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Abstract. We are using bandit-based adaptive operator selection while
autotuning parallel computer programs. The autotuning, which uses evo-
lutionary algorithm-based stochastic sampling, takes place over an ex-
tended duration and occurs in situ as programs execute. The environ-
ment or context during tuning is either largely static in one scenario or
dynamic in another. We rely upon adaptive operator selection to dy-
namically generate worthy test configurations of the program. In this
paper, we study how the choice of hyperparameters, which control the
trade-off between exploration and exploitation, affects the effectiveness
of adaptive operator selection which in turn affects the performance of
the autotuner. We show that while the optimal assignment of hyper-
parameters varies greatly between different benchmarks, there exists a
single assignment, for a context, of hyperparameters that performs well
regardless of the program being tuned.

1 Introduction

We are developing an autotuning technique, called SiblingRivalry, based upon an
evolutionary algorithm (EA) which tunes poly-algorithms to run efficiently when
written in a new programming language we have designed. The autotuner runs in
two different kinds of computing environments: static or dynamic. In either envi-
ronment, multiple execution times and accuracy of results will vary to different
degrees. Using special software infrastructure, the online technique, embedded
and running in the run-time system, is able to continuously test candidate poly-
algorithm configurations in parallel with the best configuration to date whenever
a program is invoked. The technique generates a candidate configuration by se-
lecting one of a set of specific mutation operators that have been derived for it
during the program’s compilation. If it finds a better configuration, it makes a
substitution and continues. We call this process “racing”. The technique needs
to generate candidate configurations that both explore poly-algorithm space and
exploit its knowledge of its best configuration.

The choice of which mutation operator to use is vital in optimizing the over-
all performance of the autotuner, both in time to converge to efficient programs
and their answer quality. Some mutation operators will have large effects on
program performance, while others will have little or no effect. If the evolu-
tionary algorithm spends too much time exploring different mutation operators,
convergence will be slow. If the evolutionary algorithm spends too much time
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trying to exploit mutation operators that have yielded performance gains in the
past, it may not find configurations that can only be reached through mutation
operators that are not sufficiently tested. Noise in program performance due to
execution complicates the picture and make optimal mutation operator selection
imperative.

To address this challenge, SiblingRivalry uses what we call “bandit-based
adaptive operator selection”. Its underlying algorithm is the Upper Confidence
Bound (UCB) algorithm, which is a technique inspired by a provably optimal
solution to the Multi-Armed Bandit (MAB) problem. This technique introduces
two hyperparameters: W - the length of the history window, and C' - the bal-
ance point between exploration and exploitation. UCB is only optimal if these
hyperparamters are set by an oracle or through some other search technique. In
practice, a user of this technique must either use a fixed, non-optimal assignment
of these hyperparameters, or perform a search over hyperparameters whenever
the search space changes. Unfortunately, in practice, finding good values of these
hyperparameters may be more expensive that the actual search itself. While [5]
addresses the robustness of hyperparameters in empirical academic study, in this
paper, we present a practically motivated, real world study on setting hyperpa-
rameters. We define evaluation metrics that can be used in score functions that
appropriately gauge the autotuner’s performance in either a static or dynamic
environment and use them to ask:

— How much does the optimal assignment of hyperparameters vary when tun-
ing different programs in two classes of environments - static or dynamic?

— Does there exist a single “robust” assignment of hyperparameters for a con-
text that performs close to optimal across all benchmarks?

The paper proceeds as follows: in Section 2 we provide a necessarily brief
description of our programming language and its autotuner. Section 3 reviews
related work. Section 4 describes the UCB algorithm and the hyper parameters.
Section 5 describes our evaluation metrics and scoring functions for tuning the
hyperparameters. Section 6 provides experimental results. Section 7 concludes.

2 PetaBricks and its Autotuner

PetaBricks is a language designed specifically to allow the programmer to ex-
pose both explicit and implicit choices to an integrated autotuning system [1,
2]. The goal of the PetaBricks autotuner is to, on each machine, find a program
that satisfies the user’s accuracy requirements while minimizing execution time.
Accuracy is a programmer-defined metric, while execution time is measured by
running the program on the given hardware. Given a program, execution plat-
form and input size, the autotuner must identify an ideal configuration which
is a set of algorithmic choice and cutoff selectors, synthetic functions for input
size transforms and a set of discrete tunable parameters. The autotuner is an
evolutionary algorithm which uses a program-specific set of mutation operators.



These mutation operators, generated by the compiler, each target a specific sin-
gle or a set of tunable variables of the program that collectively form the genome.
For example, one mutation operator can randomly change the scheduling policy
for a specific parallel region of code. Another set of mutation operators can ran-
domly add, remove, or change nodes (one mutation operator for each action) in
a decision tree used to dynamically switch between entirely different algorithms
provided by the user.

3 Related Work and Discussion

In the context of methods in evolutionary algorithms that provide parameter
adjustment or configuration, the taxonomy of Eiben [4] distinguishes between
offline “parameter tuning” and online “parameter control”. Operator selection is
similar to parameter control because it is online. However, it differs from param-
eter control because the means of choosing among a set of operators contrasts
to refining a scalar parameter value.

Adaptive methods, in contrast to self-adaptive methods, explicitly use iso-
lated feedback about past performance of an operator to guide how a parameter
is updated. An adaptive operator strategy has two components: operator credit
assignment and an operator selection rule. The credit assignment component
assigns a weight to an operator based on its past performance. An operator’s
performance is generally measured in terms related to the objective quality of
the candidate solutions it has generated. The operator selection rule is a pro-
cedure for choosing one operator among the eligible set based upon the weight
of each. There are three popular adaptive methods: probability matching, adap-
tive pursuit and multi-armed bandit. Fialho has authored (in collaboration with
assorted others) a large body of work on adaptive operation selection, see, for
example, [5,6]. The strategy we implement is multi-armed bandit with AUC
credit assignment. This strategy is comparison-based and hence invariant to the
scale of the fitness function which can vary significantly between PetaBricks pro-
grams. The invariance is important to the feasibility of hyperparameter selection
on a general, rather than a per-program, basis.

There is one evolutionary algorithm, differential evolution [10], that takes a
comparison-based approach to search like our autotuner. However, differential
evolution compares a parent to its offspring, while our algorithm is not always
competing parent and offspring. The current best solution is one contestant in
the competition and its competitor is not necessarily its offspring. Differential
evolution also uses a method different from applying program-dependent muta-
tion operators to generate its offspring.

4 Adaptive Operator Selection

Selecting optimal mutators online, while a program executes numerous times
over an extended duration, can be viewed as an instance of the Multi-Armed
Bandit problem (MAB), with the caveats described in [8]. We would like to



explore the efficacy of all mutators so that we can make an informed selection of
one of them. The MAB resolves the need to optimally balance exploration and
exploitation in a way that maximizes the cumulative outcome of the system.

In the general case, each variation operator corresponds to one of N arms,
where selecting ¢-th arm results in a reward with probability p;, and no reward
with probability 1 — p;. A MAB algorithm decides when to select each arm
in order to maximize the cumulative reward over time [8]. A simple and prov-
ably optimal MAB algorithm is the Upper Confidence Bound (UCB) algorithm,
originally proposed by Auer et al. [3]. The empirical performance of the UCB
algorithm has been evaluated on a number of standard GA benchmarks, and has
been shown to be superior to alternative adaptive operator selection techniques
such as Probability Matching [8].

The UCB algorithm selects operators according to the following formula:
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where ¢; + denotes the empirical quality of the i-th operator at time ¢ (exploita-
tion term), n;; the number of times the operator has been used so far during
a sliding time window of length W (the right term corresponding to the explo-
ration term), and C' is a user defined constant that controls the balance between
exploration and exploitation [3, 8]. To avoid dividing by zero in the denominator,
we initially cycle through and apply each operator once before using the UCB
formula, ensuring n;; > 1.

Our PetaBricks autotuner uses the Area Under the Receiving Operator Curve
(AUC) to compute the empirical quality of an operator. AUC is a comparison-
based credit assignment strategy devised by Fialho et al. in [7]. Instead of relying
on absolute average delta fitness, this method ranks candidates generated by a
mutator ¢, and uses the rankings to define the mutator’s Receiving Operator
Curve, the area under which is used as the empirical quality term §;; (Equa-
tion 1). To extend this method to variable accuracy, we use the following strategy:
If the last candidate’s accuracy is below the target, candidates are ranked by
accuracy. Otherwise, candidates are ranked by throughput (inverse of time).

5 Tuning the Tuner

The hyperparameters C' (exploration/exploitation trade-off) and W (window
size) can have a significant impact on the efficacy of SiblingRivalry. For example,
if C' is set too high, it might dominate the exploitation term and all operators
will be applied approximately uniformly, regardless of their past performance.
If, on the other hand, C is set too low, it will be dominated by the exploitation
term ¢;; and new, possibly better operators will rarely be applied in favor of
operators which made only marginal improvements in the past.

The problem is further complicated by the fact that the optimal balance
between exploration and exploitation is highly problem-dependent [5]. For ex-
ample, programs with a lot of algorithmic choices are likely to benefit from a



high exploration rate. This is because algorithmic changes create discontinu-
ities in the program’s fitness, and operator weights calculated for a given set of
algorithms will not be accurate when those algorithms suddenly change. When
such changes occur, exploration should become the dominant behavior. For other
programs, e.g. those where only a few mutators improve performance, sacrificing
exploration in favor of exploitation might be optimal. This is especially true for
programs with few algorithmic choices - once the optimal algorithmic choices
have been made, the autotuner should focus on adjusting cutoffs and tunables
using an exploitative strategy with a comparatively low C.

The optimal value of C' is also closely tied to the optimal value of W, which
controls the size of the history window. The autotuner looks at operator applica-
tions in the past W races, and uses the outcome of those applications to assign
a quality score to each operator. This is based on the assumption that an oper-
ator’s past performance is a predictor of its future performance, which may not
always be true. For example, changes in algorithms can create discontinuities
in the fitness landscape, making past operator performance largely irrelevant.
However, if W is large, this past performance will still be taken into account for
quite some time. In such situations, a small W might be preferred.

Furthermore, optimal values of C' and W are not independent. Due to the
way ¢; . is computed, the value of the exploitation term grows with W. Thus by
changing W, which superficially controls only the size of the history window, one
might accidentally alter the exploration/exploitation balance. For this reason, C'
and W should be tuned together.

5.1 Evaluation metrics

Because there is no single metric that will suffice to evaluate performance un-
der different hyperparameter values, we use three separate metrics to evaluate
SiblingRivalry on a given benchmark program with different hyperparameters:

1. Mean throughput: the number of requests processed per second, averaged
over the entire duration of the run. Equal to the average number of races
per second.

2. Best candidate throughput: inverse of the runtime of the fastest candi-
date found during the duration of the run. For variable accuracy benchmarks,
only candidates that met the accuracy target are considered.

3. Time to convergence: number of races until a candidate has been found
that has a throughput within 5% of the best candidate for the given run.
For variable accuracy benchmarks, only candidates that met the accuracy
target are considered.

To enable a fair comparison between SiblingRivalry’s performance under dif-
ferent hyperparameter values, we define a single objective metric for each sce-
nario that combines one or more of the metrics outlined above. We call this
metric the score function f, for each benchmark b, and its output the score.

We consider two classes of execution contexts: static and dynamic. In the
static context, the program’s execution environment is mostly unchanging. In



this setting, the user cares mostly about the quality of the best candidate. Con-
vergence time is of little concern, as the autotuner only has to learn once and
then adapt very infrequently. For the sake of comparison, we assume in this
scenario the user assigns a weight of 80% to the best candidate’s throughput,
and only 20% to the convergence time. Hence the score function for the static
context:

f5(C,W) = 0.8 x best_throughput, (C, W) + 0.2 x convergence_time, ' (C, W)

In the dynamic context, the user cares both about average throughput and
the convergence time. The convergence time is a major consideration since ex-
ecution conditions change often in a dynamic system and necessitate frequent
adaptation. Ideally, the autotuner would converge very quickly to a very fast
configuration. However, the user is willing sacrifice some of the speed for im-
proved convergence time. We can capture this notion using the following score
function:

f(C,W) = 0.5 x mean_throughput, (C, W) + 0.5 x convergence_time, * (C, W)

We normalize throughput and convergence time with respect to their best
measured values for the benchmark, so that the computed scores assume values
in the range [0, 1], from worst to best. Note that those are theoretical bounds:
in practice it is often impossible to simultaneously maximize both throughput
and convergence time.

6 Experimental Results

We evaluated the hyperparameter sensitivity of SiblingRivalry by running the
autotuner on a set of four benchmarks: Sort, Bin Packing, Image Compression and
Poisson. We used twenty different combinations of C' and W for each benchmark:
(C,W)=10.01,0.1,0.5, 5, 50] x [5,50, 100, 500].

For each run, we measured the metrics described in Section 5.1 and used
them to compute score function values. Due to space constraints, we focus on
the resulting scores rather than individual metrics (we refer the curious reader
to [9] for an in-depth analysis of the latter). We performed all tests on the Xeon8
and AMD48 systems (see Table 1). The reported numbers for Xeon8 have been
averaged over 30 runs, and the numbers for AMD48 over 20 runs. The benchmarks
are described in more detail in [2].

|Acronym| Processor Type |Operating System| Processors |

Xeon8 | Intel Xeon X5460 3.16GHz Debian 5.0 2 (x4 cores)

AMD48|AMD Opteron 6168 1.9GHz Debian 5.0 4 (x12 cores)
Table 1. Specifications of the test systems used.




static context dynamic context
Xeon8 AMD48 Xeon8 AMDA48
C )% C W C )% C W

Sort 50.00 5 5.00 5 5.00 5 5.00 5
Bin Packing 0.01 5 0.10 5 5.00 500 |5.00 500
Poisson 50.00 500 |50.00 500 [|0.01 500 |[5.00 5
Image Compression||0.10 100 |50.00 50 0.01 100 |50.00 50

(a) Best performing values of the hyperparameters C' and W over an empirical

sample.
static context dynamic context
Xeon8 AMD48 Xeon8 AMD48
Sort 0.8921 0.8453 0.9039 0.9173
Bin Packing 0.8368 0.8470 0.9002 0.9137
Poisson 0.8002 0.8039 0.8792 0.6285
Image Compression||0.9538 0.9897 0.9403 0.9778

(b) Scores of the best performing hyperparameters.

Fig. 1. Best performing hyperparameters and associated score function values under
static and dynamic autotuning scenarios.

Figures 2 and 3 show select scores as a function of C' and W on the Xeon8
amd AMD48 systems for benchmarks in both static and dynamic scenarios. All
benchmarks except Image Compression show moderate to high sensitivity to hy-
perparameter values, with Bin Packing performance ranging from as low as 0.1028
at (C,W) = (0.01,5) to as high as 0.9002 at (C,W) = (5,500) in the dynamic
scenario on the Xeon8. On average, the dynamic context was harder to autotune
with a mean score of 0.6181 as opposed to static system’s 0.6919 (Figure 4).
This result confirms the intuition that maintaining a high average throughput
while minimizing convergence time is generally more difficult than finding a very
high-throughput candidate after a longer autotuning process.

static context dynamic context

(a) Sort on Xeon8

Fig. 2. Scores for the Sort benchmark as a function of C' and W. The colored rectangle
is a plane projection of the 3D surface and is shown for clarity.



The optimal hyperparameter values for each benchmark ranged considerably
and depended on both the scenario and the architecture (Table 1). Sort tended
to perform best with a moderate C' and a low W, underlining the importance
of exploration in the autotuning process of this benchmark. Bin Packing in the
static context favored a balance between exploration and exploitation of a small
number of recently tried operators. In the dynamic context Bin Packing per-
formed best with much longer history windows (optimal W = 500) and with
only a moderate exploration term C' = 5. This is expected as Bin Packing in the
dynamic context is comparatively difficult to autotune and hence benefits from
a long history of operator performance. Poisson was another “difficult” bench-
mark, and as a result performed better with long histories (W = 500 for almost
all architecures and contexts). In the static scenario it performed best with a
high C' = 50, confirming the authors’ intuition that exploration is favorable if
we are given more time to converge. In the dynamic context exploration was
favored less (optimal C' = 0.01 for the Xeon8 and C = 5 for the AMD48). In the
case of Image Compression, many hyperparameters performed close to optimum
suggesting that it is an easy benchmark to tune. Medium W were preferred
across architectures and scenarios, with W = 100 and W = 50 for the static and
dynamic contexts, respectively. Image Compression on AMD48 favored a higher
C = 50 for both scenarios, as opposed to the low C = 0.1 and C = 0.01 for
the static and dynamic contexts on the Xeon8. This result suggests exploitation
of a limited number of well-performing operators on the Xeon8, as opposed to
a more explorative behavior on the AMD48. We suspect this is due to a much
higher parallelism of the AMD48 architecture, where as parallelism increases dif-
ferent operators become effective.

dynamic context dynamic context

100%

(a) Poisson on Xeon8 (left) and AMD48 (right)

Fig. 3. Measured scores for the Poisson benchmark on each architecture.

6.1 Hyperparameter Robustness

Our results demonstrate that autotuning performance can vary significantly de-
pending on the selection of hyperparameter values. However, in a real-world
setting the user cannot afford to run expensive experiments to determine which
values work best for their particular program and architecture. For this reason,



static context ||[dynamic context
Xeon8 AMDA48 (| Xeon8| AMDA48

Sort 95.71%| 100% ||74.16%| 61.12%

Bin Packing 85.61%| 94.72% ||67.42%| 88.74%
Poisson 70.64%| 71.09% ||90.77%| 96.07%
Image Compression||92.44%| 96.35% ||89.92%| 91.42%

Table 2. Benchmark scores for the globally optimal values of hyperparameters normal-
ized with respect to the best score for the given benchmark and scenario. The optimal
hyperparameters were C' = 5, W = 5 for the static context, and C' =5, W = 100 for
the dynamic context. Mean normalized scores were 88.32% and 82.45% for the static
and dynamic contexts, respectively.

we performed an empirical investigation whether there exists a single assignment
of C' and W that works well across programs and architectures.

We used the score functions from Section 5.1 to find hyperparameters that
maximized the mean score on all the benchmarks. We found that the hyperpa-
rameters (C,W) = (5,5) for the static context and (C, W) = (5,100) for the
dynamic context maximized this score. The results are shown in Table 2. For
the sake of illustration, we normalized each score with respect to the optimum
for the given benchmark and scenario (Table 1(b)).

Despite fixing hyperparameter values across benchmarks, we measured a
mean normalized score of 88.32% for the static and 82.45% for the dynamic
context, which means that we only sacrificed less than 20% of the performance
by not tuning hyperparameters on a per-benchmark and per-architecture basis.
This result shows that the hyperparameters we found are likely to generalize to
other benchmarks, thus providing sensible defaults and removing the need to
optimize them on a per-program basis. They also align with our results for in-
dividual benchmarks (Figure 1), where we found that exploration (moderate to
high C, low W) is beneficial if we can afford the extra convergence time (static
context), whereas exploitation (low to moderate C, high W) is preferred if av-
erage throughput and low convergence time are of interest (dynamic context).

static context dynamic context

Fig. 4. Scores for the static and dynamic scenarios averaged over the Sort, Bin Packing,
Poisson and Image Compression benchmarks and the Xeon8 and AMD48 architectures.
The mean scores across all benchmarks, architectures and hyperparameter values were
0.6919 for the static and 0.6181 for the dynamic contexts.
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7 Conclusions

We performed a detailed experimental investigation of hyperparameter effect on
the performance of the PetaBricks autotuner, a real-world online evolutionary
algorithm that uses adaptive operator selection. We evaluated four benchmarks
with respect to three metrics which we combined into a performance indicator
called the score function, and demonstrated that optimal hyperparameter val-
ues differ significantly between benchmarks. We also showed how two possible
autotuning scenarios can affect the optimal hyperparameter values. We further
demonstrated that a single choice of hyperparameters across many benchmarks
is possible, with only a small performance degradation. Such a choice provides
sensible defaults for autotuning, removing the need for the user to tune hyper-
parameters per-program, and thus making our approach feasible in a real-world
setting.
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