 ms 151 ms 73 ms 251 ms

Figure 15: Latency for HTTP requests that heavily use encrypted fields
in phpBB for MySQL and CryptDB. R and W stand for read and write.

read posts, as well as write and read private messages. We pre-loaded
forums and user mailboxes with messages. In this experiment, we
co-located the MySQL DBMS, the CryptDB proxy, and the web
application server on a single-core machine, to ensure we do not
add additional resources for a separate proxy server machine to the
system in the CryptDB configuration. In practice, an administrator
would likely run the CryptDB proxy on another machine for security.

Figure 14 shows the throughput of phpBB in three different con-
figurations: (1) connecting to a stock MySQL server, (2) connecting
to a stock MySQL server through MySQL proxy, and (3) connecting
to CryptDB, with notably sensitive fields encrypted as summarized
in Figure 9, which in turn uses a stock MySQL server to store
encrypted data. The results show that phpBB incurs an overall
throughput loss of just 14.5%, and that about half of this loss comes
from inefficiencies in MySQL proxy unrelated to CryptDB. Fig-
ure 15 further shows the end-to-end latency for five types of phpBB
requests. The results show that CryptDB adds 7–18 ms (6–20%) of
processing time per request.

8.4.3 Storage
CryptDB increases the amount of the data stored in the DBMS,
because it stores multiple onions for the same field, and because
ciphertexts are larger than plaintexts for some encryption schemes.
For TPC-C, CryptDB increased the database size by 3.76×, mostly
due to cryptographic expansion of integer fields encrypted with
HOM (which expand from 32 bits to 2048 bits); strings and binary
data remains roughly the same size. For phpBB, the database size
using an unencrypted system was 2.6 MB for a workload of about
1,000 private messages and 1,000 forum posts generated by 10
users. The same workload on CryptDB had a database of 3.3 MB,
about 1.2× larger. Of the 0.7 MB increase, 230 KB is for storage
of access keys, 276 KB is for public keys and external keys, and
166 KB is due to expansion of encrypted fields.

8.4.4 Adjustable Encryption
Adjustable query-based encryption involves decrypting columns to
lower-security onion levels. Fortunately, decryption for the more-

secure onion layers, such as RND, is fast, and needs to be performed
only once per column for the lifetime of the system.2 Removing
a layer of RND requires AES decryption, which our experimental
machine can perform at ∼200 MB/s per core. Thus, removing an
onion layer is bottlenecked by the speed at which the DBMS server
can copy a column from disk for disk-bound databases.

9 RELATED WORK
Search and queries over encrypted data. Song et al. [46] describe
cryptographic tools for performing keyword search over encrypted
data, which we use to implement SEARCH. Amanatidis et al. [2]
propose methods for exact searches that do not require scanning
the entire database and could be used to process certain restricted
SQL queries. Bao et al. [3] extend these encrypted search methods
to the multi-user case. Yang et al. [51] run selections with equality
predicates over encrypted data. Evdokimov and Guenther present
methods for the same selections, as well as Cartesian products and
projections [15]. Agrawal et al. develop a statistical encoding that
preserves the order of numerical data in a column [1], but it does not
have sound cryptographic properties, unlike the scheme we use [4].
Boneh and Waters show public-key schemes for comparisons, subset
checks, and conjunctions of such queries over encrypted data [5],
but these schemes have ciphertext lengths that are exponential in the
length of the plaintext, limiting their practical applicability.

When applied to processing SQL on encrypted data, these tech-
niques suffer from some of the following limitations: certain basic
queries are not supported or are too inefficient (especially joins and
order checks), they require significant client-side query processing,
users either have to build and maintain indexes on the data at the
server or to perform sequential scans for every selection/search, and
implementing these techniques requires unattractive changes to the
innards of the DBMS.

Some researchers have developed prototype systems for subsets
of SQL, but they provide no confidentiality guarantees, require a
significant DBMS rewrite, and rely on client-side processing [9,
12, 22]. For example, Hacigumus et al. [22] heuristically split the
domain of possible values for each column into partitions, storing
the partition number unencrypted for each data item, and rely on
extensive client-side filtering of query results. Chow et al. [8] require
trusted entities and two non-colluding untrusted DBMSes.

Untrusted servers. SUNDR [28] uses cryptography to provide
privacy and integrity in a file system on top of an untrusted file server.
Using a SUNDR-like model, SPORC [16] and Depot [30] show how
to build low-latency applications, running mostly on the clients,
without having to trust a server. However, existing server-side appli-
cations that involve separate database and application servers cannot
be used with these systems unless they are rewritten as distributed
client-side applications to work with SPORC or Depot. Many appli-
cations are not amenable to such a structure.

Companies like Navajo Systems and Ciphercloud provide a
trusted application-level proxy that intercepts network traffic be-
tween clients and cloud-hosted servers (e.g., IMAP), and encrypts
sensitive data stored on the server. These products appear to break
up sensitive data (specified by application-specific rules) into tokens
(such as words in a string), and encrypt each of these tokens using
an order-preserving encryption scheme, which allows token-level
searching and sorting. In contrast, CryptDB supports a richer set of
operations (most of SQL), reveals only relations for the necessary
classes of computation to the server based on the queries issued
by the application, and allows chaining of encryption keys to user
passwords, to restrict data leaks from a compromised proxy.

2Unless the administrator periodically re-encrypts data/columns.

14

Disk encryption. Various commercial database products, such as
Oracle’s Transparent Data Encryption [34], encrypt data on disk, but
decrypt it to perform query processing. As a result, the server must
have access to decryption keys, and an adversary compromising the
DBMS software can gain access to the entire data.

Software security. Many tools help programmers either find
or mitigate mistakes in their code that may lead to vulnerabilities,
including static analysis tools like PQL [29, 31] and UrFlow [7],
and runtime tools like Resin [52] and CLAMP [36]. In contrast,
CryptDB provides confidentiality guarantees for user data even
if the adversary gains complete control over the application and
database servers. These tools provide no guarantees in the face of
this threat, but in contrast, CryptDB cannot provide confidentiality
in the face of vulnerabilities that trick the user’s client machine into
issuing unwanted requests (such as cross-site scripting or cross-site
request forgery vulnerabilities in web applications). As a result,
using CryptDB together with these tools should improve overall
application security.

Rizvi et al. [41] and Chlipala [7] specify and enforce an applica-
tion’s security policy over SQL views. CryptDB’s SQL annotations
can capture most of these policies, except for result processing
being done in the policy’s view, such as allowing a user to view
only aggregates of certain data. Unlike prior systems, CryptDB
enforces SQL-level policies cryptographically, without relying on
compile-time or run-time permission checks.

Privacy-preserving aggregates. Privacy-preserving data inte-
gration, mining, and aggregation schemes are useful [26, 50], but
are not usable by many applications because they support only spe-
cialized query types and require a rewrite of the DBMS. Differential
privacy [14] is complementary to CryptDB; it allows a trusted server
to decide what answers to release and how to obfuscate answers to
aggregation queries to avoid leaking information about any specific
record in the database.

Query integrity. Techniques for SQL query integrity can be
integrated into CryptDB because CryptDB allows relational queries
on encrypted data to be processed just like on plaintext. These
methods can provide integrity by adding a MAC to each tuple [28,
42], freshness using hash chains [38, 42], and both freshness and
completeness of query results [33]. In addition, the client can verify
the results of aggregation queries [48], and provide query assurance
for most read queries [45].

Outsourced databases. Curino et al. advocate the idea of a
relational cloud [11], a context in which CryptDB fits well.

10 CONCLUSION
We presented CryptDB, a system that provides a practical and strong
level of confidentiality in the face of two significant threats con-
fronting database-backed applications: curious DBAs and arbitrary
compromises of the application server and the DBMS. CryptDB
meets its goals using three ideas: running queries efficiently over
encrypted data using a novel SQL-aware encryption strategy, dy-
namically adjusting the encryption level using onions of encryption
to minimize the information revealed to the untrusted DBMS server,
and chaining encryption keys to user passwords in a way that allows
only authorized users to gain access to encrypted data.

Our evaluation on a large trace of 126 million SQL queries from
a production MySQL server shows that CryptDB can support opera-
tions over encrypted data for 99.5% of the 128,840 columns seen in
the trace. The throughput penalty of CryptDB is modest, resulting in
a reduction of 14.5–26% on two applications as compared to unmod-
ified MySQL. Our security analysis shows that CryptDB protects
most sensitive fields with highly secure encryption schemes for six
applications. The developer effort consists of 11–13 unique schema

annotations and 2–7 lines of source code changes to express relevant
privacy policies for 22–103 sensitive fields in three multi-user web
applications.

The source code for our implementation is available for download
at http://css.csail.mit.edu/cryptdb/.

ACKNOWLEDGMENTS

We thank Martin Abadi, Brad Chen, Carlo Curino, Craig Harris,
Evan Jones, Frans Kaashoek, Sam Madden, Mike Stonebraker, Mike
Walfish, the anonymous reviewers, and our shepherd, Adrian Perrig,
for their feedback. Eugene Wu and Alvin Cheung also provided
useful advice. We also thank Geoffrey Thomas, Quentin Smith,
Mitch Berger, and the rest of the scripts.mit.edu maintainers
for providing us with SQL query traces. This work was supported
by the NSF (CNS-0716273 and IIS-1065219) and by Google.

REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving

encryption for numeric data. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data,
Paris, France, June 2004.

[2] G. Amanatidis, A. Boldyreva, and A. O’Neill. Provably-secure
schemes for basic query support in outsourced databases. In Pro-
ceedings of the 21st Annual IFIP WG 11.3 Working Conference
on Database and Applications Security, Redondo Beach, CA,
July 2007.

[3] F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on
encrypted data in multi-user settings. In Proceedings of the 4th
International Conference on Information Security Practice and
Experience, Sydney, Australia, April 2008.

[4] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-
preserving symmetric encryption. In Proceedings of the 28th
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT), Cologne,
Germany, April 2009.

[5] D. Boneh and B. Waters. Conjunctive, subset, and range queries
on encrypted data. In Proceedings of the 4th Conference on
Theory of Cryptography, 2007.

[6] A. Chen. GCreep: Google engineer stalked teens, spied on chats.
Gawker, September 2010. http://gawker.com/5637234/.

[7] A. Chlipala. Static checking of dynamically-varying security
policies in database-backed applications. In Proceedings of the
9th Symposium on Operating Systems Design and Implementa-
tion, Vancouver, Canada, October 2010.

[8] S. S. M. Chow, J.-H. Lee, and L. Subramanian. Two-party com-
putation model for privacy-preserving queries over distributed
databases. In Proceedings of the 16th Network and Distributed
System Security Symposium, February 2009.

[9] V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Para-
boschi, and P. Samarati. Keep a few: Outsourcing data while
maintaining confidentiality. In Proceedings of the 14th Euro-
pean Symposium on Research in Computer Security, September
2009.

[10] M. Cooney. IBM touts encryption innovation; new technology
performs calculations on encrypted data without decrypting it.
Computer World, June 2009.

[11] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu,
S. Madden, H. Balakrishnan, and N. Zeldovich. Relational
cloud: A database-as-a-service for the cloud. In Proceedings
of the 5th Biennial Conference on Innovative Data Systems Re-
search, pages 235–241, Pacific Grove, CA, January 2011.

[12] E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi,
and P. Samarati. Balancing confidentiality and efficiency in un-
trusted relational DBMSs. In Proceedings of the 10th ACM Con-
ference on Computer and Communications Security, Washing-
ton, DC, October 2003.

15

http://css.csail.mit.edu/cryptdb/
http://gawker.com/5637234/

[13] A. Desai. New paradigms for constructing symmetric encryp-
tion schemes secure against chosen-ciphertext attack. In Pro-
ceedings of the 20th Annual International Conference on Ad-
vances in Cryptology, pages 394–412, August 2000.

[14] C. Dwork. Differential privacy: a survey of results. In Proceed-
ings of the 5th International Conference on Theory and Applica-
tions of Models of Computation, Xi’an, China, April 2008.

[15] S. Evdokimov and O. Guenther. Encryption techniques for se-
cure database outsourcing. Cryptology ePrint Archive, Report
2007/335.

[16] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
SPORC: Group collaboration using untrusted cloud resources.
In Proceedings of the 9th Symposium on Operating Systems De-
sign and Implementation, Vancouver, Canada, October 2010.

[17] T. Ge and S. Zdonik. Answering aggregation queries in a secure
system model. In Proceedings of the 33rd International Con-
ference on Very Large Data Bases, Vienna, Austria, September
2007.

[18] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In
Advances in Cryptology (CRYPTO), Santa Barbara, CA, August
2010.

[19] C. Gentry. Fully homomorphic encryption using ideal lattices.
In Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, Bethesda, MD, May–June 2009.

[20] O. Goldreich. Foundations of Cryptography: Volume I Basic
Tools. Cambridge University Press, 2001.

[21] A. Greenberg. DARPA will spend 20 million to search for
crypto’s holy grail. Forbes, April 2011.

[22] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL
over encrypted data in the database-service-provider model. In
Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data, Madison, WI, June 2002.

[23] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest we remember: Cold boot attacks on encryp-
tion keys. In Proceedings of the 17th Usenix Security Sympo-
sium, San Jose, CA, July–August 2008.

[24] S. Halevi and P. Rogaway. A tweakable enciphering mode. In
Advances in Cryptology (CRYPTO), 2003.

[25] V. Kachitvichyanukul and B. W. Schmeiser. Algorithm 668:
H2PEC: Sampling from the hypergeometric distribution. ACM
Transactions on Mathematical Software, 14(4):397–398, 1988.

[26] M. Kantarcioglu and C. Clifton. Security issues in querying
encrypted data. In Proceedings of the 19th Annual IFIP WG
11.3 Working Conference on Database and Applications Secu-
rity, Storrs, CT, August 2005.

[27] E. Kohler. Hot crap! In Proceedings of the Workshop on Or-
ganizing Workshops, Conferences, and Symposia for Computer
Systems, San Francisco, CA, April 2008.

[28] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation, pages 91–
106, San Francisco, CA, December 2004.

[29] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in
Java applications with static analysis. In Proceedings of the 14th
Usenix Security Symposium, pages 271–286, Baltimore, MD,
August 2005.

[30] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud storage with minimal trust. In
Proceedings of the 9th Symposium on Operating Systems Design
and Implementation, Vancouver, Canada, October 2010.

[31] M. Martin, B. Livshits, and M. Lam. Finding application er-
rors and security flaws using PQL: a program query language.
In Proceedings of the 2005 Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications, pages 365–
383, San Diego, CA, October 2005.

[32] National Vulnerability Database. CVE statistics. http://web.
nvd.nist.gov/view/vuln/statistics, February 2011.

[33] V. H. Nguyen, T. K. Dang, N. T. Son, and J. Kung. Query as-
surance verification for dynamic outsourced XML databases. In
Proceedings of the 2nd Conference on Availability, Reliability
and Security, Vienna, Austria, April 2007.

[34] Oracle Corporation. Oracle advanced security. http:
//www.oracle.com/technetwork/database/options/
advanced-security/.

[35] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Proceedings of the 18th Annual Inter-
national Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT), Prague, Czech Republic,
May 1999.

[36] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and
A. Perrig. CLAMP: Practical prevention of large-scale data
leaks. In Proceedings of the 30th IEEE Symposium on Security
and Privacy, Oakland, CA, May 2009.

[37] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr-
ishnan. CryptDB web site. http://css.csail.mit.edu/
cryptdb/.

[38] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang.
Enabling security in cloud storage SLAs with CloudProof. In
Proceedings of 2011 USENIX Annual Technical Conference,
Portland, OR, 2011.

[39] R. A. Popa, N. Zeldovich, and H. Balakrishnan. CryptDB: A
practical encrypted relational DBMS. Technical Report MIT-
CSAIL-TR-2011-005, MIT Computer Science and Artificial In-
telligence Laboratory, Cambridge, MA, January 2011.

[40] Privacy Rights Clearinghouse. Chronology of data breaches.
http://www.privacyrights.org/data-breach.

[41] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending
query rewriting techniques for fine-grained access control. In
Proceedings of the 2004 ACM SIGMOD International Confer-
ence on Management of Data, Paris, France, June 2004.

[42] H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing
remote untrusted storage. In Proceedings of the 10th Network
and Distributed System Security Symposium, 2003.

[43] E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig. Multi-
dimensional range query over encrypted data. In Proceedings
of the 28th IEEE Symposium on Security and Privacy, Oakland,
CA, May 2007.

[44] V. Shoup. NTL: A library for doing number theory. http://
www.shoup.net/ntl/, August 2009.

[45] R. Sion. Query execution assurance for outsourced databases. In
Proceedings of the 31st International Conference on Very Large
Data Bases, pages 601–612, Trondheim, Norway, August–
September 2005.

[46] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for
searches on encrypted data. In Proceedings of the 21st IEEE
Symposium on Security and Privacy, Oakland, CA, May 2000.

[47] M. Taylor. MySQL proxy. https://launchpad.net/
mysql-proxy.

[48] B. Thompson, S. Haber, W. G. Horne, T. S, and D. Yao. Privacy-
preserving computation and verification of aggregate queries
on outsourced databases. Technical Report HPL-2009-119, HP
Labs, 2009.

[49] E. P. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos operating system. ACM Transactions
on Computer Systems, 12(1):3–32, 1994.

[50] L. Xiong, S. Chitti, and L. Liu. Preserving data privacy for out-
sourcing data aggregation services. Technical Report TR-2007-
013, Emory University, Department of Mathematics and Com-
puter Science, 2007.

[51] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving
queries on encrypted data. In European Symposium on Research
in Computer Security, 2006.

[52] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
application security with data flow assertions. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles,
pages 291–304, Big Sky, MT, October 2009.

16

http://web.nvd.nist.gov/view/vuln/statistics
http://web.nvd.nist.gov/view/vuln/statistics
http://www.oracle.com/technetwork/database/options/advanced-security/
http://www.oracle.com/technetwork/database/options/advanced-security/
http://www.oracle.com/technetwork/database/options/advanced-security/
http://css.csail.mit.edu/cryptdb/
http://css.csail.mit.edu/cryptdb/
http://www.privacyrights.org/data-breach
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://launchpad.net/mysql-proxy
https://launchpad.net/mysql-proxy

	Introduction
	Security Overview
	Threat 1: DBMS Server Compromise
	Threat 2: Arbitrary Threats

	Queries over Encrypted Data
	SQL-aware Encryption
	Adjustable Query-based Encryption
	Executing over Encrypted Data
	Computing Joins
	Improving Security and Performance
	Security Improvements
	Performance Optimizations

	Multiple Principals
	Policy Annotations
	Key Chaining

	Application Case Studies
	Discussion
	Implementation
	Experimental Evaluation
	Application Changes
	Functional Evaluation
	Security Evaluation
	Performance Evaluation
	TPC-C
	Multi-User Web Applications
	Storage
	Adjustable Encryption

	Related Work
	Conclusion

