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Abstract

This paper is concerned with tests and con�dence intervals for parameters that are

not necessarily identi�ed and are de�ned by moment inequalities. In the literature,

di¤erent test statistics, critical value methods, and implementation methods (i.e., the

asymptotic distribution versus the bootstrap) have been proposed. In this paper, we

compare these methods. We provide a recommended test statistic, moment selection

critical value method, and implementation method. We provide data-dependent proce-

dures for choosing the key moment selection tuning parameter � and a size-correction

factor �:

Keywords: Asymptotic size, asymptotic power, bootstrap, con�dence set, generalized
moment selection, moment inequalities, partial identi�cation, re�ned moment selection,

test, unidenti�ed parameter.
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1 Introduction

This paper considers inference in moment inequality models with parameters that

need not be identi�ed. We focus on con�dence sets for the true parameter, as opposed

to the identi�ed set. We construct con�dence sets (CS�s) by inverting Anderson-Rubin-

type test statistics. We consider a class of such statistics and a class of generalized

moment selection (GMS) critical values. This approach follows Imbens and Manski

(2004), Chernozhukov, Hong, and Tamer (2007) (CHT), Andrews and Guggenberger

(2009) (AG), Andrews and Soares (2010) (AS), and other papers.

GMS and subsampling tests and CS�s are the only methods in the literature that

apply to arbitrary moment functions and have been shown to have correct asymptotic

size in a uniform sense, see AG, AS, and Romano and Shaikh (2008). AS and Bugni

(2010) show that GMS tests dominate subsampling tests in terms of asymptotic size

and power properties. In addition, in our experience based on simulation results, sub-

sampling tests often are substantially under-sized in �nite samples in moment inequality

testing problems. Hence, we focus on GMS critical values.

GMS tests and CS�s depend on a test statistic function S; a critical value function ';

and a tuning parameter �: In this paper we determine a combination that performs well

in terms of size and power and can be recommended for general use. To do so, we consider

asymptotics in which � equals a �nite constant plus op(1); rather than asymptotics in

which �!1 as n!1; as has been considered elsewhere in the literature.1

We �nd that an adjusted Gaussian quasi-likelihood ratio (AQLR) test statistic com-

bined with a �t-test moment selection� critical value performs very well in terms of

asymptotic average power compared to other choices considered in the literature.2 We

develop data-dependent methods of selecting � and a size-correction factor � and show

that they yield very good asymptotic and �nite-sample size and power. We provide a

table that makes them easy to implement in practice for up to ten moment inequalities.

We show that with i.i.d. observations bootstrap critical values out-perform those

based on the asymptotic-distribution in terms of �nite-sample size. We also show that

the bootstrap version of the AQLR test performs similarly in terms of null rejection

probabilities and power to an analogous test based on the empirical likelihood ratio

(ELR) statistic. The AQLR-based test is noticeably faster to compute than the ELR-

1The theoretical arguments mentioned in the preceding paragraph rely on �!1 asymptotics.
2The �adjustment�in the AQLR test statistic is designed to handle singular asymptotic correlation

matrices of the sample moment functions.
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based test and avoids computational convergence problems that can arise with the ELR

statistic when the correlation matrix of the moment conditions is singular.

The asymptotic results of the paper apply to i.i.d. and time series data and to mo-

ment functions that are based on preliminary estimators of point-identi�ed parameters.

In short, the contribution of this paper relative to the literature is to compare moment

inequality tests, determine a recommended test, and provide data-dependent tuning

parameters.

The remainder of the paper is organized as follows. Section 2 introduces the model

and describes the recommended con�dence set and test. Section 3 de�nes the di¤erent

test statistics and critical values that are compared in the paper. Section 4 provides

the numerical comparisons of the tests based on asymptotic average power. Section 5

describes how the recommended data-dependent tuning parameter b� and size-correction
factor b� are determined and provides numerical results assessing their performance.
Section 6 gives �nite-sample results.

Andrews and Jia (2008) (AJ2) provides Supplemental Material that includes: (i) the

asymptotic results that are utilized in this paper, (ii) details concerning the numerical

results given here, and (iii) additional numerical results.

Let R+ = fx 2 R : x � 0g; R++ = fx 2 R : x > 0g; R+;1 = R+ [ f+1g;
Kp = K � :::�K (with p copies) for any set K; and 0p = (0; :::; 0)0 2 Rp:

2 Model and Recommended Con�dence Set

The moment inequality model is speci�ed as follows. The true value �0 (2 � � Rd)
is assumed to satisfy the moment conditions:

EF0mj(Wi; �0) � 0 for j = 1; :::; p; (2.1)

where fmj(�; �) : j = 1; :::; pg are known real-valued moment functions and fWi : i � 1g
are i.i.d. or stationary random vectors with joint distribution F0: The observed sample

is fWi : i � ng: The true value �0 is not necessarily identi�ed. The results also apply
when the moment functions in (2.1) depend on a parameter � ; i.e., when they are of the

form fmj(Wi; �; �) : j � pg; and a preliminary consistent and asymptotically normal
estimator b�n(�0) of � exists, see AJ2. In addition, the asymptotic results in AJ2 allow
for moment equalities as well as moment inequalities.
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We are interested in tests and con�dence sets (CS�s) for the true value �0:We consider

a con�dence set obtained by inverting a test. The test is based on a test statistic Tn(�0)

for testing H0 : � = �0: The nominal level 1� � CS for � is

CSn = f� 2 � : Tn(�) � cn(�)g; (2.2)

where cn(�) is a data-dependent critical value.3

We now describe the recommended test statistic and critical value. The justi�ca-

tions for these recommendations are described below and are given in detail in AJ2.

The recommended test statistic is an adjusted quasi-likelihood ratio (AQLR) statistic,

TAQLR;n(�); that is a function of the sample moment conditions, n1=2mn(�); and an

estimator of their asymptotic variance, b�n(�):
TAQLR;n(�) = S2A(n

1=2mn(�); b�n(�))
= inf

t2Rp+;1
(n1=2mn(�)� t)0e��1n (�)(n1=2mn(�)� t); where

mn(�) = (mn;1(�); :::;mn;p(�))
0; mn;j(�) = n

�1
nX
i=1

mj(Wi; �) for j � p;

e�n(�) = b�n(�) + maxf"� det(b
n(�)); 0g bDn(�); " = :012;bDn(�) = Diag(b�n(�)); b
n(�) = bD�1=2
n (�)b�n(�) bD�1=2

n (�); (2.3)

and Diag(�) denotes the diagonal matrix based on the matrix �:4 Note that the weight

matrix e�n(�) depends only on b�n(�) and hence TAQLR;n(�) can be written as a function of
(mn(�); b�n(�)): The function S2A(�) is an adjusted version of the QLR function S2(�) that
appears in Section 3. The adjustment is designed to handle singular variance matrices.

Speci�cally, the matrix e�n(�) equals the asymptotic variance matrix estimator b�n(�)
with an adjustment that ensures that e�n(�) is always nonsingular and is invariant to
scale changes in the moment functions. The matrix b
n(�) is the correlation matrix that
corresponds to b�n(�):

3When � is in the interior of the identi�ed set, it may be the case that Tn(�) = 0 and cn(�) = 0: In
consequence, it is important that the inequality in the de�nition of CSn is �; not < :

4The constant " = :012 was determined numerically based on an average asymptotic power criterion.
See Section 6.2 of AJ2 for details.
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When the observations are i.i.d. and no parameter � appears, we take

b�n(�) = n�1 nX
i=1

(m(Wi; �)�mn(�))(m(Wi; �)�mn(�))
0; where

m(Wi; �) = (m1(Wi; �); :::;mp(Wi; �))
0: (2.4)

With temporally dependent observations or when a preliminary estimator of a parameter

� appears, a di¤erent de�nition of b�n(�) often is required, see AJ2. For example,

with dependent observations, a heteroskedasticity and autocorrelation consistent (HAC)

estimator may be required.

The test statistic TAQLR;n(�) is computed using a quadratic programming algorithm.

Such algorithms are built into GAUSS and Matlab. They are very fast even when p is

large. For example, to compute the AQLR test statistic 100,000 times takes 2:6; 2:9;

and 4:7 seconds when p = 2; 4; and 10; respectively, using GAUSS on a PC with a 3.4

GHz processor.5

A moment selection critical value that utilizes a data-dependent tuning parameter b�
and size-correction factor b� is referred to as a re�ned moment selection (RMS) critical
value. Our recommended RMS critical value is

cn(�) = cn(�; b�) + b�; (2.5)

where cn(�; b�) is the 1�� quantile of a bootstrap (or �asymptotic normal�) distribution
of a moment selection version of TAQLR;n(�) and b� is a data-dependent size-correction
factor. For i.i.d. data, we recommend using a nonparametric bootstrap version of

cn(�; b�): For dependent data, either a block bootstrap or an asymptotic normal version
can be applied.

We now describe the bootstrap version of cn(�; b�): Let fW �
i;r : i � ng for r = 1; :::; R

denote R bootstrap samples of size n (i.i.d. across samples), such as nonparametric

i.i.d. bootstrap samples in an i.i.d. scenario or block bootstrap samples in a time series

scenario, where R is large. De�ne the bootstrap variance matrix estimator b��n;r(�) asb�n(�) is de�ned (e.g., as in (2.4) in the i.i.d. case) with fW �
i;r : i � ng in place of

fWi : i � ng throughout.6 The p-vectors of re-centered bootstrap sample moments and
5In our experience, the GAUSS 9.0 quadratic programming procedure �qprog�is much faster than

the Matlab 7 procedure �quadprog.�
6Note that when a preliminary consistent estimator of a parameter � appears, the bootstrap moment

conditions need to be based on a bootstrap estimator of this preliminary estimator. In such cases, the
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p� p bootstrap weight matrices for r = 1; :::; R are de�ned by

m�
n;r(�) = n

1=2
�
m�
n;r(�)�mn(�)

�
ande��n;r(�) = b��n;r(�) + maxf"� det(b
�n;r(�)); 0g bD�

n;r(�); where " = :012;bD�
n;r(�) = Diag(

b��n;r(�)); and b
�n;r(�) = bD�
n;r(�)

�1=2b��n;r(�) bD�
n;r(�)

�1=2: (2.6)

The idea behind the RMS critical value is to compute the critical value using only

those moment inequalities that have a noticeable e¤ect on the asymptotic null distri-

bution of the test statistic. Note that moment inequalities that have large positive

population means have little or no e¤ect on the asymptotic null distribution. Our pre-

ferred RMS procedure employs element-by-element t-tests of the null hypothesis that

the mean of mn;j(�) is zero versus the alternative that it is positive for j = 1; :::; p: The

j-th moment inequality is selected if

n1=2mn;j(�)b�n;j(�) � b�; (2.7)

where b�2n;j(�) is the (j; j) element of b�n(�) for j = 1; :::; p and b� is a data-dependent tun-
ing parameter (de�ned in (2.10) below) that plays the role of a critical value in selecting

the moment inequalities. Let bp denote the number of selected moment inequalities.
For r = 1; :::; R; let m�

n;r(�; bp) denote the bp-sub-vector of m�
n;r(�) that includes the bp

selected moment inequalities.7 ;8 Analogously, let b��n;r(�; bp) denote the (bp�bp)-sub-matrix
of b��n;r(�) that consists of the bp selected moment inequalities. The bootstrap quantity
cn(�; b�) is the 1� � sample quantile of

fS2A(m�
n;r(�; bp); b��n;r(�; bp)) : r = 1; :::; Rg; (2.8)

where S2A(�; �) is de�ned as in (2.3) but with p replaced by bp:
An �asymptotic normal�version of cn(�; b�) is obtained by replacing the bootstrap

quantities m�
n;r(�; bp) and b��n;r(�; bp) in (2.8) by b�1=2n (�; bp)Z�r and b�n(�; bp); respectively,

where b�n(�; bp) denotes the (bp � bp)-sub-matrix of b�n(�) that consists of the bp selected
asymptotic normal version of the critical value may be much quicker to compute.

7Note that m�
n;r(�; bp) depends not only on the number of moments selected, bp; but which moments

are selected. For simplicity, this is suppressed in the notation.
8By de�nition, bp � 1; i.e., at least one moment must be selected. For speci�city, m�

n;r(�; bp) equals
the last element of m�

n;r(�) if no moments are selected via (2.7).
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moment inequalities, Z�r � i:i:d: N(0bp; Ibp) for r = 1; :::; R; and fZ�r : r = 1; :::; Rg are
independent of fWi : i � ng conditional on bp:
The tuning parameter b� in (2.7) and the size-correction factor b� in (2.5) depend on the

estimator b
n(�) of the asymptotic correlation matrix 
(�) of n1=2mn(�): In particular,

they depend on b
n(�) through a [�1; 1]-valued function �(b
n(�)) that is a measure of
the amount of negative dependence in the correlation matrix b
n(�): We de�ne

�(
) = smallest o¤-diagonal element of 
; (2.9)

where 
 is a p � p correlation matrix. The moment selection tuning parameter b� and
the size-correction factor b� are de�ned by

b� = �(b�n(�)) and b� = �1(b�n(�)) + �2(p); where b�n(�) = �(b
n(�)): (2.10)

Table I provides values of �(�); �1(�); and �2(p) for � 2 [�1; 1] and p 2 f2; 3; :::; 10g
for tests with level � = :05 and CS�s with level 1 � � = :95: AJ2 provides simulated

values of the mean and standard deviation of the asymptotic distribution of cn(�; b�):
These results, combined with the values of �1(�) and �2(p) in Table I, show that the

size-correction factor b� typically is small compared to cn(�; b�); but not negligible.9
Computation of the �2(p) values given in Table I by simulation is not easy because it

requires computing the (asymptotic) maximum null rejection probability (MNRP) over

a large number of null mean vectors � and correlation matrices 
: For this reason, we

only provide �2(p) values for p � 10: For the correlation matrices, we consider both

a �xed grid and randomly generated matrices. For the null mean vectors � 2 Rp+;1;
computation of the �2(p) values is carried out initially for mean vectors that consist

only of 00s and 10s: Then, the di¤erences are computed between the values obtained

by maximization over such � vectors and the values obtained by maximization over �

vectors that lie in (i) a �xed full grid, (ii) two partial grids, and (iii) 1,000 or 100,000

randomly generated � vectors (depending on the variance matrix). The di¤erences are

found to be :0000 in most cases and small (� :0018) in all cases, see AJ2 for details.

These results indicate, although do not establish unequivocally, that the maxima over

� 2 Rp+;1 are obtained at � vectors that consist only of 00s and 10s:

9For example, for p = 10; 
 = I10; �ve moment inequalities binding, and �ve moment inequalities
completely slack, the mean and standard deviation of the asymptotic distribution of cn(�; b�) are 7:2
and :57; respectively, whereas the size-correction factor is :614:
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In sum, the preferred RMS critical value, cn(�); and CS are computed using the fol-

lowing steps. One computes (i) b
n(�) de�ned in (2.4), (ii) b�n(�) = smallest o¤-diagonal
element of b
n(�); (iii) b� = �(b�n(�)) using Table I, (iv) b� = �1(b�n(�))+ �2(p) using Table
I, (v) the vector of selected moments using (2.7), (vi) the selected bootstrap sample

moments, correlation matrices, and weight matrices f(m�
n;r(�; bp); b��n;r(�; bp); e��n;r(�; bp)) :

r = 1; :::; Rg; de�ned in (2.6) with the non-selected moment inequalities omitted, (vii)
cn(�; b�); which is the :95 sample quantile of fS2A(m�

n;r(�; bp); b��n;r(�; bp)) : r = 1; :::; Rg
(for a test of level :05 and a CS of level :95) and (viii) cn(�) = cn(�; b�)+b�: The preferred
RMS con�dence set is computed by determining all the values � for which the null hy-

pothesis that � is the true value is not rejected. For the asymptotic normal version of

the recommended RMS critical value, in step (vi) one computes the selected sub-vector

and sub-matrix of b�1=2n (�; bp)Z�r and b�n(�; bp); de�ned in the paragraph following (2.8),
and in step (vii) one computes the :95 sample quantile with these quantities in place of

m�
n;r(�; bp) and b��n;r(�; bp); respectively.
To compute the recommended bootstrap RMS test using R =10,000 simulation rep-

etitions takes 1:3; 1:5; and 2:7 seconds when p = 2; 4; and 10; respectively, and n = 250

using GAUSS on a PC with a 3.4 GHz processor. For the �asymptotic normal�version,

the times are :20; :25; and :45 seconds.

When constructing a CS, if the computation time is burdensome (because one needs

to carry out many tests with di¤erent values of � as the null value), then a useful

approach is to map out the general features of the CS using the �asymptotic normal�

version of the MMM/t-Test/�=2.35 test, which is extremely fast to compute, and then

switch to the bootstrap version of the recommended RMS test to �nd the boundaries of

the CS more precisely.10

10The �asymptotic normal� version of the MMM/t-Test/�=2.35 test is de�ned just as the recom-
mended RMS test is de�ned but with (S1; � = 2:35; � = 0) in place of (S2A; b�;b�); respectively, where S1
is de�ned in (3.2), and with the bootstrap replaced by the normal asymptotic distribution. The boot-
strap version of this test is much slower to compute than the asymptotic normal version and, hence,
we do not recommend that it is used for this purpose. The computation times for the �asymptotic
normal�version of the MMM/t-Test/�=2.35 test are :007; :014; and :03 seconds when p = 2; 4; and 10;
respectively.
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3 Test Statistics and Critical Values

We now describe the justi�cation for the recommended RMS test. Details are given

in AJ2. The test statistics Tn(�) that we consider are of the form

Tn(�) = S(n
1=2mn(�); b�n(�)); (3.1)

where S is a real function on (R [ f+1g)p � V and V is the space of p � p variance
matrices. The leading examples of S are the AQLR function S2A de�ned above, the QLR

function S2; which is the same as S2A in (2.3) but with " = 0 (and hence e�n(�) = b�n(�)),
the modi�ed method of moments (MMM) function S1; and the SumMax function S3:

S1(m;�) =

pX
j=1

[mj=�j]
2
� and S3(m;�) =

p1X
j=1

[m(j)=�(j)]
2
�; (3.2)

where [x]� = minfx; 0g; m = (m1; :::;mp)
0; �2j is the jth diagonal element of �;

[m(j)=�(j)]
2
� denotes the jth largest value among f[m`=�`]

2
� : ` = 1; :::; pg; and p1 < p

is some speci�ed integer.11 ;12 ;13 The MMM statistic S1 has been used by Pakes, Porter,

Ho, and Ishii (2004), CHT, Fan and Park (2007), Romano and Shaikh (2008), AG, AS,

and Bugni (2010); the (unadjusted) QLR statistic has been used by AG, AS, and Rosen

(2008); and the Max and SumMax statistics S3 have been used by AG, AS, and Azeem

Shaikh.14

We consider the class of GMS critical values discussed in AS. They rely on a tuning

parameter � and moment selection functions 'j : (R [ f+1g)p � 	 ! R+ for j � p;

where 	 is the set of all p� p correlation matrices. The leading examples of 'j are

'
(1)
j (�;
) =

(
0 if �j � 1
1 if �j > 1;

'
(2)
j (�;
) = [�(�j � 1)]+; '

(3)
j (�;
) = [�j]+;

'
(4)
j (�;
) = ��j1(�j > 1); and '

(0)
j (�;
) = 0 (3.3)

for j � p; where [x]+ = maxfx; 0g; � = (�1; :::; �p)
0; 
 is a p � p correlation matrix,

11When constructing a CS, a natural choice for p1 is the dimension d of �; see below.
12With the functions S1; S2A; and S3; there is no restriction on the parameter space for the variance

matrix � of the moment conditions� � can be singular.
13Several papers in the literature use a variant of S1 that is not invariant to rescaling of the moment

functions (i.e., with �j = 1 for all j): This is not desirable in terms of the power of the resulting test.
14Personal communication.
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and � in '(2)j and '(4)j is the tuning parameter �: Let '(�;
) = ('1(�;
); :::; 'p(�;
))
0

(for any 'j(�;
) as in (3.3)). CHT, AS, and Bugni (2010) consider the function '
(1);

Canay (2010) considers '(2); AS considers '(3); and Fan and Park (2007) use a non-

scale-invariant version of '(4): The function '(1) generates the recommended �moment

selection t-test�procedure of (2.7), see AJ2 for details. The function '(0) generates a

critical value based on the least-favorable distribution evaluated at an estimator of the

true variance matrix �: It only depends on the data through the estimation of �: It

is referred to as the �plug-in� asymptotic (PA) critical value. (No value � is needed

for this critical value.) Another ' function is the modi�ed moment selection criterion

(MMSC) '(5) function introduced in AS. It is computationally more expensive than the

functions '(1)-'(4) considered above, but uses all of the information in the p-vector of

moment conditions to decide which moments to select. It is a one-sided version of the

information-criterion-based moment selection criterion considered in Andrews (1999).

For brevity, we do not de�ne '(5) here, but we consider it below.

For a GMS critical value as in AS, f� = �n : n � 1g is a sequence of constants that
diverges to in�nity as n ! 1; such as �n = (lnn)1=2: In contrast, for an RMS critical
value, b� does not go to in�nity as n!1 and is data-dependent. Data-dependence of b�
is obtained by taking b� to depend on b
n(�): b� = �(b
n(�));where �(�) is an R++-valued
function. We justify RMS critical values using asymptotics in which � equals a �nite

constant plus op(1); rather than asymptotics in which � ! 1 as n ! 1: This di¤ers
from the asymptotics in other papers in the moment inequality literature.

There are four reasons for using �nite-� asymptotics. First, they provide better

approximations because � is �nite, not in�nite, in any given application. Second, for

any given (S; '); they allow one to compute a best � value in terms of asymptotic average

power, which in turn allows one to compare di¤erent (S; ') functions (each evaluated at

its own best � value) in terms of asymptotic average power. One cannot determine a best

� value in terms of asymptotic average power when � ! 1 because asymptotic power

is always higher if � is smaller, asymptotic size does not depend on �; and �nite-sample

size is worse if � smaller.15 Third, for the recommended (S; ') functions, the �nite-�

asymptotic formula for the best � value lets one determine a data-dependent � value

that is approximately optimal in terms of asymptotic average power. Fourth, �nite-�

15This does not imply that one cannot size-correct a test and then consider the � ! 1 asymptotic
properties of such a test. Rather, the point is that �!1 asymptotics do not allow one to determine
a suitable formula for size correction for the reason given.
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asymptotics permit one to compute size-correction factors that depend on �; which is a

primary determinant of a test�s �nite-sample size. In contrast, if �!1 the asymptotic

properties of tests under the null hypothesis do not depend on �: Even the higher-order

errors in null rejection probabilities do not depend on �; see Bugni (2010). Thus, with

� ! 1 asymptotics, the determination of a desirable size-correction factor based on �

is not possible.

For brevity, the �nite-� asymptotic results are given in AJ2. These results include

uniform asymptotic size and n�1=2-local power results. We use these results to compare

di¤erent (S; ') functions below and to develop recommended b� and b� values.
For Z� � N(0p; Ip) and � 2 (R [ f+1g)p; let qS(�;
) denote the 1� � quantile of

S(
1=2Z� + �;
): For constants � > 0 and � � 0; de�ne

AsyPow(�;
; S; '; �; �)

= P
�
S(
1=2Z� + �;
) > qS

�
'(��1[
1=2Z� + �];
);


�
+ �

�
; (3.4)

where � 2 Rp and 
 2 	: The asymptotic power of an RMS test of the null hypothesis
that the true value is �; based on (S; ') with data-dependent b� = �(b
n(�)); and b� =
�(b
n(�)); is shown in AJ2 to be AsyPow(�;
(�); S; '; �(
(�));�(
(�))); where � is a
p-vector whose elements depend on the limits (as n!1) of the normalized population
means of the p moment inequalities and 
(�) is the population correlation matrix of the

moment functions evaluated at the null value �:

We compare the power of di¤erent RMS tests by comparing their asymptotic average

power for a chosen set Mp(
) of alternative parameter vectors � 2 Rp for a given

correlation matrix 
: The asymptotic average power of the RMS test based on (S; '; �; �)

for constants � > 0 and � � 0 is

jMp(
)j�1
X

�2Mp(
)

AsyPow(�;
; S; '; �; �); (3.5)

where jMp(
)j denotes the number of elements inMp(
):

We are interested in constructing tests that yield CS�s that are as small as possible.

The boundary of a CS, like the boundary of the identi�ed set, is determined at any

given point by the moment inequalities that are binding at that point. The number of

binding moment inequalities at a point depends on the dimension, d; of the parameter

�: Typically, the boundary of a con�dence set is determined by d (or fewer) moment
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inequalities. That is, at most d moment inequalities are binding and at least p � d are
slack. In consequence, we specify the setsMp(
) considered below to be ones for which

most vectors � have half or more elements positive (since positive elements correspond

to non-binding inequalities), which is suitable for the typical case in which p � 2d:
To compare (S; ') functions based on asymptotic Mp(
)-average power requires

choices of functions (�(�); �(�)): We use the functions ��(
) and ��(
) that are optimal
in terms of maximizing asymptoticMp(
)-average power. These are determined numer-

ically, see AJ2 for details. Given 
; ��(
); and ��(
); we compare (S; ') functions by

comparing their values of the quantity in (3.5) evaluated at � = ��(
); and � = ��(
):

Once we have determined a recommended (S; '); we determine data-dependent val-

ues b� and b� that are suitable for use with this (S; ') combination.
Note that generalized empirical likelihood (GEL) test statistics, including the empir-

ical likelihood ratio (ELR) statistic, behave the same asymptotically (to the �rst order)

as the (unadjusted) QLR statistic Tn(�) based on S2 under the null and local alternative

hypotheses for nonsingular correlation matrices of the moment conditions. See Sections

8.1 and 10.3 of AG, Section 10.1 of AS, and Canay (2010). In consequence, although

GEL statistics are not of the form given in (3.1), the asymptotic results of the present

paper, given in AJ2, hold for such statistics under the assumptions given in AG for

classes of moment condition correlation matrices whose determinants are bounded away

from zero. Hence, in the latter case, the recommended b� and b� values given in Table I
can be used with GEL statistics. However, an advantage of the AQLR statistic in com-

parison to GEL statistics is that its asymptotic properties are known and well-behaved

whether or not the moment condition correlation matrix is singular. There are also

substantial computational reasons to prefer the AQLR statistic to GEL statistics such

as ELR, see Section 6 below.

4 Asymptotic Average Power Comparisons

In the numerical work reported here, we focus on results for p = 2; 4; and 10: For each

value of p; we consider three correlation matrices 
: 
Neg; 
Zero; and 
Pos: The matrix


Zero equals Ip for p = 2; 4; and 10: The matrices 
Neg and 
Pos are Toeplitz matrices

with correlations on the diagonals (as they go away from the main diagonal) given by the

following: For p = 2: � = �:9 for 
Neg and � = :5 for 
Pos: For p = 4: � = (�:9; :7;�:5)
for 
Neg and � = (:9; :7; :5) for 
Pos: For p = 10: � = (�:9; :8;�:7; :6;�:5; :4;�:3; :2;�:1)

11



for 
Neg and � = (:9; :8; :7; :6; :5; :::; :5) for 
Pos:

For p = 2; the set of � vectors M2(
) for which asymptotic average power is

computed includes seven elements: M2(
) = f(��1; 0); (��2; 1); (��3; 2); (��4; 3);
(��5; 4); (��6; 7); (��7;��7)g; where �j depends on 
 and is such that the power

envelope is :75 at each element ofM2(
): Consistent with the discussion in Section 3,

most elements of M2(
) have less than two negative elements. The positive elements

of the � vectors are chosen to cover a reasonable range of the parameter space. For

brevity, the values of �j inM2(
) and the setsMp(
) for p = 4; 10 are given in AJ2.

The elements of Mp(
) for p = 4; 10 are selected such that the power envelope is :80

and :85; respectively, at each element of the set.

In AJ2 we also provide results for two singular 
 matrices and 19 nonsingular 


matrices (for each p) that cover a grid of �(
) values from �1:0 to 1:0: The qualitative
results reported here are found to apply as well to the broader range of 
matrices. Some

special features of the results based on the singular variance matrices are commented

on below.

We compare tests based on the following functions: (S; ') = (MMM, PA), (MMM,

t-Test), (Max, PA), (Max, t-Test), (SumMax, PA), (SumMax, t-Test), (AQLR, PA),

(AQLR, t-Test), (AQLR, '(3)), (AQLR, '(4)), and (AQLR, MMSC).16 We also consider

the �pure ELR�test, for which Canay (2010) establishes a large deviation asymptotic

optimality result. This test rejects the null when the ELR statistic exceeds a �xed

constant (that is the same for all 
):17 The reason for reporting results for this test is

to show that these asymptotic optimality results do not provide theoretical grounds for

favoring the ELR test or ELR test statistic over other tests or test statistics.

For each test, Table II reports the asymptotic average power given the � value that

maximizes asymptotic average power for the test, denoted �=Best. The best � values

are determined numerically using grid search, see AJ2 for details. For all tests and

p = 2; 4; 10; the best � values are decreasing from 
Neg to 
Zero to 
Pos: For example,

16The statistics MMM, AQLR, Max, and SumMax use the functions S1; S2; S3 with p1 = 1; and S3
with p1 = 2; respectively. The PA, t-Test, and MMSC critical values use the functions '(0); '(1); and
'(5); respectively.
17The level :05 pure ELR asymptotic critical value is determined numerically by calculating the

constant for which the maximum asymptotic null rejection probability of the ELR statistic over all
mean vectors in the null hypothesis and over all positive de�nite correlation matrices 
 is :05: See AJ2
for details. The critical values are found to be 5:07; 7:99; and 16:2 for p = 2; 4; and 10; respectively.
These critical values yield asymptotic null rejection probabilities of :05 when 
 contains elements that
are close to �1:0:
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for the AQLR/t-Test test, the best � values for (
Neg;
Zero;
Pos) are (2:5; 1:4; :6) for

p = 10; (2:5; 1:4; :8) for p = 4; and (2:6; 1:7; :6) for p = 2:

The asymptotic power results are size-corrected.18 ;19 The critical values, size-correction

factors, and power results are each calculated using 40; 000 simulation repetitions, ex-

cept where stated otherwise, which yields a simulation standard error of :0011 for the

power results.

Table II shows that the MMM/PA test has very low asymptotic power compared

to the AQLR/t-Test/�Best test (which is shown in boldface) especially for p = 4; 10:

Similarly, the Max/PA and SumMax/PA tests have low power. The AQLR/PA test has

better power than the other PA tests, but it is still very low compared to the AQLR/t-

Test/�Best test.

Table II also shows that the MMM/t-Test/�Best test has equal asymptotic average

power to the AQLR/t-Test/�Best test for 
Zero and only slightly lower power for 
Pos:

But, it has substantially lower power for 
Neg: For example, for p = 10; the compar-

ison is :18 versus :55: The Max/t-Test/�Best test has noticeably lower average power

than the AQLR/t-Test/�Best test for 
Neg; slightly lower power for 
Zero; and essen-

tially equal power for 
Pos: It is strongly dominated in terms of average power. The

SumMax/t-Test/�Best test also is strongly dominated by the AQLR/t-Test/�Best test

in terms of asymptotic average power. The power di¤erences between these two tests

are especially large for 
Neg: For example, for p = 10 and 
Neg; their powers are :20

and :55; respectively.

Next we compare tests that use the AQLR test statistic but di¤erent critical values�

due to the use of di¤erent functions ': The AQLR/'(2)/�Best test is essentially dom-

inated by the AQLR/t-Test/�Best, although the di¤erences are not large. The AQLR

/'(3)/�Best test has noticeably lower asymptotic average power than the AQLR/t-

Test/�Best test for 
Neg; somewhat lower power for 
Zero; and equal power for 
Pos:

The di¤erences increase with p:

The AQLR/'(4)/�Best test has almost the same asymptotic average power as the

AQLR/t-Test/�Best test for 
Zero and 
Pos and slightly lower power for 
Neg: This

18Size-correction here is done for the �xed known value of 
: It is not based on the least-favorable 

matrix because the results are asymptotic and 
 can be estimated consistently.
19The maximum null rejection probability calculations used in the size correction were calculated

using � vectors that consist of 00s and10s: Then, additional calculations were carried out to determine
whether the maximum over � 2 Rp+;1 is attained at such a � vector in each case. No evidence was
found to suggest otherwise. See Section 7 of the Supplemental Material for details.
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is because the '(4) and '(1) functions are similar. The AQLR/MMSC/�Best test and

AQLR/t-Test/�Best tests have quite similar power. Nevertheless, the AQLR/MMSC/

�Best test is not the recommended test for reasons given below. We experimented

with several smooth versions of the '(1) critical value function in conjunction with the

AQLR statistic. We were not able to �nd any that improved upon the asymptotic

average power of the AQLR/t-Test/�Best test. Some were inferior. All such tests have

substantial disadvantages relative to the AQLR/t-test in terms of the computational

ease of determining suitable data-dependent � and � values.

In conclusion, we �nd that the best (S; ') choices in terms of asymptotic average

power (based on �=Best) are: AQLR/t-Test and AQLR/MMSC, followed closely by

AQLR/'(2) and AQLR/'(4): Each of these tests out-performs the PA tests by a wide

margin in terms of asymptotic power.

The AQLR/MMSC test has the following drawbacks: (i) its computation time is very

high when p is large, such as p = 10; because the test statistic must be computed for

all 2p possible combinations of selected moment vectors and (ii) the best � value varies

widely with 
 and p; which makes it quite di¢ cult to specify a data-dependent � value

that performs well. Similarly, the AQLR/'(2) and AQLR/'(4) tests have substantial

computational drawbacks for determining a data-dependent � values, see AJ2 for details.

Based on the power results discussed above and on the computational factors, we

take the AQLR/t-Test to be the recommended test and we develop data-dependent b�
and b� for this test.
The last row of Table II gives the asymptotic power envelope, which is a �uni-

directional�envelope, see AJ2 for details. One does not expect a test that is designed to

perform well for multi-directional alternatives to be on, or close to, the uni-directional

envelope. In fact, it is surprising how close the AQLR/t-Test/�Best test is to the power

envelope when 
 = 
Pos: As expected, the larger is p the greater is the di¤erence between

the power of a test designed for p-directional alternatives and the uni-directional power

envelope.

When the sample correlation matrix is singular, the QLR test statistic can be de�ned

using the Moore-Penrose generalized inverse in the de�nition of the weighting matrix.

Let MP-QLR denote this statistic. For the case of singular correlation matrices, AJ2

provides asymptotic power comparisons of the AQLR/t-Test/�Best test, the MP-QLR/t-

Test/�Best test, and several other tests.

The results show that the AQLR/t-Test/�Best test has vastly superior asymptotic
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average power to that of the MP-QLR/t-Test/�Best test (e.g., .98 versus .29 when

p = 10) when the correlation matrix exhibits perfect negative correlation and the same

power when only perfect positive correlation is present. Hence, it is clear that the

adjustment made to the QLR statistic is bene�cial. The results also show that the

AQLR/t-Test/�Best test strongly dominates tests based on the MMMandMax statistics

in terms of asymptotic average power with singular correlation matrices.

Finally, results for the �pure ELR�test show that it has very poor asymptotic power

properties.20 For example, for p = 10; its power ranges 1/3 to 1/7 that of the AQLR/t-

Test/�Best test (and of the feasible AQLR/t-Test/�Auto test, which is the recommended

test of Section 2). The poor power properties of this �asymptotically optimal�test imply

that the (generalized Neyman-Pearson) large deviations asymptotic optimality criterion

is not a suitable criterion in this context.21

Note that the poor power of the �pure ELR� test does not imply that the ELR

test statistic is a poor choice of test statistic. When combined with a good critical

value, such as the data-dependent critical value recommended in this paper or a similar

critical value, it yields a test with very good power. The point is that the large deviations

asymptotic optimality result does not provide convincing evidence in favor of the ELR

statistic.

5 Approximately Optimal �(
) and �(
) Functions

Next, we describe how the recommended �(
) and �(
) functions for the AQLR/t-

Test test, de�ned in Section 2 and referred to, are determined.

First, for p = 2 and given � 2 (�1; 1); where � denotes the correlation that appears
in 
; we compute numerically the values of � that maximize the asymptotic average

(size-corrected) power of the nominal :05 AQLR/t-Test test over a �ne grid of 31 �

values. We do this for each � in a �ne grid of 43 values. Because the power results

20The power of the pure ELR test and AQLR/t-Test/�Auto test, which is the recommended test of
Section 2, in the nine cases considered in Table II are: for p = 10; (.19, .55), (.17, .67), and (.12, .82);
for p = 4; (.44, .59), (.42, .69), (.39, .78); and for p = 2; (.57, .65), (.55, .69), and (.54, .73). See Table
S-XIII of AJ2.
21In our view, the large-deviation asymptotic optimality criterion is not appropriate when comparing

tests with substantially di¤erent asymptotic properties under non-large deviations. In particular, this
criterion is questionable when the alternative hypothesis is multi-dimensional because it implies that a
test can be �optimal�against alternatives in all directions, which is incompatible with the �nite sample
and local asymptotic behavior of tests in most contexts.
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are size-corrected, a by-product of determining the best � value for each � value is the

size-correction value � that yields asymptotically correct size for each �:

Second, by a combination of intuition and the analysis of numerical results, we

postulate that for p � 3 the optimal function ��(
) is well approximated by a function
that depends on 
 only through the [�1; 1]-valued function �(
) de�ned in (2.9).
The explanation for this is as follows: (i) Given 
; the value ��(
) that yields

maximum asymptotic average power is such that the size-correction value ��(
) is not

very large. (This is established numerically for a variety of p and 
:) The reason is that

the larger is ��(
); the larger is the fraction, ��(
)=(cn(�; ��(
))+ ��(
)) of the critical

value that does not depend on the data (for 
 known), the closer is the critical value

to the PA critical value that does not depend on the data at all (for known 
); and

the lower is the power of the test for � vectors that have less than p elements negative

and some elements strictly positive. (ii) The size-correction value ��(
) is small if the

rejection probability at the least-favorable null vector � is close to � when using the size-

correction factor �(
) = 0: (This is self-evident.) (iii) We postulate that null vectors

� that have two elements equal to zero and the rest equal to in�nity are nearly least-

favorable null vectors.22 If true, then the size of the AQLR/t-Test test depends on the

two-dimensional sub-matrices of 
 that are the correlation matrices for the cases where

only two moment conditions appear. (iv) The size of a test for given � and p = 2 is

decreasing in the correlation �: In consequence, the least-favorable two-dimensional sub-

matrix of 
 is the one with the smallest correlation. Hence, the value of � that makes

the size of the test equal to � for a small value of � is (approximately) a function of 


through �(
) de�ned in (2.9). (Note that this is just a heuristic explanation. It is not

intended to be a proof.)

Next, because �(
) corresponds to a particular 2�2 submatrix of 
 with correlation
� (= �(
)); we take �(
) to be the value that maximizes asymptotic average power when

p = 2 and � = �; as speci�ed in Table I and described in the second paragraph of this

section. We take �(
) to be the value determined by p = 2 and �; i.e., �1(�) in (2.10)

and Table I, but allow for an adjustment that depends on p; viz., �2(p); that is de�ned to

guarantee that the test has correct asymptotic signi�cance level (up to numerical error).

22The reason for this postulation is that a test with given � has larger null rejection probability the
more negative are the correlations between the moments. A variance matrix of dimension three by three
or greater has restrictions on its correlations imposed by the positive semi-de�niteness property. If all
of the correlations are equal, they cannot be arbitarily close to �1: In constrast, with a two-dimensional
variance matrix, the correlation can be arbitarily close to �1:
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See AJ2 for details.

We refer to the proposed method of selecting �(
) and �(
); described in Section

2, as the �Auto method. We examine numerically how well the �Auto method does in

approximating the best �; viz., ��(
):23 We provide four groups of results and consider

p = 2; 4; 10 for each group. The �rst group consists of the three 
 matrices considered

in Table II. The rows of Table II for the AQLR/t-Test/�Best and AQLR/t-Test/�Auto

tests show that the �Auto method works very well. It has the same asymptotic average

power as the AQLR/t-Test/�Best test for all p and 
 values except one case where the

di¤erence is just :01:

The second group consists of a set of 19 
 matrices for which �(
) takes values on a

grid in [�:99; :99]: In 53 of the 57 (=3�19) cases, the di¤erence in asymptotic average
power of the AQLR/t-Test/�Best and AQLR/t-Test/�Auto tests is less than :01:

The third group consists of two singular 
 matrices. One with perfect negative and

positive correlations and the other with perfect positive correlations. The AQLR/t-

Test/�Auto test has the same asymptotic average power as the AQLR/t-Test/�Best

test for 3 (p;
) combinations, power that is lower by :01 for 2 combinations, and power

that is lower by :02 for one combination.

The fourth group consists 500 randomly generated 
 matrices for p = 2; 4 and 250

randomly generated 
 matrices for p = 10: For p = 2; across the 500 
 matrices, the

asymptotic average power di¤erences have average equal to :0010; standard deviation

equal to :0032; and range equal to [:000; :022]: For p = 4; across the 500 
 matrices,

the average power di¤erence is :0012; the standard deviation is :0016; and the range is

[:000; :010]: For p = 10; across the 250 
 matrices, the average power di¤erences have

average equal to :0183; standard deviation equal to :0069; and range equal to [:000; :037]:

In conclusion, the �Auto method performs very well in terms of selecting � values

that maximize the asymptotic average power.

6 Finite-Sample Results

The recommended RMS test, AQLR/t-Test/�Auto, can be implemented in �nite

samples via the �asymptotic normal� and the bootstrap versions of the t-Test/�Auto

critical value. Here we determine which of these two methods performs better in �nite

samples. We also compare these tests to the bootstrap version of the ELR/t-Test/�Auto

23For brevity, details of the numerical results are given in AJ2.
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test, which has the same �rst-order asymptotic properties as the AQLR-based tests (for

correlation matrices whose determinants are bounded away from zero by " = :012 or

more). See Sec. 6.3.3 of AJ2 for the de�nition of the ELR statistic and details of its

computation.

In short, we �nd that the bootstrap version (denoted Bt in Table III) of the AQLR/t-

Test/�Auto test performs better than the asymptotic normal version (denoted Nm) in

terms of the closeness of its null rejection probabilities to its nominal level and similarly

on average in terms of its power. The AQLR bootstrap test also performs slightly

better than the ELR bootstrap test in terms of power, is noticeably superior in terms of

computation time, and is essentially the same (up to simulation error) in terms of null

rejection probabilities. In addition, the AQLR bootstrap test is found to perform quite

well in an absolute sense. Its null rejection probabilities are close to its nominal level

and the di¤erence between its �nite-sample and asymptotic power is relatively small.

We provide results for sample size n = 100: We consider the same correlation

matrices 
Neg; 
Zero; and 
Pos as above and the same numbers of moment inequal-

ities p = 2; 4; and 10: We take the mean zero variance Ip random vector Zy =

V ar�1=2(m(Wi; �))(m(Wi; �) � Em(Wi; �)) to be i.i.d. across elements and consider

three distributions for the elements: standard normal (i.e., N(0, 1)), t3; and chi-squared

with three degrees of freedom �23: All of these distributions are centered and scaled to

have mean zero and variance one. The power results are �size-corrected�based on the

true 
 matrix. For p = 2; 4; and 10; we use 5000, 3000, and 1000 critical value and

rejection probability repetitions, respectively, for the results under the null and under

the alternative.24

We note that the �nite-sample testing problem for any moment inequality model �ts

into the framework above for some correlation matrix 
 and some distribution of Zy:

Hence, the �nite-sample results given here provide a level of generality that usually is

lacking with �nite-sample simulation results.

The upper part of Table III provides the �nite-sample maximum null rejection prob-

abilities (MNRP�s) of the nominal .05 normal and bootstrap versions of the AQLR/t-

Test/�Auto test as well the bootstrap version of the ELR/t-Test/�Auto test. The

MNRP is the maximum rejection probability over mean vectors � in the null hypothesis

for a given correlation matrix 
 and a given distribution of Zy: The lower part of Table

24The binding constraint on the number of simulation repetitions is the ELR test, see below for
details.
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III provides MNRP-corrected �nite-sample average power for the same three tests. The

average power results are for the same mean vectors � in the alternative hypothesis as

considered above for asymptotic power.

Table III shows that the AQLR/t-Test/�Auto bootstrap test performs well with

MNRP�s in the range of [:043; :066]: In contrast, the AQLR normal test over-rejects some-

what for some 
 matrices with the normal and t3 distributions for which its MNRP�s

are in the range of [:045; :092]: With the skewed distribution, �23; the AQLR normal

test over-rejects the null hypothesis substantially with its MNRP�s being in the range

[:068; :153]: The fact that over-rejection is largest for a skewed distribution is not surpris-

ing because the �rst term in the Edgeworth expansion of a sample average is a skewness

term and the statistics considered here are simple functions of sample averages.

The ELR bootstrap test performs similarly to the AQLR bootstrap test in terms

of null rejection probabilities. Its average amount of over-rejection over the 27 cases is

:012; whereas it is :005 for the AQLR bootstrap test.

For the N(0, 1), t; and �23 distributions, Table III shows that the AQLR bootstrap

test has �nite-sample average power compared to the AQLR normal test that is similar,

inferior, and superior, respectively.

The ELR bootstrap test performs similarly to the AQLR bootstrap test in terms of

power. Computation of the ELR/t-Test/�Auto bootstrap test using R =10,000 simula-

tion repetitions takes 9:5; 11:8; 16:2; 31:9; 59:0; and 182:7 seconds when p = 2; 4; 10; 20;

30; and 50; respectively, and n = 250 using GAUSS on a PC with a 3.4 GHz processor.

This is slower than the AQLR/t-Test/�Auto bootstrap test (see Section 2) by a factor

of 4:4 to 7:7:

AJ2 reports additional �nite-sample results for the case of singular correlation ma-

trices. The results for the AQLR/t-Test/�Auto test show that the bootstrap version

performs better than the normal version in terms of MNRP�s but similarly in terms of

average power. Both tests perform well in an absolute sense. The bootstrap version

of the MP-QLR/t-Test/�Auto test also is found to have good MNRP�s. However, its

�nite-sample average power is much inferior to that of the AQLR/t-Test/�Auto boot-

strap test� quite similar to the asymptotic power di¤erences.

For the ELR/t-Test/�Auto bootstrap test, results for singular correlation matrices

are reported in AJ2 only for the case of p = 2: The reason is that with a singular

correlation matrix, the Hessian of the empirical likelihood objective function is singu-

lar a.s., which causes di¢ culties for standard derivative-based optimization algorithms
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when computing the ELR test statistic. With p = 4 and p = 10; the constrained op-

timization algorithm in GAUSS exhibits convergence problems and computation times

are prohibitively large. For p = 2; the ELR bootstrap test�s performance is essentially

the same as that of the AQLR bootstrap test in terms of MNRP�s and power.

In conclusion, we �nd that the AQLR/t-test/�Auto bootstrap test, which is the

recommended test, performs well in an absolute sense with both nonsingular and singular

variance matrices and out-performs the other tests considered in terms of asymptotic and

�nite-sample MNRP�s or power, computational time, and/or computational stability.
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Table I. Moment Selection Tuning Parameters �(�) and Size-Correction Factors �1(�)

and �2(p) for � = :05
1

� �(�) �1(�) � �(�) �1(�) � �(�) �1(�)

[�1;�:975) 2:9 :025 [�:30;�:25) 2:1 :111 [:45; :50) 0:8 :023

[�:975;�:95) 2:9 :026 [�:25;�:20) 2:1 :082 [:50; :55) 0:6 :033

[�:95;�:90) 2:9 :021 [�:20;�:15) 2:0 :083 [:55; :60) 0:6 :013

[�:90;�:85) 2:8 :027 [�:15;�:10) 2:0 :074 [:60; :65) 0:4 :016

[�:85;�:80) 2:7 :062 [�:10;�:05) 1:9 :082 [:65; :70) 0:4 :000

[�:80;�:75) 2:6 :104 [�:05; :00) 1:8 :075 [:70; :75) 0:2 :003

[�:75;�:70) 2:6 :103 [:00; :05) 1:5 :114 [:75; :80) 0:0 :002

[�:70;�:65) 2:5 :131 [:05; :10) 1:4 :112 [:80; :85) 0:0 :000

[�:65;�:60) 2:5 :122 [:10; :15) 1:4 :083 [:85; :90) 0:0 :000

[�:60;�:55) 2:5 :113 [:15; :20) 1:3 :089 [:90; :95) 0:0 :000

[�:55;�:50) 2:5 :104 [:20; :25) 1:3 :058 [:95; :975) 0:0 :000

[�:50;�:45) 2:4 :124 [:25; :30) 1:2 :055 [:975; :99) 0:0 :000

[�:45;�:40) 2:2 :158 [:30; :35) 1:1 :044 [:99; 1:0] 0:0 :000

[�:40;�:35) 2:2 :133 [:35; :40) 1:0 :040

[�:35;�:30) 2:1 :138 [:40; :45) 0:8 :051

p 2 3 4 5 6 7 8 9 10

�2(p) :00 :15 :17 :24 :31 :33 :37 :45 :50

1The values in Table I are obtained by simulating asymptotic formulae using 40,000

critical-value and 40,000 rejection-probability simulation repetitions, see AJ2 for details.
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Table II. Asymptotic Average Power Comparisons (Size-Corrected): MMM, Max,

SumMax, & AQLR Statistics, & PA, t-Test, '(2); '(3); '(4); & MMSC Critical Values

with �=Best1

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. � 
Neg 
Zero 
Pos 
Neg 
Zero 
Pos 
Neg 
Zero 
Pos

MMM PA - .04 .36 .34 .20 .53 .45 .48 .62 .59

MMM t-Test Best .18 .67 .79 .31 .69 .76 .51 .69 .72

Max PA - .19 .44 .70 .30 .57 .71 .48 .64 .66

Max t-Test Best .25 .58 .82 .35 .66 .78 .51 .69 .72

SumMax PA - .10 .43 .62 .20 .55 .60 .48 .62 .59

SumMax t-Test Best .20 .65 .81 .31 .69 .77 .51 .69 .72

AQLR PA - .35 .36 .69 .46 .53 .70 .58 .69 .65

AQLR t-Test Best .55 .67 .82 .60 .69 .78 .65 .69 .73
AQLR t-Test Auto .55 .67 .82 .59 .69 .78 .65 .69 .73

AQLR '(2) Best .51y .65y .81 y .60} .69� .78� .66� .69� .72�

AQLR '(3) Best .43y .63y .81y .55} .68� .78� .61� .69� .72�

AQLR '(4) Best .51y .65y .81y .60} .70� .78� .66� .69� .72�

AQLR MMSC Best .56y .66y .81y .63 .69 .78 .65 .69 .73

Power Envelope - .85 .85 .85 .80 .80 .80 .75 .75 .75

1�=Best denotes the � value that maximizes asymptotic average power. All cases

not marked with a �; }; or y are based on (40,000, 40,000, 40,000) critical-value, size-

correction, and power repetitions, respectively.
�Results are based on (5000, 5000, 5000) repetitions.
}Results are based on (2000, 2000, 2000) repetitions.
yResults are based on (1000, 1000, 1000) repetitions.
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Table III. Finite-Sample MaximumNull Rejection Probabilities (MNRP�s) and (�Size-

Corrected�) Average Power of the Nominal .05 AQLR/t-Test/�Auto Test with Normal

(AQLR/Nm) and Bootstrap-Based (AQLR/Bt) Critical Values and ELR/t-Test/�Auto

Test with Bootstrap-Based (ELR/Bt) Critical Values

p = 10 p = 4 p = 2

Test Dist H0/H1 
Neg 
Zero 
Pos 
Neg 
Zero 
Pos 
Neg 
Zero 
Pos

AQLR/Nm N(0,1) H0 .088 .092 .057 .065 .062 .049 .056 .058 .053

AQLR/Bt N(0,1) H0 .061 .062 .058 .053 .056 .049 .054 .053 .052

ELR/Bt N(0,1) H0 .075 .076 .073 .059 .065 .054 .055 .058 .053

AQLR/Nm t3 H0 .059 .067 .045 .050 .049 .047 .053 .047 .046

AQLR/Bt t3 H0 .043 .055 .055 .051 .058 .052 .057 .055 .056

ELR/Bt t3 H0 .059 .072 .072 .056 .067 .058 .057 .057 .055

AQLR/Nm �23 H0 .136 .153 .068 .093 .101 .062 .085 .087 .080

AQLR/Bt �23 H0 .062 .066 .057 .050 .055 .050 .054 .053 .056

ELR/Bt �23 H0 .068 .077 .065 .054 .061 .054 .053 .054 .055

AQLR/Nm N(0,1) H1 .45 .59 .78 .54 .63 .76 .63 .68 .71

AQLR/Bt N(0,1) H1 .46 .62 .77 .54 .64 .76 .63 .68 .71

ELR/Bt N(0,1) H1 .49 .61 .76 .56 .64 .75 .63 .68 .71

AQLR/Nm t3 H1 .58 .69 .84 .66 .76 .81 .70 .76 .72

AQLR/Bt t3 H1 .56 .67 .79 .61 .71 .78 .67 .72 .71

ELR/Bt t3 H1 .55 .62 .76 .61 .67 .76 .64 .68 .71

AQLR/Nm �23 H1 .37 .42 .72 .48 .53 .71 .56 .57 .61

AQLR/Bt �23 H1 .43 .51 .72 .53 .57 .70 .57 .59 .62

ELR/Bt �23 H1 .41 .47 .70 .53 .56 .70 .56 .59 .62
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