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Least Squares After Model Selection in

High-dimensional Sparse Models

Alexandre Belloni and Victor Chernozhukov

In this paper we study post-model selection estimators which apply ordinary least squares
(ols) to the model selected by first-step penalized estimators, typically lasso. It is well known
that lasso can estimate the nonparametric regression function at nearly the oracle rate, and
is thus hard to improve upon. We show that ols post lasso estimator performs at least as
well as lasso in terms of the rate of convergence, and has the advantage of a smaller bias.
Remarkably, this performance occurs even if the lasso-based model selection “fails” in the sense
of missing some components of the “true” regression model. By the “true” model we mean
here the best s-dimensional approximation to the nonparametric regression function chosen
by the oracle. Furthermore, ols post lasso estimator can perform strictly better than lasso, in
the sense of a strictly faster rate of convergence, if the lasso-based model selection correctly
includes all components of the “true” model as a subset and also achieves sufficient sparsity.
In the extreme case, when lasso perfectly selects the “true” model, the ols post lasso estimator
becomes the oracle estimator. An important ingredient in our analysis is a new sparsity bound
on the dimension of the model selected by lasso which guarantees that this dimension is at most
of the same order as the dimension of the “true” model. Our rate results are non-asymptotic
and hold in both parametric and nonparametric models. Moreover, our analysis is not limited
to the lasso estimator acting as selector in the first step, but also applies to any other estimator,
for example various forms of thresholded lasso, with good rates and good sparsity properties.
Our analysis covers both traditional thresholding and a new practical, data-driven thresholding
scheme that induces maximal sparsity subject to maintaining a certain goodness-of-fit. The latter
scheme has theoretical guarantees similar to those of lasso or ols post lasso, but it dominates
these procedures as well as traditional thresholding in a wide variety of experiments.
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1. Introduction

In this work we study post-model selected estimators for linear regression in high-di-
mensional sparse models (hdsms). In such models, the overall number of regressors p is
very large, possibly much larger than the sample size n. However, there are s = o(n)
regressors that capture most of the impact of all covariates on the response variable.
hdsms ([9], [22]) have emerged to deal with many new applications arising in biometrics,
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signal processing, machine learning, econometrics, and other areas of data analysis where
high-dimensional data sets have become widely available.

Several papers have begun to investigate estimation of hdsms, primarily focusing on
mean regression with the ℓ1-norm acting as a penalty function [4, 6, 7, 8, 9, 17, 22, 28,
31, 33]. The results in [4, 6, 7, 8, 17, 22, 31, 33] demonstrated the fundamental result that
ℓ1-penalized least squares estimators achieve the rate

√
s/n

√
log p, which is very close

to the oracle rate
√
s/n achievable when the true model is known. The works [17, 28]

demonstrated a similar fundamental result on the excess forecasting error loss under
both quadratic and non-quadratic loss functions. Thus the estimator can be consistent
and can have excellent forecasting performance even under very rapid, nearly exponential
growth of the total number of regressors p. Also, [2] investigated the ℓ1-penalized quantile
regression process, obtaining similar results. See [4, 6, 7, 8, 15, 19, 20, 24] for many other
interesting developments and a detailed review of the existing literature.

In this paper we derive theoretical properties of post-model selection estimators which
apply ordinary least squares (ols) to the model selected by first-step penalized estimators,
typically lasso. It is well known that lasso can estimate the mean regression function at
nearly the oracle rate, and hence is hard to improve upon. We show that ols post lasso can
perform at least as well as lasso in terms of the rate of convergence, and has the advantage
of a smaller bias. This nice performance occurs even if the lasso-based model selection
“fails” in the sense of missing some components of the “true” regression model. Here
by the “true” model we mean the best s-dimensional approximation to the regression
function chosen by the oracle. The intuition for this result is that lasso-based model
selection omits only those components with relatively small coefficients. Furthermore,
ols post lasso can perform strictly better than lasso, in the sense of a strictly faster
rate of convergence, if the lasso-based model correctly includes all components of the
“true” model as a subset and is sufficiently sparse. Of course, in the extreme case, when
lasso perfectly selects the “true” model, the ols post lasso estimator becomes the oracle
estimator.

Importantly, our rate analysis is not limited to the lasso estimator in the first step, but
applies to a wide variety of other first-step estimators, including, for example, thresholded
lasso, the Dantzig selector, and their various modifications. We give generic rate results
that cover any first-step estimator for which a rate and a sparsity bound are available.
We also give a generic result on using thresholded lasso as the first-step estimator, where
thresholding can be performed by a traditional thresholding scheme (t-lasso) or by a new
fitness-thresholding scheme we introduce in the paper (fit-lasso). The new thresholding
scheme induces maximal sparsity subject to maintaining a certain goodness-of-fit in the
sample, and is completely data-driven. We show that ols post fit-lasso estimator performs
at least as well as the lasso estimator, but can be strictly better under good model
selection properties.

Finally, we conduct a series of computational experiments and find that the results
confirm our theoretical findings. Figure 1 is a brief graphical summary of our theoreti-
cal results showing how the empirical risk of various estimators change with the signal
strength C (coefficients of relevant covariates are set equal to C). For very low level of
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signal, all estimators perform similarly. When the signal strength is intermediate, ols post
lasso and ols post fit-lasso substantially outperform lasso and the ols post t-lasso esti-
mators. However, we find that the ols post fit-lasso outperforms ols post lasso whenever
lasso does not produce very sparse solutions which occurs if the signal strength level is
not low. For large levels of signal, ols post fit-lasso and ols post t-lasso perform very well
improving upon lasso and ols post lasso. Thus, the main message here is that ols post
lasso and ols post fit-lasso perform at least as well as lasso and sometimes a lot better.
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Figure 1. This figure plots the performance of the estimators listed in the text under the equi-correlated
design for the covariates xi ∼ N(0,Σ), Σjk = 1/2 if j 6= k. The number of regressors is p = 500 and the
sample size is n = 100 with 1000 simulations for each level of signal strength C. In each simulation there
are 5 relevant covariates whose coefficients are set equal to the signal strength C, and the variance of
the noise is set to 1.

To the best of our knowledge, our paper is the first to establish the aforementioned
rate results on ols post lasso and the proposed ols post fitness-thresholded lasso in the
mean regression problem. Our analysis builds upon the ideas in [2], who established the
properties of post-penalized procedures for the related, but different, problem of median
regression. Our analysis also builds on the fundamental results of [4] and the other works
cited above that established the properties of the first-step lasso-type estimators. An
important ingredient in our analysis is a new sparsity bound on the dimension of the
model selected by lasso, which guarantees that this dimension is at most of the same
order as the dimension of the “true” model. This result builds on some inequalities
for sparse eigenvalues and reasoning previously given in [2] in the context of median
regression. Our sparsity bounds for lasso improve upon the analogous bounds in [4] and
are comparable to the bounds in [33] obtained under a larger penalty level. We also rely
on maximal inequalities in [33] to provide primitive conditions for the sharp sparsity
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bounds to hold.
We organize the paper as follows. Section 2 reviews the model and discusses the

estimators. Section 3 revisits some benchmark results of [4] for lasso, albeit allowing for
a data driven choice of penalty level, develops an extension of model selection results
of [19] to the nonparametric case, and derives a new sparsity bound for lasso. Section 4
presents a generic rate result on ols post-model selection estimators. Section 5 applies
the generic results to the ols post lasso and the ols post thresholded lasso estimators.
Appendix contains main proofs and the Supplementary Appendix contains auxiliary
proofs. In the Supplementary Appendix we also present the results of our computational
experiments.

Notation. In making asymptotic statements, we assume that n → ∞ and p = pn →
∞, and we also allow for s = sn → ∞. In what follows, all parameter values are indexed
by the sample size n, but we omit the index whenever this does not cause confusion. We
use the notation (a)+ = max{a, 0}, a∨b = max{a, b} and a∧b = min{a, b}. The ℓ2-norm
is denoted by ‖ · ‖, the ℓ1-norm is denoted by ‖ · ‖1, the ℓ∞-norm is denoted by ‖ · ‖∞,
and the ℓ0-norm ‖ · ‖0 denotes the number of non-zero components of a vector. Given a
vector δ ∈ IRp, and a set of indices T ⊂ {1, . . . , p}, we denote by δT the vector in which
δTj = δj if j ∈ T , δTj = 0 if j /∈ T , and by |T | the cardinality of T . Given a covariate
vector xi ∈ IRp, we denote by xi[T ] vector {xij , j ∈ T }. The symbol E[·] denotes the
expectation. We also use standard empirical process notation

En[f(z•)] :=
n∑

i=1

f(zi)/n and Gn(f(z•)) :=
n∑

i=1

(f(zi)− E[f(zi)])/
√
n.

We also denote the L2(Pn)-norm by ‖f‖Pn,2 = (En[f
2
• ])

1/2. Given covariate values
x1, . . . , xn, we define the prediction norm of a vector δ ∈ IRp as ‖δ‖2,n = {En[(x

′
iδ)

2]}1/2.
We use the notation a . b to denote a ≤ Cb for some constant C > 0 that does not
depend on n (and therefore does not depend on quantities indexed by n like p or s); and
a .P b to denote a = OP (b). For an event A, we say that A wp → 1 when A occurs
with probability approaching one as n grows. Also we denote by c̄ = (c + 1)/(c− 1) for
a chosen constant c > 1.

2. The setting, estimators, and conditions

2.1. The setting

Condition ( M ). We have data {(yi, zi), i = 1, . . . , n} such that for each n

yi = f(zi) + ǫi, ǫi ∼ N(0, σ2), i = 1, . . . , n, (2.1)

where yi are the outcomes, zi are vectors of fixed regressors, and ǫi are i.i.d. errors. Let
P (zi) be a given p-dimensional dictionary of technical regressors with respect zi, i.e. a
p-vector of transformation of zi, with components

xi := P (zi)
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of the dictionary normalized so that

En[x
2
•j ] = 1 for j = 1, . . . , p.

In making making asymptotic statements, we assume that n → ∞ and p = pn → ∞, and
that all parameters of the model are implicitly indexed by n.

We would like to estimate the nonparametric regression function f at the design points,
namely the values fi = f(zi) for i = 1, . . . , n. In order to setup estimation and define a
performance benchmark we consider the following oracle risk minimization program:

min
0≤k≤p∧n

c2k + σ2 k

n
, (2.2)

where
c2k := min

‖β‖0≤k
En[(f• − x′

•β)
2]. (2.3)

Note that c2k + σ2k/n is an upper bound on the risk of the best k-sparse least squares
estimator, i.e. the best estimator amongst all least squares estimators that use k out of
p components of xi to estimate fi, for i = 1, . . . , n. The oracle program (2.2) chooses the
optimal value of k. Let s be the smallest integer amongst these optimal values, and let

β0 ∈ arg min
‖β‖0≤s

En[(f• − x′
•β)

2]. (2.4)

We call β0 the oracle target value, T := support(β0) the oracle model, s := |T | = ‖β0‖0
the dimension of the oracle model, and x′

iβ0 the oracle approximation to fi. The latter is
our intermediary target, which is equal to the ultimate target fi up to the approximation
error

ri := fi − x′
iβ0.

If we knew T we could simply use xi[T ] as regressors and estimate fi, for i = 1, . . . , n,
using the least squares estimator, achieving the risk of at most

c2s + σ2s/n,

which we call the oracle risk. Since T is not known, we shall estimate T using lasso-type
methods and analyze the properties of post-model selection least squares estimators,
accounting for possible model selection mistakes.

Remark 2.1 (The oracle program). Note that if argmin is not unique in the prob-
lem (2.4), it suffices to select one of the values in the set of argmins. Supplementary
Appendix provides a more detailed discussion of the oracle problem. The idea of using
oracle problems such as (2.2) for benchmarking the performance follows its prior uses in
the literature. For instance, see [4], Theorem 6.1, where an analogous problem appears
in upper bounds on performance of lasso.
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Remark 2.2 (A leading special case). When contrasting the performance of lasso and
ols post lasso estimators in Remarks 5.1-5.2 given later, we shall mention a balanced case
where

c2s . σ2s/n (2.5)

which says that the oracle program (2.2) is able to balance the norm of the bias squared
to be not much larger than the variance term σ2s/n. This corresponds to the case that
the approximation error bias does not dominate the estimation error of the oracle least
squares estimator, so that the oracle rate of convergence simplifies to

√
s/n mentioned

in the introduction.

2.2. Model selectors based on lasso

Given the large number of regressors p > n, some regularization or covariate selection
is required in order to obtain consistency. The lasso estimator [26], defined as follows,
achieves both tasks by using the ℓ1 penalization:

β̂ ∈ arg min
β∈Rp

Q̂(β) +
λ

n
‖β‖1, where Q̂(β) = En[(y• − x′

•β)
2], (2.6)

and λ is the penalty level whose choice is described below. If the solution is not unique
we pick any solution with minimum support. The lasso is often used as an estimator and
more often only as a model selection device, with the model selected by lasso given by:

T̂ := support(β̂).

Moreover, we denote by m̂ := |T̂ \ T | the number of components outside T selected by

lasso and by f̂i = x′
iβ̂, i = 1, . . . , n the lasso estimate of fi, i = 1, . . . , n.

Oftentimes additional thresholding is applied to remove regressors with small esti-
mated coefficients, defining the so called thresholded lasso estimator:

β̂(t) = (β̂j1{|β̂j| > t}, j = 1, . . . , p), (2.7)

where t ≥ 0 is the thresholding level, and the corresponding selected model is then

T̂ (t) := support(β̂(t)).

Note that setting t = 0, we have T̂ (t) = T̂ , so lasso is a special case of thresholded lasso.

2.3. Post-model selection estimators

Given this all of our post-model selection estimators or ols post lasso estimators will take
the form

β̃t = arg min
β∈IRp

Q̂(β) : βj = 0 for each j ∈ T̂ c(t). (2.8)
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That is given the model selected a threshold lasso T̂ (t), including the lasso’s model T̂ (0)
as a special case, the post-model selection estimator applies the ordinary least squares
to the selected model.

In addition to the case of t = 0, we also consider the following choices for the threshold
level:

traditional threshold (t): t > ζ = max
1≤j≤p

|β̂j − β0j |,
fitness-based threshold (fit): t = tγ := max

t≥0
{t : Q̂(β̃t)− Q̂(β̂) ≤ γ}, (2.9)

where γ ≤ 0, and |γ| is the gain of the in-sample fit allowed relative to lasso.
As discussed in Section 3.2, the standard thresholding method is particularly appeal-

ing in models in which oracle coefficients β0 are well separated from zero. This scheme
however may perform poorly in models with oracle coefficients not well separated from
zero and in nonparametric models. Indeed, even in parametric models with many small
but non-zero true coefficients, thresholding the estimates too aggressively may result in
large goodness-of-fit losses, and consequently in slow rates of convergence and even incon-
sistency for the second-step estimators. This issue directly motivates our new goodness-
of-fit based thresholding method, which sets to zero small coefficient estimates as much
as possible subject to maintaining a certain goodness-of-fit level.

Depending on how we select the threshold, we consider the following three types of
the post-model selection estimators:

ols post lasso: β̃0 (t = 0),

ols post t-lasso: β̃t (t > ζ),

ols post fit-lasso: β̃tγ (t = tγ).

(2.10)

The first estimator is defined by ols applied to the model selected by lasso, also called
Gauss-lasso; the second by ols applied to the model selected by the thresholded lasso,
and the third by ols applied to the model selected by fitness-thresholded lasso.

The main purpose of this paper is to derive the properties of the post-model selection
estimators (2.10). If model selection works perfectly, which is possible only under rather
special circumstances, then the post-model selection estimators are the oracle estimators,
whose properties are well known. However, of a much more general interest is the case
when model selection does not work perfectly, as occurs for many designs of interest in
applications.

2.4. Choice and computation of penalty level for lasso

The key quantity in the analysis is the gradient of Q̂ at the true value:

S = 2En[x•ǫ•].

This gradient is the effective “noise” in the problem that should be dominated by the reg-
ularization. However we would like to make the bias as small as possible. This reasoning
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suggests choosing the smallest penalty level λ so that to dominate the noise, namely

λ ≥ cn‖S‖∞ with probability at least 1− α, (2.11)

where probability 1− α needs to be close to 1 and c > 1. Therefore, we propose setting

λ = c′ σ̂ Λ(1− α|X), for some fixed c′ > c > 1, (2.12)

where Λ(1 − α|X) is the (1 − α)-quantile of n‖S/σ‖∞, and σ̂ is a possibly data-driven
estimate of σ. Note that the quantity Λ(1− α|X) is independent of σ and can be easily
approximated by simulation. We refer to this choice of λ as the data-driven choice,
reflecting the dependence of the choice on the design matrix X = [x1, . . . , xn]

′ and a
possibly data-driven σ̂. Note that the proposed (2.12) is sharper than c′σ̂2

√
2n log(p/α)

typically used in the literature. We impose the following conditions on σ̂.

Condition (V). The estimated σ̂ obeys

ℓ ≤ σ̂/σ ≤ u with probability at least 1− τ,

where 0 < ℓ ≤ 1 and 1 ≤ u and 0 ≤ τ < 1 be constants possibly dependent on n.

We can construct a σ̂ that satisfies this condition under mild assumptions as follows.
First, set σ̂ = σ̂0, where σ̂0 is an upper bound on σ which is possibly data-driven, for
example the sample standard deviation of yi. Second, compute the lasso estimator based
on this estimate and set σ̂2 = Q̂(β̂). We demonstrate that σ̂ constructed in this way
satisfies Condition V and characterize quantities u and ℓ and τ in the Supplementary
Appendix. We can iterate on the last step a bounded number of times. Moreover, we can
similarly use ols post lasso for this purpose.

2.5. Choices and computation of thresholding levels

Our analysis will cover a wide range of possible threshold levels. Here, however, we would
like to propose some basic options that give both good finite-sample and theoretical
results. In the traditional thresholding method, we can set

t = c̃λ/n, (2.13)

for some c̃ ≥ 1. This choice is theoretically motivated by Section 3.2 that presents the
perfect model selection results, where under some conditions ζ ≤ c̃λ/n. This choice
also leads to near-oracle performance of the resulting post-model selection estimator.
Regarding the choice of c̃, we note that setting c̃ = 1 and achieving ζ ≤ λ/n is possible
by the results of Section 3.2 if empirical Gram matrix is orthogonal and approximation
error cs vanishes. Thus, c̃ = 1 is the least aggressive traditional thresholding one can
perform under conditions of Section 3.2 (note also that c̃ = 1 has performed better than
c̃ > 1 in our computational experiments).
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Our fitness-based threshold tγ requires the specification of the parameter γ. The sim-
plest choice delivering near-oracle performance is γ = 0; this choice leads to the sparsest
post-model selection estimator that has the same in-sample fit as lasso. Our preferred
choice is however to set

γ =
Q̂(β̃0)− Q̂(β̂)

2
< 0, (2.14)

where β̃0 is the ols post lasso estimator. The resulting estimator is more sparse than lasso,
and it also produces a better in-sample fit than lasso. This choice also results in near-
oracle performance and also leads to the best performance in computational experiments.
Note also that for any γ, we can compute tγ by a binary search over t ∈ sort{|β̂j |, j ∈ T̂},
where sort is the sorting operator. This is the case since the final estimator depends only
on the selected support and not on the specific value of t used. Therefore, since there are
at most |T̂ | different values of t to be tested, by using a binary search, we can compute

tγ exactly by running at most ⌈log2 |T̂ |⌉ ordinary least squares problems.

2.6. Conditions on the design

For the analysis of lasso we rely on the following restricted eigenvalue condition.

Condition (RE(c̄)). For a given c̄ ≥ 0,

κ(c̄) := min
‖δTc‖1≤c̄‖δT ‖1,δ 6=0

√
s‖δ‖2,n
‖δT ‖1

> 0.

This condition is a variant of the restricted eigenvalue condition introduced in [4], that
is known to be quite general and plausible; see also [4] for related conditions.

For the analysis of post-model selection estimators we need the following restricted
sparse eigenvalue condition.

Condition (RSE(m)). For a given m < n,

κ̃(m)2 := min
‖δTc‖0≤m,δ 6=0

‖δ‖22,n
‖δ‖2 > 0, φ(m) := max

‖δTc‖0≤m,δ 6=0

‖δ‖22,n
‖δ‖2 > 0.

Here m denotes the restriction on the number of non-zero components outside the
support T . It will be convenient to define the following condition number associated with
the empirical Gram matrix:

µ(m) =

√
φ(m)

κ̃(m)
. (2.15)

The following lemma demonstrates the plausibility of conditions above for the case
where the values xi, i = 1, . . . , n, have been generated as a realization of the random
sample; there are also other primitive conditions. In this case we can expect that em-
pirical restricted eigenvalue is actually bounded away from zero and (2.15) is bounded
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from above with a high probability. The lemma uses the standard concept of (unre-
stricted) sparse eigenvalues (see, e.g. [4]) to state a primitive condition on the population
Gram matrix. The lemma allows for standard arbitrary bounded dictionaries, arising in
the nonparametric estimation, for example regression splines, orthogonal polynomials,
and trigonometric series, see [14, 29, 32, 27]. Similar results are known to also hold for
standard Gaussian regressors [33].

Lemma 1 (Plausibility of RE and RSE). Suppose x̃i, i = 1, . . . , n, are i.i.d. zero-mean
vectors, such that the population design matrix E[x̃ix̃

′
i] has ones on the diagonal, and its

s logn-sparse eigenvalues are bounded from above by ϕ < ∞ and bounded from below by
κ2 > 0. Define xi as a normalized form of x̃i, namely xij = x̃ij/(En[x̃

2
•j ])

1/2. Suppose that

x̃i max1≤i≤n ‖x̃i‖∞ ≤ Kn a.s., and K2
ns log

2(n) log2(s logn) log(p∨n) = o(nκ4/ϕ). Then,
for any m + s ≤ s logn, the empirical restricted sparse eigenvalues obey the following
bounds:

φ(m) ≤ 4ϕ, κ̃(m)2 ≥ κ2/4, and µ(m) ≤ 4
√
ϕ/κ,

with probability approaching 1 as n → ∞.

3. Results on lasso as an estimator and model
selector

The properties of the post-model selection estimators will crucially depend on both the
estimation and model selection properties of lasso. In this section we develop the esti-
mation properties of lasso under the data-dependent penalty level, extending the results
of [4], and develop the model selection properties of lasso for non-parametric models,
generalizing the results of [19] to the nonparametric case.

3.1. Estimation Properties of lasso

The following theorem describes the main estimation properties of lasso under the data-
driven choice of the penalty level.

Theorem 1 (Performance bounds for lasso under data-driven penalty). Suppose that
Conditions M and RE(c̄) hold for c̄ = (c+ 1)/(c− 1). If λ ≥ cn‖S‖∞, then

‖β̂ − β0‖2,n ≤
(
1 +

1

c

)
λ
√
s

nκ(c̄)
+ 2cs.

Moreover, suppose that Condition V holds. Under the data-driven choice (2.12), for c′ ≥
c/ℓ, we have λ ≥ cn‖S‖∞ with probability at least 1 − α − τ , so that with at least the
same probability

‖β̂ − β0‖2,n ≤ (c′ + c′/c)

√
s

nκ(c̄)
σuΛ(1− α|X) + 2cs, where Λ(1− α|X) ≤

√
2n log(p/α).
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If further RE(2c̄) holds, then

‖β̂ − β0‖1 ≤
(
(1 + 2c̄)

√
s

κ(2c̄)
‖β̂ − β0‖2,n

)
∨
((

1 +
1

2c̄

)
2c

c− 1

n

λ
c2s

)
.

This theorem extends the result of [4] by allowing for data-driven penalty level and
deriving the rates in ℓ1-norm. These results may be of independent interest and are
needed for subsequent results.

Remark 3.1. Furthermore, a performance bound for the estimation of the regression
function follows from the relation

∣∣∣‖f̂ − f‖Pn,2 − ‖β̂ − β0‖2,n
∣∣∣ ≤ cs, (3.16)

where f̂i = x′
iβ̂ is the lasso estimate of the regression function f evaluated at zi. It is

interesting to know some lower bounds on the rate which follow from Karush-Kuhn-
Tucker conditions for lasso (see equation (A.25) in the appendix):

‖f̂ − f‖Pn,2 ≥
(1− 1/c)λ

√
|T̂ |

2n
√
φ(m̂)

,

where m̂ = |T̂ \T |. We note that a similar lower bound was first derived in [21] with φ(p)
instead of φ(m̂).

The preceding theorem and discussion imply the following useful asymptotic bound
on the performance of the estimators.

Corollary 1 (Asymptotic bounds on performance of lasso). Under the conditions of
Theorem 1, if

φ(m̂) . 1, κ(c̄) & 1, µ(m̂) . 1, log(1/α) . log p, α = o(1), u/ℓ . 1, and τ = o(1)
(3.17)

hold as n grows, we have that

‖f̂ − f‖Pn,2 .P σ

√
s log p

n
+ cs.

Moreover, if |T̂ | &P s, in particular if T ⊆ T̂ with probability going to 1, we have

‖f̂ − f‖Pn,2 &P σ

√
s log p

n
.

In Lemma 1 we established fairly general sufficient conditions for the first three rela-
tions in (3.17) to hold with high probability as n grows, when the design points z1, . . . , zn
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were generated as a random sample. The remaining relations are mild conditions on the
choice of α and the estimation of σ that are used in the definition of the data-driven
choice (2.12) of the penalty level λ.

It follows from the corollary that provided κ(c̄) is bounded away from zero, lasso with
data-driven penalty estimates the regression function at a near-oracle rate. The second
part of the corollary generalizes to the nonparametric case the lower bound obtained for
lasso in [21]. It shows that the rate cannot be improved in general. We shall use the
asymptotic rates of convergence to compare the performance of lasso and the post-model
selection estimators.

3.2. Model selection properties of lasso

The main results of the paper do not require the first-step estimators like lasso to perfectly
select the “true” oracle model. In fact, we are specifically interested in the most common
cases where these estimators do not perfectly select the true model. For these cases, we
will prove that post-model selection estimators such as ols post lasso achieve near-oracle
rates like those of lasso. However, in some special cases, where perfect model selection is
possible, these estimators can achieve the exact oracle rates, and thus can be even better
than lasso. The purpose of this section is to describe these very special cases where perfect
model selection is possible.

Theorem 2 (Some conditions for perfect model selection in nonparametric setting).
Suppose that Condition M holds. (1) If the coefficients are well separated from zero, that
is

min
j∈T

|β0j | > ζ + t, for some t ≥ ζ := max
j=1,...,p

|β̂j − β0j |,

then the true model is a subset of the selected model, T := support(β0) ⊆ T̂ := support(β̂).

Moreover, T can be perfectly selected by applying level t thresholding to β̂, i.e. T = T̂ (t).
(2) In particular, if λ ≥ cn‖S‖∞, and there is a constant U > 5c̄ such that the empirical
Gram matrix satisfies |En[x•jx•k]| ≤ 1/(Us) for all 1 ≤ j < k ≤ p, then

ζ ≤ λ

n
· U + c̄

U − 5c̄
+

σ√
n
∧ cs +

6c̄

U − 5c̄

cs√
s
+

4c̄

U

n

λ

c2s
s
.

These results substantively generalize the parametric results of [19] on model selection
by thresholded lasso. These results cover the more general nonparametric case and may
be of independent interest. Note also that the conditions for perfect model selection
stated require a strong assumption on the separation of coefficients of the oracle from
zero, and also a near perfect orthogonality of the empirical Gram matrix. This is the
sense in which the perfect model selection is a rather special, non-general phenomenon.
Finally, we note that it is possible to perform perfect selection of the oracle model by lasso
without applying any additional thresholding under additional technical conditions and
higher penalty levels [34, 31, 5]. In the supplement we state the nonparametric extension
of the parametric result due to [31].
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3.3. Sparsity properties of lasso

We also derive new sharp sparsity bounds for lasso, which may be of independent interest.
We begin with a preliminary sparsity bound for lasso.

Lemma 2 (Empirical pre-sparsity for lasso). Suppose that Conditions M and RE(c̄)

hold, λ ≥ cn‖S‖∞, and let m̂ = |T̂ \ T |. We have for c̄ = (c+ 1)/(c− 1) that
√
m̂ ≤

√
s
√

φ(m̂) 2c̄/κ(c̄) + 3(c̄+ 1)
√
φ(m̂) ncs/λ.

The lemma above states that lasso achieves the oracle sparsity up to a factor of φ(m̂).
Under the conditions (2.5) and κ(c̄) & 1, the lemma above immediately yields the simple
upper bound on the sparsity of the form

m̂ .P sφ(n), (3.18)

as obtained for example in [4] and [22]. Unfortunately, this bound is sharp only when
φ(n) is bounded. When φ(n) diverges, for example when φ(n) &P

√
log p in the Gaussian

design with p ≥ 2n by Lemma 6 of [3], the bound is not sharp. However, for this case
we can construct a sharp sparsity bound by combining the preceding pre-sparsity result
with the following sub-linearity property of the restricted sparse eigenvalues.

Lemma 3 (Sub-linearity of restricted sparse eigenvalues). For any integer k ≥ 0 and
constant ℓ ≥ 1 we have φ(⌈ℓk⌉) ≤ ⌈ℓ⌉φ(k).

A version of this lemma for unrestricted sparse eigenvalues has been previously proven
in [2]. The combination of the preceding two lemmas gives the following sparsity theorem.

Theorem 3 (Sparsity bound for lasso under data-driven penalty). Suppose that Con-

ditions M and RE(c̄) hold, and let m̂ := |T̂ \ T |. The event λ ≥ cn‖S‖∞ implies that

m̂ ≤ s ·
[
min
m∈M

φ(m ∧ n)

]
· Ln,

where M = {m ∈ N : m > sφ(m ∧ n) · 2Ln} and Ln = [2c̄/κ(c̄) + 3(c̄+ 1)ncs/(λ
√
s)]2.

The main implication of Theorem 3 is that under (2.5), if minm∈M φ(m ∧ n) . 1 and
λ ≥ cn‖S‖∞ hold with high probability, which is valid by Lemma 1 for important designs
and by the choice of penalty level (2.12), then with high probability

m̂ . s. (3.19)

Consequently, for these designs and penalty level, lasso’s sparsity is of the same order as
the oracle sparsity, namely ŝ := |T̂ | ≤ s+m̂ . s with high probability. The reason for this
is that minm∈M φ(m) ≪ φ(n) for these designs, which allows us to sharpen the previous
sparsity bound (3.18) considered in [4] and [22]. Also, our new bound is comparable to
the bounds in [33] in terms of order of sharpness, but it requires a smaller penalty level
λ which also does not depend on the unknown sparse eigenvalues as in [33].
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4. Performance of post-model selection estimators

with a generic model selector

Next, we present a general result on the performance of a post-model selection estimator
with a generic model selector.

Theorem 4 (Performance of post-model selection estimator with a generic model se-

lector). Suppose Condition M holds and let β̂ be any first-step estimator acting as the

model selector and denote by T̂ := support(β̂) the model it selects, such that |T̂ | ≤ n. Let

β̃ be the post-model selection estimator defined by

β̃ ∈ arg min
β∈IRp

Q̂(β) : βj = 0, for each j ∈ T̂ c. (4.20)

Let Bn := Q̂(β̂) − Q̂(β0) and Cn := Q̂(β0T̂ ) − Q̂(β0) and m̂ = |T̂ \ T | be the number
of wrong regressors selected. Then, if condition RSE(m̂) holds, for any ε > 0, there is a

constant Kε independent of n such that with probability at least 1 − ε, for f̃i = x′
iβ̃ we

have

‖f̃ − f‖Pn,2 ≤ Kεσ

√
m̂ log p+ (m̂+ s) log(eµ(m̂))

n
+ 3cs +

√
(Bn)+ ∧ (Cn)+.

Furthermore, for any ε > 0, there is a constant Kε independent of n such that with
probability at least 1− ε,

Bn ≤ ‖β̂ − β0‖22,n +

[
Kεσ

√
m̂ log p+ (m̂+ s) log(eµ(m̂))

n
+ 2cs

]
‖β̂ − β0‖2,n

Cn ≤ 1{T 6⊆ T̂}


‖β0T̂ c‖22,n +


Kεσ

√
log
(s
k̂

)
+ k̂ log(eµ(0))

n
+ 2cs


 ‖β0T̂ c‖2,n


 .

Three implications of Theorem 4 are worth noting. First, the bounds on the prediction
norm stated in Theorem 4 apply to the ols estimator on the components selected by any
first-step estimator β̂, provided we can bound both the rate of convergence ‖β̂ − β0‖2,n
of the first-step estimator and m̂, the number of wrong regressors selected by the model
selector. Second, note that if the selected model contains the true model, T ⊆ T̂ , then
we have (Bn)+ ∧ (Cn)+ = Cn = 0, and Bn does not affect the rate at all, and the
performance of the second-step estimator is determined by the sparsity m̂ of the first-
step estimator, which controls the magnitude of the empirical errors. Otherwise, if the
selected model fails to contain the true model, that is, T 6⊆ T̂ , the performance of the
second-step estimator is determined by both the sparsity m̂ and the minimum between
Bn and Cn. The quantity Bn measures the in-sample loss-of-fit induced by the first-step
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estimator relative to the “true” parameter value β0, and Cn measures the in-sample
loss-of-fit induced by truncating the “true” parameter β0 outside the selected model T̂ .

The proof of Theorem 4 relies on the sparsity-based control of the empirical error
provided by the following lemma.

Lemma 4 (Sparsity-based control of empirical error). Suppose Condition M holds. (1)
For any ε > 0, there is a constant Kε independent of n such that with probability at least
1− ε,

|Q̂(β0 + δ)− Q̂(β0)− ‖δ‖22,n| ≤ Kεσ

√
m log p+ (m+ s) log(eµ(m))

n
‖δ‖2,n + 2cs‖δ‖2,n,

uniformly for all δ ∈ R
p such that ‖δT c‖0 ≤ m, and uniformly over m ≤ n.

(2) Furthermore, with at least the same probability,

|Q̂(β0T̃ )− Q̂(β0)− ‖β0T̃ c‖22,n| ≤ Kεσ

√
log
(
s
k

)
+ k log(eµ(0))

n
‖β0T̃ c‖2,n + 2cs‖β0T̃ c‖2,n,

uniformly for all T̃ ⊂ T such that |T \ T̃ | = k, and uniformly over k ≤ s.

The proof of the lemma in turn relies on the following maximal inequality, whose proof
involves the use of Samorodnitsky-Talagrand’s type inequality.

Lemma 5 (Maximal inequality for a collection of empirical processes). Let ǫi ∼ N(0, σ2)
be independent for i = 1, . . . , n, and for m = 1, . . . , n define

en(m, η) := σ2
√
2

(√
log

(
p

m

)
+
√
(m+ s) log (Dµ(m)) +

√
(m+ s) log(1/η)

)

for any η ∈ (0, 1) and some universal constant D. Then

sup
‖δTc‖0≤m,‖δ‖2,n>0

∣∣∣∣Gn

(
ǫix

′
iδ

‖δ‖2,n

)∣∣∣∣ ≤ en(m, η), for all m ≤ n,

with probability at least 1− ηe−s/(1− 1/e).

5. Performance of least squares after lasso-based
model selection

In this section we specialize our results on post-model selection estimators to the case of
lasso being the first-step estimator. The previous generic results allow us to use sparsity
bounds and rate of convergence of lasso to derive the rate of convergence of post-model
selection estimators in the parametric and nonparametric models.
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5.1. Performance of ols post lasso

Here we show that the ols post lasso estimator enjoys good theoretical performance
despite (generally) imperfect selection of the model by lasso.

Theorem 5 (Performance of ols post lasso). Suppose Conditions M , RE(c̄), and

RSE(m̂) hold where c̄ = (c + 1)/(c − 1) and m̂ = |T̂ \ T |. If λ ≥ cn‖S‖∞ occurs with
probability at least 1 − α, then for any ε > 0 there is a constant Kε independent of n

such that with probability at least 1− α− ε, for f̃i = x′
iβ̃ we have

‖f̃ − f‖Pn,2 ≤ Kεσ
√

m̂ log p+(m̂+s) log(eµ(m̂))
n

+ 3cs + 1{T 6⊆ T̂}
√

λ
√
s

nκ(1)

(
(1+c)λ

√
s

cnκ(1)
+ 2cs

)
.

In particular, under Condition V and the data-driven choice of λ specified in (2.12) with
log(1/α) . log p, u/ℓ . 1, for any ε > 0 there is a constant K ′

ε,α such that

‖f̃ − f‖Pn,2 ≤ 3cs +K′
ε,ασ

[√
m̂ log(peµ(m̂))

n
+
√

s log(eµ(m̂))
n

]
+

+1{T 6⊆ T̂}
[
K′

ε,ασ
√

s log p
n

1
κ(1)

+ cs

] (5.21)

with probability at least 1− α− ε− τ .

This theorem provides a performance bound for ols post lasso as a function of 1) lasso’s
sparsity characterized by m̂, 2) lasso’s rate of convergence, and 3) lasso’s model selection
ability. For common designs this bound implies that ols post lasso performs at least as
well as lasso, but it can be strictly better in some cases, and has smaller regularization
bias. We provide further theoretical comparisons in what follows, and computational
examples supporting these comparisons appear in Supplementary Appendix. It is also
worth repeating here that performance bounds in other norms of interest immediately
follow by the triangle inequality and by definition of κ̃ as discussed in Remark 3.1.

The following corollary summarizes the performance of ols post lasso under commonly
used designs.

Corollary 2 (Asymptotic performance of ols post lasso). Under the conditions of The-
orem 5, (2.5) and (3.17), as n grows, we have that

‖f̃ − f‖Pn,2 .P





σ
√

s log p
n + cs, in general,

σ
√

o(s) log p
n + σ

√
s
n + cs, if m̂ = oP (s) and T ⊆ T̂ wp → 1,

σ
√
s/n+ cs, if T = T̂ wp → 1.

Remark 5.1 (Comparison of the performance of ols post lasso vs lasso). We now
compare the upper bounds on the rates of convergence of lasso and ols post lasso under
conditions of the corollary. In general, the rates coincide. Notably, this occurs despite
the fact that lasso may in general fail to correctly select the oracle model T as a subset,
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that is T 6⊆ T̂ . However, if the oracle model has well-separated coefficients and condition
and the approximation error does not dominated the estimation error – then ols post
lasso rate improves upon lasso’s rate. Specifically, this occurs if condition (2.5) holds and

m̂ = oP (s) and T ⊆ T̂ wp → 1, as under conditions of Theorem 2 Part 1 or in the

case of perfect model selection, when T = T̂ wp → 1, as under conditions of [31]. Under
such cases, we know from Corollary 1, that the rates found for lasso are sharp, and they
cannot be faster than σ

√
s log p/n. Thus the improvement in the rate of convergence of

ols post lasso over lasso in such cases is strict.

5.2. Performance of ols post fit-lasso

In what follows we provide performance bounds for ols post fit-lasso β̃ defined in equation
(4.20) with threshold (2.9) for the case where the first-step estimator β̂ is lasso. We let

T̃ denote the model selected.

Theorem 6 (Performance of ols post fit-lasso). Suppose Conditions M , RE(c̄), and

RSE(m̃) hold where c̄ = (c + 1)/(c − 1) and m̃ = |T̃ \ T |. If λ ≥ cn‖S‖∞ occurs with
probability at least 1 − α, then for any ε > 0 there is a constant Kε independent of n

such that with probability at least 1− α− ε, for f̃i = x′
iβ̃ we have

‖f̃ − f‖Pn,2 ≤ Kεσ
√

m̃ log p+(m̃+s) log(eµ(m̃))
n

+ 3cs + 1{T 6⊆ T̃}
√

λ
√
s

nκ(1)

(
(1+c)λ

√
s

cnκ(1)
+ 2cs

)
.

Under Condition V and the data-driven choice of λ specified in (2.12) with log(1/α) .
log p, u/ℓ . 1, for any ε > 0 there is a constant K ′

ε,α such that

‖f̃ − f‖Pn,2 ≤ 3cs +K ′
ε,ασ

[√
m̃ log(peµ(m̃))

n +
√

s log(eµ(m̃))
n

]
+

+1{T 6⊆ T̃}
[
K ′

ε,ασ
√

s log p
n

1
κ(1) + cs

] (5.22)

with probability at least 1− α− ε− τ .

This theorem provides a performance bound for ols post fit- lasso as a function of 1)
its sparsity characterized by m̃, 2) lasso’s rate of convergence, and 3) the model selection
ability of the thresholding scheme. Generally, this bound is as good as the bound for
ols post lasso, since the ols post fitness-thresholded lasso thresholds as much as possible
subject to maintaining certain goodness-of-fit. It is also appealing that this estimator
determines the thresholding level in a completely data-driven fashion. Moreover, by con-
struction the estimated model is sparser than ols post lasso’s model, which leads to an
improved performance of ols post fitness-thresholded lasso over ols post lasso in some
cases. We provide further theoretical comparisons below and computational examples in
the Supplementary Appendix.

The following corollary summarizes the performance of ols post fit-lasso under com-
monly used designs.

imsart-bj ver. 2009/08/13 file: Post-LASSO-SecondRevision_AfterSubmitted_v01.tex date: August 26, 2011



18

Corollary 3 (Asymptotic performance of ols post fit-lasso). Under the conditions of
Theorem 6, if conditions in (2.5) and (3.17) hold, as n grows, we have that the ols post
fitness-thresholded lasso satisfies

‖f̃ − f‖Pn,2 .P





σ
√

s log p
n + cs, in general,

σ
√

o(s) log p
n + σ

√
s
n + cs, if m̃ = oP (s) and T ⊆ T̃ wp → 1,

σ
√

s
n + cs, if T = T̃ wp → 1.

Remark 5.2 (Comparison of the performance of ols post fit-lasso vs lasso and ols
post lasso). Under the conditions of the corollary, the ols post fitness-thresholded lasso
matches the near oracle rate of convergence of lasso and ols post lasso: σ

√
s log p/n+ cs.

If m̃ = oP (s) and T ⊆ T̃ wp → 1 and (2.5) hold, then ols post fit-lasso strictly improves
upon lasso’s rate. That is, if the oracle models has coefficients well-separated from zero
and the approximation error is not dominant, the improvement is strict. An interesting
question is whether ols post fit-lasso can outperform ols post lasso in terms of the rates.
We cannot rank these estimators in terms of rates in general. However, this necessarily
occurs when the lasso does not achieve the sufficient sparsity while the model selection
works well, namely when m̃ = oP (m̂) and T ⊆ T̃ wp → 1. Lastly, under conditions
ensuring perfect model selection, namely condition of Theorem 2 holding for t = tγ , ols

post fit-lasso achieves the oracle performance, σ
√

s/n+ cs.

5.3. Performance of the ols post thresholded lasso

Next we consider the traditional thresholding scheme which truncates to zero all compo-
nents below a set threshold t. This is arguably the most used thresholding scheme in the
literature. To state the result, recall that β̂tj = β̂j1{|β̂j| > t}, m̃ := |T̃ \T |, mt := |T̂ \ T̃ |
and γt := ‖β̂t − β̂‖2,n where β̂ is the lasso estimator.

Theorem 7 (Performance of ols post t-lasso). Suppose Conditions M , RE(c̄), and

RSE(m̃) hold where c̄ = (c + 1)/(c − 1) and m̃ = |T̃ \ T |. If λ ≥ cn‖S‖∞ occurs with
probability at least 1 − α, then for any ε > 0 there is a constant Kε independent of n

such that with probability at least 1− α− ε, for f̃i = x′
iβ̃ we have

‖f̃ − f‖Pn,2 ≤ Kεσ
√

m̃ log p+(m̃+s) log(eµ(m̃))
n

+ 3cs + 1{T 6⊆ T̃}
(
γt +

1+c
c

λ
√
s

nκ(c̄)
+ 2cs

)
+

+1{T 6⊆ T̃}
√[

Kεσ
√

m̃ log p+(m̃+s) log(eµ(m̃))
n

+ 2cs

](
γt +

1+c
c

λ
√

s
nκ(c̄)

+ 2cs
)

where γt ≤ t
√
φ(mt)mt. Under Condition V and the data-driven choice of λ specified

in (2.12) for log(1/α) . log p, u/ℓ . 1, for any ε > 0 there is a constant K ′
ε,α such that
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with probability at least 1− α− ε− τ

‖f̃ − f‖Pn,2 ≤ 3cs +K ′
ε,α

[
σ
√

m̃ log(peµ(m̃))
n + σ

√
s log(eµ(m̃))

n

]
+

+1{T 6⊆ T̃}
[
γt +K ′

ε,ασ
√

s log p
n

1
κ(c̄) + 4cs

]
.

This theorem provides a performance bound for ols post thresholded lasso as a func-
tion of 1) its sparsity characterized by m̃ and improvements in sparsity over lasso char-
acterized by mt, 2) lasso’s rate of convergence, 3) the thresholding level t and resulting
goodness-of-fit loss γt relative to lasso induced by thresholding, and 4) model selection
ability of the thresholding scheme. Generally, this bound may be worse than the bound
for lasso, and this arises because the ols post thresholded lasso may potentially use too
much thresholding resulting in large goodness-of-fit losses γt. We provide further theoret-
ical comparisons below and computational examples in Section D of the Supplementary
Appendix.

Remark 5.3 (Comparison of the performance of ols post thresholded lasso vs lasso and
ols post lasso). In this discussion we also assume conditions in (2.5) and (3.17) made
in the previous formal comparisons. Under these conditions, ols post thresholded lasso
obeys the bound:

‖f̃ − f‖Pn,2 .P σ

√
m̃ log p

n
+ σ

√
s

n
+ cs + 1{T 6⊆ T̃}

(
γt ∨ σ

√
s log p

n

)
. (5.23)

In this case we have m̃∨mt ≤ s+ m̂ .P s by Theorem 3, and, in general, the rate above
cannot improve upon lasso’s rate of convergence given in Lemma 1.

As expected, the choice of t, which controls γt via the bound γt ≤ t
√
φ(mt)mt, can

have a large impact on the performance bounds: If

t . σ
√

log p
n then ‖f̃ − f‖Pn,2 .P σ

√
s log p

n + cs. (5.24)

The choice (5.24), suggested by [19] and Theorem 3, is theoretically sound, since it
guarantees that ols post thresholded lasso achieves the near-oracle rate of lasso. Note
that to implement the choice (5.24) in practice we suggest to set t = λ/n, since the
separation from zero of the coefficients is unknown in practice. Note that using a much
larger t can lead to inferior rates of convergence.

Furthermore, there is a special class of models – a neighborhood of parametric models
with well-separated coefficients – for which improvements upon the rate of convergence of
lasso is possible. Specifically, if m̃ = oP (s) and T ⊆ T̃ wp → 1 then ols post thresholded

lasso strictly improves upon lasso’s rate. Furthermore, if m̃ = oP (m̂) and T ⊆ T̃ wp → 1,
ols post thresholded lasso also outperforms ols post lasso:

‖f̃ − f‖Pn,2 .P σ

√
o(m̂) log p

n
+ σ

√
s

n
+ cs.
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Lastly, under the conditions of Theorem 2 holding for the given t, ols post thresholded
lasso achieves the oracle performance, ‖f̃ − f‖Pn,2 .P σ

√
s/n+ cs.

Appendix A: Proofs

A.1. Proofs for Section 3

Proof of Theorem 1. The bound in ‖ · ‖2,n norm follows by the same steps as in [4],
so we omit the derivation to the supplement.

Under the data-driven choice (2.12) of λ and Condition V, we have c′σ̂ ≥ cσ with
probability at least 1 − τ since c′ ≥ c/ℓ. Moreover, with the same probability we also
have λ ≤ c′uσΛ(1− α|X). The result follows by invoking the ‖ · ‖2,n bound.

The bound in ‖ · ‖1 is proven as follows. First, assume ‖δT c‖1 ≤ 2c̄‖δT‖1. In this
case, by definition of the restricted eigenvalue, we have ‖δ‖1 ≤ (1 + 2c̄)‖δT ‖1 ≤ (1 +
2c̄)

√
s‖δ‖2,n/κ(2c̄) and the result follows by applying the first bound to ‖δ‖2,n since

c̄ > 1. On the other hand, consider the case that ‖δT c‖1 > 2c̄‖δT ‖1. The relation

− λ

cn
(‖δT ‖1 + ‖δT c‖1) + ‖δ‖22,n − 2cs‖δ‖2,n ≤ λ

n
(‖δT ‖1 − ‖δT c‖1),

which is established in (B.35) in the supplementary appendix, implies that ‖δ‖2,n ≤ 2cs
and also

‖δT c‖1 ≤ c̄‖δT ‖1+
c

c− 1

n

λ
‖δ‖2,n(2cs−‖δ‖2,n) ≤ ‖δT ‖1+

c

c− 1

n

λ
c2s ≤ 1

2
‖δT c‖1+

c

c− 1

n

λ
c2s.

Thus,

‖δ‖1 ≤
(
1 +

1

2c̄

)
‖δT c‖1 ≤

(
1 +

1

2c̄

)
2c

c− 1

n

λ
c2s.

The result follows by taking the maximum of the bounds on each case and invoking the
bound on ‖δ‖2,n.

Proof of Theorem 2. Part (1) follows immediately from the assumptions.

To show part(2), let δ := β̂ − β0, and proceed in two steps.

Step 1. By the first order optimality conditions of β̂ and the assumption on λ

‖En[x•x′
•δ]‖∞ ≤ ‖En[x•(y• − x′

•β̂)]‖∞ + ‖S/2‖∞ + ‖En[x•r•]‖∞
≤ λ

2n + λ
2cn +min

{
σ√
n
, cs

}

since ‖En[x•r•]‖∞ ≤ min
{

σ√
n
, cs

}
by Step 2 below.

Next let ej denote the jth-canonical direction. Thus, for every j = 1, . . . , p we have

|En[e
′
jx•x′

•δ]− δj | = |En[e
′
j(x•x′

• − I)δ]| ≤ max1≤j,k≤p |(En[x•x′
• − I])jk| ‖δ‖1

≤ ‖δ‖1/[Us].
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Then, combining the two bounds above and using the triangle inequality we have

‖δ‖∞ ≤ ‖En[x•x
′
•δ]‖∞ + ‖En[x•x

′
•δ]− δ‖∞ ≤

(
1 +

1

c

)
λ

2n
+min

{
σ√
n
, cs

}
+

‖δ‖1
Us

.

The result follows by Theorem 1 to bound ‖δ‖1 and the arguments in [4] and [19] to show
that the bound on the correlations imply that for any C > 0

κ(C) ≥
√
1− s(1 + 2C)‖En[x•x′

• − I]‖∞

so that κ(c̄) ≥
√
1− [(1 + 2c̄)/U ] and κ(2c̄) ≥

√
1− [(1 + 4c̄)/U ] under this particular

design.

Step 2. In this step we show that ‖En[x•r•]‖∞ ≤ min
{

σ√
n
, cs

}
. First note that for

every j = 1, . . . , p, we have |En[x•jr•]| ≤
√
En[x2

•j ]En[r2•] = cs. Next, by definition of β0

in (2.2), for j ∈ T we have En[x•j(f• − x′
•β0)] = En[x•jr•] = 0 since β0 is a minimizer

over the support of β0. For j ∈ T c we have that for any t ∈ IR

En[(f• − x′
•β0)

2] + σ2 s

n
≤ En[(f• − x′

•β0 − tx•j)
2] + σ2 s+ 1

n
.

Therefore, for any t ∈ IR we have

−σ2/n ≤ En[(f•−x′
•β0− tx•j)

2]−En[(f•−x′
•β0)

2] = −2tEn[x•j(f•−x′
•β0)]+ t2En[x

2
•j ].

Taking the minimum over t in the right hand side at t∗ = En[x•j(f• − x′
•β0)] we obtain

−σ2/n ≤ −(En[x•j(f• − x′
•β0)])

2 or equivalently, |En[x•j(f• − x′
•β0)]| ≤ σ/

√
n.

Proof of Lemma 2. Let T̂ = support(β̂), and m̂ = |T̂ \T |. We have from the optimality

conditions that |2En[x•j(y• − x′
•β̂)]| = λ/n for all j ∈ T̂ . Therefore we have for R =

(r1, . . . , rn)
′

√
|T̂ |λ ≤ 2‖(X ′(Y −Xβ̂))T̂ ‖

≤ 2‖(X ′(Y −R−Xβ0))T̂ ‖+ 2‖(X ′(R +Xβ0 −Xβ̂))T̂ ‖
≤

√
|T̂ | · n‖S‖∞ + 2n

√
φ(m̂)(En[(x

′
•β̂ − f•)2])1/2,

where we used the definition of φ(m̂) and the Holder inequality. Since λ/c ≥ n‖S‖∞ we
have

(1− 1/c)

√
|T̂ |λ ≤ 2n

√
φ(m̂)(En[(x

′
•β̂ − f•)

2])1/2. (A.25)

Moreover, since m̂ ≤ |T̂ |, and by Theorem 1 and Remark 3.1, (En[(x
′
•β̂ − f•)2])1/2 ≤

‖β̂ − β0‖2,n + cs ≤
(
1 + 1

c

) λ
√
s

nκ(c̄) + 3cs we have

(1− 1/c)
√
m̂ ≤ 2

√
φ(m̂)(1 + 1/c)

√
s/κ(c̄) + 6

√
φ(m̂) ncs/λ.

The result follows by noting that (1 − 1/c) = 2/(c̄+ 1) by definition of c̄.
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Proof of Theorem 3. In the event λ ≥ c · n‖S‖∞, by Lemma 2
√
m̂ ≤

√
φ(m̂) ·

2c̄
√
s/κ(c̄) + 3(c̄+ 1)

√
φ(m̂) · ncs/λ, which, by letting Ln =

(
2c̄
κ(c̄) + 3(c̄+ 1) ncs

λ
√
s

)2
, can

be rewritten as
m̂ ≤ s · φ(m̂)Ln. (A.26)

Note that m̂ ≤ n by optimality conditions. Consider any M ∈ M, and suppose m̂ > M .
Therefore by Lemma 3 on sublinearity of sparse eigenvalues

m̂ ≤ s ·
⌈
m̂

M

⌉
φ(M)Ln.

Thus, since ⌈k⌉ < 2k for any k ≥ 1 we haveM < s·2φ(M)Ln which violates the condition
of M ∈ M. Therefore, we must have m̂ ≤ M . In turn, applying (A.26) once more with
m̂ ≤ (M ∧n) we obtain m̂ ≤ s ·φ(M ∧n)Ln. The result follows by minimizing the bound
over M ∈ M.

A.2. Proofs for Section 4

Proof of Theorem 4. Let δ̃ := β̃ − β0. By definition of the second-step estimator, it
follows that Q̂(β̃) ≤ Q̂(β̂) and Q̂(β̃) ≤ Q̂(β0T̂ ). Thus,

Q̂(β̃)− Q̂(β0) ≤
(
Q̂(β̂)− Q̂(β0)

)
∧
(
Q̂(β0T̂ )− Q̂(β0)

)
≤ Bn ∧ Cn.

By Lemma 4 part (1), for any ε > 0 there exists a constant Kε such that with probability

at least 1− ε: |Q̂(β̃)− Q̂(β0)− ‖δ̃‖22,n| ≤ Aε,n‖δ̃‖2,n + 2cs‖δ̃‖2,n where

Aε,n := Kεσ
√

(m̂ log p+ (m̂+ s) log(eµ(m̂)))/n.

Combining these relations we obtain the inequality ‖δ̃‖22,n−Aε,n‖δ̃‖2,n−2cs‖δ̃‖2,n ≤ Bn∧
Cn, solving which we obtain the stated inequality: ‖δ̃‖2,n ≤ Aε,n+2cs+

√
(Bn)+ ∧ (Cn)+.

Finally, the bound on Bn follows from Lemma 4 result (1). The bound on Cn follows
from Lemma 4 result (2).

Proof of Lemma 4. Part (1) follows from the relation

|Q̂(β0 + δ)− Q̂(β0)− ‖δ‖22,n| = |2En[ǫ•x
′
•δ] + 2En[r•x

′
•δ]|,

then bounding |2En[r•x′
•δ]| by 2cs‖δ‖2,n using the Cauchy-Schwarz inequality, applying

Lemma 5 on sparse control of noise to |2En[ǫ•x′
•δ]| where we bound

(
p
m

)
by pm and set

Kε = 6
√
2 log1/2 max{e,D, 1/(esε[1 − 1/e])}. Part (2) also follows from Lemma 5 but

applying it with s = 0, p = s (since only the components in T are modified), m = k, and
noting that we can take µ(m) with m = 0.
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Proof of Lemma 5. We divide the proof into steps.
Step 0. Note that we can restrict the supremum over ‖δ‖ = 1 since the function is

homogenous of degree zero.
Step 1. For each non-negative integer m ≤ n, and each set T̃ ⊂ {1, . . . , p}, with

|T̃ \ T | ≤ m, define the class of functions

GT̃ = {ǫix′
iδ/‖δ‖2,n : support(δ) ⊆ T̃ , ‖δ‖ = 1}. (A.27)

Also define Fm = {GT̃ : T̃ ⊂ {1, . . . , p} : |T̃ \ T | ≤ m}. It follows that

P

(
sup

f∈Fm

|Gn(f)| ≥ en(m, η)

)
≤
(
p

m

)
max

|T̃\T |≤m
P

(
sup
f∈GT̃

|Gn(f)| ≥ en(m, η)

)
. (A.28)

We apply Samorodnitsky-Talagrand’s inequality (Proposition A.2.7 in van der Vaart
and Wellner [30]) to bound the right hand side of (A.28). Let

ρ(f, g) :=
√
E[Gn(f)−Gn(g)]2 =

√
EEn[(f − g)2]

for f, g ∈ GT̃ ; by Step 2 below, the covering number of GT̃ with respect to ρ obeys

N(ε,GT̃ , ρ) ≤ (6σµ(m)/ε)m+s, for each 0 < ε ≤ σ, (A.29)

and σ2(GT̃ ) := maxf∈GT̃
E[Gn(f)]

2 = σ2. Then, by Samorodnitsky-Talagrand’s inequal-
ity

P

(
sup
f∈GT̃

|Gn(f)| ≥ en(m, η)

)
≤
(
Dσµ(m)en(m, η)√

m+ sσ2

)m+s

Φ̄(en(m, η)/σ) (A.30)

for some universal constant D ≥ 1, where Φ̄ = 1 − Φ and Φ is the cumulative probabil-
ity distribution function for a standardized Gaussian random variable. For en(m, η) de-

fined in the statement of the theorem, it follows that P
(
supf∈GT̃

|Gn(f)| ≥ en(m, η)
)
≤

ηe−m−s/
(
p
m

)
by simple substitution into (A.30). Then,

P

(
sup

f∈Fm

|Gn(f)| > en(m, η), ∃m ≤ n

)
≤

n∑

m=0

P

(
sup

f∈Fm

|Gn(f)| > en(m, η)

)

≤
n∑

m=0

ηe−m−s ≤ ηe−s/(1− 1/e),

which proves the claim.
Step 2. This step establishes (A.29). For t ∈ R

p and t̃ ∈ R
p, consider any two functions

ǫi
(x′

it)

‖t‖2,n
and ǫi

(x′
i t̃)

‖t̃‖2,n
in GT̃ , for a given T̃ ⊂ {1, . . . , p} : |T̃ \ T | ≤ m.
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We have that
√√√√EEn

[
ǫ2•

(
(x′•t)

‖t‖2,n
− (x′•t̃)

‖t̃‖2,n

)2
]
≤
√

EEn

[
ǫ2•

(x′•(t− t̃))2

‖t‖22,n

]
+

√√√√EEn

[
ǫ2•

(
(x′•t̃)

‖t‖2,n
− (x′•t̃)

‖t̃‖2,n

)2
]
.

By definition of GT̃ in (A.27), support(t) ⊆ T̃ and support(t̃) ⊆ T̃ , so that support(t−
t̃) ⊆ T̃ , |T̃ \ T | ≤ m, and ‖t‖ = 1 by (A.27). Hence by definition RSE(m),

EEn

[
ǫ2•
(x′

•(t− t̃))2

‖t‖22,n

]
≤ σ2φ(m)‖t− t̃‖2/κ̃(m)2, and

EEn


ǫ2•

(
(x′

• t̃)

‖t‖2,n
− (x′

• t̃)

‖t̃‖2,n

)2

 = EEn


ǫ2•

(x′
•t̃)

2

‖t̃‖22,n

(
‖t̃‖2,n − ‖t‖2,n

‖t‖2,n

)2



= σ2

(
‖t̃‖2,n − ‖t‖2,n

‖t‖2,n

)2

≤ σ2‖t̃− t‖22,n/‖t‖22,n ≤ σ2φ(m)‖t̃− t‖2/κ̃(m)2,

so that
√√√√√EEn


ǫ2•

(
(x′

•t)

‖t‖2,n
− (x′

• t̃)

‖t̃‖2,n

)2

 ≤ 2σ‖t− t̃‖

√
φ(m)/κ̃(m) = 2σµ(m)‖t− t̃‖.

Then the bound (A.29) follows from the bound in [30] page 94, N(ε,GT̃ , ρ)
≤ N(ε/R,B(0, 1), ‖ · ‖) ≤ (3R/ε)m+s with R = 2σµ(m) for any ε ≤ σ.

A.3. Proofs for Section 5

Proof of Theorem 5. First note that if T ⊆ T̂ we have Cn = 0 so that Bn ∧ Cn ≤
1{T 6⊆ T̂ }Bn.

Next we bound Bn. Note that by the optimality of β̂ in the lasso problem, and letting
δ̂ = β̂ − β0,

Bn := Q̂(β̂)− Q̂(β0) ≤ λ
n (‖β0‖1 − ‖β̂‖1) ≤ λ

n (‖δ̂T ‖1 − ‖δ̂T c‖1). (A.31)

If ‖δ̂T c‖1 > ‖δ̂T ‖1, we have Q̂(β̂) − Q̂(β0) ≤ 0. Otherwise, if ‖δ̂T c‖1 ≤ ‖δ̂T ‖1, by RE(1)
we have

Bn := Q̂(β̂)− Q̂(β0) ≤ λ
n‖δ̂T ‖1 ≤ λ

n

√
s‖δ̂‖2,n

κ(1) . (A.32)

The result follows by applying Theorem 1 to bound ‖δ̂‖2,n, under the condition that
RE(1) holds, and Theorem 4.

The second claim follows from the first by using λ .
√
n log p under Condition V, the

specified conditions on the penalty level. The final bound follows by applying the relation
that for any nonnegative numbers a, b, we have

√
ab ≤ (a+ b)/2.
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Supplementary Appendix

Appendix A: Additional Results and Comments

A.1. On the Oracle Problem

Let us now briefly explain what is behind problem (2.2). Under some mild assumptions,
this problem directly arises as the (infeasible) oracle risk minimization problem. Indeed,

consider a least squares estimator β̂T̃ , which is obtained by using a model T̃ , i.e. by

regressing yi on regressors xi[T̃ ], where xi[T̃ ] = {xij , j ∈ T̃}. This estimator takes value

β̂T̃ = En[x•[T̃ ]x•[T̃ ]′]−En[x•[T̃ ]y•]. The expected risk of this estimator EnE[f• − x′
•β̂T̃ ]

2

is equal to

min
β∈R|T̃ |

En[(f• − x•[T̃ ]
′β)2] + σ2 k

n
,

where k = rank(En[x•[T̃ ]x•[T̃ ]′]). The oracle knows the risk of each of the models T̃ and
can minimize this risk

min
T̃

min
β∈R|T̃ |

En[(f• − x•[T̃ ]
′β)2] + σ2 k

n
,

by choosing the best model or the oracle model T . This problem is in fact equivalent
to (2.2), provided that rank (En[x•[T ]x•[T ]′]) = ‖β0‖0, i.e. full rank. Thus, in this case
any value β0 solving (2.2) is the expected value of the oracle least squares estimator

β̂T = En[x•[T ]x•[T ]′]−1En[x•[T ]y•], i.e. β0 = En[x•[T ]x•[T ]′]−1En[x•[T ]f•]. This value
is our target or “true” parameter value and the oracle model T is the target or “true”
model. Note that when cs = 0 we have that fi = x′

iβ0, which gives us the special
parametric case.

A.2. Estimation of σ – finite-sample analysis

Consider the following algorithm to estimate σ.
Algorithm (Estimation of σ using lasso iterations) Set σ̂0 =

√
Varn[y•].

(1) Compute the lasso estimator β̂ based on λ = c′σ̂0Λ(1− α|X);

(2) Set σ̂ =

√
Q̂(β̂).

The following lemmas establish the finite sample bounds on ℓ, u, and τ that appear

in Condition V associated with using σ̂0 and

√
Q̂(β̂) as an estimator for σ.
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Lemma 6. Assume that for some k > 4 we have E[|yi|k] < C uniformly in n. There
is a constant K such that for any positive numbers v and r we have with probability at
least 1− KC

nk/4vk/2 − KC
nk/2rk

|σ̂2
0 − σ2

0 | ≤ v + r(r + 2C1/k)

where σ0 =
√
Var[y•].

Proof. We have that σ̂2
0 − σ2

0 = En[y
2
• − E[y2•]]− (En[y•])2 + (EEn[y•])2.

Next note that by Markov inequality and Rosenthal inequality, for some constant
A(r/2) we have

P (|En[y
2
• − E[y2•]]| > v) ≤ E|∑n

i=1
y2

i−E[y2

i ]|k/2

nk/2vk/2 ≤ A(r/2)max{
∑n

i=1
E|yi|k, (

∑n
i=1

E|yi|4)k/4}
nk/2vk/2

≤ A(k/2)max{nC, Cnk/4}
nk/2vk/2 ≤ A(k/2)C

nk/4vk/2 .

Next note that (En[y•])2− (EEn[y•])2 = (En[y•+E[y•]])(En[y•−E[y•]]). Similarly, by
Markov inequality and Rosenthal inequality, for some constant A(r), we have P (|En[y•−
E[y•]]| > r) ≤ A(k)C

nk/2rk
. Thus,

P (|(En[y•])
2 − (EEn[y•])

2| > r(r + 2C1/k)) ≤ A(k)C

nk/2rk
.

The result follows by choosing K ≥ A(k) ∨ A(k/2).

Lemma 7. Suppose that Condition M holds and that λ ≥ cn‖S‖∞ with probability at
least 1− α. Then, for any ε, γ ∈ (0, 1) we have

Q̂(β̂)

σ2
≤ 1 +

2λ2s

σ2n2κ(1)2
+

2csλ
√
s

σ2nκ(1)
+

c2s
σ2

+
2cs
σ
√
n

√
2 log 1/γ + ε,

Q̂(β̂)

σ2
≥ 1− c2s

σ2
− (2 + 4c̄)

cσ2

[
λ2s

n2κ(2c̄)κ(c̄)
+

csλ
√
s

nκ(2c̄)
+ c2s

]
− 2cs

σ
√
n

√
2 log 1/γ − ε

with probability 1− α− 2 exp(−nε2/12)− γ.

Proof. We start by

Q̂(β̂)

σ2
=

Q̂(β̂)− En[ǫ
2
•]

σ2
+

En[ǫ
2
•]

σ2
.

To control the second term we invoke tail-bounds for the chi-square distribution, see for
instance Lemma 4.1 in [1]. Indeed, for any ε > 0 we have

P (En[ǫ
2
•] ≤ σ2(1− ε)) ≤ exp

(
−nε2

2
·
(
1

2
− ε

3

))
and

P (En[ǫ
2
•] ≥ σ2(1 + ε)) ≤ exp

(
−nε2

2
·
(
1

2
− ε

3

))
.
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To bound the first term, we have

Q̂(β̂)− En[ǫ
2
•] = Q̂(β̂)− Q̂(β0) + En[r

2
•] + 2En[ǫ•r•].

where En[r
2
•] = c2s and since 2En[ǫ•r•] ∼ N(0, 4σ2c2s/n) it follows that 2En[ǫ•r•] ≤

σ(2cs/
√
n)(
√
2 log 1/γ) with probability 1− γ.

Finally, we bound the term Q̂(β̂)− Q̂(β0) from above and below. To bound above, we

use the optimality of β̂, so that Q̂(β̂) − Q̂(β0) ≤ λ
n (‖δT ‖1 − ‖δT c‖1). If ‖δT ‖1 ≤ ‖δT c‖1

we have Q̂(β̂)− Q̂(β0) ≤ 0. Thus we can assume ‖δT c‖1 ≤ ‖δT ‖1. Then, with probability
at least 1 − α we have λ ≥ cn‖S‖∞ and by the definition of RE(1) and Theorem 1 we
have

Q̂(β̂)− Q̂(β0) ≤
λ
√
s

nκ(1)
‖δ‖2,n ≤

(
1 +

1

c

)
λ2s

n2κ(1)2
+

2csλ
√
s

nκ(1)
.

To bound from below note that by convexity

Q̂(β̂)− Q̂(β0) ≥ ‖δ‖22,n − ‖S‖∞‖δ‖1 − 2cs‖δ‖2,n
It follows that ‖δ‖22,n− 2cs‖δ‖2,n ≥ −c2s. Next, we invoke the ℓ1-norm bound in Theorem
1 so that

Q̂(β̂)− Q̂(β0) ≥ −c2s −
[
λ(2 + 4c̄)

cn

√
s

κ(2c̄)

(
λ
√
s

nκ(c̄)
+ cs

)]
∨
[
(2 + 4c̄)c2s

c

]
.

The result follows by simplifying the expression above.

The result below verifies Condition V relying on Lemmas 6 and 7.

Theorem 8. Assume that Condition M hold and for some k > 4 we have E[|yi|k] < C
uniformly in n. Then, for any ε, γ ∈ (0, 1) we have that Condition V holds with

τ = 1− α− K2k/2

nk/4
(C/σk

0 )(1− c/c′)−k/2 − K6k

nk/2
(C2/σ2k

0 ) · (1− c/c′)−k − 2 exp(−nε2/12) − γ,

u ≤ 1 +
2s (3c′σ0Λ(1− α|X))

2

σ2n2κ(1)2
+
(
3c′σ0Λ(1− α|X)

) 2cs
√
s

σ2nκ(1)
+

c2s
σ2

+
2cs
σ
√
n

√
2 log 1/γ + ε,

ℓ ≥ 1− c2s
σ2

− (2 + 4c̄)

cσ2

[
(3c′σ0Λ(1− α|X))

2
s

n2κ(2c̄)κ(c̄)
+

cs (3c
′σ0Λ(1− α|X))

√
s

nκ(2c̄)
+ c2s

]
− 2cs
σ
√
n

√
2 log 1/γ−ε.

Proof. By Lemma 6 with v = σ2
0 · (1 − c/c′)/2 and r = (σ2

0/C
1/k) · (1 − c/c′)/6, with

probability at least 1− K2k/2

nk/4 (C/σk
0 )(1− c/c′)−k/2− K6k

nk/2 (C
2/σ2k

0 ) · (1− c/c′)−k, we have
|σ̂2

0 − σ2
0 | ≤ σ2

0(1− c/c′) so that

c/c′ ≤ σ̂2
0

σ2
0

≤ 2 + c/c′ ≤ 3.

Since σ ≤ σ0, for λ = c′ · σ̂0 · Λ(1 − α|X), we have λ ≥ cn‖S‖∞. with probability at

least 1− α− K2k/2

nk/4 (C/σk
0 )(1− c/c′)−k/2 − K6k

nk/2 (C
2/σ2k

0 ) · (1− c/c′)−k.
Thus, by Lemma 7, we have that Condition V holds with the stated bounds.
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Under the typical design conditions

κ(2c̄) & 1, α = o(1), and s log(p/α) = o(n), (A.33)

the bounds stated in Theorem 8 establish that ℓ → 1, u → 1 and τ → 0 asymptotically.
In finite samples, the following lemma ensures that ℓ > 0.

Lemma 8. We have that σ̂0 > 0 and σ̂ =

√
Q̂(β̂) > 0 with probability 1.

Proof. First note that σ̂0 =
√
Varn[y•] = 0 only if yi = ȳ for every i = 1, . . . , n. That

is, ǫi = En[x
′
•β0 + ǫ•]− x′

iβ0 which is a zero measure event.

Next note that σ̂ =

√
Q̂(β̂) = 0 only if yi = x′

iβ̂ for every i = 1, . . . , n. By the

optimality conditions we have 0 ∈ ∇Q̂(β̂) + λ
n∂‖ · ‖1(β̂). Since ∇Q̂(β̂) = 0, we have

0 ∈ ∂‖ ·‖1(β̂) which implies that β̂ = 0. In turn yi = x′
iβ̂ = 0 for every i = 1, . . . , n which

is a zero measure event since yi = x′
iβ0 + ǫi.

A.3. Perfect Model Selection

The following result on perfect model selection also requires strong assumptions on
separation of coefficients and the empirical Gram matrix. Recall that for a scalar v,
sign(v) = v/|v| if |v| > 0, and 0 otherwise. If v is a vector, we apply the definition
componentwise. Also, given a vector x ∈ IRp and a set T ⊂ {1, . . . , p}, let us denote
xi[T ] := {xij , j ∈ T }.

Lemma 9 (Cases with Perfect Model Selection by lasso). Suppose Condition M holds.

We have perfect model selection for lasso, T̂ = T , if and only if

∥∥∥En [x•[T c]x•[T ]′]En [x•[T ]x•[T ]′]
−1
{
En[x•[T ]u•]

− λ
2n sign(β0[T ])

}
− En[x•[T c]u•]

∥∥∥
∞

≤ λ
2n ,

minj∈T

∣∣∣∣β0j +
(
En [x•[T ]x•[T ]′]

−1 {
En[x•[T ]u•]− λ

2n sign(β0[T ])
})

j

∣∣∣∣ > 0.

The result follows immediately from the first order optimality conditions, see [31]. The
paper [34] provide further primitive sufficient conditions for perfect model selection for the
parametric case in which ui = εi, and [5] provide some conditions for the nonparametric
case. The conditions above might typically require a slightly larger choice of λ than
(2.12), and larger separation from zero of the minimal non-zero coefficient minj∈T |β0j |.
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Appendix B: Omitted Proofs

B.1. Section 2: Proof of Lemma 1

Proof of Lemma 1. We can assume that m + s ≥ 1. Let σ̂2
j = En[x̃

2
•j ] for j =

1, . . . , p. Moreover, let c∗(m) and c∗(m) denote the minimum and maximum m-sparse
eigenvalues associated with En[x̃•x̃′

•] (unnormalized covariates). It follows that φ(m) ≤
max1≤j≤p σ̂

2
j c

∗(m + s) and κ̃(m)2 ≥ min1≤j≤p σ̂
2
j c∗(m + s). These relations shows that

for bounding c∗(m+ s) and c∗(m+ s) it suffices to bound φ(m), κ̃(m), and deviations of
σ̂j ’s away from 1.

Note that P (max1≤j≤p |σ̂j − 1| ≤ 1/4) → 1 as n grows, since

P (max1≤j≤p |σ̂j − 1| > 1/4) ≤ pmax1≤j≤p P (|σ̂2
j − 1| > 1/4)

≤ pmax1≤j≤p P (|∑n
i=1(x̃

2
ij − 1)| > n/4)

≤ 2p exp(−n2/[32nK2
n + 8K2

nn/3]) → 0

by Bernstein’s inequality (Lemma 2.2.9 in [30]), Var(x̃2
ij) ≤ K2

n, and the side condition

K2
n log p = o(n).
Under s log(n) log2(s logn) ≤ n[κ/ϕ1/2][ǫ/Kn]

2/[(log p)(logn)] for some ǫ > 0 small
enough, the bound on φ(m) and κ̃(m)2 follows from the application of (a simple extension
of) results of Rudelson and Vershynin [25], namely Corollary 4 in Appendix C.

B.2. Section 3: Proofs of Theorem 1 and Proof of Lemma 3

Proof of ‖ ·‖2,n bound in Theorem 1. Similar to [4], we make the use of the following

relation: for δ = β̂ − β0, if λ ≥ cn‖S‖∞
Q̂(β̂)− Q̂(β0)− ‖δ‖22,n = 2En[ǫ•x

′
•δ] + 2En[r•x

′
•δ] ≥ −‖S‖∞‖δ‖1 − 2cs‖δ‖2,n

≥ − λ

cn
(‖δT ‖1 + ‖δT c‖1)− 2cs‖δ‖2,n (B.34)

By definition of β̂, Q̂(β̂)−Q(β0) ≤ λ
n‖β0‖1 − λ

n‖β̂‖1, which implies that

− λ

cn
(‖δT ‖1 + ‖δT c‖1) + ‖δ‖22,n − 2cs‖δ‖2,n ≤ λ

n
(‖δT ‖1 − ‖δT c‖1) (B.35)

If ‖δ‖22,n − 2cs‖δ‖2,n < 0, then we have established the bound in the statement of the
theorem. On the other hand, if ‖δ‖22,n − 2cs‖δ‖2,n ≥ 0 we get for c̄ = (c+ 1)/(c− 1)

‖δT c‖1 ≤ c̄ · ‖δT ‖1, (B.36)

and therefore δ belongs to the restricted set in condition RE(c̄). From (B.35) and using
RE(c̄) we get

‖δ‖22,n − 2cs‖δ‖2,n ≤
(
1 +

1

c

)
λ

n
‖δT ‖1 ≤

(
1 +

1

c

) √
sλ

n

‖δ‖2,n
κ(c̄)

which gives the result on the prediction norm.
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Proof of Lemma 3. Let W := En[x•x′
•] and ᾱ ∈ IRp be such that φ(⌈ℓk⌉) = ᾱ′Wᾱ

and ‖ᾱ‖ = 1. We can decompose

ᾱ =

⌈ℓ⌉∑

i=1

αi, with

⌈ℓ⌉∑

i=1

‖αiT c‖0 = ‖ᾱT c‖0 and αiT = ᾱT / ⌈ℓ⌉ ,

where we can choose αi’s such that ‖αiT c‖0 ≤ k for each i = 1, . . . , ⌈ℓ⌉, since ⌈ℓ⌉k ≥ ⌈ℓk⌉.
Note that the vectors αi’s have no overlapping support outside T . Since W is positive
semi-definite, α′

iWαi + α′
jWαj ≥ 2 |α′

iWαj | for any pair (i, j). Therefore

φ(⌈ℓk⌉) = ᾱ′Wᾱ =
∑⌈ℓ⌉

i=1

∑⌈ℓ⌉
j=1 α

′
iWαj

≤ ∑⌈ℓ⌉
i=1

∑⌈ℓ⌉
j=1

α′
iWαi+α′

jWαj

2 = ⌈ℓ⌉∑⌈ℓ⌉
i=1 α

′
iWαi

≤ ⌈ℓ⌉∑⌈ℓ⌉
i=1 ‖αi‖2φ(‖αiT c‖0) ≤ ⌈ℓ⌉maxi=1,...,⌈ℓ⌉ φ(‖αiT c‖0) ≤ ⌈ℓ⌉φ(k),

where we used that

⌈ℓ⌉∑

i=1

‖αi‖2 =
⌈ℓ⌉∑

i=1

(‖αiT ‖2 + ‖αiT c‖2) = ‖ᾱT ‖2
⌈ℓ⌉ +

⌈ℓ⌉∑

i=1

‖αiT c‖2 ≤ ‖ᾱ‖2 = 1.

B.3. Section 4: Relation after (A.30) in Proof of Lemma 5

Proof of Lemma 5: Relation after (A.30). First note that Φ̄(t) ≤ exp(−t2/2) for
t ≥ 1. Then,

I :=
(

Dσµ(m)en(m,η)√
m+sσ2

)m+s

Φ̄(en(m, η)/σ)

≤ exp
(
− e2n(m,η)

2σ2 + (m+ s) log
[
en(m,η)√
m+sσ

]
+ (m+ s) log(Dσµ(m))

)

= exp

(
− (m+s)

2

[
en(m,η)√
m+sσ

]2
+ (m+ s) log

[
en(m,η)√
m+sσ

]
+ (m+ s) log(Dσµ(m))

)

Next note that log x ≤ x2/4 if x ≥ 2
√
2. Note that en(m, η)/[

√
m+ sσ] ≥ 2

√
2 since

µ(m) ≥ 1 and we can take D ≥ e. Thus, the expression above is bounded by

I ≤ exp

(
− (m+ s)

4

[
en(m, η)√
m+ sσ

]2
+ (m+ s) log(Dσµ(m))

)

= exp

(
−e2n(m, η)

4σ2
+ (m+ s) log(Dσµ(m))

)

≤ exp

(
− log

(
p

m

)
− (m+ s) log(1/η)

)
.

imsart-bj ver. 2009/08/13 file: Post-LASSO-SecondRevision_AfterSubmitted_v01.tex date: August 26, 2011



33

B.4. Section 5: Proofs of Theorem 6 and 7

In this Section we provide the proof for Theorems 6 and 7. We begin with Theorem 6
which threshold level is set based on the fit of the second step estimator relative to the
fit of the original estimator, in this case lasso.

Proof of Theorem 6. Let B̃n := Q̂(β̃)− Q̂(β0) and C̃n := Q̂(β0T̃ ) − Q̂(β0). It follows

by definition of the estimator that B̃n ≤ γ+ Q̂(β̂)− Q̂(β0). Thus, by Theorem 4, for any
ε > 0, there is a constant Kε independent of n such that with probability at least 1 − ε
we have

‖β̃ − β0‖2,n ≤ Kεσ

√
m̃ log p+ (m̃+ s) log(eµ(m̃))

n
+ 2cs +

√
(B̃n)+ ∧ (C̃n)+,

(B̃n)+ ≤ γ + Q̂(β̂)− Q̂(β0),

(B̃n)+ ∧ (C̃n)+ ≤ 1{T 6⊆ T̃}(B̃n)+,

since C̃n = 0 if T ⊆ T̃ .
We bound Bn = Q̂(β̂)− Q̂(β0) as in Theorem 5, namely,

Bn ≤ λ
√
s

nκ(1)
‖β̂ − β0‖2,n ≤

(
1 +

1

c

)
λ2s

n2κ(1)2
+

2csλ
√
s

nκ(1)
.

The second claim follows from the first by using λ .
√
n log p under Condition V, the

specified conditions on the penalty level. The final bound follows by applying the relation
that for any nonnegative numbers a, b, we have

√
ab ≤ (a+ b)/2.

The traditional thresholding scheme which truncates to zero all components below a
set threshold t. This is arguably the most used thresholding scheme in the literature.
Recall that β̂tj = β̂j1{|β̂j| > t}, m̃ := |T̃ \ T |, mt := |T̂ \ T̃ | and γt := ‖β̂t − β̂‖2,n where

β̂ is the lasso estimator.

Proof of Theorem 7. Let B̃n := Q̂(β̂t)− Q̂(β0) and C̃n := Q̂(β0T̃ )− Q̂(β0).
By Theorem 4 and Lemma 4, for any ε > 0, there is a constant Kε independent of n

such that with probability at least 1− ε we have

‖β̃ − β0‖2,n ≤ Kεσ

√
m̃ log p+ (m̃+ s) log(eµ(m̃))

n
+ 2cs +

√
(B̃n)+ ∧ (C̃n)+,

(B̃n)+ ≤ ‖β̂t − β0‖22,n +

[
Kεσ

√
m̃ log p+ (m̃+ s) log(eµ(m̃))

n
+ 2cs

]
‖β̂t − β0‖2,n,

(B̃n)+ ∧ (C̃n)+ ≤ 1{T 6⊆ T̃}(B̃n)+,

since C̃n = 0 if T ⊂ T̃ .
Next note that by definition of γt, we have ‖β̂t−β0‖2,n ≤ γt+ ‖β̂−β0‖2,n. The result

follows by applying Theorem 1 to bound ‖β̂ − β0‖2,n.
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The second claim follows from the first by using λ .
√
n log p under Condition V,

the specified conditions on the penalty level, and the relation that for any nonnegative
numbers a, b, we have

√
ab ≤ (a+ b)/2.

Appendix C: Uniform Control of Sparse Eigenvalues

In this section we provide a simple extension of the sparse law of large numbers for
matrices derived in [25] to the case where the population matrices are non-isotropic.

Lemma 10 (Essentially in [25] Lemma 3.8). Let x1, . . . , xn, be vectors in IRp with
uniformly bounded entries, ‖xi‖∞ ≤ K for all i = 1, . . . , n. Then, for independent
Rademacher random variables εi, i = 1, . . . , n, we have

E

[
sup

‖α‖0≤k,‖α‖=1

∣∣∣∣∣

n∑

i=1

εi(x
′
iα)

2

∣∣∣∣∣

]
≤
(
CK

√
k log(k)

√
log(p ∨ n)

√
log n

)
sup

‖α‖0≤k,‖α‖=1

(
n∑

i=1

(x′
iα)

2

)1/2

where C is a universal constant.

Proof. The proof follows from Rudelson and Vershynin [25] Lemma 3.8 setting A =
K/

√
k instead of A = 1/

√
k so that the constant C(K) can be taken C ·K.

Lemma 11 (Essentially in [25] Theorem 3.6). Let xi, i = 1, . . . , n, be i.i.d. random
vectors in IRp with uniformly bounded entries, ‖xi‖∞ ≤ K a.s. for all i = 1, . . . , n. Let

δn := 2
(
CK

√
k log(k)

√
log(p ∨ n)

√
logn

)
/
√
n, where C is the universal constant in

Lemma 10. Then,

E

[
sup

‖α‖0≤k,‖α‖=1

∣∣En

[
(α′xi)

2 − E[(α′xi)
2]
]∣∣
]
≤ δ2n + δn sup

‖α‖0≤k,‖α‖=1

√
E[(α′xi)2].

Proof. Let
Vk = sup

‖α‖0≤k,‖α‖=1

∣∣En

[
(α′xi)

2 − E[(α′xi)
2]
]∣∣ .

Then, by a standard symmetrization argument (see Guédon and Rudelson [16], page
804)

nE[Vk] ≤ 2ExEε

[
sup‖α‖0≤k,‖α‖=1

∣∣∑n
i=1 εi(α

′xi)
2
∣∣
]
.

Letting

φ(k) = sup
‖α‖0≤k,‖α‖≤1

En[(α
′xi)

2] and ϕ(k) = sup
‖α‖0≤k,‖α‖=1

E[(α′xi)
2],

we have φ(k) ≤ ϕ(k) + Vk and by Lemma 10

nE[Vk] ≤ 2
(
CK

√
k log(k)

√
log(p ∨ n)

√
logn

)√
nEX

[√
φ(k)

]

≤ 2
(
CK

√
k log(k)

√
log(p ∨ n)

√
logn

)√
n
√
ϕ(k) + E[Vk].
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The result follows by noting that for positive numbers v,A,B, v ≤ A(v +B)1/2 implies
v ≤ A2 +A

√
B.

Corollary 4. Suppose xi, i = 1, . . . , n, are i.i.d. vectors, such that the population design
matrix E[xix

′
i] has its k-sparse eigenvalues bounded from above by ϕ < ∞ and bounded

from below by κ2 > 0. If xi are arbitrary with max1≤i≤n ‖xi‖∞ ≤ Kn a.s., and the
condition K2

nk log
2(k) log(n) log(p ∨ n) = o(nκ4/ϕ) holds,

P

(
sup

‖α‖0≤k,‖α‖=1

En[(α
′xi)

2] ≤ 2ϕ, inf
‖α‖0≤k,‖α‖=1

En[(α
′xi)

2] ≥ κ2/2

)
= 1− o(1).

Proof. Let Vk = sup‖α‖0≤k,‖α‖=1

∣∣En

[
(α′xi)

2 − E[(α′xi)
2]
]∣∣ . It suffices to prove that

P (Vk > κ2/2) = o(1). Indeed,

sup
‖α‖0≤k,‖α‖=1

En[(α
′xi)

2] ≤ Vk + ϕ and inf
‖α‖0≤k,‖α‖=1

En[(α
′xi)

2] > κ2 − Vk.

By Markov inequality, P (Vk > κ2/2) ≤ 2E[Vk]/κ
2 and the result follows provided

that E[Vk] = o(κ2).

For δn := 2
(
CKn

√
k log(k)

√
log(p ∨ n)

√
logn

)
/
√
n, by Lemma 11, we have E[Vk] ≤

δ2n + δn
√
ϕ = o(κ2) by the growth condition in the statement.

Appendix D: Empirical Performance Relative to lasso

In this section we assess the finite sample performance of the following estimators: 1)
lasso, which is our benchmark, 2) ols post lasso, 3) ols post fit-lasso, and 4) ols post
t-lasso with the threshold t = λ/n. We consider a “parametric” and a “nonparametric”
model of the form:

yi = fi + ǫi, fi = z′iθ0, ǫi ∼ N(0, σ2), i = 1, . . . , n,

where in the “parametric” model

θ0 = C · [1, 1, 1, 1, 1, 0, 0, . . . , 0]′, (D.37)

and in the “nonparametric” model

θ0 = C · [1, 1/2, 1/3, . . . , 1/p]′. (D.38)

The reason the latter model is called “nonparametric” is because in that model the
function f(z) =

∑p
j=1 zjθ0j is numerically indistinguishable from the function g(z) =∑∞

j=1 zjγj0, characterized by the infinite-dimensional parameter γj with true values γj0 =
1/j.
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The parameter C determines the size of the coefficients, representing the “strength of
the signal”, and we vary C between 0 and 2. The number of regressors is p = 500, the
sample size is n = 100, the variance of the noise is σ2 = 1, and we used 1000 simulations
for each design. We generate regressors from the normal law zi ∼ N(0,Σ), and consider
three designs of the covariance matrix Σ: a) the isotropic design with Σjk = 0 for j 6= k,
b) the Toeplitz design with Σjk = (1/2)|j−k|, and c) the equi-correlated design with
Σjk = 1/2 for j 6= k; in all designs Σjj = 1. Thus our parametric model is very sparse and
offers a rather favorable setting for applying lasso-type methods, while our nonparametric
model is non-sparse and much less favorable.

We present the results of computational experiments for each design a)-c) in Figures
2-4. The left column of each figure reports the results for the parametric model, and
the right column of each figure reports the results for the nonparametric model. For each
model the figures plot the following as a function of the signal strength for each estimator
β̃:

• in the top panel, the number of regressors selected, E[|T̃ |],
• in the middle panel, the norm of the bias, namely ‖E[β̃ − θ0]‖,
• in the bottom panel, the average empirical risk, namely E[En[fi − z′iβ̃]

2].

We will focus the discussion on the isotropic design, and only highlight differences for
other designs.

Figure 2, left panel, shows the results for the parametric model with the isotropic
design. We see from the bottom panel that, for a wide range of signal strength C, both
ols post lasso and ols post fit-lasso significantly outperform both lasso and ols post t-lasso
in terms of empirical risk. The middle panel shows that the first two estimators’ superior
performance stems from their much smaller bias. We see from the top panel that lasso
achieves good sparsity, ensuring that ols post lasso performs well, but ols post fit-lasso
achieves even better sparsity. Under very high signal strength, ols post fit-lasso achieves
the performance of the oracle estimator; ols post t-lasso also achieves this performance; ols
post lasso nearly matches it; while lasso does not match this performance. Interestingly,
the ols post t-lasso performs very poorly for intermediate ranges of signal.

Figure 2, right panel, shows the results for the nonparametric model with the isotropic
design. We see from the bottom panel that, as in the parametric model, both ols post
lasso and ols post fit-lasso significantly outperform both lasso and ols post fit-lasso in
terms of empirical risk. As in the parametric model, the middle panel shows that the first
two estimators are able to outperform the last two because they have a much smaller
bias. We also see from the top panel that, as in the parametric model, lasso achieves good
sparsity, while ols post fit-lasso achieves excellent sparsity. In contrast to the parametric
model, in the nonparametric setting the ols post t-lasso performs poorly in terms of
empirical risk for almost all signals, except for very weak signals. Also in contrast to the
parametric model, no estimator achieves the exact oracle performance, although lasso,
and especially ols post lasso and ols post fit-lasso perform nearly as well, as we would
expect from the theoretical results.

Figure 3 shows the results for the parametric and nonparametric model with the
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Toeplitz design. This design deviates only moderately from the isotropic design, and
we see that all of the previous findings continue to hold. Figure 4 shows the results
under the equi-correlated design. This design strongly deviates from the isotropic design,
but we still see that the previous findings continue to hold with only a few differences.
Specifically, we see from the top panels that in this case lasso no longer selects very
sparse models, while ols post fit-lasso continues to perform well and selects very sparse
models. Consequently, in the case of the parametric model, ols post fit-lasso substantially
outperforms ols post lasso in terms of empirical risk, as the bottom-left panel shows. In
contrast, we see from the bottom right panel that in the nonparametric model, ols post
fit-lasso performs equally as well as ols post lasso in terms of empirical risk, despite the
fact that it uses a much sparser model for estimation.

The findings above confirm our theoretical results on post-model selection estimators
in parametric and nonparametric models. Indeed, we see that ols post fit-lasso and ols
post lasso are at least as good as lasso, and often perform considerably better since they
remove penalization bias. ols post fit-lasso outperforms ols post lasso whenever lasso
does not produce excellent sparsity. Moreover, when the signal is strong and the model
is parametric and sparse (or very close to being such), the lasso-based model selection
permits the selection of oracle or near-oracle model. That allows for post-model selection
estimators to achieve improvements in empirical risk over lasso. Of particular note is the
excellent performance of ols post fit-lasso, which uses data-driven threshold to select a
sparse model. This performance is fully consistent with our theoretical results. Finally,
traditional thresholding performs poorly for intermediate ranges of signal. In particular,
it exhibits very large biases leading to large goodness-of-fit losses.
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lasso ols post lasso ols post fit-lasso ols post t-lasso

Parametric Nonparametric
A. Sparsity

B. Bias

C. Empirical Risk

Figure 2. This figure plots the performance of the estimators listed in the text under the isotropic
design for the covariates, Σjk = 0 if j 6= k. The left column corresponds to the parametric case and the
right column corresponds to the nonparametric case described in the text. The number of regressors is
p = 500 and the sample size is n = 100 with 1000 simulations for each value of C.
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lasso ols post lasso ols post fit-lasso ols post t-lasso

Parametric Nonparametric

B. Bias

C. Empirical Risk

A. Sparsity

Figure 3. This figure plots the performance of the estimators listed in the text under the Toeplitz design
for the covariates, Σjk = ρ|j−k| if j 6= k. The left column corresponds to the parametric case and the
right column corresponds to the nonparametric case described in the text. The number of regressors is
p = 500 and the sample size is n = 100 with 1000 simulations for each value of C.
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C. Empirical Risk
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Parametric Nonparametric

Figure 4. This figure plots the performance of the estimators listed in the text under the equi-correlated
design for the covariates, Σjk = ρ if j 6= k. The left column corresponds to the parametric case and the
right column corresponds to the nonparametric case described in the text. The number of regressors is
p = 500 and the sample size is n = 100 with 1000 simulations for each value of C.
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