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ABSTRACT  
here are important tradeoffs that need to be considered for the design and operation of aerospace 

systems.  In addition to tradeoffs, there may also be multiple stakeholders of interest to the system and 

each may have different preferences as to the balance amongst the tradeoffs under consideration.  A tradeoff 

hyperspace is created when there are three or more tradeoff dimensions and this increases the challenge 

associated with resolving the hyperspace in order to determine the best design and operation of a system.  

The corresponding objectives of this research are to develop a framework to analyze tradeoff hyperspaces 

and to account for the preferences of multiple stakeholders in this framework.   

 

The framework developed in this research is called the Tradeoff Analysis Framework and its 

applicability was evaluated through analyzing three different case studies in the aerospace domain, each 

progressively more complex in terms of applying the framework and exploring the impact of certain types 

or change, or innovation in the system of interest.  The first case study analyzed the impact of changing 

aircraft cruise operations and one facet of the case study explored the impact of imposing a hypothetical tax 

on aircraft-produced contrails. From this study it was determined that airlines will change their behavior 

(i.e., their perceived value-optimal cruise trajectory) in response to a tax placed on producing contrails 

where, the higher the tax, the less contrails they choose to produce.  The second case study explored the 

impact of changes in aircraft approach procedures into Boston-Logan airport.  In this study, there were 

multiple stakeholders, each with different preferences as to the balance amongst the performance and 

environmental tradeoffs considered.  A key result from this study was that competing stakeholder 

preferences could be partially resolved, which led to the design new approach procedures that were 

beneficial to all stakeholders.  The third and last case study examined the tradeoffs associated with using 

fractionated spacecraft for remote sensing space missions.  Here, the current paradigm is monolithic 

spacecraft and it was found that despite fractionated spacecraft demonstrating more value-robustness than a 

T 
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comparable monolith, they fail to stay value-competitive to monoliths in terms of absolute value delivered.  

In particular, this occurs because presently the enabling technologies required for fractionated spacecraft are 

not yet mature and reliable enough at the performance levels needed for them to become viable alternatives 

to monoliths. 
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NOMENCLATURE 
ALPHABET SYMBOLS 

€ 

c   =   innovation timeline constant, years (yrs) 

€ 

CO2  =   Carbon Dioxide, kilograms (kg) or metric tons (mt) 

€ 

COps  =   cost of flight path, United States Dollars 

€ 

dtrack   =   ground track distance, nautical miles (nm) 

€ 

FT   =   flight time, hours (hrs) 

€ 

FB   =   fuel burn, gallons (gals) or pounds (lbs) 

€ 

NOx   =   mono-Nitrogen Oxides NO and NO2, kilograms (kg) or metric tons (mt) 

€ 

PopDNL≥65dB  =  DNL population noise exposure, number of people exposed (ppl) 

€ 

PopTA 60dB  =  Time-above 60 dB population noise exposure, number of people exposed (ppl) 

€ 

Pj

→

  =   preference structure for the jth stakeholder, varies 

€ 

r   =   discount (inflation) rate, dimensionless 

€ 

R   =   resolution, pixels per meter (ppm) 

€ 

s  =   performance gain from innovation, varies 

€ 

S   =   innovation profile, performance gain with respect to time 

€ 

t   =   time, years (yrs) 

€ 

Thru   =   aircraft throughput, aircraft per hour (AC/hr) or total aircraft (AC) per day 

€ 

Tw   =   time window, years (yrs) 

€ 

u    =   single attribute utility, dimensionless  

€ 

U
∧

  =   multiple attribute utility, dimensionless 

€ 

U
→

  =   external factors, varies 

€ 

V j

→

  =   value proposition for the jth stakeholder, varies 

€ 

V j
*

→

  =   optimal value proposition for the jth stakeholder, varies 

€ 

Yi   =   ith system output, varies 

€ 

Y
→

  =   set of system outputs, varies 
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€ 

Y *
→

  =   optimal system outputs, varies 

€ 

X
→

  =   set of proposed system changes, varies 

 
GREEK SYMBOLS 

€ 

λ
→

  =   set of preference weightings, varies 

€ 

λi   =   ith preference weighting, varies 

€ 

Λ j   =   value structure “importance” weighting for the jth stakeholder, dimensionless 
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1.  RESEARCH MOTIVATION AND OBJECTIVES 
There are important tradeoffs that need to be considered for the design and operation of aerospace systems. 

Tradeoffs specifically arise when a improving a given system objective requires the compromise of at least 

one other objective, and a tradeoff hyperspace is created when three or more tradeoff dimensions (i.e., 

competing objectives) exist for a system.  A notional tradeoff hyperspace is shown in Figure 1-1, which 

depicts multiple tradeoff dimensions for a generic system where each objective becomes a potential tradeoff 

with the other objectives for the system.  A specific example of a tradeoff hyperspace is shown in Figure 

1-2, which corresponds to the operation of an aircraft where environmental objectives such as emissions 

and contrails are considered along with “traditional” objectives such as performance, safety, and cost.  

 
 

 

 

 

 

 

 

 

In addition to a tradeoff hyperspace, there may also be multiple 

stakeholders of interest to a system that will each have preferences 

as to the balance amongst the tradeoffs in the hyperspace.  

Exacerbating the difficulty of resolving a tradeoff hyperspace 

consequently arises if stakeholders have different preferences as to 

the balance amongst the tradeoffs under consideration.  A simple 

example of this is shown in Figure 1-3, which shows the tradeoff 

between two arbitrary objectives where the two stakeholders of 

interest have different preferred balances of these tradeoffs along the 

line of feasible first and second objective values.  Therefore, in 

summary, understanding and analyzing tradeoff hyperspaces is complicated and thus an approach is needed 

to achieve this that also accounts for stakeholders and their preferences.  This observation leads to the two 

objectives of this research as summarized hereafter. 

Objective1 

Objective2 

Objective3 

Objective4 
Objectiven 

Emissions 

Contrails 

Safety 

Performance Cost 

Objective2 

Objective1 

Stakeholder2 

Stakeholder1 

Figure 1-1.  A Notional Tradeoff 
Hyperspace. 

Figure 1-2.  A Tradeoff 
Hyperspace for an Aircraft. 

Figure 1-3.  Competing 
Stakeholder Preferences in a 

Tradeoff Space. 
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RESEARCH OBJECTIVES 

1. Develop a framework to analyze tradeoff hyperspaces 

The first objective of this research is to identify key components for analyzing and articulating tradeoff 

hyperspaces and to organize these components into a coherent, usable framework.  The framework 

development will be structured such that it is generalizable and can therefore be used to analyze 

tradeoff hyperspaces corresponding to the design and/or operation of many systems of interest.  The 

resulting framework from this research used to analyze tradeoff hyperspaces is called the Tradeoff 

Analysis Framework.  

 

2. Account for the preferences from multiple stakeholders 

The second objective of this research is to account for the preferences of multiple stakeholders.  These 

preferences are ultimately intended to provide a mechanism to structure and quantify the respective 

desirability of the stakeholders as to the balance amongst the system tradeoffs of interest.  In the context 

of the tradeoff hyperspace in Figure 1-3, these preferences effectively become a means for stakeholders 

to negotiate with each other as to best balance amongst the system objectives, where each stakeholder 

may have unique preferences as to this balance.  

 

In order to evaluate the applicability of the Tradeoff Analysis Framework, it will be used to analyze several 

relevant tradeoff problems in the aerospace field.  This exercise serves as validation of the Tradeoff Analysis 

Framework and provides the necessary insights to reflect on the framework development and overall 

utility.  The particular applications of the framework are purposefully scoped to assess tradeoff hyperspaces 

associated with changes in aerospace system design and/or operation, thereby providing a common source 

of motivation amongst the applications.  Here, changes in system design and operation are considered to be 

any departures from the current, or existing design and operation of a system and thus may be interpreted 

as innovation in a system, depending on the context.  The case studies sequentially grow in complexity in 

terms of the applying the framework as well as the type and magnitude changes, or innovation analyzed 

with the framework.   
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2. LITERATURE REVIEW – TRADEOFF ANALYSIS FRAMEWORKS 
There is a class of frameworks offered in the literature that might be used to analyze the tradeoff 

hyperspaces associated with engineering systems.   This class of frameworks is referred to as the multi-

stakeholder, tradeoff analysis framework class.  In order to provide context as to when frameworks 

belonging to this class may be of use, the first part of this section is used to position them within the systems 

engineering process.  This discussion is then followed by a further discussion this framework class with 

specific examples. 

2.1.   Context – Systems Engineering Frameworks 
Systems engineering frameworks are useful for positioning where the multi-stakeholder, tradeoff analysis 

class of frameworks may be of use in the engineering design and execution process.  Systems engineering 

frameworks implicitly adopt a lifecycle, or beginning-to-end perspective of a system.  Subsequently, these 

frameworks tend to be holistic and focus more on the key activities involved in developing, manufacturing, 

testing, deploying, and operating a system than on specific methods for executing these steps of the systems 

engineering process.  One of the more common lifecycle or systems engineering frameworks is the V-

Model framework and this is used to provide context as to where the multi-stakeholder, tradeoff analysis 

frameworks discussed in Section 2.2 may be of use. 

2.1.1.   The V-Model 

The “V-model” framework 

entails key activities to be 

performed in developing and 

operating a system or, 

alternatively, executing an 

engineering program.  A 

representative V-model is 

shown in Figure 2-1 (adapted 

from Ref. [1]).  The two 

components of the V-model 

are the system, or program definition (the downward arrow in Figure 2-1) and then the system integration, 

testing, and operation (the upward arrow in Figure 2-1).  The key activities in the system definition include 

a stakeholder analysis and then, given a set of requirements, exploring the space of potential designs and 
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Figure 2-1.  A V-Model Systems Engineering Framework. 
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evaluating which designs are the most valuable.  The outcome of the system definition process is a system to 

be manufactured, integrated, tested, and then operated.  These activities collectively form the upward part 

of the V-model, which ends with the lifecycle management of the system.   

 

In the V-Model process, the key activities associated with the system definition process are where the multi-

stakeholder, tradeoff analysis frameworks discussed in Section 2.2 may be of most use, although this does 

not preclude their usefulness elsewhere in the V-Model.  In particular, it is during these activities when the 

relevant stakeholders for the system of interest are identified and their needs are captured, which are then 

used to derive the requirements, or important objectives for the system.  Since there are often multiple 

objectives, there may be tradeoffs amongst these objectives, thus requiring the use of multi-stakeholder, 

tradeoff analysis frameworks to explore potential concepts given these criteria.  The multi-stakeholder 

aspect of these frameworks ultimately become of use when there are several stakeholders of interest, each 

with different preferences as to balance of these tradeoffs.   

2.2.   Multi-Stakeholder, Tradeoff Analysis Frameworks 
Multi-stakeholder, tradeoff analysis frameworks can be used to analyze systems based on multiple criteria, 

or tradeoffs dimensions.  In addition, these frameworks address competing stakeholder preferences as to the 

balance of tradeoffs under consideration, in at least some capacity.  The common goal of multi-stakeholder, 

tradeoff analysis frameworks is therefore develop mechanisms for effectively resolving multiple criteria to 

rank a given set of system concepts (alternatives) in order to select the best, or most desirable option in the 

context of stakeholder preferences, or value.  These frameworks are often developed such that they either 

specific to particular system and/or methods for analyzing tradeoff hyperspaces, or are generalizable to any 

methods and analysis.  Several examples of multi-stakeholder, tradeoff analysis frameworks are provided 

hereafter. 

2.2.1.   Decision-based Design Framework 

The decision-based design (DBD) framework was developed by Hazelrigg and it evaluates engineering 

products, that is, tangible systems or objects that have a corresponding market and ensuing demand and 

supply such that revenue is generated from the product given a sell price, P [2].  The DBD framework 

therefore implicitly considers the tradeoffs associated with engineering products along with including the 

relevant needs of the product developers, manufacturers, and customer market.  The DBD framework was 

specifically founded upon the rationale that the design with the highest expected value is the preferred 
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design.  The major 

characteristic of the DBD 

framework is that candidate 

alternatives, or products are 

ranked using expected utility 

and therein optimized to 

determine the highest value 

alternative, or candidate 

product [3,4].  An overview 

of the DBF framework is 

provided in Figure 2-2 

(adapted from Ref. [2]).   

 

As seen in Figure 2-2, the inputs to the framework are the system configuration (e.g., a product) along with 

the exogenous variables, which influence the system and, within the DBD framework, are prescribed as 

random variables characterized by either discrete or continuous probability distributions.  In addition to 

these inputs, corporate, or stakeholder preferences are also input to the framework and these ultimately 

account for the needs of the customers for the system, or product of interest as well as that of the product 

developers and manufacturers.  Given these inputs, the core of the framework is executed, which leads to 

the determination of the lifecycle costs of the system, the attributes of the system, and the demand for the 

system.  The attributes of the system may characterize the multiple tradeoff dimensions of interest for the 

system and the demand for the system is ultimately dependent on the attributes, the price of the system, 

and time1.  Given the lifecycle costs, corporate preferences, and demand, the utility of the system is then 

computed, therein forming the key input to the value-optimizer in the framework.  The optimizer 

specifically chooses the system design, or configuration that maximizes the expected utility.  The output of 

this, or more generally the DBD framework is the value-optimal design for future comparison.  

2.2.2.   Multi-Attribute Tradespace Exploration Framework 

The Multi-attribute Tradespace Exploration (MATE) framework was developed by Diller and Ross and can 

be used to explore a number of designs, or configurations and then to evaluate those designs in a utility-cost 

                                                        
1 In the DBD framework, the price for the system is chosen to maximize the expected utility of the system, given the corporate 
preferences. 
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Figure 2-2.  Decision-based Design Framework. 
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space [5,6].  Here, utility aggregates the attributes, or tradeoff dimensions of interest for a given design that 

are beneficial to the relevant stakeholders and positions them relative to the cost(s) of the design, therein 

positioning the value of the design as benefit versus cost.  Analogous to the DBD framework, the implicit 

rationale adopted in MATE is that the designs with the higher expected value are preferred over those 

designs with the lesser expected value.  While the core MATE process is discussed hereafter, the original 

MATE process was intended for use with integrated concurrent engineering (ICE) to facilitate the design 

and ensuing decision-making process in team-based working environments with multiple tradeoff 

dimensions and stakeholders of interest.  It is also relevant to note that MATE was first developed in 2002 

and since then a number of adaptations of the MATE process have been developed and applied and these 

include: MATE for Changeability (Dynamic MATE) [7]; MATE for Systems-of-Systems [8,9]; MATE for 

Flexibility [10,11]; and MATE for Survivability [12].  A corresponding overview of the core of the MATE 

process and thereby any subsequent version of MATE is provided in Figure 2-3 (adapted from Ref. [6]).    

 

As seen in Figure 2-3, the 

core of the MATE process is 

iterative and it involves 

several key activities.  The 

first activity is the stakeholder 

need identification process 

where the specific desires or 

preferences of the relevant 

stakeholders are determined 

and ultimately used to 

evaluate the candidate designs.  

The second activity is the 

architecture solution 

exploration.  This activity involves defining the candidate designs to be analyzed, often by characterizing 

each design through a vector of variables and then modeling each candidate design vector.  In order to 

ultimately evaluate and compare designs, the model must assign the corresponding attribute values to each 

design vector so that it can be mapped to a utility-cost space, where the attributes of interest are identified 

through the needs of the stakeholders.  After this is complete, the utility-cost space consisting of several, or 
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Figure 2-3.  Multi-Attribute Tradespace Exploration Framework. 
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many, candidate designs can be explored and evaluated by the relevant stakeholders, leading to the selection 

of the most stakeholder-desirable system design(s).      

2.2.3.   Change Propagation Analysis Frameworks 

Change propagation analysis (CPA) frameworks include methods for tracking changes in often-complex 

systems with the goal of ultimately evaluating the impact of a potential change in a system [13–15].   Here, 

the impact may implicitly contain multiple attributes, or system objective tradeoffs based on stakeholder 

input just as is the case with the DBD and MATE frameworks.  The commonality of change propagation 

frameworks is their reliance on Design Structure Matrices (DSM’s) in order to characterize the 

interdependencies of a system’s components and/or information flows (refer to Ref. [16] for a description 

of DSM’s).  Through characterizing a system in a DSM, changes in the system can be identified, tracked, 

and quantified, forming the basis for deriving measures of the type and magnitude of change in a system.  

For example, Griffin et al. assume the change in the density of a DSM is a proxy for the magnitude of change 

in a system and correspondingly offer the Change Propagation Index (CPI) metric for determining the level 

of change in a system, which is shown in Equation 1. 

Equation 1 

€ 

CPIi = ΔEout,i − ΔEin.i 

In Equation 1, CPI compares the binary entries in a DSM, which are characterized by the variable E, and 

determines whether or not the ith element in a DSM has changed because of any other element in the DSM.  

The CPI metric is then specifically the difference in change in the ith element from in the feed-forward (Ein) 

and feedback (Eout) portions of the DSM.  In addition to deriving metrics such as CPI, the DSM 

characterization also enables CPA methods to be extended, for example, to evaluate the corresponding risk 

introduced in a system from change.   

 

While there are several unique versions of CPA frameworks, the Change Prediction Method (CPM) from 

Clarkson et al. shown in Figure 2-4 is discussed as a representative example of such frameworks (image 

source: Ref. [13]).  Clarkson’s CPM framework can be parsed into three components: method inputs, 

method execution, and method outputs.  The required inputs to this method are the product, or system of 

to be analyzed as well as any new product requirements, which lead to required changes in the product.  

Given these inputs, the CPM core execution activities include the initial analysis, where a model of the 

product and its respective subsystems is created, characterizing a product by a DSM, and computing 

predictive matrices, which lead to the creation of a product risk matrix.  The second core activity in the 
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CPM is the case analysis 

where new product 

requirements lead to required 

changes in the system, which 

are then combined with the 

product risk matrix to 

formulate the case risk plot.  

This plot ultimately depicts 

each subsystem in terms of the 

likelihood and impact of 

change in a subsystem on the 

overall risk of the system.  

Recall that this impact may consist of multiple system objectives based on stakeholder input to the CPM 

process.  The information provided from the case risk plot can then be used to redesign the system to 

mitigate the identified sources of risk in a system.     

2.2.4.   Hazard and Risk Analysis Frameworks 

Hazards lead to potential risk in engineering systems and thus an important aspect of evaluating engineering 

systems is to analyze these potential sources of risk, if they are to be safe and successful in operation.  

Hazard and risk analysis frameworks specifically address this through evaluating how design decisions affect 

the reliability or risk imposed by a system, where there may be different sources of risk such as that arising 

from the reliability of system hardware or potential operator error.  Benefits from applying hazard and risk 

analysis frameworks and methods may include, for example, exposing single point failure modes in a 

subsystem assumed to be redundant and therein identifying opportunities for mitigating risk through 

functional redundancy.  Most hazard and risk analysis frameworks are meant to analyze a system in order to 

mitigate residual risks in that system before it is fielded and two common hazard and risk analysis 

frameworks are Failure Modes, Effect, and Critical Analysis (FMECA) [17] and Systems-Theoretic Accident 

Modeling and Process (STAMP) Hazard Analysis [18].  The hazard and risk framework discussed hereafter is 

suggested as an improvement upon the STAMP hazard analysis and was developed by Marais [19].  This 

framework is shown in Figure 2-5 (image source: Ref. [19]).      

 

Figure 2-4.  Change Prediction Method Framework. 
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Marais’s hazard and risk 

analysis framework focuses on 

identifying the impact of 

organizational factors on risk 

and provides several benefits 

including the early 

identification of risk, 

determining the most valuable 

allocation of resources to 

mitigate risk, and provides an 

ability to continuously 

monitor risk.  And within 

Marais’s framework, 

stakeholder input and the 

existence tradeoffs in the risk 

domain are important considerations.  The first two components of Marais’s framework, the engineering 

process and hazard analysis process, are the STAMP hazard analysis method.  Within this method, the 

engineering process is specifically responsible for developing the underpinning of the system of interest such 

that it can be analyzed in order to identify potential sources of risk.  The hazard analysis then involves 

executing four steps: (1) identify high-level hazards; (2) identify safety-related requirements and 

constraints; (3) identify possible inadequate control actions for each safety requirement; and (4) identify 

control flaws.  Marais’s framework extends these two aspects of the STAMP hazard analysis with a third 

component: risk analysis.  The risk analysis is specifically responsible for estimating the high-level risks 

given the identified hazards in a system, developing design options or adaptations to mitigate these hazards, 

and then assessing the residual risk for the design options considered.  From the output of the risk analysis, 

the design option that best mitigates potential risk in the system of interest can be determined.   

2.2.5.   Multi-Actor, Multi-Criteria Analysis Frameworks 

Multi-actor, multi-criteria analysis (MAMCA) frameworks are another type of framework that can be used 

to analyze the tradeoff hyperspaces associated with the design and operation of a system while considering 

the needs and preferences of multiple stakeholders.  MAMCA frameworks tend to be the broadest and most 

generally applicable for analyzing systems since they are often not overly specific to a particular system, or 

Figure 2-5.  A Hazard and Risk Analysis Framework. 
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method of interest.  MAMCA 

frameworks specifically consider the 

preferences of multiple stakeholders in 

order to develop a set of criteria to 

evaluate candidate system designs or 

configurations.  One example of a 

MAMCA framework is that developed 

by Macharis et al., which is shown in 

Figure 2-6 and used as a representative 

example of such frameworks [20].    

 

Macharis’s MAMCA framework begins with a stakeholder analysis.  This analysis is used to identify the 

relevant stakeholders given the system of interest and then to use their needs as the criteria basis for 

evaluating a set of system design alternatives.  Depending on the formulation of criteria used, this may 

include weighting the criteria in a relativistic sense in order to establish a ranked ordering of the most to 

least important criterion.  Following this, the criteria from multiple stakeholders is used to develop 

indicators and measurement methods that use the (weighted) criteria from the various stakeholders to 

ultimately evaluate alternative system designs or configurations.  This step of the process may implicitly 

involve selecting the best set of stakeholder criteria for inclusion in the analysis.  Following the analysis of 

the systems, they can be ranked in terms of the stakeholder-derived criteria.  Once this is complete, the 

results, in terms of the preferred system design for each stakeholder, can be compared.  The remaining step 

in the method is then implementation, which is the process of using the framework iteratively in order to 

refine stakeholder preferences with the goal of having the stakeholders reach some consensus about the best 

system design or configuration. 

2.2.6.   Negotiations  

Given a tradeoff hyperspace for a system, negotiations can be useful for facilitating consensus amongst 

stakeholders if there are competing preferences as to the balance of tradeoffs amongst the stakeholders.  

There are many, formal negotiation approaches to facilitate alignment and this is discussed in additional 

detail in Section 4.3.4.  However, to provide an example of such an approach, Game Theory is briefly 

explored hereafter.  Game theory is a theoretical framework for characterizing and predicting the outcome 

of games created by a group of players, when rationality is assumed, that is, more value offered by a system 
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Figure 2-6.  Multi-Actor, Multi-Criteria Analysis Framework. 
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is more desirable to stakeholders.  Game Theory was originally developed John von Neumann and greatly 

complemented by John Nash [4,21–23].  One extension of Game Theory developed by Nash led to Nash 

Bargaining, which is a theory based on the non-cooperative theory of games and bargaining models.  This 

theory may subsequently be of use to resolve competing stakeholder preferences as to best balance of 

tradeoffs in a given hyperspace.  The bargaining model relies on a preference and payoff structure for each 

stakeholder (e.g., some value function such as expected utility), which truncates the various tradeoff 

dimensions of interest to a single metric, or value.  The ensuing suggested optimum, or Nash Bargaining 

Solution is the most efficient point in the tradespace for maximizing the aggregate value of the stakeholders, 

which happens to be the tangent to any location on the 

Pareto Front of value corresponding to acceptable set 

of agreeable solutions amongst the stakeholders of 

interest.  A simple two-dimensional example of this is 

conceptually depicted in Figure 2-7 where the Nash 

Bargaining solution is on the Pareto front of value 

between two arbitrary stakeholders, Stakeholders A 

and B, given their respective valuation of the tradeoff 

dimensions of interest.  Any point on the Pareto 

Frontier would suffice, hence the negotiation aspect of 

this Game Theoretic approach for facilitating multi-

stakeholder negotiations. 

2.3.   Observations from the Literature 
The frameworks for evaluating engineering systems cited in the literature all have the common goal of 

determining the best, or most valuable system design or configuration given a set of criteria derived from 

stakeholder needs and preferences.  In the context of the motivation of this research, the criteria evaluated 

with these frameworks might be implied to include the relevant tradeoffs (or tradeoff hyperspaces) for the 

system of interest.  In reflecting on the types of frameworks examined in the literature, the systems 

engineering frameworks are the most holistic in terms of the beginning to end process of designing, 

developing, and operating a system.  Subsequently, the multi-stakeholder, tradeoff analysis class of 

frameworks mentioned in the literature may be applicable at various stages of the process prescribed by 

systems engineering frameworks.  In terms of general applicability, the multi-stakeholder, tradeoff analysis 

frameworks that are tailored to a given set of methods or investigation focus of interest, which includes the 
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Figure 2-7.  Nash Bargaining. 
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DBD, MATE, CPA, and Hazard and Risk Analysis Frameworks in Sections 2.2.1 - 2.2.4, will likely have a 

more limited scope of applicability than the MAMCA framework.  For a specific example of this consider 

the DBD framework (Section 2.2.1), which optimizes a system based on expected utility.  Therefore the 

users of the framework are to conform to this methodological prescription for evaluating engineering 

systems, which may not be less appropriate than some other, better evaluation approach or method.  Thus, 

while these tailored frameworks are of great value for their intended applications, one potential limitation 

of these frameworks is the breadth of their applicability as result of the overly specific methods or 

approaches prescribed by these frameworks.  The MAMCA framework discussed in Section 2.2.5 does not 

inherently contain this limitation since this approach is purposefully general to any system of interest and 

the ensuing methods and criteria used to evaluate the system.   
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3. LITERATURE REVIEW – INNOVATION ASSESSMENT FRAMEWORKS 
The applicability of the Tradeoff Analysis Framework developed in this research to analyze tradeoff 

hyperspaces in the context of stakeholder value is evaluated through several case studies (see Sections 6-8).  

In these case studies, the framework is specifically used to evaluate the impact, or tradeoffs associated with 

change, or innovation in aerospace systems, depending on the case study context.  Therefore, given this 

scoped application of the Tradeoff Analysis Framework, it is relevant to mention some related approaches 

in the aerospace literature offered for evaluating the impact of changes, specifically innovation in aerospace 

system design and operation, which is the subject of this section.  

3.1.   Overview 
There have been numerous, formal approaches offered in the aerospace literature for analyzing the tradeoffs 

associated with aerospace systems.  Of particular interest to evaluating the applicability of the Tradeoff 

Analysis Framework developed in this research are those works that develop formal approaches for assessing 

how changes in the design and/or operation of a system impact its potential value delivery to the relevant 

stakeholders.  Here, changes in system design and operation are considered to be any departures from the 

current, or existing design and operation of a system and thus may be interpreted as innovation in a system, 

depending on the context.  The resulting relevant literature therefore draws from four different fields: 

Decision Analysis, Technology Forecasting and Management, Space Systems, and Aircraft Systems (see 

Figure 3-1).  The space and aircraft systems fields are important because these form the basis for the specific 

systems eventually analyzed to evaluate the applicability of the framework in the case studies; the relevant 

literature belonging to these domains is presented in the case studies considered in this research (see 

Sections 6-8).  The decision analysis 

literature is presented in Section 

4.3.2- 4.3.4 and it deals with research 

on methods for resolving tradeoff 

hyperspaces, as they are defined in 

Section 1, and resolving competing 

preferences amongst multiple 

stakeholders.  And the technology 

forecasting and management literature 

is used to identify and structure the 
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Figure 3-1.  Literature Overview. 
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type and magnitude of proposed changes to the design and/or operation of a system before it is analyzed 

with a given framework or approach; this literature is discussed in Section 4.2.   As shown in Figure 3-1, 

the confluence of these four literature fields is the development and application of frameworks to analyze 

tradeoff hyperspaces associated with change, or innovation in aerospace system design and operation, while 

considering multiple stakeholders of interest.  The scope of the following literature review is therefore 

research that contributes to this confluence of research fields, namely,  “Frameworks for Evaluating 

Innovation in Aerospace Systems.” 

3.2.   Literature 
Several sources from the aerospace domain are used as examples of the formal approaches or methods 

contributed to the confluence of research fields shown in Figure 3-1.  The commonality of these works is 

their emphasis, in varying capacities, on evaluating the tradeoffs associated with innovation in aerospace 

system design and operation, depending on the context.  This literature scoping was specifically chosen 

since the applicability of the framework developed in this research will be evaluated by analyzing the 

tradeoffs associated with change, or innovation in systems.  The relevant, formal approaches in the 

literature are briefly discussed hereafter.  

  
1. Technology Metric Assessment and Tracking (TMAT) Process [24].  The TMAT process 

is used to evaluate the tradeoffs associated with inserting new technologies in systems and the five 

major steps of the TMAT process include: 

1. Technology metric (i.e., measure of success) identification 

2. Technology audit scheme definition and 

information gathering, which collects data 

regarding the expected impact of new technology 

and probability of achieving that impact 

3. Technology metrics assessment, which maps the 

information obtained in Step 2 to quantifiable 

metric forms 

4. Technology metrics integration, which quantifies 

the impact of technology via the metrics 

5. Technology metrics sensitivity analysis, which 

quantifies the change in impact due to any modeling assumptions.   

Figure 3-2.  TMAT Process for 
Tracking Technology Impacts. 
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The TMAT process is notionally a linear, feed-forward approach and the result of applying TMAT 

process is a model of technology impacts over time as shown in Figure 3-2 (Image source: Ref. 

[24]).  In Figure 3-2, the x- and y- axes are time and technology improvement, respectively.  

Despites its linearity, the innovation profile in Figure 3-2 has probability distributions along it that 

define confidence regions in technology improvement over time.   

 

2. Cardinal Technology Readiness Scale Valuation [25].  This approach to analyzing systems 

simply maps the impact of innovation in system design and/or operation to a continuous 

Technology Readiness Level (TRL) scale, thereby providing technology readiness levels for all 

integer and non-integer TRL values between 1 and 9.  The resulting continuous TRL scale can be 

used to identify the risk and readiness of new technologies to a more granular degree, which may 

be of value when the changes to a system are similarly granular.  

 

3. Internet-Accessible Technology Risk Assessment Collaborative System (ITRACS) and 

Framework for Advanced Systems Tradeoffs using Probabilistic Analysis of Concepts 

and Technologies (FASTPACT) [26].  The FASTPACT approach is used to quantify the impact 

of new technology (or technology portfolios) on a program’s figures of merit based on information 

from applying ITRACS, which solicits expert opinions on the probability of technology 

performance success.  This approach can therefore account for multiple stakeholders and their 

respective value through the figures of merit.  This method was applied to NASA’s Next 

Generation Launch Technology project in Ref. [26]. 

 

4. Technology Performance Risk Index (TPRI) [27].  TPRI tracks technology readiness 

throughout a lifecycle and is comparable to the TRL scale and can thus be used to analyze the 

impact of innovation in a system’s design and/or operation.  TPRI specifically achieves this by 

determining how well a technology is meeting its performance requirements and, if not, this 

determines a performance risk in a system due to the technology.  This approach was applied to a 

generic weapon system in Ref. [27]. 
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5. Developmental Maturity Index (DMI) [28].  The DMI is suggested as being an improvement 

to the TRL scale for capturing technology maturity and therein the impact of changes, or 

innovation in a system’s design and/or operation.  The DMI is quantified through a two-step 

process with an emphasis on maintaining continuity throughout the process.  The two steps used to 

quantify the DMI for a given system are: 

1. Technology maturity evaluation 

2. Evaluation of the reduction in risk imposed by new technology 

 

6. Failure Modes, Effect, and Critical Analysis (FMECA) [17].  FMECA is a structured 

approach that provides valuable insights as to how design decisions affect reliability, for example, 

the downstream impacts of innovation on a system’s respective reliability.  Benefits of applying 

FMECA may include: exposing single point failure modes in a subsystem assumed to be redundant; 

identifying opportunities for functional redundancy; and permitting components to assume a safe 

mode in the absence of required signals or power.  There are numerous versions of the FMECA 

approach but they all have the common objective of identifying sources of risk in a system as the 

result of changes in that system.  For example, in Ref. [17] FMECA was applied to the Space Test 

Program, specifically to minimize the risk of inserting new technology in military or civil space 

missions.        

 

7. k-σ Technology Risk Model 

In addition to the previously mentioned approaches that can be used to assess the impact of 

innovation in systems, there is a body of work with the common objective of assessing reliability 

improvements in initially immature technologies over time, either holding technology performance 

constant, or allowing it to vary.  These studies specifically build their respective approaches using 

probabilistic technology readiness (e.g., TRL) distributions for subsystems and payload technologies 

to capture the impact of increases in technology maturity, and potentially performance, over time. 

Given their focus, the changing parameter is often the reliability (or probability) at which the 

desired performance is achieved with a given technology [29–36].  Many of these works use the k-σ 

Technology Risk Model to generate distributions of technology performance gains and losses as a 

function of the technology’s TRL; a good example of one of these distributions can be found in Ref. 

[30] and is shown in Figure 3-3.  These distributions assume that performance probabilistically 
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degrades with TRL and are 

subsequently generated from Weibull 

distributions dependent on a “k” Factor, 

which is a variable reflecting the 

potential performance loss and gain of a 

technology determined from expert 

interviews.  An example of one of these 

distributions is shown in Figure 3-3 

(Image source: Ref. [30]).  Figure 3-3 

shows probability density functions 

corresponding to some arbitrary k-factor 

(in this case lower k-factor values are more desirable).  Each TRL has a dedicated density function 

and, intuitively, as TRL increases, the probability of realizing a lower k-factor also increases; this 

establishes the increasing compression and leftward shift of the TRL distributions seen in Figure 

3-3.    

 

Certain works using the k-σ Technology Risk Model select the optimal technology (or technology 

portfolio) to pursue using a heuristic optimizer to balance performance gains with technology risk 

due to increasing innovation [30–33],  and one of these works does so while also allowing the type 

of technologies available to change over time [35].  For those works using the K-σ Technology Risk 

Model that assume technology performance is constant, an implicit assumption is therefore that the 

desired level of technology performance is always available and that the innovation of that 

technology is only manifested through continuously reducing the risk of that technology (in time). 

3.3.   Tradeoff Analysis Framework Motivation 
The previously discussed literature provides a variety of approaches and methods for analyzing aerospace 

systems, with an emphasis on evaluating the impact of innovation in system design and operation.  One 

observation from this literature is that with the exception of the FASTPACT approach, the approaches 

offered all focus on one metric, or objective to capture the result of a proposed change to the system of 

interest, thereby ignoring the existence of potential and relevant tradeoff hyperspaces for the system.  

Furthermore, the approaches do not explicitly consider and thereby provide formal provisions for 

accounting for the relevant stakeholders of interest to the system under consideration, which may be 

Figure 3-3.  K-σ Technology Readiness 
Distribution. 
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important to the overall evaluation of the system.  Lastly, the approaches offered adopt a singular emphasis 

on evaluating the impact of performance and reliability improvements in technology or operational changes 

to a system and, in many cases, the approaches are tailored to the system of interest.  The major drawback 

from this latter observation is an immediate constraint on the breadth of applicability of the approaches 

offered in the literature if they are overly specific to a system.  These observations from the relevant 

literature do not negate the utility of the frameworks offered therein, but motivate the need for a 

broadened framework to analyze the tradeoff hyperspaces associated with changes, or innovation in system 

design and operation that adopts a system-agnostic and macroscopic view of the tradeoff assessment 

problem. 
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4.  TRADEOFF ANALYSIS FRAMEWORK 
In order to address the first objective of the research, the Tradeoff Analysis Framework was developed, 

which is capable of analyzing the tradeoff hyperspaces associated with the design and operation of systems.  

Three versions of the Tradeoff Analysis Framework will first be discussed, the: Baseline Framework, 

Framework with Multiple Stakeholders, and the Framework with Optimization.  The majority of this 

section is then devoted to discussing specific elements of the framework in more detail along with potential 

opportunities to further mature the framework development and thereby increase its utility.  

4.1.   Tradeoff Analysis Framework Overview 
This section presents the three versions of the Tradeoff Analysis Framework.   

4.1.1.   Baseline Framework 

The first version of the Tradeoff 

Analysis Framework is the Baseline 

Framework, which is shown in Figure 

4-1.  As seen in the figure, in the 

Baseline Framework, the analyst is the 

user of the framework, and at the core 

of the framework is the system, which 

is often a representation of the system 

of interest (e.g., a model).  The system 

operates in a specific context, which is characterized by the external factors, U.  The system outputs, Y, are the 

tradeoff dimensions of interest and when influenced by a proposed change to the system, X, they characterize 

the impact of the system.  These tradeoff dimensions ultimately constitute the tradeoff hyperspace to be 

analyzed with the framework.  The system outputs are inputs to the impact hyperspace where they may be 

combined with the preference structure to form the value proposition, which is then conveyed to the 

analyst.  The analyst has a value or belief system indicative of their perceived importance of the system 

outputs, which may change based on new information provided from the hyperspace visualization.  The 

valuation aspect of the framework formalizes these belief systems into preference structures, P, which, as 

previously stated can be combined with the system outputs in the impact hyperspace to generate value 

propositions, V.  These value propositions are then conveyed back to the analyst via the hyperspace 

Proposed 
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Figure 4-1.  Baseline Framework. 
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visualization, thereby closing the framework cycle.  Since the analyst is the user of the framework, they may 

propose changes to the system in accordance to their own, or an assumed belief system.  

4.1.2.   Framework with Multiple Stakeholders 

The second version of the Tradeoff 

Analysis Framework is the Framework 

with Multiple Stakeholders.  This 

framework version is shown in Figure 

4-2 and this framework version 

extends the Baseline Framework to 

include any relevant stakeholders to 

the system of interest.  The new 

consideration in the Framework with 

Multiple Stakeholders is therefore the 

respective value/belief systems of the stakeholders, which are addressed through the valuation component 

of the framework as previously discussed for the analyst in the preceding section.  One additional change in 

the Framework with Multiple Stakeholders is that the value propositions are fed back to the analyst as well 

as the stakeholders, keeping in mind that the analyst is still the only one who can propose changes to the 

system.  It is important to note, however, that the framework does not preclude a stakeholder from being 

the analyst.  

4.1.3.   Framework with Optimization 

The third version of the Tradeoff 

Analysis Framework is the Framework 

with Optimization.  This framework 

version is shown in Figure 4-3.  In 

order to use this version of the 

framework, the valuation aspect of the 

framework must be used to define a 

value function for each stakeholder; 

valuation is discussed in detail in 

Section 4.3.2.  In the Framework with 
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Optimization, an optimizer is used to determine the most valuable proposed change (e.g., design and 

operation of a system) given a value function.  This value function may correspond to one stakeholder or 

may be a supra-stakeholder objective function as described in Section 4.3.4.  The role of the analyst in the 

Framework with Optimization is different than in the other framework versions because they now provide 

the proposed change structure rather than the proposed change itself, which is needed for the optimization 

algorithm.  As seen in the Framework with Optimization, there is an iterative inner loop consisting of the 

optimizer, which proposes a change to the system and then computes the system outputs given that change.  

Once this is complete, the feedback occurs, which involves sending the system outputs into the impact 

hyperspace and then combining them with the preference structure to yield the value of a given change.  

The value of this proposed change is then used by the optimizer to propose another perhaps more valuable 

change to the system.  Several potential usages of the Framework with Optimization are briefly summarized 

hereafter. 

 

1. Quantifying the drivers for optimal value: The Framework with Optimization might be used 

to quantify the drivers for optimal value.  This is specifically achieved by quantifying the sensitivity 

of value relative to the system outputs, or proposed changes in the framework.  This sensitivity may 

show that certain system outputs/proposed changes are more dominant than others in terms of 

value, and thus they will have a stronger influence in the decision-making process for determining 

the most valuable design/operation of a system. 

 

2. Determining the Pareto Front: The Framework with Optimization might be used to determine 

the Pareto Front in a given system output space, which consists of proposed changes that are strictly 

non-dominated, that is, the most valuable proposed changes, given a specific preference structure.  

A non-dominated proposed change cannot be improved upon with respect to all of the system 

outputs by any other proposed change.  Therefore, non-dominated proposed changes will 

correspond to a set of system outputs where at least one output is optimal in terms of desirability.  

The advantage of determining the Pareto Front is that it may be a (very) small subset of the entire 

proposed change space and it shows the key tradeoffs in the system output space, which may aid in 

the stakeholder decision-making process.   
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3. Directed search: The Framework with Optimization might be used to search the solution 

(system output) space.  This provides a mechanism for exploring proposed changes in an educated, 

rather than random fashion by using the underlying optimization algorithm rules.  For example, 

with a gradient-based algorithm, it may be possible to find value-sensitive paths/regions through 

the proposed change space, which may be more desirable to explore over value-insensitive 

paths/regions.  

 

CONSIDERATIONS 

There are a few things to consider before using the Framework with Optimization.  The first is that it 

requires a value function, which may not be possible to derive given the stakeholders of interest.  

Additionally, the Framework with Optimization may not guarantee that the optimum can be found 

depending on the optimization algorithm used.  And lastly, selecting the best optimization algorithm to use 

in the Framework with Optimization is not trivial and depends on several key considerations, including the: 

problem (system model); linearity or lack thereof of the solution (system outputs) relative to the design 

variables (proposed system changes); resources available to implement and execute the optimizer; and 

fidelity of the system model or representation.  Given these considerations, the major tradeoff in using the 

Framework with Optimization is that between the accuracy of the results (system outputs), given the 

system model, and the resources required to find the optimum.   

4.2.   Structuring the Proposed Changes 
A constructive way to structure the proposed changes in the Tradeoff Analysis Framework is through the 

Change Taxonomy developed in this research.  This taxonomy specifically structures the proposed changes 

through changes in a system’s design and/or operation, which are two common types of change observed in 

engineering systems.  One advantage of using the taxonomy is that different applications of the framework 

can be compared on the basis of the type and magnitude of proposed changes examined, which ultimately 

leads to a valuable discussion about the broader tradeoffs associated with changing a system’s respective 

design and/or operation, as will be demonstrated through the three case studies (Sections 6-8) and 

summary discussion in this research (Section 9).  This section begins by discussing the taxonomy and then 

subsequently uses it to position the sources of change observed in two historical engineering programs. 
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4.2.1.   The Change Taxonomy 

Progress in the aerospace field is 

invariably coupled with change and the 

Tradeoff Analysis Framework can be 

used to assess the tradeoffs associated 

with change in a system.  For aerospace 

systems, change often manifests itself 

as innovation in a system through 

improvements in technology as well as 

improvements in the operation of the 

system.  In order to structure the type 

and magnitude of changes in a system before begin analyzed with the framework, this research develops the 

Change Taxonomy shown in Figure 4-4 to categorize potential sources of change in engineering systems.  In 

this taxonomy, change occurs along two dimensions: improvements in system technology or concept of 

operations (ConOps); these two dimensions are based on recommendations from the technology 

forecasting and innovation management literature [37–40].  Technology and ConOps specifically lead to 

changes in the design of a system (via changes in hardware/configuration) and the operation of a system (via 

changes in system usage), respectively.  The two change dimensions in the taxonomy create four potential 

categories of system design and/or operational change; these are depicted in Figure 4-4 and adapted from 

Henderson and Clark [41].  The first category, No Change, uses the current or existing technology (design) 

and ConOps (operation) for a system; therefore, this category is often considered the datum, or baseline 

system state.  The two mutually opposing categories of change are Technology Change and Operational Change 

where only the system design or operation is changed, respectively.  Design changes specifically arise from 

improving existing technologies or developing and subsequently improving new system technologies, 

whereas operational changes arise from changing a system’s respective ConOps.  The remaining type of 

change in the taxonomy is Radical Change, which is a coupled combination of improving both system 

technology and ConOps.  This coupled change may lead to the most significant change in a system from its 

present state, which correspondingly may lead to the most notable changes in the cost-benefit (impact) 

tradeoffs of a system given its present state.  Consequently, given the magnitude of change associated with 

Radical Change, it may also introduce the highest risk.  
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Figure 4-4.  The Change Taxonomy. 
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4.2.2.   Using the Change Taxonomy to Analyze Historical Engineering Programs 

This section is devoted to demonstrating how changes, or innovation progressed in two historical programs 

in the aerospace literature via the Change Taxonomy developed in this research.  These retroactive, 

conceptual applications demonstrate the structured approach the taxonomy provides for analyzing the 

impact of innovation, or more generally changes in a system given the Change Taxonomy discussed in 

Section 4.2.1. While these historical applications of the framework do not go into the depth that the formal 

case studies in the research do, they ultimately support one unique contribution of this research in 

examining the impact of simultaneous, coupled change in aerospace systems, albeit from a historical 

perspective (refer to Section 9). 

 

The first case study (i.e., framework application) is concerned with analyzing innovation in the Deep Space 

Network (DSN) during the period from 1960 to 1996.  The DSN is a ground-based, communication 

network spread across the globe that can support space missions and also be used for making astronomical 

observations.  Given its intended purpose, innovation in the DSN is assumed to be the data rate 

transmission capability of the DSN, since this dictates the level of service it can provide at any one time.  

The second case study concerns itself with aircraft safety, specifically, avoiding controlled flight into terrain 

(CFIT) incidents through innovation in aircraft technology.  CFIT incidents are instances of aircraft colliding 

with the ground or water under full pilot control and these were the leading cause of aviation accidents and 

fatalities in the world at least through the late 1990’s [42,43].  Reducing CFIT accidents was addressed 

through innovation in aircraft technology, which has greatly reduced the number of CFIT incidents 

observed in the present day [42].  In terms of the Change Taxonomy discussed in Section 4.2.1, the DSN 

and CFIT case studies collectively demonstrate change along both the ConOps and Technology axes.   

4.2.3.   The Deep Space Network  

The Deep Space Network or DSN was designed to serve as a global communication network to support 

interplanetary space missions as well as to perform astronomical observations of the solar system and 

beyond.  The history of the DSN is well summarized in Ref. [44,45] and the origins of the DSN program 

began around 1958.  Before the DSN was officially sanctioned, the U.S. Army and Jet Propulsion 

Laboratory (JPL) developed the precursor to the DSN system and program.  Eventually, in January 1961, 

the Deep Space Instrument Facility (DSIF), which was under NASA and JPL supervision, was created to 

manage the communication network originally created by the U.S. Army and JPL.  Then between 1961 and 

1963, the precursor to the DSN was managed and supervised by a myriad of offices and directorates.  The 
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DSN program was eventually created in December 1963 to serve as the principal organization to support 

the DSN ground station network under supervision from NASA and JPL.  In the DSN, operational 

innovation arose through an increase in the number of antennas in the DSN (to improve and increase 

coverage) as well as the complexity of DSN missions, as measured by the distance of missions from the 

Earth and the stages of the mission managed [44].  And technology innovation in the DSN program 

occurred through advances in antenna design as demonstrated in Figure 4-5 (Image Source: Ref. [44]). 

 

In Figure 4-5, the acronyms are as follows: Standard (STD), High-Speed Beam Waveguide (HSB), High-

Efficiency (HEF), Beam Waveguide (BWG).  These antennas are mounted with an Azimuth-Elevation (Az-

el), Polar, X/Y, or Tilt/Az-el configuration.  As seen in Figure 4-5, technology innovation in the DSN 

occurred through advances in antenna design efficiency (via increases in antenna diameter, antenna noise 

reductions, and increasing marginal power returns) and the subsequent updating of legacy antennas to 

improve their efficiency.  This is substantiated in Figure 4-5 by the increasing number of efficient antennas 

in the network (i.e., the BWG and HBS antennas).  In addition, in recent years, interferometers have been 

created with the DSN, which significantly increases the performance of the DSN but requires the innovation 

of certain technologies, specifically, accurate ground station timing and positioning capabilities and special 

data processing [46–49]. 

 

The DSN ConOps innovation can be measured by the DSN’s ability to manage a mission [44].  Here, 

innovation arises from the ability for the DSN to manage missions at an increasingly further distance away 

from Earth and also through managing missions with more complex stages (e.g., manned missions, a probe 

Figure 4-5.  Technology Innovation in the DSN. 
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exploring a extraterrestrial surface).  Innovation in DSN ConOps also arises from an increase in the number 

of antennas used in the DSN and changing the location of the antennas; the former trend is shown in Figure 

4-5.  A summary of the increase in complexity of DSN-supported missions can be found in Table 4-1 

(Image Source: Ref. [44]).  In Table 4-1, missions within a given decade are a uniform color and as time 

progresses, the red intensity of decades increases.  As seen in the table, the red intensity increases towards 

the bottom of the table and towards the right, which represents innovation in ConOps through an increase 

in the distance of missions from the Earth and an increase in the difficulty of the mission stages managed by 

the DSN, respectively.    

 

 
 
APPLICATION OF THE CHANGE TAXONOMY 
The previously discussed forms of 

innovation in the DSN can be 

characterized through the Change 

Taxonomy developed in this research 

(see Section 4.2.1).  Figure 4-6 shows 

the DSN innovation within the 

structured Change Taxonomy.  Here, 

No Change is the current DSN with its 

present antenna efficiency, size, and 

mission complexity.   Technology Change occurs through increasing antenna efficiency via increases in 

antenna diameter size, noise reductions, and in  creasing marginal power.  And Operational Change occurs 

through increases in the number of antennas in the DSN network (and implicitly changes in location), as 

Table 4-1.  ConOps Innovation in the DSN. 
 

Figure 4-6.  DSN Innovation (Change) Progression. 
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well as the management of more complex missions (refer to Table 4-1).  Thus, the Change Taxonomy in 

this research captures the various sources of technology and ConOps innovation observed between any two 

periods in the DSN program.  Furthermore, it is constructive to use this Change Taxonomy to understand 

the progression of innovation in the DSN program from its conception and initial usage in 1960.  Based on 

the innovation trends shown in Figure 4-6 

and Table 4-1, which parses the DSN 

progression into distinct periods, the 

DSN program always demonstrated 

punctuated periods of either technology 

or ConOps innovation (change), but 

never both at the same time.  Thus, 

innovation in the DSN was never 

coupled, that is, technology and ConOps 

were never simultaneously demonstrated, 

thereby demonstrating an instance of 

Radical Change. 

 

The DSN performance resulting from innovation can be captured through gains in the data transmission 

capability since this dictates: (1) how many missions can be managed of a certain complexity and (2) the 

equivalent detection capability of objects in space a certain distance away from Earth.  An adapted version 

of Mudgway’s analysis of DSN performance gains from 1957-1998 is shown in Figure 4-7 [45].  This figure 

shows the increase in data rate capability due to innovation in the DSN until 1998; thereafter, the data rate 

capability increases are only projections into the future.  As seen in Figure 4-7, performance gains vary 

widely between 1960 and 1998.  In certain cases large gains are made every two years, whereas in other 

cases marginal gains are realized during a two-year period.  The large gains are likely the result of 

technology innovation in the DSN, namely, through advances in antenna hardware or the addition of new 

antennas, whereas the small gains are more likely due to changes in DSN ConOps using the currently 

available antennas/hardware.   

4.2.4.   Controlled Flight Into Terrain 

The second historical application of the Change Taxonomy is in analyzing progression with respect to 

avoiding controlled flight into terrain (CFIT) incidents, which occur when aircraft collide with the ground 
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or water while under full pilot control.  Therefore, these incidents are often the result of crew error, 

instrument error, air traffic control error, or poor weather conditions [42,43,50].   CFIT incidents were 

the leading cause of aviation accidents and fatalities in the world at least through the late 1990’s, and the 

decrease in CFIT incidents since then is one of the most significant changes and improvements in aviation 

safety in the last thirty years.  In large part, this is due to the development of new technologies to improve 

aircraft situational awareness.  The major source of innovation leading to the reduction of CFIT incidents 

was in the development and subsequent improvement of the ground proximity warning system (GPWS).  

Work on reducing the number of CFIT incidents began in the 1960’s and by 1974 the FAA mandated that 

certain aircraft types must be equipped with terrain awareness warning systems (TAWS’s), and by 1976, all 

airlines/aircraft were required to comply with the FAA-mandated TAWS’s.  (The motivation for the initial 

FAA-imposed mandate was an aircraft crash in 1974 at the Washington-Dulles airport where the aircraft 

collided with a mountain while following orders from ATC for final approach, killing all 92 passengers 

aboard [50].) 

 

As mentioned previously, the major source of innovation that lead to the reduction of CFIT incidents was 

through developing and improving TAWS’s.  The objective of TAWS’s is providing a pilot with both a 

visual and auditory warning of imminent collisions.  The GPWS was developed in the 1960’s and it was the 

first major TAWS.  It specifically worked by measuring the distance between an aircraft and the ground via 

a radar altimeter, this being the key GPWS technological enabler.  With the GPWS, imminent threats were 

determined by monitoring the rate at which an aircraft’s distance above the ground is changing.  The 

limitation of the GPWS was that it could not detect potential collisions with objects directly ahead of the 

aircraft such as a mountain.  The use of 

GPWS’s began in 1970 and by 1974 

the number of successful collision 

detection warning cases improved 

from 33% to 90%.  However, a study 

of fatalities by accident category 

between 1986 and 1995 conducted by 

the International Civil Aviation 

Organization (ICAO) and Volpe 

determined a need for further 
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reduction in CFIT incidents and thus a better early detection/warning system than the GPWS; the results 

from this study are summarized in Figure 4-8 (reproduced from Ref. [42]).  As seen in Figure 4-8, despite 

the use of GPWS’s and a nearly three-fold improvement in successful detections, from 1986-1995, nearly 

half of the world’s aviation fatalities were the result of CFIT incidents.  This prompted further 

improvements in GPWS’s and the eventual development of the enhanced GPWS (EWGPS), which in 

addition to a downward radar altimeter has forward looking radar, thus allowing for detection of imminent 

CFIT threats in a lateral direction.  While, the rate of CFIT incidents has significantly decreased today as 

compared to the number of incidents in 1995, these incidents still do occur and research and development 

continues to further improve aircraft situational awareness. 

 
APPLICATION OF THE CHANGE TAXONOMY 
The innovation, or change observed in 

the CFIT case study can be 

characterized through the Change 

Taxonomy developed in this research 

as shown in Figure 4-9.  In the case of 

CFIT incidents, innovation has 

occurred along the technology axis, 

specifically through the development 

and improvement of TAWS’s, thus no 

instances of Radical Change were 

observed as shown in Figure 4-9.  While aircraft operations may have changed due to improvements in 

TAWS’s, these were not the direct innovation focus in avoiding CFIT incidents, and therefore ConOps 

change is not observed in the case study.   

 

The performance gains from innovation in TAWS’s can be measured as a function of the number of airline 

fatalities per year attributed to CFIT incidents.  Ref. [42] quantifies the history of CFIT incidents from 

1945-1995 and subsequently demonstrates that improvements in TAWS’s such as the GPWS and the 

EGPWS have appreciably reduced the number of fatalities attributed to CFIT incidents.  However, as of 

2003, CFIT incidents still accounted for 17% of all aviation fatalities, so motivation remains for continuing 

to improve TAWS’s for aircraft to further reduce the number of aviation fatalities attributable to CFIT 

incidents [51].           

Figure 4-9.  CFIT Innovation Progression. 
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4.2.5.   Observations from the Historical Applications 

The two previous retroactive applications of the Change Taxonomy to the DSN and CFIT (incidents) 

programs were intentionally simplified but still highlight a an attribute of the taxonomy.  Namely, the 

Change Taxonomy developed in this research can capture the forms/types of change, or innovation found 

in these two case studies.  Thus, this taxonomy is constructive for understanding how change evolves in real 

engineering programs and it may also be possible to use it at any point in a program to identify where 

investments in innovation are currently being allocated.  Furthermore, using the taxonomy to plot the 

progression of innovation over the lifetime of a given program would provide a descriptive history of 

innovation in the program, which may prove very valuable 

4.3.   Extended Framework Discussion  
This section is devoted to exploring the framework and its functionality in more detail.  As such, several 

key aspects of the framework will be discussed along with potential opportunities to further mature the 

framework development and increase its potential utility. 

4.3.1.   System Transform 

The system transform is the core of 

the framework and its respective 

purpose is to generate the system 

outputs, which are the tradeoff 

dimensions of interest, given a 

proposed change.  The components of 

the system transform within the 

framework are highlighted in Figure 

4-10.  As shown in Figure 4-11 in 

additional detail, the system transform 

is a transfer function that quantifies the system outputs, Y, given 

a proposed change, X, subject to the external factors, U.  The 

system component within the transform is a representation of 

the system of interest and can therefore be a theoretical model 

or even based on data from an experiment, as long as it 

generates the system outputs of interest, given a proposed 
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change and the external factors.  Another comment regarding the system transform is that time is implicitly 

captured in the system and external factors.  Therefore, the system outputs reflect the time period 

implicitly contained within the system and external factors. 

4.3.2.   Valuation 

The valuation aspect of the framework 

quantifies a stakeholder’s preference, 

or desire for a proposed change given 

the system output hyperspace 

dimensions; the valuation process is 

highlighted in Figure 4-12.  

Stakeholder valuation is specifically 

achieved by mapping the set of system 

outputs to value via a preference 

structure, P, as shown in Equation 2 

where P is an operator on the system outputs, Y.   

Equation 2 

€ 

Value ≡V = P Y  

One option for deriving the preference structure is to use valuation methods, all of which share the 

common goal of mapping system outputs to value via a formalized preference structure.  There are 

numerous valuation methods that may be viable options for use in the valuation component in the 

framework.  Selecting the best valuation method for a particular framework application depends on the 

underlying assumptions and capabilities of the valuation methods.  Ross et al. discuss prominent valuation 

methods in order to provide guidance for practitioners in choosing the most appropriate method for a 

particular application [52].  While valuation methods are used in numerous applications, quantifying human 

preferences is a challenging task, so many of the valuation methods can lead to preference structures with 

considerable uncertainty and this should be appreciated when executing the framework.  The last comment 

regarding valuation is the form of the preference structure as this may have implications for the framework 

execution and the ultimate representation of value.  There are two common preference structure forms: 

uniform and variable, and there are two types of variable preference structures, linear and non-linear.  

Uniform preference structures are independent of the respective values of the system outputs of interest 
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whereas variable preference structures assign changeable preferences to the system outputs, which are 

dependent on the respective value of the outputs. 

 
COST-BENEFIT ANALYSIS 

One of the more common valuation methods is cost-benefit analysis (CBA), which is briefly described 

hereafter as an example of one potential valuation approach for use in the framework.  CBA is a prescriptive 

valuation methodology that quantifies value through the net benefits yielded by a system relative to its 

respective net costs [53,54].  CBA therefore interprets value as benefit less cost mapped to a common 

measurement scale.  Thus, CBA serves as a useful value-centric tool for cardinally weighting the positive 

and negative effects of various outcomes and combining them into the single metric of value.  The 

preference structure for CBA consists of functions that map each system output to the measurement scale of 

interest, for example, a monetary scale.  One common CBA function form is uniform-additive.  This CBA 

function form specifically uses uniform multipliers to map each cost and benefit to a common measurement 

scale (e.g., United States Dollars); these multipliers are tradeoff ratios, or relative preference weightings 

amongst the costs and benefits.  The general form of an additive cost-benefit function with uniform 

preference weightings is given in Equation 3 (adapted from Ref. [55]). 

Equation 3 

€ 

Value = P Y =

λi ⋅ Yi t( )( )
i=1

m

∑

1+ r( )t∀t
∑  

In Equation 3, Value is the benefit of a system less it respective cost.  The discount rate, r is the rate of 

return on future investments, assumed constant; [tk, tl] is the time interval during which the system outputs 

are quantified; Yi,(t) is the ith system output and λi, is the ith uniform preference weighting corresponding to 

the ith system output, respectively.  If λi is negative and positive, then the ith system output is a cost and 

benefit, respectively – thus, Value is benefit less cost. The set of Y’s are the system outputs in Figure 4-12, 

and the set of λ’s are collectively referred to as the “λ-Set” and are the embodiment of the value/belief 

systems in Figure 4-12.  If the time scale associated with the cost and benefit quantifications is small (e.g., 

several hours), discounting is negligible and Equation 3 simplifies to: 

Equation 4 

€ 

Value = P Y = λi ⋅ Yi( )
i=1

m

∑  
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The sign of Value in Equation 3 and Equation 4 is indicative of the relative contribution of cost and benefit to 

value; if Value is positive, benefits contribute more to value than costs and the converse is true if Value is 

negative.   

 
One advantage of a cost-benefit function is the ability to represent value on a cardinal measurement scale, 

which allows relative differences in value to be quantified, something not possible with ordinal value 

(preference) functions such as Expected Utility [3,4,52,56].  There are several benefits to having a cardinal 

value function, including the ability to create a value-ranked ordering of system options (e.g., proposed 

changes), for a given λ-Set, and this may enable the design and operation of a system to be optimized as a 

function of value, as will be explored the first case study in this research (see Section 6).  

 

Despite the aforementioned advantages, there are a few assumptions made by the cost-benefit function 

shown in Equation 3 and Equation 4 [3,57–59].  First, the costs and benefits must be normalized, via the λ-

Set, to common scale (e.g., United States Dollars), which may require liberal assumptions regarding the 

respective definition of λ for certain costs and benefits.  Second, it assumes that the costs and benefits 

embody a system of “checks and balances” so there is no arbitration, that is, gaining an advantage in one 

cost/benefit cannot occur without sufficiently compromising on other costs/benefits.  Third, for uniform-

additive, cost-benefit functions, the preference weightings are constant, which is an assumption countered 

by a tendency of individuals to weight losses more than gains (see Prospect Theory [60–62]).  And lastly, 

the definition of value is dependent on the λ-Set, therefore the valuation of an identical set of costs and 

benefits by two different λ-Sets cannot be compared and this may have adverse implications for stakeholder 

negotiations.  

4.3.3.   Identifying Stakeholder Misalignment 

In accounting the value structures 

corresponding to multiple stakeholders with 

the Tradeoff Analysis Framework, it may be 

used to identify stakeholder misalignment 

relative to the system outputs.  Stakeholder 

misalignment may occur if stakeholders have 

dissimilar preferences for a given system 

output or set of outputs.  The preference structure generated from the valuation process (see Section 4.3.2) 
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may be used to identify potential stakeholder misalignment.  For example, consider the scenario depicted in 

Figure 4-13, which assumes the uniform-additive, cost-benefit function given in Equation 4 and a 

hypothetical scenario where there are four system outputs of interest and three stakeholders, each having 

different preference structures (the stakeholders are denoted as “sh” in Figure 4-13).  The preference 

structure for each stakeholder is conceptually represented in the matrix on the left in Figure 4-13 and, using 

a uniform-additive cost-benefit function, the weighting factors or “λ-Set” values for each stakeholder are 

shown in the matrix on the right in Figure 4-13; note that these weighting values are arbitrary and map each 

of the four system outputs to a monetary scale where the negative and positive preferences values 

contribute to the costs and benefits of value, respectively.   

 

Identifying stakeholder misalignment with the preference structure depends on two factors, first, the 

direction or sign of the preference structure.  Using the cost-benefit function example in Figure 4-13, 

stakeholder misalignment may arise over the first output where stakeholders 1, 2, and 3 have λ’s of 1, 0, 

and -3, respectively.  Here, a positive and negative λ indicates that the perceived value of the output is a 

benefit and cost for stakeholders 1 and 3, respectively, whereas the value of the first output does not 

contribute to the second stakeholder’s overall value since λ is 0.  The second factor that stakeholder 

misalignment depends on is the sensitivity of the preference structure to value.  For example, if the overall 

value of the outputs is highly sensitivity to the preference structure, then even preference structures with 

the same direction/sign (or of similar forms) may lead to different stakeholder perceived value, which is a 

source of misalignment.  Conversely, if the preference structure is relatively insensitive to value, then 

potentially large differences in stakeholder preference structures with the same direction/sign (or form) 

will cause stakeholders to still be fairly well aligned in terms of overall value. 

 

Identifying stakeholder misalignment is important because any misalignment is an opportunity for conflict, 

which will need to be resolved in order to decide on the best design and operation of a system.  A common 

situation of conflict occurs when a subset of the stakeholders under consideration bear many of the costs but 

receive few of the benefits, or vice-versa, which creates an imbalanced decision-making environment.  In 

the context of the motivation of this research established in Section 1, this exacerbates the ability for 

stakeholders to agree upon the best balance amongst the system outputs in a tradeoff hyperspace.  Given 

these considerations, stakeholder misalignment may be further impeded if there is disproportionate “voting 

power” or importance amongst stakeholders.  Situations where this may exist include hierarchical decision-
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making environments such as those observed in many businesses and organizations today that have tiered 

employment structures.  If there is disproportionate power or influence amongst stakeholders, this adds an 

additional, competing dynamic to resolving stakeholder misalignment. 

4.3.4.   Facilitating Stakeholder Alignment 

If stakeholder misalignment is identified using the Tradeoff Analysis Framework, the framework might in 

turn be used to facilitate stakeholder alignment.  A few approaches for doing this are mentioned hereafter 

and are offered as complementary insights for how to facilitate stakeholder alignment.  The common 

objective of these approaches is to increase stakeholder alignment relative to the system output tradeoffs 

under consideration.  As stated in Section 4.3.3, this may be achieved through stakeholders having a 

common preference structure directionality/sign or form, or, in the case where value is very sensitive to 

the preference structure, this may require the stakeholders to have very similar preference structure values 

or forms, depending on the valuation method used.  An important consideration for facilitating stakeholder 

alignment is the number of stakeholders and stakeholder preference diversity.  As the number of 

stakeholders grows along with the diversity of their respective preferences, achieving stakeholder alignment 

is likely to become more difficult. 

 

OPTION 1: SUPRA-OBJECTIVE FUNCTION 

The first potential option for facilitating stakeholder alignment is to use a supra- (or meta-) objective 

function.  The general form of this function is given in Equation 5 and it encompasses all of the individual 

stakeholder value functions (and hence preference structures).  

Equation 5 

€ 

ValueSupra = Λ j ⋅ V j
∀j
∑

 
In Equation 5, ValueSupra is the supra-objective value function and it is the sum of all individual stakeholder 

value functions, Vj, multiplied by their respective relative weighting factors,

€ 

Λ j .  The weighting factors are 

a measure of relative importance amongst the stakeholder value functions and thus may be inferred as the 

relative “voting power” amongst the stakeholders.  Typically, the weighting factors are normalized such that 

they sum to 1.0 to keep the weighting distribution on a convenient scale, but this does not have to be the 

case.  Additionally, with this approach, stakeholders may use different valuation methods and thereby have 

different preference structure forms, the caveat being that all stakeholder value functions must map to the 

same value scale to keep the supra-value in one consistent unit. 
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The advantage of a supra-objective function is that once derived, there may be an opportunity to optimize 

the design and operation of system relative to this singular criterion, namely the supra-objective function 

shown in Equation 5, which accounts for all individual stakeholder value functions.  This supra-objective 

function therefore provides the convenience of truncating all stakeholder value functions into one supra-

value function, however, the major disadvantage of the supra-objective function approach for facilitating 

stakeholder alignment is best reflected through Arrow’s “General Possibility Theory” [63].  The General 

Possibility Theory, in part, concludes that aggregating multiple stakeholder preferences (e.g., via a supra-

objective function) cannot be done without forcing stakeholders to compromise their own preferences, at 

least in some capacity, in order to create this social “welfare” function.  Thus, while a supra-objective 

function is convenient, it often represents a compromise for every stakeholder and thus is always 

suboptimal for each stakeholder in terms of maximizing his or her value.  

 

OPTION 2: NEGOTIATIONS 

Another potential technique for resolving stakeholder misalignment is negotiation and the Tradeoff Analysis 

Framework may be used to facilitate such negotiations.  For resolving tradeoff hyperspaces, negotiations 

may be of use in one of two fashions.  First, negotiations may be used to find an amenable preference 

structure such that all stakeholders agree upon the same balance amongst the system tradeoffs.  Thus, this 

approach relies of negotiations within the valuation component of the Tradeoff Analysis Framework.  If this 

achieved, it effectively creates a single, unified stakeholder and corresponding value function.  This 

negotiation approach therefore centers on discussions in the value (preference) structure space before the 

framework is ever executed.  Conversely, the second usage of negotiations is centered in the system output 

space as generated with the Tradeoff Analysis Framework corresponding to a set of proposed changes.  In 

this case, stakeholders may still disagree as to the right balance amongst the system output tradeoffs, and 

therefore have different preference structures, but the negotiations take place after the framework is 

executed and the system output/solution space is populated.  In this case, negotiations are centered on the 

system output/value space and ensuing trades are made amongst the stakeholders as to amenable solutions 

in this space.  This approach is different than the previously mentioned use of negotiations where 

negotiations are used to decide on a unifying preference structure, which would make the latter type of 

negotiations in the system output/value space unnecessary.   

 



59 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

Negotiations are not guaranteed to lead to agreement amongst stakeholders, but through actively using 

negotiations within the Tradeoff Analysis Framework to learn about and refine stakeholder preferences, 

much can be gained in terms of achieving stakeholder alignment.  As negotiations of the second type (i.e., in 

the system output/value space) take place, negotiations of the first type (i.e., for finding a common 

preference structure) will implicitly take place as stakeholder’s compromise their own preferences in 

working towards finding an equilibrium in the system output/value space with the other stakeholders.  

There are many structured approaches for facilitating stakeholder negotiations and these belong to the 

domain of decision analysis and the methods developed in this field may serve as a useful starting point for 

facilitating multi-stakeholder negotiations.  Some of these methods include: Game-Theoretic Methods, 

Automated Multi-Attribute Negotiation Methods, Interactive Decision Maps, Multi-Criteria Decision 

Analysis, Eclectic Multi-Criteria Analysis, and Multi-Actor, Multi-Criteria Analysis [20–23,64–69].  

Section 2.2.6 specifically shows an example of using Game Theoretic methods to structure stakeholder 

negotiations. 

 

OPTION 3: ANALYTICAL METHODS 

The third potential approach for facilitating stakeholder alignment is the use of analytical methods within 

the Tradeoff Analysis Framework.  The objective of using analytical methods is to identify and quantify how 

closely aligned stakeholders are with regard to their preferences and the system outputs.  In doing so, 

analytical methods may help to identify the system output dimensions that will be easiest to align 

stakeholders along, or provide other constructive information for facilitating alignment, depending on the 

method used.  Details as to potential methods that may useful in the framework are not discussed herein 

since the potential applicability of analytical methods varies considerably depending on the application of the 

framework.  However, an example of the use of analytical methods to explore stakeholder alignment can be 

found in one of the case studies, specifically in Section 8.4.4, although this remains an active area of 

research for the framework development.  

 

OPTION 4: MINIMUM ACCEPTABILITY THRESHOLD 

The fourth potential approach for facilitating stakeholder alignment is to use minimum acceptable value (or 

system output) thresholds to guide the decision-making process.  This approach requires eliciting the 

minimum acceptable value threshold from each stakeholder, and thus proposed changes offering less than 

the value threshold of a given stakeholder are unsuitable options (solutions).  This approach therefore 
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effectively sets value constraints via the stakeholders 

and isolates the proposed change (solution) region(s) 

above every stakeholder’s respective minimum value 

threshold.  The caveat to this approach is that each 

stakeholder must assume the same preference structure 

(see CBA limitation discussion in Section 4.3.2).  A 

simplified example of this approach for facilitating 

stakeholder alignment is conceptually depicted in 

Figure 4-14 where, given the two stakeholder 

minimum acceptable value thresholds, the region of feasible solutions (i.e., proposed changes) that is 

acceptable to both stakeholders can be isolated.  While these suitable solution regions are not guaranteed to 

exist, if they do, they provide rich opportunities for negotiation amongst stakeholders as to amenable 

solutions given the proposed change space.  It should also be noted that this approach is not mutually 

exclusive with the previously mentioned supra-objective approach because this similarly isolates the regions 

of feasible solutions given a set of stakeholder value functions.         

4.3.5.   Stakeholder Value 

Within the Tradeoff Analysis Framework, specifically the valuation component, there may be uncertainty 

with regard to stakeholder value.  This source of uncertainty can arise when a stakeholder adopts a given 

valuation method and its respective preference structure but they are unsure about their preferences for a 

given system output with this structure.  For example, if the uniform-additive, cost-benefit function is used 

(see Section 4.3.2), a stakeholder may be unsure of their value for a given weighting factor (λ).  The 

aforementioned value uncertainty scenario may ultimately arise because of latent stakeholder preferences 

and subsequently helping them discover their latent preferences might be a facilitated through the following 

two uses of the framework. 

 

INFERRING STAKEHOLDER PREFERENCES 

In situations when stakeholders are unsure of their preferences for the system outputs, it might be possible 

to use the Tradeoff Analysis Framework to infer their preferences, given an assumed underlying preference 

structure.  A simple example of an approach that might achieve this using the framework is as follows.  This 

approach infers stakeholder preferences through allowing them to become the analyst in the framework and 

they therefore propose a change to the system given some reference, or starting proposed change.  After 
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Figure 4-14.  Stakeholder Value Thresholds. 
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proposing a change, the resulting system outputs are 

conveyed to them in the system output space relative to 

that of the reference point in the space.  An example of 

this is conceptualized in Figure 4-15 where the two 

system outputs corresponding to an alternative 

proposed change made by a stakeholder is shown 

relative to that of reference proposed change in the 

system output space.  One potential means for inferring relative stakeholder preferences given the selection 

of a new proposed change is shown in Equation 6, which assumes the simple two-system output space 

shown in Figure 4-15.  In Equation 6, 
 
is the jth system output corresponding to the ith alternative 

(proposed change) and 

€ 

Pk  is the kth preference form (or value). 

Equation 6 

€ 

P1
P2
∝

Y2
1 −Y1

1 Y1
1

Y2
2 −Y1

2 Y1
2  

 
If a stakeholder proposes a change relative to some arbitrary reference proposed change, the corresponding 

balance amongst the system outputs corresponding to this change might be assumed to reflect their relative 

preferences for the system outputs.  Their relative preferences for the outputs can then be inferred by 

computing the ratio of change in system output magnitude for each output relative to the datum system 

outputs, which correspond to the reference proposed change.  This is shown in Equation 6 where the 

numerator is the absolute difference between system output 1 for the reference and new proposed change 

in Figure 4-15, relative to system output 1 for the reference proposed change.  This numerator is then 

divided by the equivalent ratio for system output 2, given the reference and new proposed change.    This 

overall ratio may then be inferred to be the stakeholder’s relative preferences for the system outputs 

considered.  And with this information, it may then be possible to use this ratio to determine what the 

stakeholder’s preference structure values are, given some assumed preference structure.  A specific 

example of using the Tradeoff Analysis Framework to infer a stakeholder’s preferences can be found in the 

first case study results (see Section 6.4.2).  It is also important to note that in this example the hypothetical 

stakeholder only proposed one change but in reality this process of inferring stakeholder preferences can be 

repeated with each new proposed change made by a stakeholder, given some reference proposed change. 
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Figure 4-15.  Sequence of Proposed Changes. 
 



62 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

 
ANALYZING STAKEHOLDER BEHAVIOR 
An alternative approach for determining stakeholder preferences may be to isolate their value indifference 

points.  In this approach, the goal is to evaluate changing stakeholder behavior due to incentives/policies 

enacted via the valuation component of the framework.  This approach assumes some underlying preference 

structure for a stakeholder and then certain preference structure values (or forms) are changed.  When this 

happens, the corresponding stakeholder-perceived, value-optimal design and/or operation of the system 

may change.  The result of continually changing certain preference structure values (or forms) and, 

observing the corresponding change in a stakeholder’s behavior, may eventually isolate the stakeholder’s 

preference (or value) indifference points.  These points will then possibly define regions of constant 

stakeholder behavior (i.e., the perceived most valuable proposed system change) relative to the preference 

structure.  A simple example of an approach to analyze stakeholder behavior would be to impose a tax on 

the design and operation of a system and determine how much of a tax is required to change a stakeholder’s 

preferred design/operation of a system.  This example is explored in further detail in the first case study in 

this research (see Section 6.4.2).   

4.3.6.   Uncertainty 

It is important to recognize sources of 

uncertainty in the Tradeoff Analysis 

Framework.  There are three potential 

sources of uncertainty in the 

framework and these ultimately lead 

to uncertainty in the value 

proposition.  These sources of 

uncertainty are highlighted in Figure 

4-16 and they include the system, 

external factors, and valuation.  The 

first two sources arise from ambiguity 

in the system (e.g., a model) and external factors (e.g., the system’s operating environment).  Since the 

system is a representation, or abstraction of the system of interest, it is often a theoretical model, which 

will always have some uncertainty associated with it that may be relevant to address when implementing the 

framework.  Additionally, there may be ambiguity in the external factors, in particular because they often 
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define the “real-world” operational context of a system, which can be difficult to capture theoretically and 

quantitatively.  And the third potential source of uncertainty in the framework is the valuation component 

of the framework.  The basis for this source of uncertainty depends on the valuation method employed, but 

uncertainty in valuation typically arises due to: an inability for stakeholders to accurately convey their 

preferences to a third party (see Section 4.3.5); a valuation method’s manifestation of these preferences; 

and, if applicable, the various time-dependent assumptions used in valuation methods dependent on time-

based forecasts (refer to Ref. [52]).   

 

There are several implications of uncertainty in the framework.  The first is the effect of uncertainty on the 

execution of the framework.  Uncertainty effects value and this should be captured and conveyed in the 

value proposition generated by the framework, which, as a result may require a different execution (or 

adaptation) of the Tradeoff Analysis Framework.  This implication is best addressed through answering the 

question of what, if any, changes need to be made in the framework to account for sources of uncertainty in 

the value proposition.  An example of modifications made to the Tradeoff Analysis Framework in order to 

address uncertainty, specifically within the system and external factors in the framework is discussed in 

Section 8.5.2.  The second implication of uncertainty in the framework is representing value.  Uncertainty 

may create challenges in succinctly conveying the value proposition to the analyst and stakeholders.  For 

example, if a random sampling method is used to capture uncertainty in the external factors, then a given 

proposed change may correspond to a large number of system output samples, and this may require a 

different approach for visualizing value as compared to instances where value is certain (i.e., known 

deterministically).  The remaining implication of uncertainty in the framework is adapting the framework to 

capture uncertainty in stakeholder value.  There are several potential adaptations, or uses of the framework 

that can help capture this unique source of uncertainty and these are discussed in detail in Section 4.3.5.           

4.4.   Summary of the Tradeoff Analysis Framework Functionality 
Given the breadth and depth of the Tradeoff Analysis Framework discussion in Section 4, the overarching 

framework functionality is summarized hereafter to serve as a reminder of the key attributes of the 

framework.  The framework provides a formal construct for… 

 

1.  Analyzing the tradeoffs associated with change in designing new systems, or making modifications to 

existing systems in the context of stakeholder value. 
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2.  Optimizing system design and operation using stakeholder value. 

 

3.  Analyzing the sensitivity of stakeholder value and the system outputs to the proposed system 

changes.    

 

While the framework has capabilities beyond these three overarching functionalities, these capture the most 

important attributes of the framework and are important to keep in mind during the framework 

applicability evaluation, which is the topic of Sections 6-8. 
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5.  OVERVIEW OF THE CASE STUDIES 
In order to evaluate the applicability of the Tradeoff Analysis Framework discussed in Section 4, several case 

studies are employed that analyze the tradeoffs associated with changes in aerospace system design and/or 

operation.  Here, the tradeoffs are defined by the system outputs in the framework and the impact is the 

resulting value proposition.  The case studies were selected to explore different aspects of the framework 

functionality in order to develop unique insights about the framework and its respective implementation.  

In addition, the case studies were chosen to provide a representative sampling of real tradeoff problems in 

the aircraft and space system domains as well as in terms of system maturity, specifically by applying the 

framework to analyze hypothetical (theoretical) systems as well as currently operational (mature) systems.  

The case studies sequentially increase in complexity in terms of the applying the Tradeoff Analysis 

Framework and the type and magnitude of changes in a system analyzed ith the framework.  A brief 

overview of the case studies is presented hereafter. 

 

CASE STUDY 1: SINGLE STAKEHOLDER, SIMPLIFIED AIRCRAFT CRUISE OPERATIONS (SECTION 6) 

The first case study is the simplest and it examines the impact of changing aircraft cruise operations.  In this 

case study, the emphasis of change is along the ConOps axis in the Change Taxonomy (see Figure 4-4).  

Although the relevant stakeholders in this case study include airlines, passengers, and the global community 

(since the environmental impacts of aviation affect everyone in some capacity), only the airline stakeholder 

is considered in the analyses.  In this case study, the benefit of aircraft cruise operations is assumed uniform 

so the value proposition for the airline stakeholder only consists of the costs associated with operations.  

The subsequent airline value is derived from characteristics related to the operation of aircraft.   

 

CASE STUDY 2: MULTI-STAKEHOLDER, AIRCRAFT APPROACH PROCEDURES (SECTION 7) 

The objective of the second case study is to evaluate the impact of changing aircraft approach procedures 

with an emphasis on resolving competing preferences amongst a set of stakeholders.  Here, the systems of 

interest are currently operating commercial aircraft and changing their procedures (i.e., ConOps 

innovation) is enabled through advances in aircraft technology, specifically the use of GPS to increase 

aircraft situational awareness.  There are three stakeholders of interest in this case study, airlines, airports, 

and communities.  The airline’s value is derived from the operation of aircraft as well as any population 

noise exposure created from the aircraft.  The airports value is similarly derived from population noise 

exposure but also the arrival (throughput) of aircraft.  Lastly, the community stakeholder group provides a 
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polarizing perspective of value in this case study since they bear the cost of aircraft noise but do not directly 

benefit from their respective operation.  

 

CASE STUDY 3: MULTI-STAKEHOLDER, REMOTE SENSING SPACE MISSION (SECTION 8) 

The objective of the third case study is to assess the impact of innovation on remote sensing (earth imaging) 

mission spacecraft.  Therefore, the dimensions in the Change Taxonomy are really axes of potential 

innovation in this case study.  In this study, new spacecraft architectures called fractionated spacecraft are 

developed through innovation in technology.  And ConOps innovation occurs in this case study through 

changes in the respective redeployment strategies of spacecraft performing the mission.  This case study is 

therefore more complex than the previous two in terms of the type and magnitude of changes analyzed that 

belong to the Change Taxonomy.  The two stakeholders of interest in this case study are the spacecraft 

developers and operators, the former being responsible for developing the spacecraft and the latter being 

responsible for operating and managing the spacecraft.  The value propositions for these two stakeholders 

differs in that the spacecraft developer does not receive any direct benefit from a spacecraft’s operation 

other than having a successful mission whereas the operator directly benefits from the function of the 

spacecraft in terms of capturing images of the earth.   
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6.  CASE STUDY 1 – SINGLE STAKEHOLDER, SIMPLIFIED AIRCRAFT CRUISE 
OPERATIONS 

The first case study applies the Tradeoff Analysis Framework to analyzing the tradeoffs associated with 

commercial aircraft cruise operations.  This case study therefore emphasizes changes in operations and not 

technology in the Change Taxonomy.  The ensuing tradeoff hyperspace analyzed in this case study is 

specifically created from the following system outputs of interest for cruise operations: flight time, fuel 

burn, CO2 emissions, NOx emissions, contrails, and time in turbulence.  This case study is the simplest 

examined because only changes in operations are considered and, additionally, only the airline is considered 

as a stakeholder in the analyses.  This section begins with a brief background for the case study and then 

provides an overview of the Tradeoff Analysis Framework as applied to analyzing the tradeoffs associated 

with aircraft cruise operations. 

6.1.   Background 
The cruise operations phase of an aircraft’s flight is the portion of flight between a given origin (O) and 

destination (D) airport occurring after initial ascent and before final descent and landing.  Often aircraft will 

fly the great circle route during cruise, which is the geometrically shortest path between the O and D 

airports.  In this phase of flight, aircraft are allowed to operate at a certain altitude, which for many 

commercial aircraft is around 33,000 ft.  There are several stakeholders that may be of interest to consider 

for aircraft cruise operations, which includes airlines, airports, pilots, passengers, and regulatory bodies.  

Given these potential stakeholders, interesting environmental-performance tradeoffs include reducing flight 

time at the cost of higher CO2 and NOx emissions.   

6.2.   Literature Review – Case Study 1 
There have been several works in the literature that have evaluated the impact of changes in cruise 

operations, specifically the environmental-performance tradeoffs associated with operations.  These 

investigations have predominantly been lead by Kroo from Stanford University and Waitz from MIT [70–

74].  Their work has collectively focused on the detailed modeling, evaluation, and tradeoff exploration of 

aircraft climate impacts in the context of performance-based tradeoff dimensions.  The first two studies led 

by Kroo are similar and they specifically examine aircraft cruise operational tradeoffs such as that amongst 

operating costs, emissions, landing and takeoff (LTO) NOx emissions, and noise.  Then in 2008, Kroo led 

another study, specifically resolving the tradeoff amongst operating costs, NOx emissions, CO2 emissions, 

and route demand for commercial aircraft cruise operations.  Kroo’s studies resolved competing tradeoff 
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dimensions through optimizing a supra-objective (tradeoff) function embodied in a tool called PASS [70–

72].  The most recent study from Kroo was published in 2009 and is unique because of its inclusion of a 

climate impact model, which quantifies the global temperature response from aircraft engine emissions and 

contrails [73].  The tradeoff dimensions in this study were again optimized using PASS and included metrics 

such as global temperature change, cost, fuel burn, and NOx emissions.   

 

Waitz led MIT’s most focused research on evaluating the tradeoffs associated with aircraft operations [74].  

This study specifically used a low-speed aerodynamic model and trajectory simulation to quantify the 

tradeoffs associated with cruise operations including that amongst performance (altitude and climb time), 

environmental impact (noise and emissions), operating costs, and noise.  An optimizer was employed to 

redesign an aircraft’s respective configuration and operation such that it provided the most value, given the 

optimizer’s objective function of the aforementioned tradeoff parameters.    

 

There has also been research looking at specific cruise route, or path optimizations, balancing both 

environmental- and performance-related tradeoff dimensions.  In 2010, Campbell performed studies with 

the objective of reducing the environmental impact of aircraft operations by changing their respective in-

flight paths (trajectories) [75].  The tradeoffs specifically considered were contrail formation, fuel cost, 

performance (trajectory profile and flight time), and disturbance avoidance as manifested by avoiding static 

and dynamic, hard and soft, no-fly zones.  Analogous to the work at Stanford University and MIT, these 

tradeoffs were resolved through the use of an optimizer and therein a single objective function. 

 

Lastly, there have been complementary works in the literature investigating environmental and 

performance tradeoffs for aircraft cruise operations for the Climate Compatible Air Transport (CATS) 

System and Aviation Integrated Modelling (AIM) Project [76,77].  The work on the CATS System was 

published in 2009 and it specifically analyzed aircraft cruise operations by considering the tradeoffs 

amongst: engine technology (capability), contrail formation, performance, and mission parameters such as 

time; this study also investigated the impact of the temporal and uncertainty aspects of cruise operations 

[76].  The second study, published in 2010, used the AIM project’s Aviation Technology Module (ATM) to 

assess the tradeoffs amongst cruise altitude, fuel burn, and NOx emissions [77].  Unlike the Stanford and 

MIT studies, these two works articulated the relevant tradeoffs associated with cruise operations but did not 

resolve competing tradeoffs via an optimization algorithm.  
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6.3.   Application of the Framework 
This section details the application of the Tradeoff Analysis Framework in this case study and begins with an 

overview of the framework followed by discussing each framework constituent in more detail.   

6.3.1.   Framework Application Overview 

The application of the research 

framework in this case study is 

depicted in Figure 6-1.  In this case 

study, the analyst inputs a cruise 

operation/trajectory given the O-D 

airport pair considered.  The proposed 

change is then analyzed with Piano-5 

and an aircraft performance post-

processor (see Section 6.3.6), which 

collectively generate the system 

outputs of interest, which includes the cruise flight time, fuel burn, emissions, contrails, and turbulence.  

The external factors affecting the system include temperature, winds, and humidity.  The only stakeholder 

considered in this case study is the airline, whose value is directly impacted by all of the system outputs.    

6.3.2.   Stakeholders and System Outputs 

For this case study, the stakeholders of interest include the airlines, passengers, and the global community 

but only the airline stakeholder is considered in the case study analyses.  The ensuing system outputs of 

interest to this stakeholder are shown in Figure 6-2 and as follows: flight time in units of hours (hrs), fuel 

burn in units of gallons (gals) or pounds (lbs), CO2 emissions in units of kilograms (kg) or metric tons 

(mt), NOx emissions in units of kilograms (kg) or metric tons (mt), length of contrails produced in 

units of (nm), and time in turbulence in terms of hours (hrs).  Since there are six system outputs, this 

leads to a six-dimensional output, or tradeoff hyperspace to be analyzed in the case study.  Flight time, fuel 

burn, CO2 emissions, and NOx emissions are that accumulated over the entire cruise trajectory.  The 

contrail production is the cumulative length of contrails that a given aircraft produces during cruise.  And 

the turbulence is the time spent in a given turbulence severity region during cruise, which is prorated by 

severity level (‘none’ (0), ‘light’ (3), or ‘moderate or greater’ (6)).  The system outputs are computed for a 

single aircraft cruise trajectory.      
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Figure 6-1.  Framework Application (Case Study 1). 
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As will be discussed in Section 6.3.3, the benefit of flying is assumed uniform in this case study, so the value 

proposition for the airline only consists of the costs associated with each system output.  As seen in Figure 

6-2, the airline directly incurs all of the direct costs associated with the system outputs because the aircraft 

is responsible for yielding all of these outputs.  In addition, in this case study, the airline is assumed to also 

incur the indirect costs associated with aircraft emissions, as these costs are assumed a hypothetical tax that 

the aircraft has to pay if producing emissions.  Thus, collectively, the airline bears the cost associated with 

all six system outputs considered in this case study.     

6.3.3.   Valuation 

The valuation approach used in this case study is the uniform-additive, cost-benefit function described in 

Section 4.3.2.  The only difference in this case study is that the benefit of flying is assumed to be uniform 

for the airline, so value equals cost as is shown in Equation 7.   Since the time scale associated with the 

system output quantifications for a given cruise is small (i.e., on the order of hours), discounting is 

negligible and value in this case study therefore becomes: 

Equation 7 

€ 

Value = Cost = λi ⋅ Yi( )
i=1

n

∑  

In Equation 7, Value is equal to cost, so all value results reported in this case study are negative.  In the 

equation, Yi,(t) is the ith system output and λi, is the ith uniform preference weighting corresponding to the ith 

system output, respectively.  λi will be negative since the system outputs considered in this case study are all 

costs.   
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Figure 6-2.  Stakeholder and System Output Matrix (Case Study 1). 
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The airline stakeholder has a “λ-Set” that translates their respective costs into their value proposition, given 

the uniform-additive, cost-benefit function used in this case study.  The stakeholder λ-Set is defined in Table 

6-1 along with reference values for each λ; note that the λ’s are all negative since they correspond to system 

outputs that are costs. 

 

 

 
In Table 6-1, current values were used for the hourly operating cost of an A320-200 and the price of Jet-A 

fuel [78,79]; note that the operating cost does not include the cost of fuel since this is a separate system 

output.  The social costs of CO2 and NOx emissions are based on recommendations from an Interagency 

Working Group and a university study [80,81].  And, there are presently no recommendations for the 

social cost of contrails and turbulence cost penalty so reasonable reference values were assumed for these 

respective λ’s, recognizing that there may be significant uncertainty in these values. 

6.3.4.   Proposed System Changes 

The analysis emphasis in this case study 

is changing aircraft cruise operations 

(ConOps) using currently available 

commercial aircraft (without 

modifications), thus Technology and 

Radical Changes are not analyzed the 

case study (see Figure 6-3).  In this 

case study, changes in ConOps 

specifically occur through changing the 

specific cruise operation used.  The 

baseline cruise route used for 

comparison is the cost-index optimal route for the airline, which corresponds to the optimal cruise route 

when the airline incurs the cost of flight time and fuel burn but does not incur the cost associated with any 

λDOC λFuel& λCO2 λNOx& λCont,&AP& λTurb,&AL&
Operating 

cost Fuel cost Social cost of emissions 
 Cost of 

producing 
contrails 

Turbulence 
cost penalty 

-1164 $/hr -2.49 $/gal -0.04 $/kg -4.05 $/kg -0.10 $/nm -10.00 $/hr 

Table 6-1.  Reference λ-Set (Case Study 1). 
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other system outputs in this case study.  Therefore, in relation to the reference λ-Set shown in Table 6-1, 

the baseline route is the value-optimal route corresponding to the direct operating costs and cost of fuel.  

Given the simplified cruise operations setup discussed in Section 6.3.5, all departures from the cost-index 

optimal route will be explored, however, of particular interest is comparing the cost-index optimal route 

with optimal route corresponding to the reference λ-Set shown in Table 6-1.  This route will correspond to 

an airline that cares about cost of operating aircraft along with the adverse environmental impacts of aircraft 

operations as reflected in the system outputs in this case study.  

6.3.5.   System Model: The Simplified Model of Aircraft Operations 

In order to fully explore the space of cruise operations, a deliberately simplified version of the cruise 

portion of a flight is considered where aircraft must enter and exit the cruise environment at FL290 (the 

initial climb and final descent phases are not considered).  The cruise leg of interest in the case study is that 

between the LAX and JFK airports where LAX is the origin airport; this cruise leg has a corresponding 

distance of 1800nm.  The cruise trajectories only vary in the vertical (i.e., flight level) direction along the 

cruise leg (see Figure 6-4) where there 

are seven potential altitude transition 

points at 257nm intervals.  There are 

then five potential flight levels (FL) 

along this leg at 2 kft intervals.  The 

rates of aircraft climb and descent 

between any altitude transitions are 

fixed at +/-100 ft per min, 

respectively.  The simplified 

representation of a cruise trajectory 

results in a total of 78,125 candidate 

vertical profiles.  And, in addition, aircraft fly at one of 21 constant cruise speeds along a given vertical 

profiles in the Mach range of  [0.73, 0.85], leading to over 1.6 million possible cruise trajectories (i.e., 

vertical profiles and speed combinations).  Therefore, changes in ConOps in this case study entails changing 

the vertical cruise profile of an aircraft and its respective speed along that profile.  The remaining 

simplification made in this case study is that only Airbus A320 aircraft are considered for cruise operations 

and the initial aircraft mass after initial ascent and before cruise is 164,889 lbs.  
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Figure 6-4.  Simplified Cruise Operations Representation using 
the September 21, 2009 External Factors. 
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The system outputs corresponding to a given simplified cruise trajectory are computed with a model 

comprised of Piano-5, a professional aircraft modeling tool and a custom aircraft performance post-

processor [82].  For a given cruise trajectory, flight time, fuel burn, and emissions are computed with 

Piano-5.  Then, based on the cruise flight trajectory and external factors, the length of contrails produced 

and time in turbulence is computed by the post-processor, given the cruise environment setup shown in 

Figure 6-4.  Since the contrails are geometrically represented in the cruise environment by “contrail 

regions,” the length of contrails produced by an aircraft is simply the length of its respective cruise 

trajectory that passes through these contrail regions.  Similarly, time in turbulence is the amount of time an 

aircraft spends in the turbulence regions given its respective cruise trajectory and speed.  Since there are 

varying turbulence levels, time in turbulence is pro-rated by severity level to reflect a higher cost penalty 

for flying through more severe turbulent areas. 

6.3.6.   External Factor Model 

The external factor (operating environment) for cruise operations varies by day.  The external factors 

considered in the analyses performed in this case study are shown in Figure 6-4 and they correspond to a 

three-hour period on September 21, 2009.  There are three external factors considered: winds, contrails, 

and turbulence.  In Figure 6-4, the winds are represented using a vectored notation where at each mesh 

point a half-line, full-line, and triangle correspond to 5, 10, and 50kts, respectively, and, if the wind 

intensity notation is to the right or left of its origin 

(base) line, then it is a headwind or a tailwind, 

respectively.  Aircraft will produce contrails if they fly 

in a contrail region and these regions are formulated 

using the Schmidt-Appleman criterion for contrails 

[83].  In the cruise environment, the weather data at 

altitude are populated by the Rapid Update Cycle 

(RUC) weather model [84].  And, lastly, the 

turbulence severity regions in Figure 6-4 are 

approximated from Graphical Turbulence Guidance 

(GTG2) data provided by the National Oceanic and 

Atmospheric Administration’s (NOAA) Aviation 

Digital Data Service [85].  The GTG2 data categorizes 
Figure 6-5.  GTG2 Turbulence Data. 

Source: NOAA’s National Center for Atmospheric 
Research 
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turbulence on a severity scale of ‘none,’ ‘light,’ and ‘moderate or greater’ and the data is provided at 

discrete FL’s as shown in Figure 6-5 where each severity level is shaded a different color.  The GTG2 

turbulence regions are extracted and mapped to the two-dimensional cruise leg (i.e., along the great circle) 

between a given O and D airport as shown in Figure 6-4, thus giving rise to the turbulence “pillars” in this 

figure. 

6.4.   Analyses 
This section presents the case study analyses, each of which provides a different perspective of applying the 

Tradeoff Analysis Framework in order to assess the impact of changes in aircraft cruise operations.  The 

cruise route of interest is that between the LAX and JFK airports where LAX is the origin airport and the 

setup and assumptions for analyzing cruise operations along this is discussed in Section 6.3.5. 

6.4.1.   Overview of Analyses  

Numerous analyses are performed in this case study and they collectively evaluate the No Change and 

Operational Change categories in the Change Taxonomy (see Section 6.3.4).  The resulting analyses 

performed in this case study are as follows:  

1. Baseline Study: This analysis evaluates the cost-index optimal cruise route for an airline, which 

corresponds to the value-optimal route when only the cost of time (direct operating costs) and the 

cost of fuel are considered (refer to Table 6-1 for the λ values used).  In the results, this is 

trajectory is referred to as the Baseline trajectory.  The corresponding value function for this route 

is given in Equation 8: 

Equation 8 

€ 

Value = Cost = −λDoC ⋅ FT − λFuel ⋅ FB  

In Equation 8, λDoC and λFuel are the cost of time and fuel, respectively, and FT and FB are the system 

outputs of flight time and fuel burn, respectively. 

2. Operational Change Study:  In the operational change study, all possible perturbations from the 

Baseline cruise trajectory will be analyzed, which, given the simplified nature of the cruise 

reference problem (see Section 6.3.5), this leads to a total of 1,640,624 unique cruise operations 

(i.e., vertical trajectory and speed combinations) to be analyzed in the Operational Change 

category.  Of particular interest in this set of trajectories is that corresponding to the reference λ-set 

in Table 6-1, which corresponds to an airline that incurs the cost of every system output, given the 

reference values.  This trajectory will be referred to as the Everything Trajectory in the analyses.    
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Therefore, in this case study a total 1,640,625 assessments will be conducted, thereby providing a unique 

perspective of the framework usage as compared to the other two case studies, namely, through the analysis 

and subsequent comparison of a very large number of proposed changes by the analyst in the framework.    

6.4.2.   Analyses and Results 

Five different analyses are performed in this case study to analyze the tradeoffs associated with changing 

aircraft cruise operations.  The first analysis in this case study explores the entire space of trajectories 

(proposed changes) using the Framework with Optimization.  The purpose of this analysis is to gain an 

understanding of the entire system output space relative to the airline stakeholder cost-index optimal 

trajectory.  The second analysis uses Principal Component Analysis to quantify and understand the global 

tradeoff trends amongst the system outputs given their enumeration in the first analysis.  The third analysis 

compares the Baseline and Everything trajectories defined in the previous section.  The fourth analysis in the 

case study demonstrates a unique application of the Tradeoff Analysis Framework in this research, namely, 

as a policy analysis mechanism.  This analysis specifically uses the Framework with Optimization in order to 

evaluate changing airline behavior (i.e., their perceived value-optimal cruise trajectory) given a changing 

hypothetical tax on aircraft-produced contrails as well as changing direct operating costs.  And the fifth and 

remaining analysis uses the Tradeoff Analysis Framework to infer stakeholder preferences for the direct 

operating cost and cost of fuel, which are assumed unknown.  

 

ANALYSIS 1 – EXPLORING THE SYSTEM OUTPUT SPACE 

The first analysis employs the Tradeoff Analysis Framework to explore the entire system output space, 

which is possible because of the intentionally simplified cruise operation environment (see Section 6.3.5); 

this analysis thereby repeatedly executes the system transform described in Section 4.3.1 to populate the 

system output space.  In this analysis, each proposed changes corresponds to a unique combination of 

system outputs contributing to this space.  One of the goals of quantifying the entire output space is that it 

provides a constructive perspective for understanding the range of possible stakeholder value propositions 

given the valuation method employed in this case study.  Of particular interest are comparing the Baseline 

and Everything Trajectories defined in Section 6.4.1.  Additionally, the system output space will show the 

macroscopic trends in the system outputs, which may be constructive for understanding the underlying 

“behavior” of cruise operations as framed and modeled in this case study.   
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The result from evaluating all possible vertical (cruise) trajectories at the 21 different Mach numbers 

considered is provided in Figure 6-6.  Figure 6-6 shows the entire system output space using a subplot 

visualization approach where the system output space is consistently plotted with respect to fuel burn and 

flight time and then color shading is used to convey the other four system outputs, each dedicated to its own 

subplot.  This visualization approach was chosen because it keeps the output space directly comparable 

amongst the subplots, which is important for reflecting decisions made in one subplot to the others; thus, 

the plots can be directly compared given their common axes, but each provides a different perspective of 

the system outputs.  Given the value function used in this case study (see 6.3.3), the cost-index optimal 

trajectory is noted in Figure 6-6 as “Baseline” and the optimal trajectory corresponding to the entire 

reference λ-set is noted in the figure as “Everything.”  Deviations from the Baseline trajectory demonstrate 

instances of changing aircraft cruise operations in order to improve in other system output dimensions, for 

example, such as reducing flight time as compared to the Baseline trajectory, which would correspond to 

trajectories in Figure 6-6 located to the lower right of the Baseline trajectory.    

 

 
In Figure 6-6, the distinct oblong groupings in the fuel burn-flight time space each correspond to all 

candidate vertical trajectories flown at one of the 21 possible cruise speeds.  The oblong group vertically 

centered on a flight time of 4 hrs (i.e., the top left group) corresponds to the slowest speed, Mach 0.73, 

while the group the furthest to the bottom and right corresponds to the fastest speed, Mach 0.85; hence, 
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Figure 6-6.  The Full-Factorial System Output Space. 
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the latter group has the lowest flight time.  The oblong groups in the middle of Figure 6-6 between a flight 

time of roughly 3.6 and 3.7 hrs are closer together due to the refinement of the Mach speed mesh around 

the most common cruise speeds of Mach 0.77 to 0.79.  Since contrail production is not affected by aircraft 

speed, all data groupings having a similar color gradient with respect to the contrails produced given the 

space of possible fuel burns, where the lowest contrail production is achieved at the cost of the highest fuel 

burn within a given group.  This is due to the external factors assumed in this case study (see Section 6.3.6), 

specifically the contrail regions that are consistently located at the highest cruise altitudes, which also 

happen to be the most fuel-efficient altitudes to fly at.  A similar observation holds for turbulence, although 

time in turbulence is slightly affected by cruise speed.  Conversely, CO2 and NOx emissions are strongly 

dependent on fuel burn.  CO2 is directly proportional to fuel burn whereas NOx is roughly proportional to 

fuel burn and flight time; hence, these two system outputs are correlated with the fixed axes of fuel burn 

and flight time in Figure 6-6. 

 
A visualization of the system output space like that shown in Figure 6-6 provides useful insights about the 

tradeoffs amongst the six system outputs.  For example, these plots clearly exhibit the general tradeoff 

between fuel burn and time: fuel burn increases as time decreases, and vice-versa.  Given the representation 

of the system output space in Figure 6-6, some of the other tradeoff insights gained are the relatively high 

correlation of CO2 and NOx emissions with fuel burn, which was expected.  Additionally, given the 

external factors assumed in this case study, it becomes apparent that reducing fuel consumption comes at 

the cost of higher contrail production, thus these are two important competing tradeoffs.  Conversely, it 

appears that reducing fuel consumption also reduces the time passengers spend in turbulence so these two 

dimensions are actually complementary.  

 
ANALYSIS 2 – TRADEOFF RESOLUTION USING PRINCIPAL COMPONENT ANALYSIS 

In the second analysis, Principal Component Analysis (PCA) was used to determine the competing and 

complementary nature of the system outputs constituting the tradeoff hyperspace.  PCA is a useful method 

for quantifying the correlation (or lack thereof) amongst the system outputs and representing the resulting 

system output tradeoff hyperspace in a reduced-order space [86].  This representation enables the most 

important system output tradeoffs to be readily identified, as will be demonstrated hereafter. 

 
In this analysis, PCA was specifically used to analyze the data corresponding to all possible vertical cruise 

profiles (recall there are 78,125 of these) flown at their respective cost-index optimal Mach number.  In 
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order to demonstrate the 

sensitivity of the system output 

tradeoffs to the external 

factors, this analysis is applied 

to two atmospheric cruise 

environments, the first 

represented in Figure 6-4 and 

the second in Figure 6-7.  

 

The first step in this analysis 

was to use the Tradeoff 

Analysis Framework to analyze 

all 78,125 vertical cruise profiles flown at their cost-index optimal Mach number for both external factor 

scenarios represented in Figure 6-4 and Figure 6-7.  The resulting system output space was then analyzed by 

PCA.  After applying PCA to the system outputs corresponding to all 78,125 vertical cruise profiles flown 

at their cost-index optimal Mach number, it was found that two principal components captured 99.99% 

and 99.85% of the variability in the system output space with the first and second external factor scenarios 

considered, respectively, implying that the original six-dimensional system output tradeoff hyperspace can 

be captured in a two-dimensional principal component space.  Since this is the case, PCA effectively 

reduces the order of the original six-dimensional system output tradeoff hyperspace to two dimensions.  

The two-principal component 

representation of the system 

output space corresponding to 

the two external factor 

scenarios is shown in Figure 

6-8 and Figure 6-9; note that 

the space in these figures is 

normalized on the range of [-

1, 1]. The scattered data in 

these figures is the system 

output space generated from 
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Figure 6-8.  PCA Representation of the System Output Space 
(September 21, 2009 External Factors). 
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analyzing all possible cruise 

operations with the Tradeoff 

Analysis Framework for the 

two external factors 

considered.  And the black 

lines are the ensuing tradeoffs 

amongst the six system output 

dimensions based on the 

system output space data.  

Along each black line, the 

corresponding system output 

increases in magnitude while travelling away from the start of the line at the origin of the PCA plot, [0, 0].  

The angular proximity of a given tradeoff vector to a principal component is indicative of its relative 

contribution to that principal component dimension; this is because principal components are composite 

variables of the six system outputs.  For example, in Figure 6-9, fuel burn is fairly close in proximity to 

principal component 1 (i.e., the x-axis), thus, it contributes proportionally the most to the first principal 

component dimension.   

 

The relative angular displacement amongst the six output dimensions shown in Figure 6-8 and Figure 6-9 by 

the black lines can be used to determine the complementary and competing nature of these outputs in 

relation to one another.  Specifically, as the angular offset between any two dimensions nears 0º, 90º, and 

180º, the two outputs become perfectly complementary, neutral, and perfectly competing, respectively, 

assuming that an increasing magnitude in an output is more desirable.  Complementary output dimensions 

are aligned such that increasing the value of one increases the value of the other, whereas competing 

dimensions (i.e., tradeoffs) demonstrate the converse of this situation.  And neutral output dimensions are 

uncorrelated.	   

 
Given the relative angular offsets amongst the dimensions in Figure 6-8 and Figure 6-9, several observations 

can be made about the system outputs corresponding to the cruise operations analyzed during the two days 

of atmospheric conditions considered in this PCA analysis.  First, in Figure 6-8 and Figure 6-9, fuel burn 

and CO2 emissions are parallel, so they are perfect complements and thus not tradeoffs with one another at 

all.  This was expected since CO2 emissions are directly proportional to fuel burn, regardless of weather 
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conditions.  Additionally, in Figure 6-8 and Figure 6-9, NOx emissions are complementary to fuel burn, 

however, this complementary nature depends, in particular, on the distribution of winds in the cruise 

environment, which varied between the two days of external factors considered (refer to Figure 6-4 and 

Figure 6-7).  And in Figure 6-8 and Figure 6-9, the roughly orthogonal angle between the complementary 

“tradeoff” group of fuel burn/CO2/NOx -and- the contrails, flight time, and time in turbulence tradeoff 

dimensions, indicates that this complementary group is nearly uncorrelated with the latter three 

dimensions, which implies that this former group is neutral to (i.e., a weak tradeoff with) the latter group of 

tradeoff dimensions.   

 

The remaining observation about the PCA representations of the system outputs in Figure 6-8 and Figure 

6-9 is the difference between the correlation, or lack thereof, amongst contrails, flight time, and time in 

turbulence, given the two days of weather analyzed.  In Figure 6-8, the time in turbulence and contrails are 

found to be closely correlated (almost parallel), implying that as the time in turbulence increases, contrail 

length generally increases.  This arises because the tailwinds are lighter at higher FL’s, which also happens 

to be where the contrails are located.  Hence, the trajectories passing through the higher FL’s experience 

proportionally more time in turbulence and typically produce more contrails.  The fastest trajectories are 

those predominantly at low FL’s, where there are no contrail regions and where the time in turbulence is 

proportionally less because there are strong tailwinds.  Hence, flight time is almost antiparallel to contrail 

production and time in turbulence.  However, the previous observations regarding the relationship amongst 

contrails, time in turbulence, and flight time do not hold for the system outputs corresponding to the 

second day of weather used to analyze cruise operations, the PCA representation of this shown in Figure 

6-9.  In particular, the contrail and turbulence regions in the second weather scenario analyzed leads to a 

different tradeoff amongst these outputs.  Since the turbulence and contrail regions are overlapping in 

Figure 6-7, this causes them to be closer to complementary than competing, which was not the case for the 

first weather scenario examined since the contrail and turbulence regions did not overlap.  The remaining 

difference is that flight time opposes contrails and turbulence, which is the result of the fastest routes being 

at higher altitudes, thus reducing flight time comes at the cost of increased contrail production and time in 

turbulence since there are contrail and turbulence regions at high altitudes in this external factor scenario.        

 
In summary, PCA is a useful method for synthesizing the system output tradeoff hyperspace and readily 

understanding the competing/neutral/complementary nature of the system output tradeoffs.  It was found 

that fuel burn, CO2, and NOx are complementary but the competing/complementary nature of contrails, 
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flight time, and time in turbulence is dependent on the assumed external factors, or atmospheric conditions 

in which aircraft operate.  Interesting future work might be to use PCA to quantify the system output 

tradeoff volatility to other key parameters such as the λ-set employed in this case study. 

 
ANALYSIS 3 – COMPARING THE OPERATIONALLY DRIVEN AND OPERATIONALLY AND ENVIRONMENTALLY 

DRIVEN TRAJECTORIES 

The system outputs between the 

operationally driven and operationally 

and environmentally driven trajectories 

are summarized in Table 6-2 and the 

comparison of their corresponding 

trajectories is shown in Figure 6-10.  

The operationally driven trajectory 

corresponds to the optimal trajectory 

when only the cost of time and fuel are 

incurred (i.e., the cost-index optimal 

trajectory), whereas the operationally 

and environmentally driven trajectory 

corresponds to the optimal trajectory 

when the costs associated with all six 

system outputs is incurred. The cost-

index (i.e., operationally driven) 

optimal route happens to be the most 

fuel-efficient in the trajectory space, 

which also happens to pass through contrails and incur some time in turbulence.  When the costs of the 

other system outputs are incurred, which corresponds to the operationally and environmentally driven 

trajectory, the same vertical trajectory is flown but at a slower speed, owing to the cost of emissions now 

being a factor in the airline’s value function.  Had the cost of contrails and time in turbulence been more 

dominate than the cost of time and fuel for the operationally and environmentally driven trajectory, the 

vertical trajectory would have been different than the operationally driven trajectory.  However, given the 

operationally driven and operationally and environmentally driven trajectories, the slower speed of the 

operationally and environmentally driven trajectory as summarized in Table 6-2, leads it to have less fuel 

System Output Units Operationally 
Driven (O)

Operationally 
and 

Environmentally 
Driven (OE)

ΔSystem 
Outputs (OE-O)

Flight Time 3hr, 44m, 25s 3hr, 47m, 6s 2m, 41s
Fuel Burn gal 2735 2716 -19
CO2 Emissions kg 26658 26480 -178
NOx Emissions kg 92.2 90 -2.2
Contrails Produced nm 865 865 0
Time in Turbulence hr 0.45 0.45 0

Cost of Trajectories USD -11,164 -13,847

Opera&onally+Driven+–+Mach+0.782+
Opera&onally+and+Environmentally+
Driven+–+Mach+0.772+

Figure 6-10.  Operationally Driven and Operationally and 
Environmentally Driven Trajectory Comparison. 

 

Table 6-2.  Operationally Driven and Operationally and 
Environmentally Driven System Output Comparison. 
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consumption and emissions at the cost of a slightly higher flight time.  The comparison of the operationally 

driven and operationally and environmentally driven trajectory system outputs therefore demonstrates an 

instance of a changing airline behavior, albeit a small change, in response to incurring the environmental 

impacts of cruise operations along with the cost of operations.      

 
ANALYSIS 4 – THE FRAMEWORK AS A POLICY ANALYSIS MECHANISM 
The remaining analysis in this case study uses the Tradeoff Analysis Framework as a policy analysis 

mechanism, thereby providing a unique demonstration of its potential utility to other tradeoff analysis 

problems.  This analysis specifically uses the framework to assess how a hypothetical tax (cost penalty) on 

producing contrails, coupled with changing direct operating costs, alters an airline’s perception of the best 

(i.e., least expensive) trajectory.  Thus, this analysis employs the Framework with Optimization where the 

analyst performs a sensitivity study on λCont and λDOC and the four other λ-Set values are fixed to their 

respective reference values provided in Table 6-1.  The result of this leads to the identification of the iso-

optimal trajectory “behavior” regions for the airline as a function of λCont and λDOC.  For this analysis, the 

external factors are that shown in Figure 6-4. 

 

The preference structure values explored in this problem are summarized in Table 6-3.  The corresponding 

range of λCont is from 0 $/nm to that required to impose enough of a cost penalty (incentive) for airlines to 

completely avoid producing contrails, given the 

range of λDOC values.  The λDOC values were varied 

from 70% to 130% of λDOC reference value in Table 

6-1.  Figure 6-11 shows the results from this policy 

analysis, which depicts the length of contrails 

produced by the optimal (i.e., lowest cost) trajectory as a function of λCont and λDOC.   

Units Reference  λ-Set
Direct Operating Cost λDOC $/hr From -900 to 1400
Cost of Fuel λFuel $/gal -2.49
Social Cost of CO2 λCO2 $/kg -0.04
Social Cost of NOx λNOx $/kg -4.05
Cost of Producing Contrails λCont $/nm Decreasing from 0
Turbulence Cost Penalty λTurb $/hr -10.00

λ-Set Definition

Table 6-3.  Contrail Tax Study (λ-Sets). 
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The results from the policy analysis summarized in Figure 6-11 show the discrete contrails regions in order 

of decreasing length of contrails produced in the positive x-axis direction.  It is important to note that these 

results are highly dependent on the assumptions made in the case study, in particular, that these results only 

correspond to the day of weather assumed for cruise operations (see Sections 6.3.5 and 6.3.6).  

Additionally, the reason for the discrete contrail regions in Figure 6-11 is that the cruise trajectories and the 

contrail regions are both discrete functions of the distance along the cruise and FL, so contrail length is not a 

continuous function.  The transition between iso-contrail regions in Figure 6-11 shows that as the 

hypothetical contrail tax increases, there will be a limit at which point the value (total cost) of the current 

optimal trajectory becomes too expensive given the contrails produced and is replaced with a new 

trajectory, which subsequently produces less contrails.  Specifically, Figure 6-11 shows that when there is 

no cost penalty for producing contrails, the corresponding optimal trajectory produces 766 nm of contrails, 

the maximum amount (see Trajectory 1 in Figure 6-11), thereby flying the most fuel efficient cruise route.  

However, as the cost of producing contrails increases, trajectories with less contrail production become 

more preferable, until the cost of contrails becomes significant enough (i.e., greater than 1.58-1.65 $ per 

nm) such that no contrails are produced by the airline’s optimal trajectory.  Avoiding contrails may, 

however, compromise the other systems outputs.  For example, producing less contrails may lead to an 

1.58 

1.65 
!"#$%$&"'()*+&

,&&&&&-&.&/&&0&&&&&&1&&&&2&&&&&3&&&&&&&4&&&&&&&&&,5&

865 nm 

766 nm 

681 nm 

567 nm 482 nm 396 nm 224 nm 138 nm 

47 nm 

0 nm 

Figure 6-11.  Results of the Contrail Tax (Policy) Analysis. 
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increase in fuel burn or flight time, but this compromise is necessary in instances when the cost of 

producing contrails is sufficiently large due to the contrail tax.  The results from this analysis thus confirm 

the intuition that when taxation is applied, the stakeholder perceived-optimal cruise operation, or behavior 

will eventually change if the tax becomes large enough (i.e., a large enough incentive is imposed).   

 

In the policy analysis example, there is also a coupling between the cost of contrails and flight time (i.e., 

direct operating costs), in terms of defining the iso-contrail regions shown in Figure 6-11.  Since λDOC affects 

the optimal cruise speed for a given trajectory, the flight time differs within a given iso-contrail region.  In 

general, as λCont increases, aircraft are incentivized to avoid contrails at the cost of increased flight time.  

Correspondingly, in Figure 6-11, each contour line has a slight slope, which is indicative of the relative 

difference in flight time between neighboring optimal trajectories.  A contour line is negatively sloped if the 

neighboring trajectory with less contrails (i.e., to the right) is on average faster.  This arises because as λDOC 

increases, the operating costs become the dominant contributor to cost and hence, regardless of λCont, there 

is more incentive to change to the faster trajectory with its lower operating costs.  Conversely, if the 

neighboring trajectory to the right is slower, then as λDOC increases, there is more incentive to fly the 

current and faster trajectory and incur the cost of more contrails rather than increase operating costs by 

switching to the neighboring trajectory; this situation leads to the positively slope lines in Figure 6-11. 

 

One extension of this policy analysis performed with the Tradeoff Analysis Framework would be to quantify 

the sensitivity of the optimal trajectory choice to uncertainties in the λ-Set since, for example, the λCont range 

corresponding to each iso-contour region in Figure 6-11 is effectively an allowable uncertainty in λCont within 

which the aircraft operation (i.e., vertical trajectory) is not altered.  This type of analysis is motivated in 

Section 4.3.5, which discusses methods for inferring and understanding stakeholder behavior even if they 

cannot articulate their respective preferences given the system outputs of interest.  A simple demonstration 

of this follows. 
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ANALYSIS 5 – INFERRING STAKEHOLDER PREFERENCES 
Given the airline stakeholder in this case study, 

there may be situations when they do not know 

what their preferences are for all or some of 

the system outputs.  If this is the case, it may be 

possible to use the Tradeoff Analysis 

Framework to infer their preferences, given 

some assumed preference structure such as the 

λ-Set in this case study.  An example of doing 

this is pursued hereafter that relies on using the 

enumerated system output space shown in 

Figure 6-6.  In this hypothetical scenario, the airline is assumed to be confident in their preferences, or λ 

values for CO2 emissions, NOx emissions, contrails, and time in turbulence and these are equal to their 

reference values in Table 6-1.  They do not, however, know what their preferences are for the cost of time 

and fuel burn.  In this situation, they select a given point in the system output space that seems like a 

desirable solution for them.  This point is shown in Figure 6-12, which is the fuel-time and time in 

turbulence subplot in Figure 6-6.  This point corresponds to a unique trajectory with a unique speed and 

thereby set of system outputs.  Given these outputs and the known λ values for CO2 emissions, NOx 

emissions, contrails, and time in turbulence, the range of possible combinations of the λ for flight time and 

fuel burn that correspond to the selected trajectory can be determined.  The specific method for achieving 

this is to use the framework with optimization in reverse (refer to Figure 4-3), namely, given a set of 

system outputs, determine the possible 

combinations of the λ-set that lead to 

the selected trajectory as being the 

optimum.  In this simple example, 

only the cost of time and fuel are 

assumed unknown so the possible 

combinations of these leading to the 

selected profile need to be 

determined.  The result of inferring 

the airline preferences in this simple 
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example is shown in Figure 6-13, which depicts the region of possible airline preferences for the cost of 

time and fuel that correspond to the trajectory they selected in the system output space shown in Figure 

6-12.        

 

The advantage using the Tradeoff Analysis Framework to infer stakeholder preferences is that it may be 

possible to actually determine what their preferences are even if they cannot articulate them by allowing 

them to become the analyst in the framework and given some assumed preference, or valuation structure.  

In this simple example, the hypothetical airline stakeholder was unsure of their preferences for the cost of 

time and fuel so they selected a desirable trajectory in the system output space and then the framework with 

optimization was used (in reverse) to infer their preferences.  The results of this are shown in Figure 6-13, 

which bounds the possible combinations of their preferences for the fuel and time, even though they could 

not articulate these.  As seen in the figure, any point within the region of possible combinations corresponds 

to the possible preferences for the stakeholder with regard to the cost of the time and fuel.  While this 

example was simplified to determining the airline’s preferences for two of the system outputs, it can readily 

be extended to include the other system outputs considered in this case study.  Therefore, this particular 

usage of the Tradeoff Analysis Framework to infer stakeholder preferences may be of great value when 

using the framework to determine appropriate values for preferences that are very uncertain such as the 

cost of contrail production, given some stakeholder and an assumed preference structure. 

6.5.   Discussion 
The first case study examined the impact of changing aircraft cruise operations.  Therefore, in this case 

study, the emphasis of change was along the ConOps axis in the Change Taxonomy (see Figure 4-4).  

ConOps change specifically occurred through altering aircraft cruise operations along a specific origin-

destination route; in the case study, the cruise leg of interest was that between the LAX and JFK airports.  

The relevant stakeholder for cruise operations only included the airline and the benefit of cruise operations 

was assumed uniform, so their respective value proposition was simply the cost of cruise operations.   

 

Given the aforementioned problem setup, the corresponding objective of this case study was to thoroughly 

explore the space of all possible cruise operations (trajectories) and, in doing so, understand the tradeoffs 

associated with changing cruise operations.  Of particular interest was comparing the cost-index optimal 

trajectory with that corresponding to the full reference λ-set in Table 6-1.  The subsequent case study 

analyses focused on three different facets of exploring the system output and value space using the 
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framework.  The first focused on enumerating the entire system output space and understanding the 

ensuing tradeoffs amongst the system outputs.  The second analysis focused on using the framework to 

understand the impact of a hypothetical contrail production tax on changing airline behavior as measured by 

their perceived-optimal cruise operation.  And the last analysis used the framework to infer the airline’s 

preferences, given the assumed preference structure in this case study.  The specific insights gained from 

the case study about the impact of changing aircraft cruise operations will be discussed first followed by a 

discussion of the unique implementation insights gained from applying the Tradeoff Analysis Framework in 

this case study. 

6.5.1.   Case Study Insights  

Several important insights were gained about the impact of changing cruise operations from the results of 

the study, each of which is discussed in turn.  The first set of insights is with regard to the system output 

tradeoffs observed from the results and the second set of insights are those gained in using the framework as 

a policy analysis mechanism, as was done in the case study.  And the last set of insights is about the results 

from inferring the airline’s preferences using the framework.  The remainder of this section then discusses 

the notable assumptions and limitations given the simplified model of cruise operations used for this case 

study, which remains an important consideration in interpreting the case study insights. 

    

SYSTEM OUTPUT TRADEOFFS 
One unique aspect of this case study was that a very large number of proposed changes were evaluated, 

which introduced challenges in understanding the impact (tradeoff) space and conveying this to the analyst 

and stakeholders.  The first key insight gained in this study is that there are persistent tradeoffs associated 

with changing operations and these may be irresolvable.  For example, in this case study it was found that 

the environmental impacts are often competing with the performance impacts of cruise operations such as 

that between reducing cruise (flight time) at the cost of higher CO2 emissions.  Of particular interest in this 

case study was comparing to cost-index optimal trajectory with that corresponding to the complete 

reference λ-set in Table 6-1.  In the case of the cost-index optimal trajectory, the most fuel and time-

efficient trajectory was flown, however, once the airline was forced to incur the cost of the environmental 

impacts of cruise operations, their new optimal trajectory burned less fuel than the cost-index optimal 

trajectory at the cost of having a higher flight time.  While this is a simple comparison, it does demonstrate 

how airline behavior might be analyzed using the Tradeoff Analysis Framework to yield interesting insights 
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about their potential behavior (i.e., cruise operation) in response to considerations beyond just the 

operating cost of an airline. 

 
THE IMPLICATIONS OF POLICY FOR CRUISE OPERATIONS 
The other insight gained in this study is the potential role and impact of a regulatory stakeholder in the 

Tradeoff Analysis Framework.  To this end, the second analysis performed in this case study was used to 

quantify changes in the airline stakeholder behavior (i.e., their perceived value-optimal trajectory) in 

response to a hypothetical tax on producing contrails, along with changes in their direct operating costs.  

This hypothetical imposition of a tax by an arbitrary regulatory body therefore evaluated one potential role 

of a regulatory stakeholder (policy enactor) in the Tradeoff Analysis Framework.  The key result from the 

contrail tax study is that in order to supply sufficient incentive for airlines to entirely avoid producing 

contrails, an estimated tax of $1.58-$1.65 (per nm of contrails produced) must be imposed on aircraft, 

given the range of direct operating costs considered and the assumptions made in the case study.  The cruise 

trajectories corresponding to this tax value range are departures from the cost-index optimal aircraft cruise 

route, thus supporting the argument that regulatory influence on the operation of aircraft is likely going to 

require changes in aircraft operations in order to meet the imposed regulations.  The response to 

regulations via changes in operation is an important lesson learned from this case study in terms of one 

potential role and subsequent impact of a regulatory body in the framework.  For example, even though 

cruise operations were intentionally simplified in this case study, the framework was used to provide a 

rough estimate of a tax of about $1.62 per nm of produced contrails in order to force airlines to completely 

stop producing contrails.  However, it is important to recognize that this result is derived from analyzing 

cruise operations for one day with the corresponding external factors for that day.  Therefore, this policy 

analysis application of the Tradeoff Analysis Framework may ultimately be a very constructive application of 

the framework for future and more detailed evaluations of the impact of potential aviation policies.   

 
INFERRING STAKEHOLDER PREFERENCES 

The last analysis in this case study was used to infer the airline stakeholder’s preferences given the assumed 

preference structure.  In this analysis, it was assume that the airline did not know, or could not articulate 

their preferences for flight time or fuel burn.  Subsequently, the Tradeoff Analysis Framework was used to 

determine their preferences for these outputs by allowing them to select a suitable trajectory in the system 

output space.  Then, given this trajectory, the range or possible combinations of the cost of time and fuel 

were determined that lead to the selected trajectory being the optimum.  This analysis was therefore very 
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insightful about a unique usage of the framework, which may be of great use in future applications to 

determine stakeholder preferences even if they cannot articulate them.  

 
ASSUMPTIONS AND LIMITATIONS 

While this case study yielded valuable insights into the impact of changing cruise operations, it is important 

to recognize a few limitations of the case study, which affect the implications of the insights previously 

discussed.  First, the intentionally simplified representation of aircraft cruise operations may be overly 

simplistic to be prescriptive for commenting on the actual tradeoffs associated with aircraft cruise 

operation.  Recall that aircraft cruise operations were constrained to only vertical changes in flight level at 

pre-specified points along the cruise leg.  Coupled with the value function assumed in this case study, this 

simplistic representation of cruise operations enabled the cruise operations to be optimized for a given 

stakeholder.  However, real aircraft cruise operations cannot be analogously simplified for optimization 

purposes without the loss of accuracy in the system representation.  Thus, the insights gained in this case 

study conform to these limitations and this demonstrates a tradeoff in using the Tradeoff Analysis 

Framework to identify macroscopic trends in the system output/value space with less accuracy, via making 

simplifying assumptions and using a simple model, versus only investigating part of the potential system 

output/value space in more detail and accuracy, via avoiding such simplifying assumptions with a detailed 

model that may take more time to execute.          

6.5.2.   Framework Implementation Insights 

This section discusses the insights gained about the execution of the framework through its respective 

application in this case study to assess the impact of changing aircraft cruise operations.   

 

EXPLORING THE SYSTEM OUTPUT TRADEOFFS WITH PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (PCA) was used to quantify the competing and complementary nature of the 

six system outputs of interest in this case study.  As discussed in its application in Section 6.4.2, PCA can be 

used to represent the hyperspace of system output tradeoffs in a reduced-order space, which provides a 

simplistic, or lower-order representation of the relative correlation, or tradeoffs amongst the outputs of 

interest.  PCA achieves this by mapping the system output space to a n-dimensional principal component 

space, where n is often less than the order of the original system output space.  A principal component is a 

composite variable of the original six system output dimensions and selecting the number of principal 

components depends on the amount of variability in the system outputs captured by the principal 
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components.  The particular manner in which PCA can be used to identify the complementary and 

competing nature of the system outputs is by representing the tradeoff dimensions in angular proximity to 

one another in a reduced-order space, given the space of system outputs analyzed with the Tradeoff Analysis 

Framework; here, the output dimensions increase in magnitude along the respective dimension from the 

origin in the PCA representation.  Specifically, as the angular offset between any two dimensions nears 0º, 

90º, and 180º, the two outputs become perfectly complementary, neutral, and perfectly competing, 

respectively, assuming that an increasing magnitude in an output is more desirable.  Complementary output 

dimensions are aligned such that increasing the value of one increases the value of the other whereas 

competing dimensions (i.e., tradeoffs) demonstrate the converse of this situation.  And neutral output 

dimensions are uncorrelated, or independent. 

 

The information provided from PCA, specifically in terms of readily identifying the most competing and 

complementary system outputs provides several benefits to the analyst in the Tradeoff Analysis Framework.  

First, it identifies the most competing system outputs, which represent the most import tradeoffs that need 

to be resolved, or balanced in order to decide on the best design and operation of a system.  While these 

important tradeoffs can be determined without using PCA, in comparing Figure 6-6 with Figure 6-8 and 

Figure 6-9, the tradeoffs are much easier to identify with the latter figures produced via PCA.   In 

particular, this is because all of the tradeoffs are represented in a two-dimensional rather than six-

dimensional space and that the angular proximity of the system outputs in the PCA space allows an analyst 

to put quantifiable numbers on how competing and complementary the outputs are, relative to the assumed 

external factors.  The second advantage of using PCA, which is implicit to using it to identify the most 

important tradeoffs amongst the system outputs, is that the most complementary outputs are identified.  

These complementary outputs demonstrate instances of partial or full system output alignment and, in the 

case of perfectly complementary outputs, this effectively reduces the number of tradeoffs in a hyperspace 

that need to be resolved.  Even with close, but not perfectly complementary outputs, these outputs offer 

opportunities for stakeholders who may initially have different preferred balances amongst these outputs to 

potentially achieve alignment with respect to these outputs.   
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THE FRAMEWORK AS A POLICY ANALYSIS MECHANISM 

One of the interesting usages of the Tradeoff Analysis Framework in this case study was as a policy analysis 

mechanism, which did not require any modifications to the framework.  As a policy analysis mechanism, the 

framework was used to observe changing stakeholder behavior in response to policy.  The important 

implementation insight that arose from this usage of the framework is the role of a regulatory stakeholder in 

the framework.  As considered in the case study, the regulatory body enacted policy via the valuation 

component of the framework, specifically via value-based incentives manifested by the preference 

structure.  This thereby demonstrates one potential usage of the Framework with Optimization where the 

relationship between value-based incentives and the corresponding optimal proposed changes is explored.  

The specific manner in which this worked was that the assumed regulatory stakeholder incentivizes 

changing stakeholder behavior by deliberately changing the magnitude of the assumed preference structure 

(in this case study analysis, a uniform-additive, cost-benefit preference structure was used).  Then as the 

magnitude of the preference structure changed, the perceived-optimal, or most desirable design and 

operation of the system for a given stakeholder also changed.  The resulting relationship between 

stakeholder behavior and value-based incentives developed was at the crux of learning in terms of evaluating 

the implications of policy for the stakeholder(s) of interest.  For example, as applied herein, the framework 

was used to determine the relationship between a tax on contrails and the corresponding most valuable 

proposed change (i.e., cruise trajectory) for the airline.  The result of this was determining the relationship 

between the optimal cruise operation for the airline and the tax on contrails, as summarized in Figure 6-11.  

While a contrail tax may be one potential future regulation in aviation, there is also presently an increasing 

emphasis on regulating aircraft emissions through a tax on CO2 emissions [87]; currently, discussions are 

centered on what carbon-based metric should be used 

to quantify and thereby regulate carbon emissions.  One 

potential option for regulating carbon emissions is to 

tax these emissions, so using the Tradeoff Analysis 

Framework to provide an estimate for the relationship 

between a tax on carbon emissions and the 

corresponding emission-production behavior of airlines 

may prove valuable for regulators/policy makers; a 

conceptual example of this relationship between aircraft 

emissions and the level of taxation is depicted in Figure 

Tax on CO2 
(USD/kg) 

CO2 Emissions 
(kg) 

Min Possible  
Aircraft CO2 

Emissions 

0 

Figure 6-14.  Policy Analysis Example. 
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6-14 assuming that a sufficient number of potential aircraft operations are modeled to provide the 

continuous trend shown in the figure. 

 

As previously motivated, the application of the Tradeoff Analysis Framework as a policy analysis mechanism 

may be useful in a myriad of other applications.  The key assumption made in using the framework as a 

policy analysis mechanism herein is that policy is enacted via value (or value-based incentives).  However, 

this represents only one potential role of a regulatory body, or stakeholder in the framework.  There may 

be other manifestations of policy elsewhere in the framework (e.g., as a constraint) and thereby roles of a 

regulatory stakeholder.  Therefore, in thinking about using the framework as a policy analysis mechanism, it 

requires the consideration of what type of policy is being introduced and how this can be manifested and 

therein enacted in the framework.  For example, a regulatory stakeholder could directly regulate the design 

and/or operation of a system through the proposed changes rather than through taxation.  Regardless, if 

using the framework as done herein where the policy is enacted via valuation, one limitation to recognize is 

that the absolute value of proposed changes cannot be compared due to the different underlying value 

functions when a tax (e.g., a tax on contrails) is changed.  Despite this limitation, the outcomes of this study 

still demonstrate a few important framework implementation insights.  First, it may be possible to use the 

framework to isolate a given stakeholder’s value-based incentive thresholds relative to their behavior (i.e., 

perceived value-optimal system design and/or operation).  Second, it might be possible to use the 

framework to infer stakeholder value-based indifference points given the current system design/operation 

of interest.  And third, it might be possible to use the framework to determine the most important value-

based couplings that drive the perceived-optimal design and/or operation of a system.  Correspondingly, 

the use of the Tradeoff Analysis Framework as a hypothetical policy evaluation mechanism remains a rich 

area for future exploration and discovery.       

 

STAKEHOLDER PREFERENCE INFERENCE 

Another useful application of the Tradeoff Analysis Framework explored in this case study is to use it to 

observe stakeholder behavior and subsequently infer their respective preferences.  As mentioned in Section 

4.3.5, one potential source of uncertainty is in valuation, specifically if stakeholders are incapable of 

eliciting their respective preferences for the system outputs (or tradeoff dimensions).  This is a concerning 

source of uncertainty since the role of valuation in the framework is important and uncertainty in this 

valuation can thereby diminish the utility of the overall framework.  Using the framework to infer 
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stakeholder preferences may be one option for helping to resolve this source of uncertainty, even though 

the stakeholder may never be able to directly elicit their preferences.  This unique usage of the framework 

relies on using the framework, except in reverse.  In this case, the stakeholder of interest becomes the 

analyst in the framework and is thereby allowed to propose changes to the system.  Given a proposed 

change and the corresponding system outputs, the framework can then be used to determine the range of 

possible preferences for these system outputs, given an assumed preference structure.  The specific method 

for achieving this is to use the framework with optimization in reverse (refer to Figure 4-3), namely, given a 

set of system outputs, determine the possible combinations of the λ-set that lead to the selected trajectory 

as being the optimum.  In the simple example pursued in this case study, the cost of time and fuel were 

assumed unknown so the possible combinations of these preferences leading to a selected profile by the 

airline stakeholder were determined.  This usage of the Tradeoff Analysis Framework may therefore be of 

use for future analyses with the objective of determining stakeholder preferences even if they cannot elicit 

them.  

 

The important attribute of the framework that arises from the last two insights, that is, using the framework 

as a policy analysis mechanism and as preference inference mechanism, is that the Baseline Tradeoff Analysis 

Framework can be adapted, extended, and used to potentially solve a multitude of different real problems 

in engineering.   
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7.  CASE STUDY 2 – MULTI-STAKEHOLDER, AIRCRAFT APPROACH 
PROCEDURES 

The second case study applies the research framework to analyzing the impact of changes in commercial 

aircraft approach procedures, which is enabled through equipping aircraft with GPS.  The corresponding 

stakeholders of interest in this case study include the airlines, airports, and communities surrounding the 

airport of interest.  Given these stakeholders, the system output hyperspace analyzed in this case study is 

comprised of flight time, fuel burn, CO2 emissions, NOx emissions, throughput, and population noise 

exposure.  Therefore, this case study is more complex than the first one since multiple stakeholders with 

different preferences are considered and also because the changes in both technology and ConOps are 

considered.  This section begins with a brief background on aircraft approach procedures and then follows 

with the application of the Tradeoff Analysis Framework in this case study. 

7.1.   Background 
The objective of this case study is to use the Tradeoff Analysis Framework to analyze the environmental-

performance tradeoffs (i.e., impact) associated with changing aircraft approach procedures.  Unlike cruise 

operations, which are largely relegated to a fixed altitude throughout cruise, approach procedures offer 

opportunities to significantly manipulate operations.  Of interest in this case study is changing approach 

operations using Required Area Navigation and Performance (RNAV/RNP) procedures, which are enabled 

by GPS technology; these procedures are briefly discussed hereafter and a more extensive discussion of 

RNAV and RNP can be found in Muller [88].  RNAV is specifically responsible for creating point-to-point 

speed and direction directives largely independent of Navigation Aid Systems (NAVAIDs) located on the 

ground, whereas RNP specifies the required level of navigation performance, or accuracy; hence, 

RNAV/RNP approaches may be fairly freeform.  Conversely, current conventional aircraft approaches 

follow Instrument Landing System (ILS) procedures, which rely on aircraft using ground-based NAVAIDs 

to guide them into landing, therein creating a fixed point-to-point system for regulating aircraft approaches.  

Consequently, conventional approach procedures are a combination of speed and position directives often 

resulting in long straight-in legs, inefficient routes, and suboptimal terminal airspace usage.  However, 

given that RNAV/RNP approaches may have many degrees of freedom, which can result in RNAV/RNP 

routes being more geometrically complex, they offer opportunities to better optimize a given terminal 

airspace usage relative to a comparable ILS approach.  The reason for the increased freedom with 

RNAV/RNP routes is that aircraft capable of using these routes must be equipped with GPS, which 

provides them with increased situational awareness through more accurate positioning and speed data 
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relative to that possible with present aircraft and, thus, GPS-equipped aircraft can fly more complex routes, 

if desired.   

 
Some benefits of GPS-equipped aircraft flying RNAV/RNP routes also includes increased airspace density 

through allowing aircraft to fly close in proximity (via reduced inter-aircraft separation distances) as well as 

not having to rely on NAVAIDs, but rather GPS, to guide their respective approaches.  Therefore, the 

resulting RNAV/RNP routes can be more freeform and only require periodic radio check-ins with air 

traffic control (ATC), and this allows for RNAV/RNP approaches to be tailored to a given airport terminal 

airspace, which may in turn lead to complex-curvature approach legs to avoid obstacles, minimize noise 

exposure, and so forth – something not achieved with many present day ILS approaches.      

 

RNAV and RNP both specify levels of required aircraft performance in 

a given airspace.  For RNAV performance, RNAV-X implies that an 

aircraft will not deviate from its flight path laterally and horizontally by 

X nm for 95% of the total flight time; the lateral buffer is shown in 

Figure 7-1 [89].  Intuitively, lower -X values will require higher RNAV 

precision.  RNP performance is analogous to RNAV performance in 

terms requirements for navigating a given airspace.  For example, RNP-

1 is often used in low-density air traffic situations whereas RNP-0.3 and lower is used for high-density, 

controlled aircraft approach operations.  Thus, RNAV-X/RNP-Y effectively creates a region, within which 

an aircraft is supposed to be safely controlled and avoid conflicts with other aircraft and objects while 

executing a specific procedure (e.g., an approach).           

 

Several studies suggest that there are additional benefits from the capability provided by RNAV/RNP for 

aircraft operations than those previously mentioned, including reduced operational costs (fuel and time), 

increased runway capacity (via dual runway usage), and reduced interference from balked flights [90–92].  

Another potential benefit of RNAV/RNP approaches is reducing the required separation distance between 

aircraft, which can lead to an increase in throughput at airports or reduced arrival delays.  Lastly, in 

particular relevance to this case study, RNAV/RNP approaches provide the potential to mitigate 

community noise exposure around airports through tailoring approach routes to avoid densely populated 

areas. 

X nm 

Figure 7-1.  RNAV-X. 
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7.2.   Literature Review – Case Study 2 
Previous research has assessed the potential benefits and costs of using RNAV/RNP approach procedures in 

place of ILS approaches.  In reference to the motivation of this case study, considering noise impacts due to 

changing operations is important and there have been two key demonstrations of this.  Alaska Airlines 

pioneered the use of RNAV/RNP given the often “terrain-challenged” airports they service, along with the 

highly variable weather at these airports [88].  Additionally, the airports serviced by Alaska Airlines often 

have limited ground navigation infrastructure, sometimes not even having a control tower.  In the early 

1990's Alaska Airlines began equipping aircraft with GPS and by 1994 they were using RNAV/RNP 

approaches.  The result of this is that from 1994 to 2006 Alaska Airlines: prevented 1,300 (14.4%) of their 

flights from being cancelled; saved over 250,000 gallons of fuel; increased on-time performance; and 

significantly lowered the noise exposure to 750,000 residents in critical noise corridors [88].   

 

These aforementioned observed benefits from RNAV/RNP ultimately became part of the motivation for 

assessing the impact of RNAV/RNP approach procedures at the Seattle-Tacoma (SEA) airport.  Muller et 

al. performed a detailed assessment of the potential benefits of RNAV/RNP approaches at SEA, specifically 

comparing ILS and hypothetical RNAV/RNP approach procedures into SEA from the south, where the 

majority of the arrival traffic originates [93].  The results from Muller’s study demonstrate that, given the 

geography of the greater Seattle area, RNAV/RNP approach procedures can be appreciably shorter than 

ILS approaches, thereby saving fuel and reducing aircraft emissions, and also reduce noise exposure to 

residents in Seattle relative to the noise exposure caused by ILS approaches.  Thus, this study found that 

RNAV/RNP approaches are a win-win situation aside from any safety concerns, which were not addressed 

in the study.  This research also concludes that using RNAV/RNP to increase conformance to existing ILS 

procedures provides a marginal benefit, and therefore the noticeable benefits of RNAV/RNP are realized 

from RNAV/RNP-optimized procedures, which may be appreciably different than ILS procedures. 

 

Related works have also developed continuous descent approach procedures assuming the use of 

RNAV/RNP to further abate noise from the surrounding communities.  The first of these works solely 

focused on noise reduction as the measure of success for a given approach procedure, resulting in insightful 

noise tradeoff quantifications associated with changing procedures via RNAV/RNP [94].  The second of 

these works developed a tool called NOISHHH, which optimizes aircraft approach trajectories with a multi-

objective function comprised of flight time, number of awakenings (noise proxy), and fuel burn (emission 
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proxy) [95].  Lastly, the Enhanced Trajectory Prediction Model (ETPM), which is four-dimensional aircraft 

trajectory optimization model, was developed to optimize aircraft cruise phases in terms of altitude while 

minimizing their ecological impact as measured through CO2 emissions and contrails [96]; the ETPM can 

also optimize the climb and descent phases of an aircraft’s respective operation.   

 

In the relevant literature, there are several works that provide approaches and methods to resolve 

competing tradeoffs associated with aircraft operations, which may be applicable to this case study.  Some of 

these works support the use of multi-objective optimization algorithms to manage a variety of tradeoffs 

amongst aircraft design, performance, and environmental-related objectives [70,71,73,74,97–99].  

Additionally, the Aviation Environmental Tools Suite (AETS) developed by the Federal Aviation 

Administration (FAA) is one of the more extensive tools focused on analyzing and resolving environmental 

tradeoffs for air transportation systems and has thus developed approaches for resolving tradeoffs associated 

with such systems [100].  And, lastly, in the domain of aircraft demand forecasting and traffic management, 

research has assessed tradeoffs amongst certain modes of transportation as well as options for resolving 

airspace conflicts [101–106].      

7.3.   Application of the Framework 
This section details the application of the Tradeoff Analysis Framework in this case study and begins with an 

overview of the framework followed by discussing each framework constituent in more detail. 

7.3.1.   Framework Application Overview 

The application of the research 

framework in this case study is 

depicted in Figure 7-2.  In this 

framework application, the analyst 

first proposes an aircraft, runway 

(RWY) to approach, and the 

throughput along that approach.  The 

analyst then selects a type of change to 

consider and thereafter the specific 

approach procedure to implement.  

The system is therefore a specific 
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Figure 7-2.  Framework Application (Case Study 2). 
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approach procedure (operation) consisting of four elements: a ground track, and an altitude, thrust, and 

speed versus ground track (distance) profile.  A given approach is then analyzed with the Noise and 

Performance Impact Model (NPIM) described in Section 7.3.5, which consists of the Integrated Noise 

Model (INM) and a custom-built aircraft performance post-processor (model).  The corresponding outputs 

of INM include noise contours and specific flight performance information, which is then input to the post-

processor in order to compute the remaining system outputs of interest.  The external factors affecting the 

system are internal to the NPIM and they include airport atmospheric conditions as characterized through 

pressure, temperature, winds, and humidity.   The emphasis in this case study is on resolving competing 

stakeholders and the stakeholders of interest include the airline, airport, and community. 

7.3.2.   Stakeholders and System Outputs 

There are multiple stakeholders of interest in this case study and these include the airlines, airports, 

regulatory bodies, passengers, and communities near the airport.  However, in the study only the airline, 

airport, and community stakeholders are considered.  Given these stakeholders, the system outputs of 

interest are shown in Figure 7-3 and are as follows: flight time in units of hours (hrs); fuel burn in units 

of gallons (gals); CO2 emissions in units of kilograms (kg) or metric tons (mt); NOx emissions in units of 

kilograms (kg) or metric tons (mt); population noise exposure in units of the number of people 

exposed (ppl); and throughput in terms of aircraft arrivals per hour (AC/hr) or total aircraft per day 

(AC).  This leads to a six-dimensional tradeoff hyperspace to be considered in the case study.  Two metrics 

are used to quantify population noise exposure, the Day-Night Average Level (DNL) and Time-Above 60 

dB (TA60dB), both on the A-weighted scale.  The former metric logarithmically averages aircraft noise 

over the course of a day at a given location on the ground whereas the latter metric quantifies the total 

amount of time a given location (or population) is exposed to 60+ dB of aircraft noise per day.  For the 

time-above metric, the 60 dB(A) threshold was chosen because this is the minimum noise level likely to 

interfere with normal conversation [107].   

 

 

Flight Time 
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(kg) 
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(kg) 
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Airline 
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Global 
Community 
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Figure 7-3.  Stakeholder and System Output Matrix (Case Study 2). 
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Given the six previously mentioned systems outputs, the distribution of benefits and costs amongst these 

three stakeholders of interest is shown in Figure 7-3.  In Figure 7-3, the direct and indirect benefits and 

costs are shown, however, for the analyses performed in this case study, only the direct costs and benefits 

for each stakeholder are quantified.  As seen in Figure 7-3, the airport stakeholder derives a direct benefit 

from aircraft landing at the airport, but airports also have to deal with the cost of exposing communities to 

aircraft noise, despite the fact that they do not directly cause aircraft noise.  The airline incurs the costs 

associated with operating aircraft such as flight time and fuel burn.  However, the airline also benefits from 

aircraft throughput, specifically through carrying passengers and the ensuing revenue created.  Lastly, the 

only direct impact to the community is noise exposure and they therefore do not receive any direct benefit 

from the operation of aircraft.  In order to simplify the valuation aspect of this case study, all stakeholders 

are assumed to bear the cost of emissions indirectly since these emissions are effectively disseminated into 

the global atmosphere when operating aircraft.   

 

As can be seen by the distribution of costs and benefits (system outputs) in Figure 7-3, there are instances of 

stakeholder alignment and noticeable stakeholder misalignment.  The airline and airport stakeholders are 

roughly aligned since they both benefit from throughput but bear the cost of noise, so the only difference 

between the two is that the airline incurs costs from sources other than noise, namely, the cost of fuel and 

time.  However, stakeholder misalignment arises because the community does not receive a direct benefit 

from the operation of aircraft and instead only bears the cost of noise, which means that the community 

stakeholder will likely emphasize a stronger preference for noise reduction than the airline and airport 

stakeholders.  This misalignment will be explored in more detail in the ensuing case study analyses. 

7.3.3.   Valuation 

Amongst the potential valuation methods mentioned in Section 4.3.2, there are many viable options for 

valuing the costs and benefits (impacts) of aircraft approach procedures.  However, in this case study, it is 

assumed that value is a uniform-additive function of cost and benefit, so the CBA approach discussed in 

Section 4.3.2 is used.  Since in this case study the time scale associated with the system output 

quantifications for a given approach procedure is small (i.e., on the order of minutes), discounting is 

negligible and the value function in this case study simplifies to: 

Equation 9 

€ 

Value = λi ⋅ Yi( )
∀i
∑  
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In Equation 9, Value is the benefit of a system less it respective cost. Yi,(t) is the ith system output and λi, is 

the ith uniform preference weighting corresponding to the ith system output, respectively.  If λi is negative 

and positive, then the ith system output is a cost and benefit, respectively – thus, Value is benefit minus cost. 

The set of Y’s are the system outputs in Figure 7-3, and the set of λ’s are collectively referred to as the “λ-

Set” and are the embodiment of the value/belief systems in Table 7-1.  Thus, if a λ is a cost in Table 7-1, it 

is implicitly negative.  The sign of Value in Equation 9 indicates the relative contribution of cost and benefit; 

if Value is positive, benefits contribute more to value than costs and the converse is true if Value is negative.   

 
It is important to note that all metrics are computed on a daily basis, so metrics measured on a per aircraft basis 

are multiplied by the daily aircraft throughput. 

 
PREFERENCE STRUCTURE 

Each stakeholder has a “λ-Set” (i.e., preference structure) that translates their respective costs (and benefits) 

into their value, given the uniform-additive, cost-benefit value function used in this case study.  The 

stakeholder λ-Sets are defined in Table 7-1 along with reference values for each λ. 

 

 
In Table 7-1, λDOC is the average hourly operating cost, less fuel, of an A320-200 (the aircraft considered in 

this case study) and λFuel is the price of Jet-A fuel [78,79].  The throughput benefit to the airport, λThru,AP is 

assumed to be the current landing charge per aircraft at BOS, which is the airport of interest in this case 

study2.  And the throughput benefit to the airline, λThru,AL, is the revenue generated from ticket sales 

assuming a full passenger load and a ticket price pro-rated by the proportional distance of the approach leg 

to a trip from New York (JFK) to BOS, which is the assumed trip in the case study analyses.  While this 

approach to quantifying the benefit of throughput is a direct, revenue-centric approach, future research is 

                                                        
2 Airport revenue generated from passengers while they are in the airport is not considered because this is outside the modeling 
scope of the case study. 

Cost of Fuel and 
Time Cost of Noise Benefit from 

Throughput 

Airline Airport' Airline' Comm.' Airport' Airline'

λDOC λFuel& λNoise,&AP& λNoise,&AL& λNoise,&Com& λThru,&AP& λThru,&AL&
Operating 

cost Fuel cost Noise Cost 
to Airport 

Aircraft 
Noise Levy 

Noise Cost 
to Comm. 

Landing 
charge 

Ticket 
revenue 

-1164 $/hr -2.49 $/gal -41.10 $/
person 

-0.41 $/
person-DNL 

-6.00 $/
person-hr 

0.00436      
$/AC-lb  5100 $/AC 

Operating cost 
of an A320 

Price of 
Jet-A Fuel 

Landing fee       
at BOS 

Pro-rated 
ticket price 

Unknown but best estimates 
are provided 

Table 7-1.  Stakeholder λ-Sets (Case Study 2). 
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needed to develop more appropriate metrics to capture the benefit of throughput in this case study.  In 

particular, the airport and airline really care about minimizing departure delays, which can be mitigated 

with increased throughput.  Thus, future work in determining the benefit of throughput should focus on 

relating throughput to the effect it has on an airline’s ability to minimize passenger delays at airports and, 

for the airports, the resulting utility, or benefit they derive from maintaining passenger contentment, which 

directly relates to volume and length of delays within airports and thereby the aircraft throughput.  

Therefore, future work in defining the benefit of aircraft arrival throughput to airports and airlines should 

consider the aforementioned direct and indirect benefits to passengers.    

 

The cost of noise for all three 

stakeholders requires slightly more 

explanation since these costs are 

dependent on several factors.  As 

shown in Table 7-2, the cost of noise 

for the airport and airline is derived 

from DNL because for these 

stakeholders, current policies 

governing (and monetarily penalizing 

noise) are based on DNL.  Conversely, 

the community noise cost basis is 

Time-above 60 dB (TA60dB) because 

they care about how much time per day they are annoyed by aircraft noise, which is not directly captured 

through DNL given its use of logarithmic noise averaging.   

 

λNoise for the stakeholders is a complicated metric to determine as it depends on the important cost factors 

shown in Table 7-2.  These cost factors should be considered when determining a given stakeholder’s 

respective λNoise since they all influence the value of this multiplier.  For example, the community cost of 

noise is measured by TA60dB and its value depends on the community’s: general annoyance from aircraft 

noise, night awakenings due to noise, learning disruptions from noise, building vibrations from noise, health 

impacts from noise, and housing depreciation from noise.  Given the various cost factors for each 

stakeholder, Table 7-2 provides some reasonable reference values for each stakeholder λNoise, recognizing 

Airport Airline Community 
Noise Metric 

DNL ≥ 65 dB DNL ≥ 65 dB Time-above 60 dB 

Noise Cost Factors 

Noise pollution Noise pollution General annoyance 

Soundproofing homes Passenger ride quality Night awakenings 

Community exposure Community exposure Learning disruption 

Airport noise policies Airport noise policies Building vibrations 

Terminal noise quality Health impacts 

Housing depreciation 

Reference Values for λNoise (per day of operations) 
-41.10 $/person -0.41 $/person-DNL -0.06 $/person-hr 

Table 7-2.  Cost of Noise Explanation. 



103 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

that there may be significant uncertainty in these values.  The λNoise for the airport was estimated assuming 

that: (1) the only cost incurred to the airport from noise is the cost of soundproofing homes, which is 

estimated at $35,000 per home; (2) the cost of soundproofing is only incurred when a household is exposed 

to 65+ DNL; (3) there is an average of 2.2 people per household; and (4) that airports amortize the cost of 

soundproofing homes on an annual basis.  For the airline, λNoise is based on current noise levies at airports in 

Europe and Asia [108]; these levies are transformed to a person-DNL cost basis assuming a charge of $0.41 

per person-DNL exposed to DNL ≥ 65dB.  Lastly, λNoise for the community is based on recommendations 

from the Aviation Environmental Portfolio Management (APMT) Tool regarding a person’s willingness to 

pay to avoid being exposed to aircraft noise [109].  APMT estimates λNoise to be roughly 0.06 $ per person-

hour of exposure to 60+ dB of aircraft noise; therefore, the community stakeholder only incurs the cost of 

noise when a population is exposed to 60+dB of noise. 

 

It is important to acknowledge that there may be uncertainty in some of the λ values for a given stakeholder 

in this case study.  While best estimates were made for these values, an important consideration in this case 

study remains how uncertainty in the λ values affects the stakeholder value propositions. 

7.3.4.   Proposed System Changes 

Since the system of interest in this case 

study is an operational procedure, the 

interpretation of change is different 

than in the first case study, namely, 

that sources of change are 

instantiations of innovation in this 

particular case study.  Technology 

Change occurs through the use of GPS 

technology, which in turn enables the 

development of new RNAV/RNP approaches (operations), which is a demonstration of Radical Change.  

Even though the performance of GPS may vary, in this case study either GPS is used in aircraft or not; 

hence, the Technology Change, or Innovation axis is binary.  

 

In this case study, the two analyses that will be conducted compare an existing ILS route into a runway 

relative to a newly proposed RNAV/RNP route into the same runway.  Instances of Technology change are 

Technology 

No                   
Change 

Commercial Aircraft using 
Existing ILS Procedures 

Concept of 
Operations 

Use Current Technology 
(NAVAIDs) 

Existing ILS 
Procedures 

Operational    
Change 

Commercial Aircraft using 
New ILS Procedures 

Radical  
Change 

Commercial Aircraft using 
New RNAV/RNP 

procedures 

RNAV/RNP 
Procedures or 

New ILS 
Procedures 

Use GPS 
(set performance) 

Technology    
Change 

Commercial Aircraft using 
ILS Overlay procedures 

Figure 7-4.  Change Taxonomy (Case Study 2). 
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not considered because these lead to ILS Overlay procedures, which are ILS procedures except that they 

replace the use of NAVAIDs with periodic radio check-ins by pilots with ATC.  Therefore, given the system 

outputs considered in this case study, the only change observed with these procedures relative to a given ILS 

procedure is the throughput along the ILS route via a reduction in the required separation distance between 

aircraft (i.e., an increase traffic density) allowed by using RNAV/RNP.  Therefore, the results of examining 

ILS Overlay procedure are already known, given the system outputs and assumptions made in this case 

study.  

7.3.5.   System and External Factor Models 

The system model is called the Noise and Performance Impact Model (NPIM) and it will be described first 

followed by a discussion about the method used to compute population noise exposure. 

 
NOISE AND PERFORMANCE IMPACT MODEL 

The impact of approach procedures are modeled using a combination of the Integrated Noise Model (INM), 

which is an aircraft noise modeling software developed by the FAA3, and a custom-built aircraft 

performance post-processor, which uses data from Piano-5, a 

professional aircraft modeling tool [82].  The various 

constituents of the NPIM are shown in Figure 7-5.  The 

analyst’s role in the NPIM is to propose changes by selecting an 

aircraft type and approach traffic volume (per day).  The 

analyst then inputs an ILS or RNAV/RNP approach procedure 

for aircraft to follow.  The two other required inputs for the 

NPIM are 2010 U.S. Census Data4 and terrain data 

(topography) for the greater geographic area around the airport 

of interest.  Given these inputs, INM is then used to compute 

the noise dispersion and approach flight path details, and these 

are then input to the post-processor.  With the flight path 

details, the post-processor then computes the flight 

performance, including fuel burn, flight time, and emissions, which are some of the system outputs of 

interest in this case study.  The population noise exposure is computed using the noise dispersion data 

                                                        
3 Available online at http://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/inm_model/ [retrieved December 
13, 2011]. 
4 Available at http://www.census.gov/geo/www/2010census/centerpop2010/tract/tractcenters.html. 
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output from INM and the 2010 U.S. Census Data5 as described in the next paragraph.  The outputs of the 

post-processor yield the system outputs and ultimately stakeholder value propositions in this case study.  It 

is important to note that in this case study approach procedures are analyzed for one day of operations so all 

system outputs (impacts) correspond to 24 hrs of operations.   

 
POPULATION NOISE EXPOSURE 

The population noise exposure is 

computed by merging the noise 

contours output by INM with the 

2010 US Census Tracts.  The 

algorithm used is a nearest neighbor 

search, which finds the nearest census 

tract for each noise contour; this is 

conceptually represented in Figure 

7-6.  The noise contour discretization 

is 1 dB for the DNL metric and 1 hour for the Time-Above 60 dB metric.   

7.3.6.   Modeling Changes in Technology 

The technology of interest in this case study is GPS and equipping aircraft with GPS represents innovation 

in aircraft design.  Although GPS can have varying performance levels, in this case study, the Technology 

Change, or Innovation axis is binary in the sense that GPS is either used or not.  Considering varying GPS 

performance levels entails evaluating the assurance of GPS precision and accuracy, which is beyond the 

scope of this research and case study.  In reference to approach procedures, since the required separation 

distance between aircraft in terminal airspace is dependent on the location of the nearest radar, this varies 

by airport and so throughput changes (via the use of GPS) will vary by airport.  Many airports have radar 

stations collocated with the airport at which point minimum allowable separation distance is around 3nm, 

which is the minimum allowable separation distance between aircraft without GPS equipage assumed in this 

case study.  

                                                        
5 The post-processor is used to quantify population noise exposure rather than INM because INM v7.0 cannot process 2010 U.S. 
Census data. 
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7.3.7.   Modeling Changes in ConOps  

Operational Changes are manifested through RNAV/RNP-modified ILS procedures, or completely new 

RNAV/RNP procedures.  Existing ILS approach procedures are always considered the datum and the 

airport of interest specifies these6.  RNAV/RNP-modified procedures are assumed to be ILS procedure 

overlays except that aircraft separation distance can be reduced via RNAV/RNP.  Designing new 

RNAV/RNP approach procedures involves creating new ground tracks and the associated altitude, speed, 

and thrust versus ground track profiles to fully define a given procedure.  Given the allowable degrees of 

freedom in RNAV/RNP procedures, RNAV/RNP ground tracks may be more geometrically complex than 

ILS approaches.   

 

Since there are many degrees of freedom when designing new RNAV/RNP procedures, part of this case 

study development effort went towards developing a method for structuring the design of new 

RNAV/RNP routes.  This method is a design of experiments (DoE) approach and its purpose is to 

hypothesize the RNAV/RNP route that best balances two criteria: the cost of the flight path parameters 

(i.e., time and fuel) and critical (i.e., 60+ dB) population noise exposure.  The details of this method can be 

found in Appendix B.  The suggested best route from this method is then fully analyzed with the NPIM 

described in Section 7.3.5.  The motivation for using this front-end DoE method is that executing the 

NPIM takes 4-6 hours per single approach route analysis.  Consequently, the cost of assessing a route is very 

expensive and the advantage of the DoE method is that it provides an educated guess as to the best route to 

invest in analyzing with the NPIM, which has proven a much better approach than randomly guessing a 

route based on the author’s experience.  The only limitation of the DoE method is that it selects the best 

route using surrogate models for the system outputs in this case study, so there is no guarantee that the 

route suggested by the DoE method will turn out to reflect its estimated system outputs when it is analyzed 

in detail with the NPIM.  

7.4.   Analyses 
This section presents the case study analyses, which provide a different perspective of applying the 

framework in order to assess the impact of changes in aircraft systems than in the first case study.  Before 

the specific analyses are presented, the background for the analyses and key assumptions are discussed.  

Two important notes to keep in mind are the sensitivity of the results to the assumptions mentioned 

hereafter and that all results are quantified for one day of operations (24 hours of arrivals). 
                                                        
6 Current ILS procedures at US airports can be found at <http://www.airnav.com/airport/>. 
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7.4.1.   Background  

The analyses in this case study look at altering commercial 

aircraft approach procedures into Boston-Logan (BOS) airport.   

The runway layout at BOS is shown in Figure 7-7 and at BOS, 

the majority of aircraft arrive from, and depart to, the southeast 

and west.  Consequently, many arrivals using current ILS 

procedures pass over densely populated suburbs around Boston, 

or fly east of BOS into the Atlantic Ocean before beginning final 

descent in order to avoid populated areas.  In either of these 

scenarios, assessing the impact of a given approach procedure 

(route) requires the consideration of the important tradeoff 

between noise exposure to local communities around Boston 

and flight performance (as measured by fuel burn and 

emissions), as these two impacts are often competing. 

  

In this case study, aircraft approach procedures are considered 

to be approach operations at or below an altitude of 6,000 ft.  Phases of approach operations include 

descending (either continuously in altitude or with discrete altitude plateaus), landing, and rollout.  

Existing approach procedures are ILS approaches whereas the RNAV/RNP procedures are referred to as 

RNAV approaches (for simplicity).  As mentioned previously, the inherent tradeoffs for these procedures 

span multiple stakeholders including communities, due to changing geographic noise exposure with 

changing procedures, and airlines, due to changing operational costs with changing procedures.  

7.4.2.   Problem Scope and Assumptions 

The major assumptions in the analyses are summarized hereafter.  It is important to keep these assumptions 

in mind when interpreting the case study results and the ensuing discussion.    

• An intentional simplification is that all air traffic consists of A320-200 aircraft 

• The maximum single runway throughput is 18 aircraft arrivals/hr (432 arrivals/day) 

• To provide an even comparison basis, all fights originate from a Providence, RI flyover at 10,000 ft 

• Cruise before a given approach route begins at 10,000 ft and all aircraft fly the same descent profile 

thereafter based on distance from the runway of interest 
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• Local communities are aggregated and segregated by the 2010 U.S. Census Tract boundaries 

• Noise attenuation due to terrain is not considered in the analyses7. 

• 3nm is the required length for the final stabilized portion of an approach 

7.4.3.   Overview of Analyses  

Two analyses are performed in this case study, which collectively evaluate the No Change and Radical 

Change categories in the Change Taxonomy; thus, the Operational Change and Technology Change 

categories are not analyzed.  Operational Change is not analyzed because it involves designing new ILS 

procedures, which is not of interest in this case study since Boston-Logan airport has already defined their 

allowable ILS approach procedures.  And the Technology Change category is not analyzed because the 

system outputs will be identical for an ILS and RNAV/RNP-modified ILS route on a per flight/approach 

basis, with the possible exception of throughput, which may be higher on the RNAV/RNP-modified ILS 

route.  Thus, this change category does not require extensive analyses to understand the impact of 

Technology Change as compared to No Change.  The resulting analyses performed in this case study are 

therefore as follows:  

1. Baseline Study: This analysis evaluates current ILS approaches into RWY 4R at BOS using existing 

commercial aircraft (1 assessment). 

2. Radical Change Study:  This analysis evaluates a new RNAV/RNP approach into RWY 4R at BOS 

using commercial aircraft equipped with GPS (1 assessment).     
 

Therefore, two change studies will be performed in order to quantify the impact of change in aircraft 

approach procedures in this case study.   

7.4.4.   Analyses and Results 

Given the system outputs summarized in Section 7.3.2, misalignment was identified amongst the three 

stakeholders considered in the case study.  Thus, in order to design and analyze new RNAV/RNP 

approaches, this misalignment must be addressed to find an amenable approach route for all stakeholders.  

Subsequently, the DoE method described in Appendix B is used to potentially find such a route and this will 

be discussed first in this section.  Following this discussion, the results from analyzing the two operational 

                                                        
7 Given the proximity of Boston to the Atlantic Ocean and hence generally consistent and low elevation, terrain was found not to 
be a driving factor in terms of population noise exposure in the preliminary case study analyses conducted by the author. 
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scenarios (i.e., approaches) will be presented, that is, the current RWY 4R (ILS) and the new 4R (RNAV) 

route. 

 
DESIGNING NEW RNAV APPROACHES 

In this case study, the three stakeholders each have unique value functions and thereby each stakeholder 

demonstrates a preference for a different combination of system outputs, which increases the difficulty 

associated with designing a new stakeholder-wide valuable RNAV approach.  In order to resolve this 

misalignment and design a new RNAV route, the approach used herein is to create a supra-objective 

function by finding a common source of alignment amongst the stakeholders in at least one system output 

(tradeoff) dimension and then relegating the remaining misaligned output dimensions as negotiable 

constraints.  It should be noted that this approach is not necessarily generalizable to resolving stakeholder 

misalignment for every problem, but it serves as a constructive and creative example for future adaptations 

of this approach to achieve stakeholder alignment.  The basis for this approach begins with the three 

stakeholder value functions in this case study, as summarized in Equation 10.  The acronyms in Equation 10 

are defined on pg. 21. 

Equation 10 

€ 

Vairline = λThru,AL ⋅ Thru[ ] − λ fuel ⋅ FB + λtime ⋅ FT + λNoise,AL ⋅ PopDNL≥65dB[ ]
Vairport = λThru,AP ⋅ Thru[ ] − λNoise,AP ⋅ PopDNL≥65dB[ ]
Vcommunity = − λNoise,Com ⋅ PopTA 60dB[ ]

 

As seen in Equation 10, there is common alignment amongst the stakeholders with respect to noise, 

namely, that they all bear the cost of noise and hence minimizing noise is valuable for all stakeholders8. 

Given the stakeholders and their respective preferences, the key to finding a new, amenable approach route 

into RWY 4R therefore begins with minimizing population noise exposure since the stakeholders are 

commonly aligned along this output dimension.  Thus, minimizing noise will be treated as the common 

objective function in the Design of Experiment Method discussed in Appendix B, specifically within the 

Track Finder Program, and the remaining considerations are the other contributors to value found in the 

airline and airport value functions.  In the analyses performed in this case study, throughput is held constant 

and it is also exogenous to the design of a given approach, so this aspect of value can be effectively negated 

in designing new approach routes.  The remaining aspect of value to capture is therefore the cost of flight 

operations, which is borne by the airline and consists of the cost of fuel and time.  Since these factors are 

                                                        
8 Even though the Airline and Airport use DNL65dB metric whereas the community uses the TA60dB metric, these are 
correlated and can conceptually be thought of as the same noise metric for the purposes of executing the DoE method described 
in Appendix B.   
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notable contributors to airline value, they need to be accounted for in the optimization formulation in order 

to balance the noise minimization with these adverse value (i.e., cost) factors.  This is done through setting 

the flight path costs as a constraint, which can be negotiated between the airline and community 

stakeholder.  The resulting supra-objective optimization problem used to design a new RWY 4R (RNAV) 

route via the Track Finder Program is stated in Equation 11.   

Equation 11 

€ 

max Vcommon = CostNoise
s.t. 0 ≤ Cpath ≤1.1⋅ Cpath

where COps = − λ fuel ⋅ FB + λtime ⋅ FT[ ]
 

Equation 11 finds the route that minimizes noise, Vcommon, subject to a constraint that encapsulates the flight 

path cost, a major contributor to the airline’s value.  As shown in Equation 11, the flight path cost is 

constrained between 0 (i.e., the utopia) and an allowable set increase in the flight path cost, relative to some 

datum cost.  In the case study analyses, the flight path cost is not allowed to increase by more than 10% 

relative to the datum cost, which is assumed to be the flight path cost of the current RWY 4R (ILS) route.  

 

This supra-objective optimization approach therefore exploits any alignment amongst stakeholders by 

setting the aligned sources of value as the optimization objective function and then handles the remaining 

unique contributors to stakeholder value as constraints, which can be negotiated amongst the stakeholders.  

Given the problem formulation in Equation 11, this approach can ultimately be implemented via the Design 

of Experiment method described in Appendix B where the flight path constraint is effectively Option A in 

Figure B-1 and then Track Finder Program performs the optimization using the surrogate models within the 

method.  This approach therefore provides a potentially powerful mechanism for designing new routes 

while also accounting for conflicting value structures from multiple stakeholders. 

 

RWY 4R (ILS) AND 4R (RNAV) ROUTES 

The analyses in this case study compare the currently implemented 4R (ILS) approach with a new 4R 

(RNAV) approach, which attempts to provide more value to the airline, airport, and community 

stakeholders.  The 4R (ILS) approach is predefined by BOS but the 4R (RNAV) route was designed using 

the aforementioned supra-objective optimization problem derived from identifying stakeholder 

misalignment.  As mentioned previously, given the problem formulation in Equation 11, the Design of 

Experiment method described in Appendix B can be used to design the new 4R (RNAV) route.  In order to 

limit the computational requirements (runtime) of the Design of Experiment method, the greater Boston 
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area was discretized into a roughly 5.5 nm grid on which new 4R (RNAV) ground tracks may be defined. 

The track finder program starts with an initial guess and, then, as the Track Finder Program progresses, it 

continually reduces the number of people in the critical noise exposure corridor, while never exceeding a 

10% increase in flight path cost relative to that of the 4R (ILS) route.  Observing the execution of the Track 

Finder Program can educate stakeholders about the geographic areas that are likely the most valuable to 

explore in terms of new approach routes into BOS.  Given the 5.5 nm grid assumed for the Tack Finder 

Program in this analysis, 1,274 RNAV approach routes met the flight path cost constraint.  These viable 

approach routes are shown in Figure 7-8, which shows the population in the critical noise corridor versus 

the ground track distance and resulting flight path cost (by the color shading).   

 

 
As seen in Figure 7-8, there are three distinct potential route categories: western, central, and eastern.  The 

western and eastern routes expose the highest and lowest number of people to noise, respectively, whereas 

the central routes fall somewhere in between the western and eastern routes.  These observations tell much 

about the potential for new routes into BOS from the west, south, and east, namely, that the western 

region of Boston is more densely populated and thus designing stakeholder-amenable routes in this region 

will be much more difficult than doing so in the east where the population is less dense.  This therefore 

suggests more promise on the aggregate in utilizing the Atlantic Ocean and the greater southeastern and 

eastern area of Boston to design new approach routes.  Interestingly, the currently implemented 4R (ILS) 
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route, which is highlighted in Figure 7-8, is between the eastern and central route groups and its respective 

flight path cost is the lowest since it roughly follows the great circle from Providence, RI to BOS.  

However, the disadvantage of this route is that it exposes about 364,000 people to critical noise, so it is 

suboptimal with respect to that objective.  This incentives the design and analysis of a new 4R (RNAV) 

route, the results of which are discussed in the next section. 

 
SYSTEM OUTPUTS 

The 4R (RNAV) route analyzed herein is indicated in Figure 7-8 

as “4R (RNAV).”  This 4R (RNAV) route was chosen because it 

leads to the least population in the critical noise corridor and 

meets the constraint of no more than a 10% increase in flight 

path cost; however, given the tradespace in Figure 7-8, it is 

important to recognize that there may be more preferable 

RNAV routes that have slightly less cost with slightly more 

population exposure, depending on the stakeholders; these are 

likely to fall on the Pareto Front shown in Figure 7-8 by the 

light black line, where the utopia is at the origin of the plot.  

The ground tracks corresponding to the 4R ILS and RNAV 

routes are shown in Figure 7-9.   As seen in Figure 7-9, the 

currently used 4R (ILS) route takes the shortest path into BOS 

from Providence while staying east of South Boston, which is heavily populated and right below the airport.  

The new 4R (RNAV) is a bit longer and more indirect than the ILS route but exploits the lesser populated 

areas east of BOS and completes its final approach by flying through the Boston harbor. 

 

These two routes demonstrate two types of change, or innovation in the Change Taxonomy: 4R (ILS) “No 

Change” and 4R (RNAV) “Radical Change.”  Before the value proposition summary for these two routes is 

given, the system output comparison between the routes is explored.  The first system output comparisons 

are DNL65dB, for the airline and airport stakeholders, and TA60dB, for the community.  The DNL65dB 

comparison is shown in Figure 7-10.  In Figure 7-10, DNL is constrained to 45+ dB and the critical 

threshold, in terms of adversely affecting the airline and airport stakeholder value, is 65 dB.  As can be seen 

in Figure 7-10, neither approach exposes a population to a DNL of 65dB or greater.  In the right of the 

figure, the corresponding DNL contours are shown for the two routes analyzed. 

4R (RNAV) 

Flights originate from a 
Providence, RI flyover!

4R (ILS) 

Figure 7-9.  RWY 4R (ILS) and 4R 
(RNAV) Approach Routes. 



113 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

 

The corresponding noise 

results for the community, as 

quantified by the TA60dB 

metric, are shown in Figure 

7-11.  As can be seen in Figure 

7-11, there is a relatively 

consistent 136,000-person 

reduction in the population 

exposed with the 4R (RNAV) 

route along the x-axis in the 

figure, which suggests that the 

!"

#!$!!!"

%!$!!!"

&!$!!!"

'!$!!!"

(!!$!!!"

(#!$!!!"

%)" )!" ))" &!" &)" *!"

!"
#
"$
%&

'(
)*
(+

,$
()
-.
,+

/(
0)

1+2/()345(/4+$0)67189)

%+",-." %+"+/01"

DNL Contours 
(DNL ≥ 45) 

 

Population Noise Exposure-DNL Profile (DNL ≥ 45) 
 
 

 

4R (RNAV) 

4R (ILS) 

!"#$"%&'($)%*+%,-'$./0123$

45 50 55 60 65 70 

Figure 7-10.  Noise Comparison (DNL). 
 

500,000$

1,000,000$

1,500,000$

2,000,000$

2,500,000$

3,000,000$

0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$ 18$ 20$ 22$ 24$

Cu
m
ul
a&

ve
)P
eo

pl
e)
Ex
po

se
d)

Time)Above)60)dB)(hrs))

4R$(ILS)$ 4R$(RNAV)$

Figure 7-11.  Noise Comparison (Time-Above 60 dB). 
. 



114 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

4R (ILS) route is fairly suboptimal in terms of minimizing population noise exposure.  Specifically, the 

population exposed to 30+ minutes of 60+ dB per day is less by 146,194 people, or 5.3% with the 4R 

(RNAV) route as compared to the 4R (ILS) route.  

 

The resulting comparison of 

the system outputs 

corresponding to the two 

RWY 4R routes analyzed in 

this case study is shown in 

Figure 7-12.  Note that these 

results are for one day of 

operations (arrivals), which is 

18 aircraft arrivals/hr or 432 

total arrivals in a day.  In 

Figure 7-12, the difference in 

system outputs between the 

RNAV and ILS routes (i.e., 

RNAV – ILS) are shown, so, in the figure, benefits from the RNAV route are indicated as negative changes 

or reductions.  As seen in Figure 7-12, there is no change in the DNL exposure at 65+dB, however, there is 

a reduction in the Time-Above 60 dB noise metric as previously substantiated.  The tradeoff for this 

reduction is an increase in the flight path parameters, which is indicated in Figure 7-12 on the aggregate, or 

on a per flight basis in the lower left of the figure.  The question for the airline stakeholder thus becomes 

does the reduction in noise offset the increase in flight path cost?  This tradeoff can be interpreted in a 

variety of ways, for example, 66,755 less people are exposed to noise above 60dB for 30+ minutes during 

the day, for each 1min increase in flight time, per aircraft arrival.  Ultimately, the system output tradeoffs 

are best captured through the value propositions for each stakeholder, which are summarized in Figure 

7-13. 
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VALUE PROPOSITIONS 
The value proposition results 

in this case study are 

summarized in Figure 7-13.  

Given the value results in 

Figure 7-13, the airline value 

is observed to decrease with 

the 4R (RNAV) route by 

$25,133 (-1.3%) because of 

the flight path cost increase 

associated with this route 

(recall that 65+dB of DNL 

exposure did not change).  

The airport value remains positive and unchanged simply because throughput and 65+dB of DNL exposure 

does not differ between the two routes.  And lastly, the community value remains negative but increases by 

$196,471 (+8%) due to appreciably less people exposed to 60+ dB for a 30 minutes or more during a 

given day with the new 4R (RNAV) route; this brings the community value with the 4R (RNAV) route 

closer to the theoretical maximum, or best community value of $0.  The summary of the stakeholder value 

propositions in Figure 7-13 thus validates the approach used to design the new 4R (RNAV) route described 

in Appendix B, which, recall, minimized population noise exposure at the cost of increased the flight path 

distance (and cost).  While the community assuredly benefits from the 4R (RNAV) route, given the severe 

competition in the current air travel market, the corresponding drop in value for the airline with this new 

route may be enough to combat the community’s desire to use this route over the 4R (ILS) route, although 

they still maintain positive absolute value with the 4R (RNAV) route.  

7.5.   Discussion 
The objective of the second case study was to evaluate the impact of changes in commercial aircraft 

approach procedures (operations).  In this case study, Operational Change is manifested through alterations 

in approach procedures (ConOps) whereas Technology Change is manifested through GPS technology, 

which increases aircraft situational awareness.  Three stakeholders were of interest in this case study: 

airlines, airports, and communities.  The airline’s value is derived from the operation of aircraft as well as 

any population noise exposure created from the aircraft.  The airports value is similarly derived from 
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population noise exposure but also the arrival (throughput) of aircraft.  Lastly, the community stakeholder 

provides a polarizing perspective of value in this case study since they only bear the cost of aircraft noise and 

do not directly benefit from their operation.  

 

This case study yielded specific insights regarding the impact of change, or innovation in commercial aircraft 

approach procedures, which will be discussed first followed by a discussion of the unique implementation 

insights gained from applying the Tradeoff Analysis Framework in this case study. 

7.5.1.   Case Study Insights  

This section presents the formal insights gained about the impact of changing aircraft approach procedures 

gained through applying the framework in this case study.  The section begins with a discussion of the 

trends observed in the system outputs and value propositions and then discusses insights gained in this case 

study with regard to dealing with a large number stakeholders and uncertainty in the framework. 

 
SYSTEM OUTPUTS AND VALUE PROPOSITIONS 

The motivation for this case study was to examine the impact of changes in aircraft approach procedures at 

BOS (Boston-Logan Airport), where change is manifested through the use of GPS technology and new 

approach procedures (ConOps).  This case study yielded important insights regarding the impact of 

innovative approaches into airports, specifically for RWY 4R at BOS, which was the runway of interest in 

the case study analyses.  The resulting two types of change, or innovation analyzed in the case study are No 

Change and Radical Change, manifested by the current RWY 4R (ILS) route and newly designed RWY 4R 

(RNAV) route (see Figure 7-9), respectively.  In terms of system outputs, as was the case in the first case 

study, the environment- and performance-related system outputs were at competition with one another.  In 

particular, population noise exposure was a key “environmental” attribute in this case study and this system 

output competed with the performance-based outputs considered such as flight time.  This made the 

process of designing new, stakeholder-amenable approaches very challenging due to the need to balance 

population noise exposure with the aircraft cost and performance.   

 

Despite the aforementioned tradeoffs, using Tradeoff Analysis Framework and the specific methods within 

this framework applied in this case study, the value propositions for all three stakeholders corresponding the 

present (i.e., 4R ILS) and new (i.e., 4R RNAV) approaches into BOS were suggestive that an amenable 

approach can be found amongst these stakeholders.  As summarized in Figure 7-13, the value results 
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specifically show an increase in community value (+8%) with a reduction in airline value (-1.3%) when 

using the newly proposed 4R (RNAV) approach due to its slightly longer length.  Conversely, the airport 

value proposition did not change due a lack of DNL change at critical levels and no change in throughput 

with either of the 4R approach routes.  Thus, while the 4R (RNAV) route examined seems like an amenable 

solution between the community, airline, and airport stakeholders, the current market for air travel is so 

competitive that even a small loss in value may be unacceptable to an airline.  However, it is possible that 

with a little less compromise on airline flight path costs (i.e., the cost of fuel, time, and emissions), a new 

4R (RNAV) route can be found that yields an increase in value for both the community and airline 

stakeholders; this is discussed in more detail on reflection of the approach route used to design the 4R 

(RNAV) route in Section 7.5.2.   

 

The value proposition results from this case study thus allow us to gain some insights about the type and 

magnitude of change, or innovation evaluated in this case study.  First, in an absolute sense, innovation can 

be of valuable for all the stakeholders considered in this case study.  Despite the loss in value by the airline 

due to the new 4R (RNAV) route, their value remains positive, and furthermore, the airport and 

community stakeholders see no change and an increase in value, respectively.  This implies that the 4R 

(RNAV) route analyzed in this case study is not detrimental to maintaining positive stakeholder value.  The 

issue, of course, is the small loss in value to the airline and the question of whether this offsets the notable 

increase in value for the community.  Unfortunately, without real airline and community stakeholder’s “in-

the-loop” in this case study, this cannot be determined.  However, the change in value observed for these 

two stakeholders due to the new 4R (RNAV) route offers promising hope that this route may be an 

amenable starting solution for these stakeholders to find an acceptable approach route into RWY 4R at 

BOS.  

 

In summary of the key insights gained in this case study, analyzing the impact of change, or innovation for 

approach procedures has demonstrated that there are persistent tradeoffs associated with changing 

operations, which conforms to the findings in the other two case studies used in this research.  This does not 

make innovation consistently desirable or undesirable, but the results of this case study instead do suggest 

that “win-win-win” situations can be found amongst the airline, airport, and community stakeholders with 

new RNAV/RNP approaches.  However, since this case study did not design RNAV/RNP procedures 

following the Terminal Instrument Procedures (TERPS) criteria, a truly holistic picture of the benefits and 
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costs associated with innovation in aircraft approach procedures cannot be derived from these specific case 

study results9.  Despite this, the current effort exhibited by the FAA to develop and implement 

RNAV/RNP procedures at airports across the country is evidence of their keen interest in discovering and 

exploiting the benefits of these procedures10.   

 

CHALLENGES INTRODUCED WHEN CONSIDERING A LARGE NUMBER OF STAKEHOLDERS  

Another insight gained in this case study is that aircraft approach procedures inherently involve multiple 

stakeholders, who are likely to be misaligned in some capacity, in particular because the community 

stakeholder always incurs the cost of noise but receives no direct benefit from the operation of aircraft.  

Aligning these stakeholders may prove difficult, even more so when avoiding the simplifying assumption 

made in this case study that the community is one stakeholder, where in reality, each locale within the 

community/population of interest may have their own preferences as to avoiding aircraft noise and thus 

needs to be considered as an independent stakeholder.  Consequently, if there are a large number of 

stakeholders of interest, this gives rise to additional issues such identifying stakeholder misalignment, 

facilitating such alignment, and visualizing the stakeholder value propositions, among other potential new 

issues introduced in the framework.  Despite this, if local communities within a given population each have 

different preferences for avoiding aircraft noise, they may still be aligned since they all incur the cost of 

noise, but this ultimately depends on how sensitive their preferences are to the value (cost) of noise.  This 

and other considerations such as representing numerous stakeholder value propositions are rich areas in 

terms of developing and evaluating the future applicability of the framework. 

 

ADDRESSING UNCERTAINTY IN THE FRAMEWORK 

It is also important to recognize that the insights gained in this case study are dependent on any potential 

uncertainty in the preference structure used to quantify the tradeoffs (see Section 7.3.3).  While best 

estimates were made for all stakeholder preference structures (i.e., λ-Sets), there is uncertainty in the λ for 

the emissions and, especially, the noise.  Therefore, before generalizing the results and the ensuing insights 

gained from this case study, it may be important to account for this uncertainty in the case study results.  In 

particular, it may be useful to quantify the sensitivity of the uncertain λ-Set values in relation to the space of 

proposed changes and thereby the system output and value space.  Exploring this is left as recommended 

future work for this case study.   
                                                        
9 The purpose of TERPS is to prescribe the criteria for approach or departure route formulation, review, and approval in the United States. 
10 http://www.faa.gov/news/fact_sheets/news_story.cfm?newsid=8768 
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7.5.2.   Framework Implementation Insights 

This section discusses the insights gained about the Tradeoff Analysis Framework execution through 

applying the framework in this case study to assess the impact of changing aircraft cruise operations.   

 

Given the multi-stakeholder considerations in this case study, the Tradeoff Analysis Framework was used to 

identify stakeholder misalignment and then subsequently facilitate alignment.  The goal of facilitating 

alignment was to find an approach route into BOS that was satisfactory for all stakeholders.  These two 

activities led to interesting framework implementation insights, which are discussed hereafter.  

 
IDENTIFYING STAKEHOLDER MISALIGNMENT 

Identifying misalignment can be done with the Tradeoff Analysis Framework, specifically using the 

preference structures from the valuation component of the framework.  In using preference structures to 

identify stakeholder misalignment, it is important to recognize that misalignment ultimately depends on the 

sensitivity of value to the preference structure.  If value is relatively insensitive to the preference structure, 

then alignment may be achieved through preferences having the same direction/sign (or form), depending 

on the valuation method used.  Alternatively, if value is very sensitive to the preference structure, then 

even preferences of the same direction/sign (or form) may exhibit misalignment in terms of value.  A 

resulting key aspect of this case study was using the framework to identify stakeholder misalignment.  

Specifically, in this case study, all the stakeholders considered in the case study incurred the cost of noise, 

thus having alignment with respect to this direction.  However, the flight path parameters such as fuel burn 

and flight time did not directly impact the community or the airport, thus they were misaligned relative to 

the airline stakeholder who cared about these parameters since it affects their value.  While the conceptual 

comparison of preference structures can isolate misalignment, analytical methods such as Principal 

Component Analysis may also be useful for identifying the underlying sources of misalignment amongst the 

stakeholders, as is demonstrated in the aircraft cruise operations and remote sensing spacecraft case studies 

(see Section 6.4.2 and 8.4.4), and as discussed in Section 9.1.3. 

 

FACILITATING STAKEHOLDER ALIGNMENT 

After identifying stakeholder misalignment with the Tradeoff Analysis Framework, the remaining step to be 

performed is to attempt to facilitate stakeholder alignment.  This is perhaps one of the richest areas for the 

future framework development and application as there are numerous approaches for facilitating such 

alignment.  Several options are discussed in Section 4.3.4 that may help achieve full alignment, or at least 
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partial alignment, through identifying dimensions of common alignment amongst stakeholders, if any, given 

the system outputs of interest.  The methods listed in that section should be treated as complements as was 

the case when some of them were applied in this case study in order to facilitate stakeholder alignment.   

 

Specifically, in this case study, a unique approach for facilitating stakeholder alignment was used, which 

relied on creating a supra-optimization problem that avoided the pitfall of weighting stakeholder value 

functions by their relative importance or “voting power,” which often does not resonate well with 

stakeholders since this requires that they be openly ranked in importance relative to one another.  This 

approach instead exploited the only source of alignment amongst the stakeholders, namely, reducing 

population noise exposure, and then isolated the misaligned aspects of value and left them as constraints to 

be negotiated.  The result of this was an optimization problem to minimize population noise exposure (i.e., 

the aligned direction) subject to the remaining misaligned elements of stakeholder value, which were 

formulated as separate constraints.  This approach for facilitating stakeholder alignment required an 

implementation change to the framework in this case study, namely, to use it as a Design of Experiment 

platform (see Appendix B), which in turn relied on using the surrogate models described in Appendix B in 

place of the detailed NPIM discussed in Section 7.3.5 to optimize the design of new approach routes.  The 

Track Finder Program within the Design of Experiment method essentially implements the Framework 

with Optimization in order to optimize an approach route, given the supra-objective problem formulation 

summarized in Equation 11, where the system transform is made up of the surrogate models.  It was 

necessary to use the surrogate models for the initial RNAV approach route exploration since the detailed 

system model can take up to 6 hours to setup one potential route, analyze it, and prepare the results.  

Specific to this case study, the results of executing this DoE approach ultimately led to the successful design 

of a new 4R (RNAV) route that minimized population noise exposure while not appreciably affecting the 

airline and airport value propositions in an adverse manner.     

 

In summary, given competing stakeholder preferences, it is likely that stakeholders are going to be reluctant 

to compromise their own value for the sake of improving another stakeholder’s value, and this is only 

exacerbated in large system development programs having stakeholders from several different 

organizations.  Thus, methods that facilitate alignment should err on the conservative side in achieving 

alignment, starting by finding smaller sources of alignment amongst the stakeholders, rather than trying to 

find complete alignment from the start, which may never exist anyway.  Small sources of alignment 
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amongst stakeholders can go a long way in terms of building a rapport amongst stakeholders for future 

negotiations.  Arrow’s classic but still valid “General Possibility Theory,” in part, concludes the lack of 

existence of a social welfare function that effectively resolves competing stakeholder preferences [63].  

Despite this, much can be done in terms of achieving stakeholder alignment by using methods to identify 

and exploit partial alignment, which was exemplified in this case study. 

 

COMPLEMENTARY FRAMEWORK USAGES 

While the implementation of the Design of Experiment method (refer to Appendix B) in this case study via 

the Framework with Optimization does not seem novel, it demonstrates a complementary usage of 

framework versions and adaptations for assessing tradeoff hyperspaces.  In this case study, the Framework 

with Optimization, with a simpler system model was used to determine the proposed change to be later 

analyzed in detail using the Framework with Multiple Stakeholders.  A key takeaway from the framework 

implementation changes in this case study is therefore that evaluating the impact of innovation (changes) in 

aerospace systems may be best achieved through the complementary use of frameworks with different 

purposes, and they should therefore not be treated in isolation.  In fact, considering the breadth and depth 

of potential applications of the Tradeoff Analysis Framework, the complementary usage of framework 

versions for analyzing a system may be more prevalent than not.  This therefore demonstrates that unique 

usages of the Tradeoff Analysis Framework are likely going to be made in order to meet the objectives of a 

specific study using the framework, which is acceptable provided the underlying functionality of the 

framework is not altered (guidance for modifications to the Baseline Framework are discussed in more 

detail in Section 8.5.2).   

 

SUMMARY 

A lack of multi-stakeholder consensus is an issue prevalent in almost every field, and although the Tradeoff 

Analysis Framework may be used to develop and apply methods for achieving such consensus, there are a 

multitude of other suggested methods and approaches for achieving this11.  Given the numerous options for 

facilitating multi-stakeholder consensus, it is easy to get lost in this area without having progressed much at 

all in the context of the larger problem to be solved.  So in the context of this research and subsequent 

framework, addressing stakeholder misalignment remains relevant and important, but the caution offered is 

                                                        
11 The decision analysis domain mentioned in the literature review provides many of these methods, some of which are 
mentioned in Section 4.3.4. 
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that resources invested in achieving stakeholder alignment should balance the overall objectives of the 

framework implementation, thereby not overly biasing the framework development.  Ultimately, this does 

not negate the usefulness of investing resources in resolving stakeholder misalignment, but it is better to 

take small steps towards developing a solution to this problem before expending a large, and perhaps 

blinded effort to do so.  
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8. CASE STUDY 3 – MULTI-STAKEHOLDER, REMOTE SENSING SPACE MISSION 
The third case study applies the Tradeoff Analysis Framework to analyzing the impact of innovation for 

remote sensing space missions.  The sources of innovation specifically arise from developing new 

technologies, which lead to the development of advanced spacecraft called fractionated spacecraft.  In 

addition to advances in technology, this case study also considers advances in the replenishment strategies 

for spacecraft performing remote sensing missions.  This case study is therefore the most complex in terms 

of the exploring the Change Taxonomy discussed in Section 4.2 since all four quadrants of the taxonomy 

will be explored.  This section begins with a brief background on fractionated spacecraft and then follows 

with the application of the Tradeoff Analysis Framework in this case study. 

8.1.   Background 
Fractionated spacecraft consist of physically independent structures, referred to as modules, where each 

module may not have the same subsystem/hardware composition as the other modules [110,111].  On-

orbit, modules maintain a cluster or formation flying configuration and they wirelessly interact (collaborate) 

to share certain subsystem resources.  Figure 

8-1 conceptual depicts a fractionated 

spacecraft (Image source: Ref. [112]) with five 

collaborating modules.  This collaboration 

differentiates fractionated spacecraft from 

constellations, although both are modular, and 

collaboration is a key area of technology 

development for fractionated spacecraft 

[111,113–115].  Through sharing resources, 

fractionated spacecraft can physically decouple 

the pointing-intensive mission payload(s) from 

subsystems not requiring such strict pointing by 

locating them on different modules.  This ability to decouple subsystems and payloads may allow individual 

modules to be less massive and smaller than a comparable monolith, or yield other benefits extensible to a 

specific mission area [111,116,117].  In recent years, fractionated spacecraft have gained support because of 

their potential to offer improved lifecycle performance, or value relative to comparable monoliths.  It is 

suggested that distributing system functionality amongst several collaborating modules can lead to better 

Figure 8-1.  A Fractionated Spacecraft Concept. 
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“ility” (e.g., survivability) performance while shortening development timelines and encouraging 

participation from non-traditional spacecraft manufacturers (via reducing barriers to entry) [116,118–121]. 

 

The focus of this case study is on remote sensing (earth imaging) spacecraft operating in the visible 

spectrum, and thus spacecraft considered here have an optical mirror system (i.e., telescope) as their 

payload instrument.  These spacecraft have an assumed orbit altitude and inclination of 700km and 98.1° 

respectively, a common altitude and inclination for remote sensing missions (consider GeoEye-1, Landsat-

7, and EOS Aqua).  In addition, a range of payload performance (i.e., imaging resolution) is explored.  

8.1.1.   Sharing Subsystem Resources  

The hardware required for sharing subsystem resources are relatively immature and may require substantial 

technology development (innovation) before they can be reliably used to field fractionated spacecraft 

[122,123].  These immature hardware components are referred to as enabling technologies.  Past research 

conducted by the author on fractionated spacecraft has considered the employment of three classes of 

shared subsystem resources, and hence enabling technologies in fractionated spacecraft: (1) communication, 

computer system, and command & data handling (Comm_CS_C&DH) [119]; (2) attitude determination 

system and guidance navigation system (ADS_GNS) [124,125]; and (3) power generation and storage 

(Power) [111,126].  Given the current and near-term envisioned state of the art in space-qualified 

subsystem technologies, these three classes of shared resources are reasonable ones to consider for an 

analysis of fractionated spacecraft that could be operational in the near future.  O’Neill and Weigel [127] 

provide a detailed assessment of the impact of these enabling technologies on fractionated spacecraft value.   

8.2.   Literature Review – Case Study 3  
The fractionated spacecraft paradigm has gained support because of the potential it offers for improved 

lifecycle performance, relative to comparable monoliths.  Distributing system functionality amongst several 

collaborating modules may lead to better performance in the “-ilities” (including adaptability, survivability 

and robustness), while potentially shortening development timelines and encouraging participation from 

non-traditional satellite manufacturers by reducing barriers to entry particularly in the defense context 

[116,118–121].  In order to assess the feasibility of the fractionated approach and validity of the above “-

ility” related claims, the Defense Advanced Research Projects Agency (DARPA) System Future, Fast, 

Flexible, Fractionated, Free-Flying United by Information Exchange (F6) Program was initiated in 2007 
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[118,128]12. During the intervening three years, under the broad programmatic umbrella of the System F6 

program, a diverse set of conceptual fractionated spacecraft studies were undertaken [129–131].  Given the 

System F6 program’s emphasis on demonstrating benefits in terms of lifecycle properties, studies have 

predominately sought to model system value under different types of lifecycle uncertainty [121,127,129–

133].  The sources of uncertainty and their corresponding implementation in fractionated spacecraft models 

vary widely amongst these studies but they often relate to contingencies in launch vehicle reliability, 

funding, programmatic execution, on-orbit operation, market supply & demand, and national security (e.g., 

protection against anti-satellite attacks).  Therefore, despite the lack of method transparency conveyed in 

the System F6 program publications (due to proprietary concerns), it appears they considered typical risks 

in a spacecraft program.  Aside from System F6 publications, Brown et al. [121,132] considered the 

contingencies of launch vehicle reliability, risk of in situ docking, and spacecraft (subsystem-based) 

reliability, whereas Dubos and Saleh [133] considered only spacecraft (subsystem-based) reliability.  Lastly, 

O’Neill and Weigel [127] considered lifecycle contingencies resulting from launch vehicle reliability, 

programmatic issues (i.e., schedule slips), spacecraft (subsystem) reliability, and human operator error.   

 

Examined as a whole, the extant literature on fractionation has reached the consistent conclusion that when 

performance-equivalent fractionated and monolithic spacecraft are both subject to lifecycle risk (e.g., on-

orbit failure), fractionated spacecraft can yield less value-risk (i.e., a narrower distribution of expected 

value) than comparable monoliths.  O’Neill and Weigel identified a key source of the enhanced value of 

fractionated spacecraft relative to a comparable monolith to be the use of staged deployment, more 

specifically the ability to launch a set a smaller modules (as compared to the size and mass of a monolith) on 

one or more launch vehicles [127].  The importance of staged deployment in terms of dictating fractionated 

value lead to a demonstration of how potential mass (and size) savings of individual fractionated modules as 

compared to that of a monolith can be used to increase the mission (operational) lifetime of fractionated 

spacecraft, given certain launch vehicle accessibility constraints.   

 

While the emphasis of fractionated studies in the literature is nominally on uncertainty, they fail to capture 

at least two important risks associated with the “flip-side” of fractionated value robustness opportunities, or 

arguments.  First, while decoupling system functionality from a single physical location mitigates risk from a 

variety of failure modes, it also introduces several new and non-trivial sources of network risk resulting 

                                                        
12 Available online at http://www.darpa.mil/Our_Work/TTO/Programs/System_F6.aspx [retrieved October 5, 2011]. 
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from the codependency of the modules.  To this end, O’Neill and Weigel capture a preliminary exploration 

of these additional sources of risk created from sharing resources amongst modules (i.e., failure-critical 

inter-module dependencies) and their implications for lifecycle value [127].  Second, it is important to 

recognize that the technologies required to enable the fractionated concept remain either relatively, or 

extremely immature from a space-qualified (or TRL) perspective [122,123].  While there is certainly value 

to exploring the potential for value robustness, one must not lose track of the very real technology 

risk/uncertainty associated with assuming that capability-enabling components for fractionated spacecraft 

will be ready in time, and at the performance level desired.  This second category of risk has not been 

addressed in previous studies of fractionation. 

 

This case study, will continue to contribute to the dialogue on assessing fractionated subject to lifecycle 

contingencies, but also extend beyond this by evaluating the impact of enabling technology and operational 

innovation on the potential value-risk offered by these spacecraft.  While considering lifecycle contingencies 

remains important, this new holistic assessment of the risk and opportunities of fractionated spacecraft 

paints a more realistic picture for decision-makers interested in assessing when and whether to invest in the 

innovation required to support a fractionated future.  Methodologically, this research and ensuing case 

study represents a first attempt to incorporate empirical insights to evaluate the impact of innovation on 

fractionated spacecraft system design operation, and ultimately their value propositions.   

8.3.   Application of the Framework 
This section details the application of the Tradeoff Analysis Framework in this case study and begins with an 

overview of the framework followed by discussing each framework constituent in more detail. 

8.3.1.   Framework Application Overview 

The application of the Tradeoff Analysis Framework in this case study is shown in Figure 8-2.  As seen in 

the figure, the analyst inputs a type of change, or innovation to consider (i.e., either technology, ConOps, 

both, or neither) and thereby the spacecraft architecture to be analyzed.  The system architecture is assessed 

using the Spacecraft Evaluation Tool (SET), which is discussed in more detail in Section 8.3.5.  Throughout 

a given time-window of interest, spacecraft modules may fail on-orbit.  If so, they may be improved due to 

any subsequent innovation that has occurred since their last (re)build, therefore changing their respective 

performance and cost.  The system outputs from the SET reflect these lifecycle characteristics and changes 

through an operational history of a spacecraft, including the system outputs of time-weighted average 
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performance (TWAP), time-of-service 

(ToS), stochastic lifecycle cost 

(SLCC), and Revenue, which are 

required to quantify the value 

proposition for the owner who is the 

stakeholder considered in this case 

study.  The owner is specifically 

responsible for both developing and 

operating the spacecraft performing 

the remote sensing missions analyzed in 

this case study. 

8.3.2.   Stakeholders and System Outputs 

In this case study, both the spacecraft developer and operator are important.  The developer is responsible 

for researching, developing, manufacturing, and continuing to replace spacecraft (modules) on-orbit if they 

fail; it is important to note that the developer is not paid by the operator for the spacecraft produced.  

Conversely, the operator uses the spacecraft to perform a remote sensing mission and therein receives any 

direct benefits from that mission, which in this case study are images of the earth.  Thus, the developer 

stands to take on the majority of the value, or financial risk since the only direct benefit they receive is 

through a successful flight demonstration, despite the fact that they bear the majority of the costs.  On the 

contrary, the operator receives all of the direct benefits from operating a spacecraft such as the images of 

the earth generated, hence, the operator stands to incur much less financial risk than the developer.   

 

The three system outputs of interest in this case study are shown in Figure 8-3 and they are time-

weighted average performance (TWAP) in units of pixels-per-meter (ppm), time-of-service (ToS), 

in units of years (yrs), and cost (of development and operation) in units of Fiscal Year 2011 millions of 

dollars (FY11$M); the summation of the various sources of cost is called the Stochastic Lifecycle Cost 

(SLCC).  

1. The first metric is the time-weighted average performance (TWAP), which characterizes the 

performance of a spacecraft relative to a particular time window (e.g., the operational lifetime, 

program duration), balancing any performance with a potential loss or gain in said performance 

during the window.  The formula for the TWAP metric is given in Equation 12.  
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Figure 8-2.  Framework Application (Case Study 3). 
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Equation 12 

€ 

TWAP =
1
Tw
⋅ R t( )dt
0

Tw

∫  

Here, TWAP (in ppm) and is the integral of spacecraft performance (resolution), R (in ppm), over 

the time window, Tw
13.   

2. The second metric is time-of-service (ToS), which is the cumulative time of active payload service 

during the time window.  Therefore, initial spacecraft development and subsequent rebuilding of 

payload module(s) do not contribute to the ToS.   

3. Accompanying the spacecraft performance metrics is the stochastic life cycle cost (SLCC), which 

encapsulates the cost of developing, launching, and operating a spacecraft and, in addition, accrues 

the recurring and launch vehicle costs associated with replenishing spacecraft modules throughout 

the time window.    

 

 
Given these system outputs, the disaggregation of benefits and costs given the developer and operator 

stakeholders is shown in Figure 8-3.  This stakeholder situation is representative of the current proposal by 

the DARPA System F6 program for its first demonstration mission, namely, that a third party (i.e., the 

developer) be responsible for manufacturing and deploying a fractionated spacecraft (or at least one of the 

required modules), and then another organization (such as the military) operates the spacecraft14.  The goal 

of this stakeholder scenario is to demonstrate a key feature of fractionated spacecraft: the ability to easily 

integrate (simple payload) modules with an on-orbit infrastructure of modules; this is therefore essentially a 

“plug-and-play” architecture.  The issue remains however, as substantiated in Figure 8-3, that the developer 

                                                        
13 Note: the time window does not necessarily equal the intended (expected) design lifetime of a spacecraft.  For example, this would be the 
case when a mission or program length (i.e., the time window) is larger than the feasible design life of spacecraft given maximum mass and size 
constraints imposed by the available launch vehicles.   
14 Available online at http://www.darpa.mil/Our_Work/TTO/Programs/System_F6.aspx [retrieved October 5, 2011]. 
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Figure 8-3.  Stakeholder and System Output Matrix (Case Study 3). 
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does not receive the intrinsic benefits of the mission and bears most of the cost, whereas the opposite is true 

for the operator, recognizing that the cost of operations incurred by the operator is relatively small as 

compared to the developmental costs associated with spacecraft. 

 

Given the aforementioned stakeholder misalignment and recognizing that the developer bears most of the 

financial risk, their incentive for participation is greatly diminished despite the apparent benefit to the 

operator.  This case study therefore assumes a scenario representative of many spacecraft missions where 

the developer and the operator are the same stakeholder and thus they share in both the direct benefits and 

costs of the system; this entity will be referred to hereafter as the owner and they are responsible for 

manufacturing, deploying, operating, and replenishing spacecraft; this is the stakeholder reflected in the 

framework application in this case study (see Section 8.3.1).   

8.3.3.   Valuation  

The valuation for the spacecraft owner in this case study depends on the three system outputs defined in the 

previous section.  Since these system outputs can be all monetarily related, a net present value (NPV) 

approach is suitable for the owner valuation in this case study; an overview of the NPV method can be 

found in Ross et al. [52]15.  As a result, for the owner stakeholder in this case study, value is simply a 

function of revenue generated and cost, the former being derived hereafter. 

 

Given that the spacecraft in this case study are remote sensing spacecraft, they may provide (sell) images to 

customers such as Google, who in turn use the images for their own financial gain (in Google’s case, images 

for Google Maps).  Therefore, in this case study, Revenue is proposed as a simple function of performance 

(resolution) over time, thus implicitly being dependent on TWAP and ToS16.  The resulting revenue 

function is empirically derived from current image pricing policies from the European Aeronautic Defence 

and Space (EADS) Astrium and for GeoEye [134,135].  The ensuing revenue metric derived is a power 

function and given in Equation 13. 

Equation 13 

€ 

Rev = 46.28⋅ Tw
−0.626 ⋅

dTWAP
dt

$ 

% 
& 

' 

( 
) 
−0.626

dt
0

Tw

∫    →    Rev = 46.28⋅ R−0.626dt
0

t

∫
 

                                                        
15 If other metrics like the “-ilities” such as flexibility and robustness were considered, which are not easily mapped to a cardinal 
scale such as monetary wealth, an alternative valuation method such as Utility Theory is likely more appropriate. 
16 Given Equation 12, resolution is the product of the rate of change of TWAP and the time window.   
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In Equation 13, R is the image resolution at time, ti and revenue is quantified in FY11$M.  Revenue is 

therefore generated over the time window during which a spacecraft operates, where the initial 

development and subsequent rebuilding of the payload modules does not contribute to revenue.  

 

Figure 8-4 shows the revenue generated per 

year, assuming constant resolution as indicated 

by the x-axis in Figure 8-4.  As seen in the 

figure, the current market for earth image 

acquisition is willing to pay appreciable amounts 

for marginal increases at high resolutions (i.e., 

less than 1m).  However, given the demand for 

increasingly higher resolution earth images, it 

has created a rapid decrease in the image revenue 

generation as resolution decreases; thus, creating the asymptotic revenue limits observed in Figure 8-4.  

Given this revenue function, the resulting value proposition for the spacecraft owner is shown in Equation 

14. 

Equation 14 

€ 

Value = Rev -C( )
0

Tw

∫ ⋅ dt  

Here, Rev is that shown in Equation 13, and C is the cost.  Since both of these metrics vary in time, the 

value for the owner needs to be integrated over the time window.  Accordingly, value is adjusted for 

inflation such that it is in FY11$M.    

8.3.4.   Proposed System Changes 

In this case study, the analysis focus is on exploring the impact of technology and operational innovation for 

remote sensing missions, so the changes in the Change Taxonomy can be directly interpreted as 

characterizing types of innovation.  Technology change, or innovation occurs through the development and 

subsequent performance improvement of the enabling technologies for fractionated spacecraft.  The two 

enabling technologies considered are the Comm_CS_C&DH and ADS_GNS17 shared resources.  This case 

study is therefore unique to the previous two case studies in terms of the Change Taxonomy because change 

                                                        
17 The Power shared resource is not considered because the author’s previous work demonstrated that, for a given performance 
level, sharing power amongst modules in a spacecraft is not cost or mass advantageous relative to a comparable monolith 
[111,136]. 
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Figure 8-4.  Spacecraft Revenue per Year. 
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along the technology axis is continuous.  While there are numerous facets to spacecraft operation including 

launch and in-situ operation, ConOps is considered to be the management of spacecraft replenishments 

over their lifecycle or the program duration considered.  Given the multi-module composition of 

fractionated spacecraft coupled with 

the probabilistic nature of independent 

module failures, the operational 

dynamics of fractionated spacecraft are 

complex.  Thus, ConOps innovation 

occurs through advances in module 

replenishment strategies over the time 

period of interest.  The resulting four 

categories of change, or innovation 

explored in this case study are depicted 

in Figure 8-5 and as follows: 

• No Change: monolithic spacecraft using the datum (On-Demand) replenishment strategy. 

• Technology Change: fractionated spacecraft that improve over time with advances in enabling 

technology performance using the datum (On-Demand) replenishment strategy.  

• Operational Change: monolithic spacecraft using advanced replenishment strategies. 

• Radical Change: fractionated spacecraft that improve over time with advances in enabling 

technology performance and that also use advanced replenishment strategies.  

 

 Therefore, only the monolith is assessed when evaluating the No Change paradigm, and for the remaining 

three change categories, one fractionated architecture will be analyzed18. 

8.3.5.   System and External Factor Models 

In this case study, the Spacecraft Evaluation Tool (SET) is used to assess monolithic and fractionated 

spacecraft.  The functional divisions of the SET are shown in Figure 8-6 and each will be briefly described 

hereafter.   

 

                                                        
18 This architecture was one the most value-competitive fractionated architectures, relative to a comparable monolith, identified 
through the author’s past research on fractionated spacecraft [127]. 
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SET INPUTS 

A given spacecraft assessment requires 

a set of inputs, and each of these inputs 

belongs to one of three groups: 

Launch Vehicle, Lifecycle & Design, 

or Spacecraft Architecture. 

 
1. Launch Vehicle  

The Launch Vehicle inputs specify 

candidate launch vehicles for initial 

spacecraft deployment and module 

replenishments throughout a lifecycle.  The current launch vehicle database consists of twenty-two launch 

vehicles from six different countries, but predominantly the United States.  The vehicles span the small, 

medium, large, and heavy launch vehicle classes, which correspond to a mass to Low Earth Orbit (LEO) of 

<1000, 1000-3000, 3000-7000, and >7000, kg, respectively.  The SET requires data pertaining to launch 

vehicle cost, stage masses and mass fractions, payload fairing dimensions, launch site latitude(s), and 

historical reliability; these data in the SET were obtained from launch vehicle manufacturers or the 

International Reference Guide to Space Launch Systems [137–140]. 

 

2. Lifecycle & Design 

The Lifecycle & Design inputs define the mission context and certain parameters governing the design of a 

spacecraft.  These inputs are grouped into eleven categories: orbital parameters, concept of operations, 

autonomy level, mission lifetime, sizing, payload performance, pointing requirements, stochastic lifecycle 

simulation, production, lifecycle uncertainties, and staged deployment; please refer to Ref. [111] for 

further discussion of these inputs. 

 
3. Spacecraft Architecture 

The Spacecraft Architecture inputs define the monolithic and fractionated spacecraft architectures to be 

assessed, and these inputs include the number of modules, and then for each module: the subsystem 

composition; the use of shared resources (i.e., is the module a shared resource source or recipient, or 

neither); whether it has a mission payload; and whether it has a spacecraft-to-ground antenna.  Each 
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spacecraft is built from the bottom up, that is, component-by-component, subsystem-by-subsystem, and 

module-by-module.  If a module contains a mission payload it is referred to as a payload module, otherwise 

it is referred to as an infrastructure module; a monolithic spacecraft is considered a payload module.  It is 

important to note that recipient modules will fail if the remaining (or only) source (infrastructure) module 

supporting it fails; this is referred to as an inter-module or dependent failure and is a unique source of risk 

for fractionated spacecraft (relative to monoliths since such linked failures cannot occur). 

 

SET MODEL ALGORITHMS 

A given spacecraft assessment is 

performed with three models: 

spacecraft, cost, and stochastic.  These 

models and their respective high-level 

algorithms are shown in the Design 

Structure Matrix (DSM) in Table 

8-119.  In a DSM, the X’s in a given 

row represent the inputs required for 

the model algorithm on that respective row, whereas the X’s in a given column represent outputs from the 

model algorithm in that respective column to other model algorithms.   

 
1. Spacecraft Model  

The spacecraft model consists of the ten model algorithms shown in Table 8-1, each of which contains 

numerous smaller scope algorithms succinctly discussed in Ref [127].  The key output of these algorithms is 

the design of each spacecraft subsystem, characterized through metrics such as mass, dimensions (size), and 

power requirements. 

 

2. Cost Model  

The cost model quantifies the deterministic lifecycle cost (LCC) of a spacecraft.  For a given set of modules, 

the launch vehicle selection model performs a full-factorial analysis of the candidate launch vehicles and 

selects one to three launch vehicle(s) that can collectively “fit” a spacecraft’s modules, in terms of mass and 

                                                        
19 Notation: command & data handling (C&DH); telemetry, tracking, & control (TT&C); attitude determination and guidance navigation 
system (ADS, GNS); electric power system (EPS); attitude and guidance control system (ACS, GCS); and launch vehicle (LV). 
 

Model Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Inputs 1 SET Inputs

2 RSM Payload X
3 Computer System, C&DH X X
4 Communication, TT&C X X
5 ADS, GNS X
6 EPS X X
7 Propulsion, ACS, GCS X X X X
8 TCS X X X X X X X X
9 Power Required X X X X X X X X X X

10 Mass X X X X X X X X
11 Size, Volume X X X X X X X X X
12 LV Selection X X X X X X X X X X
13 COCOMO II X X
14 Parametric CERs X X X X X X X X X

Stochastic 15 Lifecycle Simulation (MCA) X X X X X X
Outputs 16 SET Outputs X X X X X X X X X X X X X X

Spacecraft

Cost

Feedback 
Loops 

Table 8-1.  SET Design Structure Matrix. 
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size, given the destination orbit and launch site(s’) latitude(s).  The launch vehicle selection provides the 

option to use staged deployment strategies for launching fractionated spacecraft; refer to Ref. [141] for an 

example of staged deployment usage.  The criteria for launch vehicle selection are to minimize and 

maximize the aggregate cost and reliability of launching a spacecraft respectively, replicating the behavior of 

a balanced cost and risk decision maker.   

 

The remaining two algorithms in the cost model are the COCOMO II tool (for software only) and 

parametric cost estimating relationships (CER’s).  If possible, manufacturer quotes were obtained and used 

to cost subsystems, otherwise CER’s are used.  In total, the cost model employs thirty-one CER’s 

characterizing a spacecraft’s respective nonrecurring (NRE) and recurring (RE) costs.  In terms of enabling 

technologies, the cost model only accounts for their respective hardware cost and assumes the cost of 

developing them is borne elsewhere. 

 
3. Stochastic Model  

The stochastic LCC encapsulates the cost of developing, launching, and operating a spacecraft and, in 

addition, accrues the RE and launch vehicle costs associated with replenishing spacecraft/modules 

throughout a lifecycle.  The deterministic LCC does not account for the costs associated with 

replenishments and is thus the lower bound LCC of a given spacecraft.   

 

The stochastic model quantifies the stochastic LCC of a spacecraft by simulating potential lifecycles for that 

spacecraft via a Monte Carlo Analysis (MCA).  The model mimics a spacecraft’s lifecycle such that relative 

to a given time in its respective lifecycle, future states of operation are not known with certainty.  The 

stochastic model considers lifecycle contingencies belonging to four domains: launch, technical, 

operational, and programmatic [111,120,142].  The launch contingencies are a function of historical launch 

vehicle reliabilities, computed by Bayesian statistical probabilities.  The technical contingencies are 

manifested in a probability distribution of failure times generated from the expected operational life of a 

given spacecraft module and its respective probability of infant mortality.  (Probability of infant mortality is 

the probability a module will fail within its first year of on-orbit operation.)  The operational contingencies 

are embodied in a time-dependent, Markov state space model of human error leading to spacecraft failure; 

the model allows for both normal and stressful-induced human errors and is based on historical NASA 

operator error [143–145].  Lastly, the programmatic contingencies are modeled as a Bernoulli Trial 
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Sequence, where contingencies are manifested by a development schedule slip or lengthened schedule, both 

increasing development cost. 

 
SET OUTPUTS 

The SET outputs quantify a spacecraft’s physical- and cost-related characteristics at the system, module, 

subsystem, and component level; please refer to Ref. [111] for a detailed discussion of the SET outputs.  

There are four output aggregation levels: system, module, subsystem, and component.  The outputs carry a 

prefix corresponding to the respective aggregation level they characterize and each successively higher level 

(more encompassing) output amasses the characteristics of the lower level outputs.  For example, the 

system mass of a fractionated spacecraft is the aggregate mass of its respective modules.  From the SET 

output metric space, this research chooses certain benefits and costs to examine, in particular system level 

outputs, which are recognized to be a subset of the entire cost-benefit (value) space for fractionated 

spacecraft. 

 

SPACECRAFT EVALUATION TOOL VERIFICATION 

The SET verification demonstrates the SET’s mass and cost estimation accuracy and details of the 

verification can be found in O’Neill and Weigel [127]. 

8.3.6.   Modeling Changes in Technology  

Enabling technology innovation (change) is modeled using a discrete “S-curve” model, a selection based on 

findings from Szajnfarber et al. [146–149] who studied the pre-infusion (i.e., before a technology is flight-

ready) innovation history of six space science payload technologies.  These works found that while the 

overall trend in performance improvements followed the conventional S-curve model, technical 

breakthroughs were punctuated and lead only to minor improvements.  These breakthroughs specifically 

occurred at unpredictable intervals and their timing had important implications for capturing mission 

opportunities, thus suggesting that a discrete S-curve model for space technologies is most appropriate.  The 

continuous S-curve model of Technology Innovation is given in Equation 15 (adapted from Seggern [150]). 

Equation 15 

€ 

S(t) = smax − smin( )⋅ 1
1+ e − t+c / 2( )

$ 

% 
& 

' 

( 
) 

 
Here, S(t) is the performance gain (innovation) in a technology over time, t.  Depending on the technology, 

the S-curve can be mapped to an arbitrary timeline 

€ 

∈ 0,c[ ]  and performance gain bounds during that interval 
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€ 

∈ smin,smax[ ]; here smin and smax is the technology 

performance at time 0 (i.e., the beginning of 

the innovation period) and the theoretically 

best (or most desirable) performance at time 

c, respectively.  The normalized S-curve given 

in Equation 15 represents a technology that 

improves exponentially but is subject to an 

initial ramp-up and axiomatic progression as 

best performance limits are approached; this is demonstrated by the normalized S-curve shown in Figure 

8-7.  For a given enabling technology, a discrete version of the innovation S-curve in Equation 15 is 

generated by assuming that technology performance breakthroughs occur according to a Poisson Process 

and that the depth of these breakthroughs follows the continuous S-curve model given the timing of the 

breakthroughs.   

 
For a given spacecraft lifecycle assessment, the discrete innovation profile for each enabling technology is 

randomly generated by sampling the Poisson process to determine the inter-arrival of breakthroughs and, 

given these breakthrough timings, Equation 15 is then used to determine the breakthrough depths.  An 

example of a randomly generated discrete S-curve for the Comm_CS_C&DH enabling technology is 

provided in Figure 8-8, which 

depicts the relationship between the 

data transmission rate capability 

improvement during an arbitrary 

twelve-year innovation period.  As 

observed in Figure 8-8, the inter-

arrival times of discrete performance 

breakthroughs results in a plateau 

innovation profile (S-curve) over the 

assumed innovation period and this profile is representative of any randomly generated enabling technology 

profile. 
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In addition to gains in enabling technology performance, it is important to note that while the 

Comm_CS_C&DH and ADS_GNS enabling technologies are innovated, their reliability (along with that of 

the mission payload and other subsystems) is not assumed perfect and remains a constant source of risk in 

terms of spacecraft/module failure; this is further described in Ref. [127].   

8.3.7.   Innovation and System Performance  

Innovation in the enabling technologies affects spacecraft performance and cost as follows.  The 

Comm_CS_C&DH data rate transmission capability (performance) limits remote sensing spacecraft payload 

performance, measured by the resolution capability in pixels per meter (ppm), namely because this dictates 

the amount of information that can be transmitted from a payload to infrastructure module: the higher the 

data transmission rate, the higher the resolution capability on the payload module.  The ADS_GNS 

performance does not directly affect spacecraft performance since it is concerned with the relative 

positioning and control of spacecraft modules.  However, the benefit of improved control accuracy does 

reduce the minimum allowable distance between on-orbit modules.  This has many direct benefits including 

a reduction in spacecraft mass and power supply requirements and therein the cost of spacecraft.  

Conversely, ConOps innovation affects spacecraft performance and cost through the time constants 

associated with rebuilding and replenishing modules during the time window considered.  Since each 

replenishment scheme strongly influences the number of modules built over the time window, they each 

appreciably affect the resulting ToS, TWAP, and SLCC of a given spacecraft, which are the system outputs 

of interest in this case study. 

8.3.8.   Modeling Changes in ConOps 

While there are numerous facets to spacecraft operation including launch and in-situ operation, ConOps 

innovation, or more generally change is assumed to occur through advances in replenishment strategies for 

spacecraft during the time window considered.  Unlike innovation in technology, innovation in ConOps 

relies on several discrete replenishment strategies, some more advanced than others in terms of 

management complexity from the perspective of a spacecraft operator.  Replenishment strategies are 

essentially rules to be followed when replacing modules if they fail and, given the possibility of coupled 

module failures due to sharing subsystem resources in fractionated spacecraft, these rules can lead to 

notable complexity in operating a given spacecraft.  There are three replenishment schemes embodying the 

ConOps change, or innovation scale and a unifying rule within all of these schemes is that a shared resource 
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recipient module cannot be replaced unless its corresponding source module(s) are on-orbit, or ready for 

redeployment with the recipient module20.  The following are the three types of ConOps of considered: 

 
 Existing ConOps – No Innovation 

1. On-Demand: The On-Demand replenishment scheme is the simplest and existing ConOps strategy.  

This scheme begins rebuilding a module only after it is observed to fail on-orbit; thus, there will be 

a rebuild downtime before a module can be redeployed into service.  Another subtle rule within 

this scheme is that if a source module for a recipient module currently being rebuilt fails, the 

recipient module waits until the source module is ready to be redeployed; this is required by the 

previously mentioned overarching rule for these replenishment strategies. 

 

 Advanced ConOps – Operational Innovation (Change) 

2. Predicted:  The Predicted replenishment scheme uses a replenishment rule for replacing modules 

before they actually fail on-orbit to ensure better continuity of spacecraft service over the entire 

time window.  In the case where the expected design life of a module is less than the time window 

of interest, the predicted replenishment scheme hedges a bet that a module will fail after a certain 

time on-orbit and, subsequently, the “rebuild” of an eventually failed module on-orbit occurs while 

it is still on-orbit.  The potential advantage of this approach is no, or less payload downtime than in 

the On-Demand scheme before a module is replaced after an observed failure.  The specific rule 

used for this replenishment scheme is thus to begin rebuilding a given module within n years of 

observed on-orbit operation, where n is specific to the spacecraft architecture under consideration. 

 

3. Threshold: The Threshold replenishment scheme is identical to the On-Demand scheme except that 

after a module fails, it is not rebuilt until an enabling technology performance breakthrough occurs.  

Unlike the Predicted replenishment scheme, which attempts to maximize the continuity (i.e., 

duration) of payload service, this replenishment scheme attempts to maximize the on-orbit 

performance gains, thereby level of performance of a spacecraft over the given time window.  

 

These three replenishment (ConOps) schemes will all lead to different spacecraft performance gains over 

the time window since they strongly influence the aggregate rebuild or “downtime” of a spacecraft during 

                                                        
20 This rule is required because recipient modules cannot operate without their source module counterparts; see O’Neill and 
Weigel [127] for further explanation. 
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the window.  Thus, for a given architecture, the TWAP corresponding to each replenishment scheme will 

differ, perhaps substantially.  From a programmatic perspective, the Predicted and Threshold schemes are 

advanced given the increase in complexity of managing not only coupled module failures but also 

coordinating replenishments according to the specific replenishment rule used by each of these schemes, 

which depends on the timing of innovation breakthroughs and gaming strategies.  This is not the case when 

using the On-Demand scheme, which is relatively straightforward because of its one-rule strategy of “rebuild 

after an observed on-orbit failure and re-launch as soon as possible,” which means modules are simply re-

launched as soon as they are rebuilt. 

8.4.   Analyses 
This section presents the case study analyses and each analysis presents a different perspective of applying 

the Tradeoff Analysis Framework in order to assess the impact of innovation on space system design and 

operation.  Before the specific analyses are presented, the setup and key assumptions for the analyses are 

discussed.      

8.4.1.   Architectures  
Two architectures are considered in 

the analyses, which are conceptually 

depicted in Figure 8-9.  The first is a 

monolithic spacecraft and it belongs to 

the No Change category in the Change 

Taxonomy since this is the current architecture used to perform remote sensing missions.  And the second 

architecture is a simple fractionated architecture (referred to as the basic-fractionated architecture) and it 

requires the development of enabling technologies (i.e., innovation in technology) where any subsequent 

improvement in these technologies increases the performance of this spacecraft21.  Given the use of current 

and new (innovative) ConOps, these two architectures will therefore collectively demonstrate the four 

types of change, or innovation in the Change Taxonomy.   

8.4.2.   Problem Scope and Assumptions  

The major assumptions in the analyses are summarized hereafter.  It is important to keep these assumptions 

in mind when interpreting the research results and the ensuing discussions in this case study.  

 
                                                        
21 Recall, that the two enabling technologies considered are the Comm_CS_C&DH and ADS_GNS shared resources. 
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Figure 8-9.  Spacecraft Architectures. 
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 ARCHITECTURES AND INNOVATION  

• The two enabling technologies considered are the Comm_CS_C&DH and ADS_GNS shared 

resources.  The performance bounds for these technologies, which are required to model their 

respective innovation, are [1e+02, 5.5e+05] Bps (higher magnitude is better) and [1, 150] m 

(lower magnitude is better), respectively.  

• The time period for innovation in technology is fixed at 20 years, so after 20 years the 

Comm_CS_C&DH and ADS_GNS performance is the most desirable, given the performance 

bounds considered for each technology. 

 

SPACECRAFT OPERATION  

• The time window considered in the analyses is fixed at 30 years.  This time window is the period 

beginning with initial spacecraft development through the end of the program, which includes 

operating spacecraft as well as rebuilding and redeploying spacecraft modules if they fail.  This fixed 

time window is required to objectively compare the value proposition of architectures. 

• Spacecraft initial development is 5 years and the time required to rebuild modules if they fail is 

assumed to be 3 years due to economies of scale (learning).  

• A payload module can never be re-launched until its respective source module is ready to be 

launched with the payload module, or its source module is already on-orbit. 

• Staged deployment can be used for fractionated spacecraft and this can involve up to three launch 

vehicles being used to deploy a spacecraft. 

 

UNCERTAINTY 

• 3,500 MCA trials are used to analyze a given spacecraft, which is that required for the expected 

value of TWAP, ToS, and SLCC (and thereby revenue) to converge. 

• All lifecycle contingencies in the SET are considered, that is, launch vehicle reliability, human 

operator error, and on-orbit (technical) reliability (see SET discussion in Section 8.3.5). 

 

REPLENISHMENT (CONOPS) STRATEGIES 

• For the On-Demand replenishment scheme, modules are rebuilt immediately following an observed 

on-orbit failure.   
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• For the Predicted replenishment scheme, modules are rebuilt after 1 year of observed on-orbit 

operation, or after module failure if this happens before 1 year of operation.   

• For the Threshold replenishment scheme, failed modules are rebuilt only after there is an innovation 

breakthrough in either the Comm_CS_C&DH and ADS_GNS resource.  Since the innovation 

window is 20 years, after 20 years into the 30-year time window, the Threshold scheme is identical 

to the On-Demand scheme.   

8.4.3.   Overview of Analyses  

The analyses performed in this case study are summarized hereafter and they will collectively evaluate all of 

the categories in the Change Taxonomy. 

1. No Change Study: This analysis evaluates the monolithic spacecraft using the On-Demand ConOps 

scheme (1 assessment). 

2. Technology Change Study:  This analysis evaluates the fractionated architecture using the On-

Demand ConOps scheme (1 assessment). 

3. ConOps Change Study: This analysis evaluates the monolith using the Predicted ConOps scheme (1 

assessment); the Threshold ConOps scheme is not applicable to the monolith. 

4. Radical Change Study:  This analysis evaluates the fractionated architecture using the Predicted and 

Threshold ConOps schemes (2 Assessments).     
 

Therefore, in this case study, five analyses will be performed using the SET to quantify the impact of 

innovation in the design and operation of spacecraft performing remote sensing missions.   

8.4.4.   Analyses and Results 

Before the results of the five aforementioned analyses are presented, the competing and complementary 

nature of tradeoffs amongst the system outputs is analyzed.  This analysis specifically helps to identify the 

driving tradeoffs, or lack thereof, for determining value in this case study. 

 

TRADEOFF RESOLUTION  

Principal Component Analysis (PCA) is used to determine the competing and complementary nature of the 

system outputs and therein the sources of value (i.e., revenue and cost) [86].  PCA is a useful method for 

quantifying the correlation (or lack thereof) amongst the system outputs and representing the resulting 
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system output tradeoff hyperspace in a reduced-order (e.g., two-dimensional) space.  This representation 

enables the most important system output tradeoffs to be readily identified. 

 

In this case study, PCA was used to analyze the relationship amongst TWAP, ToS, SLCC, and Revenue, 

specifically using the data from the Technology Change Study described in Section 8.4.3.  After applying 

PCA, it was found that one and two principal components captured 84.0% and 99.99% of the variability in 

the system output space, respectively, thus implying that the original outputs comprising the tradeoff 

hyperspace can be fully captured in a two-dimensional principal component space.  The corresponding two-

principal component representation of the system output space is shown in Figure 8-10, which is 

normalized on the range of [-1, 1].   

The red scattered data in Figure 8-10 

are the system outputs mapped to the 

principal component space 

corresponding to the 3,500 MCA trials 

used to assess the Technology Change 

category (i.e., the basic fractionated 

spacecraft using the On-Demand 

replenishment scheme).  In Figure 

8-10, the black vectors are the ensuing 

system output dimensions mapped to the principal component space.  The two principal components in 

Figure 8-10 are composite variables of the four outputs and therefore the angular proximity of a given 

tradeoff vector to a principal component axis is indicative of its relative contribution to that component.  

For example, in Figure 8-10 Revenue is close in proximity to the first principal component (i.e., the x-axis) 

by an angular offset of 16.07º, therefore it contributes proportionally the most to the first principal 

component dimension.   

 

The relative angular displacement amongst the four output dimensions shown in Figure 8-10 by the black 

vectors can be used to determine the complementary and competing nature of these outputs in relation to 

one another.  Specifically, as the angular offset between any two dimensions nears 0º, 90º, and 180º, the 

two outputs become perfectly complementary, neutral, and perfectly competing, respectively, assuming that 

an increasing magnitude in an output is more desirable, which is the case for all of the outputs in this case 
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study except for the SLCC output.  Complementary output dimensions are aligned such that increasing the 

value of one increases the value of the other whereas competing dimensions (i.e., tradeoffs) demonstrate the 

converse of this situation.  And neutral output dimensions are uncorrelated.  Given the relative angular 

offsets amongst the tradeoff dimensions in Figure 8-10, the following can be concluded: 

 
1. TWAP and Revenue are complementary (angular offset of 4.88º) 

2. SLCC is nearly neutral to TWAP and Revenue (angular offset of 85.1º) 

3. ToS and SLCC are nearly opposing (angular offset of 139.8º), but since reducing SLCC and 

increasing ToS is desirable, this makes ToS and SLCC more complementary than they are 

competing    

 

Using PCA to draw the above conclusions provides valuable insight into the system outputs and ensuing 

important tradeoff dimensions in this case study.  For example, TWAP and Revenue were found to be 

complementary and these two outputs are also complementary with ToS (more than they are competing 

with ToS).  Intuitively, this makes sense since as shown in Equation 13, Revenue is dependent on TWAP 

and ToS, and therefore Revenue increases with a higher TWAP, which also happens to increase (to a first-

order) with ToS.  Thus, TWAP, Revenue, and ToS can be treated as complementary, that is, improving 

one will likely improve the others, in terms of stakeholder value.  And with regard to SLCC, it is desirable 

to decrease cost and since SLCC is close to being antiparallel to ToS, SLCC and ToS are closer to 

complements, that is, reducing SLCC increases ToS22.  The reason for the decrease of SLCC with an 

increase in ToS is that the cost of spacecraft operation is relatively small compared to the cost of rebuilding 

and re-launching spacecraft, hence, a higher ToS implies less rebuilds and thereby a lower SLCC.  Lastly, 

TWAP and Revenue are neutral to SLCC.  The reason for this is that TWAP depends on a combination of 

improvements in performance (resolution), via enabling technology enhancements, and the sequencing and 

timing of spacecraft deployments, which are subject to potential launch vehicle failures.  Thus, a given 

TWAP value can be manifested through numerous developmental and operational scenarios for a 

spacecraft, each corresponding to different SLCC values.     

 

In summary, the lesson learned from the PCA of the outputs in this case study is that in order to maximize 

value, maximize TWAP since this increases revenue and does not necessarily lead to an increase in SLCC.  

                                                        
22 Note: two opposing tradeoffs would be competing if it was desirable to increase the magnitude of both, but this is not the case 
with SLCC and ToS. 
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Thus, any approaches to design and operate spacecraft that increase TWAP are likely to increase Revenue 

without appreciably changing SLCC and thereby increase value.  While this conclusion is based on the data 

from the Technology Change study described in Section 8.4.3, the generalization of this conclusion to the 

results of the other innovation studies is supported in Appendix C, specifically through the comparison of 

the PCA-derived system output trends for all three ConOps scenarios with the fractionated spacecraft. 

 

VALUE PROPOSITIONS 

The value 

propositions in this 

case study are 

summarized in Figure 

8-11, which shows 

the four categories of 

innovation assessed 

using monolithic and 

fractionated 

spacecraft and the 

three redeployment 

and replenishment 

schemes.  (Recall that the monolith 

cannot use the Threshold scheme.) 

All units in this figure are in units of 

FY11$M.  As seen in Figure 8-11, for 

each analysis, the inter-quartile range 

(i.e., 25th, 50th, and 75th percentiles) 

of value is provided.  A sample value 

histogram corresponding to the 

Technology Innovation study is 

shown in Figure 8-12, where the 

sample size is 3,500 trials.  The resulting distribution appears to be weak lognormal distribution, although 

this is not necessarily the case for the value distributions corresponding to the other change analyses. 
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Therefore further statistical validation of this distribution is required to verify its log-normality.  Examples 

of representative operational histories corresponding to the fractionated spacecraft and the three ConOps 

scenarios can be found in Appendix D. 

 

In examining Figure 8-11, one consistent trend is that the Predicted replenishment scheme offers more 

value than the On-Demand and Threshold schemes, regardless of architecture.  Additionally, regardless of 

ConOps, the fractionated spacecraft value is consistently less than the comparable monolithic spacecraft.  In 

fact, the median value of fractionated spacecraft is negative (or close to 0) whereas the monolith always 

yields a positive median value.  The reasoning for this trend is discussed in more detail in Section 8.5. 

 

The value results shown in Figure 8-11 effectively explore the “corners” or extremes of potential ConOps, 

thus defining the fractionated value boundaries in this case study.  The isolation of the ConOps corner 

points allows for inferences to be made about fractionated spacecraft value that span the space of potential 

ConOps (replenishment) schemes for these spacecraft.  To demonstrate these boundaries, Figure 8-13 

shows the median Value versus ToS, which is 

complementary with TWAP, for the basic 

fractionated spacecraft given all three 

replenishment scenarios.  As seen in Figure 8-13, 

the Threshold scheme defines the lower bound 

for ToS and Value.  This is because with this 

scheme modules are not replaced until there is an 

improvement in one of the enabling technologies, 

so in these scenarios spacecraft modules see the 

longest downtime and thereby the lowest ToS and value delivery.  The upper bound of ToS and Value is 

established with the Predicted replenishment scheme since this scheme often provides continuous on-orbit 

payload service and thus the highest ToS and value delivery.  Lastly, the On-Demand scheme ends up being 

slightly higher than the Threshold scheme in terms of ToS, but is nearly identical in terms of value; the 

explanation for this is discussed in more detail in Appendix D.    

 
 THE VALUE ROBUSTNESS ARGUMENT  

One of the longstanding arguments as to the potential benefit of fractionated spacecraft relative to a 

comparable monolith is that when both are subject to the same lifecycle contingencies (e.g., launch or on-
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orbit failures), fractionated spacecraft will have more value robustness, that is, a narrower distribution of 

expected value (i.e., less value-variance).  In this case study, several lifecycle contingencies were considered 

and these include: human (operator) error, launch vehicle reliability, technical (hardware) reliability, and 

programmatic issues.  Given that the monolithic and fractionated spacecraft in this case study were equally 

subjected to these contingencies, the remainder of this section will examine the value-at-risk, or value 

robustness argument for fractionated spacecraft in the context of innovation, which makes a unique 

contribution to the value robustness argument for fractionated spacecraft.  

 

The value-variance 

corresponding to the 

five analyses 

performed in this case 

study is shown in 

Figure 8-14, which 

presents the order-

statistic, five-number 

summary for each 

type of change, or 

innovation examined.  

Starting from the top 

of each “box-and-whisker” plot in Figure 8-14, the percentiles are indicated by horizontal lines and are the 

maximum (100th), 75th, 50th (median), 25th, and minimum (0th) percentiles.  One measure of the value-

variance of spacecraft is the inter-quartile range, which is the range between the 75th and 25th percentiles; 

this range is shown in Figure 8-14 by the blue shaded boxes.  As can be seen for the On-Demand and 

Predicted replenishment schemes, even though the inter-quartile range of the fractionated spacecraft is 

lower (i.e., less valuable) in an absolute sense, fractionated spacecraft have a tighter variance by 72 and 138 

FY11$M relative to the comparable monolith with the On-Demand and Predicted ConOps schemes, 

respectively.  This leads to a reduction in value variance of 21% and 32% when using fractionated spacecraft 

with the On-Demand and Predicted ConOps, respectively.  Hence, the results from this case study support 

the conclusion that fractionated spacecraft are more value-robust, even given the innovation investigation 

emphasis in the case study. 
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An alternative perspective of the 

differing value robustness of 

monolithic and fractionated spacecraft 

is demonstrated by comparing their 

respective value-at-risk and gain 

(VARG) curves, which are their 

respective value cumulative 

distribution functions (cdf’s); these are 

shown in Figure 8-15 and Figure 8-16.  

In these figures, the dotted and solid 

lines represent the median value and 

value cdf, respectively, and the color 

red and blue represents the monolithic 

and fractionated spacecraft, 

respectively.  For a given spacecraft, 

the relative portion of the cdf that is 

negative and positive in terms of value 

measures the value-risk and value-

gain, respectively.  So, for example, 

the fractionated spacecraft using the 

On-Demand scheme in Figure 8-15 is predominantly a value-risk since very little of the cdf falls in the 

positive value region.  Lastly, the median line will indicate whether the spacecraft has a greater total value-

risk or value-gain by its respective sign (relative to 0); this median value is that reported in Figure 8-11 for a 

given architecture. 

 

A few insights can be gained from the VARG curves.  First, the monolithic cdf’s are punctuated, which is 

indicative of the discrete failures and replenishments of the monolith; each step in the monolith cdf 

corresponds to a unique number of failures and hence replenishments and, since the cost of the launch 

vehicle used by the monolith is about $150 million dollars, the steps in value are noticeable.  Conversely, 

fractionated spacecraft have smooth cdf’s owing to the fact that there are numerous combinations of 

deploying and operating separate modules as well as launching them on multiple launch vehicles, which 
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ultimately yields a higher number of unique deployment and operational scenarios and hence revenue and 

cost combinations (i.e., value).  Since, the cdf’s all begin at roughly the same value (about -600 FY11$M), 

comparing the span of a given spacecraft’s cdf as it goes from 0 to 1.0 along the y-axis is also a measure of 

its value-variance (or robustness) since this indicates the “tightness” of a spacecraft’s distribution of potential 

value.  Correspondingly, in Figure 8-16 and Figure 8-15, the fractionated spacecraft demonstrates less 

value-variance than the comparable monolith, despite the value-risk outweighing the value-gain for the 

fractionated spacecraft in the On-Demand case, and the value-gain slightly outweighing the value-risk in the 

Predicted case. 

 

In summary of the findings from the monolithic and fractionated spacecraft value robustness analysis, the 

following can be concluded.  First, innovation in technology leading to the development of fractionated 

spacecraft creates more value-risk than value-gain as compared to not innovating (i.e., using monolithic 

spacecraft).  And regardless of technological innovation, using the Predicted ConOps scheme, as compared 

to using the On-Demand and Threshold schemes, reduces the value-risk of a spacecraft.  Despite the 

consistently less positive value potential of fractionated spacecraft as compared to monoliths, they 

demonstrate notable reductions in the value-variance about their respective expected value, thus implying 

that they have more value robustness than a comparable monolith, given an equivalent subjection of these 

spacecraft to lifecycle contingencies.  

8.5.   Discussion 
The objective of this case study was to evaluate the impact of innovation on the design and operation of 

spacecraft performing remote sensing missions.  The specific innovation considered was the development 

of, and improvements in, enabling technologies, which are required for fractionated spacecraft, as well as 

changing replenishment strategies (ConOps) for both monolithic and fractionated spacecraft.  The two 

stakeholders of interest in this case study were the spacecraft developers and the operators, the former 

being responsible for developing and manufacturing a spacecraft and the latter being responsible for 

operating the spacecraft.  The value proposition for these two stakeholders differs in that the spacecraft 

developer does not receive any direct benefit from the spacecraft operation other than demonstrating a 

successful mission, whereas the operator derives a direct benefit from the spacecraft operation in terms of 

acquiring images of the earth.  Subsequently, the developer has no direct value-based incentive to 

participate and, thus in this case study, the developer and operator were combined into one stakeholder 

who collectively bears the costs of, but also benefits from, a spacecraft’s operation.   
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The specific insights regarding the impact of innovation on remote sensing spacecraft are discussed first in 

this section followed by a discussion of the unique implementation insights gained from applying the 

Tradeoff Analysis Framework in this case study. 

8.5.1.   Case Study Insights  

This case study and its ensuing results provide a first glimpse into the impact of innovation on the remote 

sensing mission paradigm, specifically the value of fractionation in this mission context.  The section begins 

with discussing the role and subsequent value of replenishment strategies for remote sensing missions and 

then discussed the trends in the system outputs and value propositions.  This section concludes with 

discussing the implications of the assumptions made in the case study as well as the impact of the case-

specific insights gained herein in terms of the past and future of the DARPA System F6 program.  

 

REPLENISHMENT (CONOPS) STRATEGIES 

The first important insight is the role of replenishment strategies for remote sensing spacecraft.  The 

current or datum strategy is the On-Demand scheme whereas new, more complex replenishment strategies 

include the Predicted and Threshold schemes (see Section 8.3.8 for a description of these schemes).  As was 

found in the results, the Threshold and Predicted schemes define the “corner points” in terms of potential 

value for fractionation (see Figure 8-14).  The Threshold scheme generates the least value because the 

emphasis is on redeploying modules only when technological innovation occurs (i.e., improvements in the 

enabling technologies).  Thus, with this replenishment scheme the ToS tends to be low and, despite the 

high gains in performance with each new spacecraft module deployment (and hence revenue potential), the 

ToS dominates the revenue generation and so these spacecraft prove relatively invaluable.  Conversely, the 

Predicted replenishment scheme yields the best case scenario for value through seamlessly replacing 

modules on-orbit by building them beforehand, thereby maximizing ToS while still seeing gains in 

spacecraft performance due to innovation and hence revenue potential.  However, the major disadvantage 

of this approach is that redeployed modules will often lack the latest innovation since they are prebuilt, 

potentially years before a module is ever observed to fail on-orbit.  Despite this limitation, the high ToS 

with the Predicted replenishment strategy dominates the revenue generation and hence yields a high value 

as compared to that yielded with the other strategies.   

 



150 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

The remaining insight regarding spacecraft innovation in ConOps is that, interestingly, the On-Demand 

scheme is very similar to the Threshold scheme in terms of spacecraft value.  The dynamic between these 

two replenishment strategies, as explored hereafter, provides an interesting glimpse regarding the relative 

value of these approaches.  In this case study, a three-year module rebuild time was assumed whereas the 

enabling technology breakthrough inter-arrival time was, on average, about two years.  If the rebuild time 

of modules is similar to the average inter-arrival time of enabling technology breakthroughs, then the On-

Demand and Threshold schemes are going to very similar, if not indistinguishable in terms of spacecraft 

value delivery.  And as the technology breakthrough inter-arrival times become much larger, and shorter 

than the module rebuild time, the On-Demand replenishment scheme will become more valuable and 

similar in value to the Threshold replenishment scheme, respectively.  The reason for the former is that 

when the technology breakthrough inter-arrival times are longer than the time required to rebuild a 

module, on average, this will result in excessive module downtime while waiting for a technology 

breakthrough and thereby a loss in value.  However, in the opposite sense, as the breakthrough inter-arrival 

times become shorter than the module rebuild time, the constraint on rebuilding and redeploying modules 

will be the rebuild time, which cannot be shortened given the assumptions made in this case study, and 

hence the On-Demand and Threshold schemes converge in terms of value delivery.   

 

Therefore, in summary of the findings regarding ConOps innovation, or more generally change for remote 

sensing spacecraft, the Predicted scheme consistently yields the most value, regardless of architecture 

(monolithic or fractionated).  The lesson learned from this conclusion is that even though a replenishment 

scheme may not optimize performance gains in technology, which is the driver for gains in revenue, the 

driver of value is ToS, which is maximized by keeping the payload module(s) on-orbit, and the Predicted 

replenishment scheme does exactly this.  And since the cost of operating spacecraft is relatively low 

compared to the cost of rebuilding and redeploying them, the more time on-orbit a spacecraft has, the more 

value it can deliver, even if the spacecraft performance is suboptimal at the moment given advances in 

technology.  The results from this case study can therefore be extended to tentatively support the use of 

spare modules either on the ground or in space to immediately replace failed modules in a fractionated 

spacecraft in order to maximize its respective value.  However, further investigation into maximizing value 

as it depends on the spacecraft architecture and replenishment schemes will need to be conducted to 

generalize this tentative conclusion.  
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SYSTEM OUTPUTS AND VALUE PROPOSITIONS 

The other insights gained from this case study are with regard to the potential value of innovation in the 

remote sensing mission paradigm.  The results leading to these insights provide one perspective for 

understanding the impact of innovation on remote sensing spacecraft design and operation.  In terms of 

system output tradeoffs, it was found that TWAP and ToS were complementary and both were neutral to 

SLCC.  Since SLCC was relatively independent of TWAP and ToS, there was an absence of strongly 

competing system output tradeoffs observed in this case study, which was not known before performing the 

case study, hence demonstrating one of the benefits of using analytical methods such as PCA to analyze the 

system output/value space (see Section 8.4.4).  The reason for the neutrality of SLCC to TWAP and ToS is 

that there are a numerous manifestations of a spacecraft’s operational history corresponding to a given 

TWAP and ToS value and each of these can have appreciably different costs given the contingencies 

considered for spacecraft in this case study (see Section 8.3.5).  In terms of value, spacecraft Revenue was 

found to be complementary to TWAP and ToS, which intuitively makes sense, and thus Revenue is 

relatively neutral to SLCC.  So in terms of the value proposition, the key to maximizing value is to 

maximize revenue, or TWAP and ToS. 

 

Recall that in this case study, innovation in technology leads to fractionated spacecraft and subsequent 

performance improvements in these spacecraft.  However, this source and type of innovation proves to be 

undesirable in terms of value relative to the current remote sensing mission paradigm, namely, monolithic 

spacecraft.  As shown in the case study results, even when accounting for uncertainty, fractionated 

spacecraft have 225 FY11$M less value as compared to the monoliths value of 47 FY11$M, a 272 FY11$M 

loss in value through innovation in technology.  This loss in value would have further increased had the case 

study included the cost of research and developing the enabling technologies, which was assumed to be 

borne elsewhere.  As discussed in the previous paragraph, regardless of spacecraft architecture, the 

Predicted replenishment scheme increases value delivery.  However, despite fractionated spacecraft 

providing positive value with the Predicted scheme, the monolith still provides 223 FY11$M more value 

than the fractionated spacecraft in using this scheme.  Therefore, regardless of replenishment scheme, since 

the value offered by fractionated spacecraft is negative (or close to it with the predicted scheme), this 

demonstrates a clear value-positive preference for monolithic spacecraft given a current-day evaluation of 

the value potential of fractionated spacecraft, given the assumptions made in the case study.            
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Based on the quantitative results of this case study summarized in the previous paragraph, there are two 

interesting discussion points regarding the impact of innovation.  The first is with regard to the absolute 

value of innovation, which depends heavily on the revenue model used in the case study (see Section 8.3.3). 

Recall, that this model was derived from the current market (value) for acquiring images of the earth and 

while there is likely uncertainty in the revenue model, it does demonstrate the current cost-competitive 

nature of the earth imaging acquisition market.  Correspondingly, as shown in the results, with or without 

innovation, the profit margin (if any) for spacecraft is not particularly large, specifically, no more than a 240 

FY11$M profit margin was observed for remote sensing spacecraft.  Therefore, the cost-competitive nature 

of the earth image acquisition market increases the demand for innovation to become immediately valuable 

in order to maintain positive profits.  And, unfortunately, this was not demonstrated in this case study since 

innovation in the enabling technologies did not progress rapidly enough for fractionated spacecraft to stay 

value-competitive with the comparable monolith, which yielded marginal profits to begin with.  Therefore, 

the conclusion drawn from this case study in terms of absolute value delivery is that it is currently more 

valuable to use a monolithic spacecraft and not pursue innovation.  There could be an arguable tradeoff 

between monolithic and fractionated spacecraft if fractionated spacecraft yielded positive value, but since 

the value offered by fractionated spacecraft is negative (or close to it with the Predicted scheme), this 

demonstrates a clear value-positive preference for monolithic spacecraft based on these case study results 

and the assumptions made within the case study.     

 

In summary, the focal lesson learned from this case study is that the impact of technological innovation in 

the remote sensing mission paradigm is a negative one, owing to the fact that the enabling technologies are 

not space-qualified to the level of performance and reliability needed for fractionated spacecraft to presently 

stay value-competitive to a monolith.  However, the impact of innovation in operations is positive as it can 

increase value delivery, regardless of spacecraft architecture.  Therefore, in summary, if fractionated 

spacecraft were to be deployed today, their respective enabling technologies may limit their potential value 

delivery until they are flight-ready at the desired level of performance and reliability.  Once this is the case, 

many of the other benefits of fractionation demonstrated in this case study and the relevant literature such 

as the lesser value-variance (i.e., higher value robustness) of fractionated spacecraft might come to fruition. 
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ASSUMPTIONS 

The assumptions made in the case study are summarized in Section 8.4.2 and they drive the observed 

results.  Of the assumptions made (see Section 8.4.2), the only that are likely to change the results and 

insights gained in the case study are the time-window considered, the performance bounds of the enabling 

technologies, and the inter-arrival of technology breakthroughs.  The time-window is the period during 

which spacecraft are initially developed, deployed, operated, rebuilt, and redeployed.  An infinite time-

window would eliminate the adverse value-effect of the innovation buildup period, during which the 

enabling technologies cause fractionated spacecraft to have inferior performance compared to a monolith.  

The other important assumptions are the performance bounds of the enabling technologies, in particular, 

the initial or present day performance bound.  Intuitively, if the initial performance is near the desirable 

performance, fractionated spacecraft will be immediately value-competitive with monoliths, but the reality 

is that the enabling technologies are presently immature, given their respective definitions in this case study.  

Thus, interesting future research for this case study would be to investigate the sensitivity of the enabling 

technology bounds (along with the breakthrough inter-arrival times) to gain a clearer perspective of the 

potential value of fractionation, given different technological innovation progressions (scenarios).           

 

CASE STUDY INSIGHTS AND THE DARPA SYSTEM F6 PROGRAM  

The motivation of this case study was to paint a more realistic picture for future fractionated spacecraft 

investors through, in part, examining the affect of innovation on their potential value delivery.  In 

accounting for uncertainty in value, the results from this case study suggest that fractionated spacecraft are 

less valuable than comparable monoliths.  In addition, the results suggest that if fractionated spacecraft were 

to be deployed today, their enabling technologies may be the limiting factor in terms of their value delivery.  

Despite this, once the enabling technologies eventually mature to their desired level of performance and 

reliability, fractionated spacecraft are likely to stay value-competitive to comparable monoliths, specifically 

because of their higher value robustness (i.e., less variance in value) relative to comparable monoliths, as 

was demonstrated in this case study.  This observation supports the overhaul of the DARPA System F6 

Program in the fall of 2009 to focus on the development the “F6 technology pillars,” which includes the 

development of some of the enabling technologies considered in this case study as a prerequisite to 

deploying fractionated spacecraft.  This was not emphasized in the first phase of the program but has now 

become one of its cornerstones.  The current System F6 program therefore seems to align itself with the 

recommendations of this case study to focus on maturing the enabling technologies until they no longer 
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limit the capabilities of fractionated spacecraft relative to a comparable monolith.  Once this is achieved, 

fractionated spacecraft may offer the unique sources of value (relative to a comparable monolith) as 

hypothesized and supported in the fractionated literature (see Section 8.2).     

 

In addition to the challenge of justifying fractionated value, DARPA’s current fractionated spacecraft 

demonstration approach may also prove challenging, which requires the participation of a third party 

spacecraft (module) developer to be responsible for building and integrating a module with a fractionated 

spacecraft already on-orbit23.  As was discussed in Section 8.3.2, when the developer and operator of a 

spacecraft are separate (organizations), there is a misalignment of the value proposition, so much so that the 

third party developer has very little, if any, direct value-based incentive to participate in the operation of 

the spacecraft.  This is primarily due to the fact that the developers bear most of the financial risk and 

receive very little, if any, of the direct benefits from the spacecraft operation.  This situation mirrors the 

current value proposition for the third party module developers who DARPA is interested in having 

participate in the F6 program, which may substantiate some of the challenges that lie ahead in garnering 

their participation for the program. 

 

FUTURE RESEARCH 

While this case study provides a glimpse into the impact of innovation, specifically the development and 

improvement of fractionated spacecraft, there are many areas for future research that would be beneficial 

for understanding the potential value of fractionated spacecraft.  First, many assumptions were made 

regarding the enabling technologies and their progression (improvement over time).  These assumptions 

greatly influence the value offered by fractionated so it would be valuable to explore these assumptions to 

better understand the sensitivity of value to innovation.  The second area for future research would be 

examining additional fractionated architectures.  Only one fractionated architecture was considered in this 

case study, however, there might be other potentially valuable fractionated architectures worth analyzing.  

For example, a space-based, fractionated interferometer may prove quite valuable despite the conclusions 

drawn about fractionation in this case study or, alternatively, examining the use of redundant infrastructure 

modules in fractionated spacecraft may prove valuable.  Lastly, analyzing other instances of coupled 

innovation through new ConOps (replenishment strategies or other operational scenarios) and 

                                                        
23 The first party such as DARPA or some other organization will supply these other modules and they are ultimately responsible 
for operating the spacecraft. 
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new/different enabling technologies are likely to prove insightful for understanding impact of innovation on 

the remote sensing mission paradigm. 

8.5.2.   Framework Implementation Insights 

This section discusses the implementation insights gained through applying the Tradeoff Analysis 

Framework in this case study to assess the impact of innovation on remote sensing mission spacecraft.  The 

section is parsed into discussing uncertainty in the framework and the subsequent modifications required to 

the framework to address this uncertainty. 

 
UNCERTAINTY IN THE FRAMEWORK 

The various sources of uncertainty in the framework were an important consideration in this case study as 

well as the affect of this uncertainty on the framework execution and representation of results.  Thus, the 

first implementation insight deals with uncertainty in the framework, specifically their respective origin(s) 

and downstream implications in terms of the framework execution.  The third case study served as the 

platform for developing insights about uncertainty its implications, specifically because there were several 

key sources of uncertainty that arose in the system and external factors in the framework; thus, in this case 

study, a combination of two sources of uncertainty (i.e., layered uncertainty) had to be dealt with.  Any 

uncertainty in the framework will ultimately be reflected in the value proposition, which, recall, is 

conveyed back to the analyst and stakeholders of interest.  Therefore, alterations to the framework must be 

made in order to account for sources of uncertainty and the 

result is the introduction of new challenges in executing the 

framework, which are summarized in Table 8-2.  The first of 

these challenges is determining the required alterations needed 

to the framework in order to capture/quantify uncertainty; this 

is obviously very dependent on the source(s) of uncertainty and their underlying representation.  This 

challenge, as addressed in this case study, is discussed next. 

 

MAKING MODIFICATIONS TO THE FRAMEWORK 

In this case study, there were two main sources of uncertainty in the framework: the external factors and 

the system model (see Section 8.3.5).  The uncertainty in the external factors arose because of the various 

lifecycle contingencies affecting spacecraft such as launch vehicle reliability and human operator error.  

Conversely, within the system component of the framework, the cost model contained uncertainty because 

Challenges
Modifications to the framework
Visualization

Table 8-2.  Challenges Introduced via 
Uncertainty and Constraints. 
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it relies on parametric (mass-based) CER’s, so there is an associated level of confidence in the SLCC system 

output.  The introduction of this uncertainty, specifically from the external factors, required the framework 

to be implemented differently in order to capture this source of uncertainty.  Figure 8-17 summarizes the 

changes made to the 

framework in this case study, 

which consisted of using a 

Monte Carlo Analysis (MCA) 

to sample the system output 

space for a given architecture.  

This random sampling method 

was chosen because the 

external factors are 

manifested by statistical 

models of the various sources 

of contingencies in a 

spacecraft’s respective lifecycle.  As such, the MCA executes the system transform (see Section 4.3.1) 

repeatedly for a given architecture in order to sample the corresponding system output space.   

 

The spacecraft cost model uncertainty can be captured through putting quantifiable tolerances on each 

SLCC value; this can be done since the uncertainty in the cost model is quantifiable via the parametric, 

mass-based CER’s employed.  While cost model uncertainty is not conveyed in the results of this case 

study, examples showing this source uncertainty in combination with external factor uncertainty (as 

captured via a MCA) can be found in Ref. [127].  

 

There are two important considerations when modifying the framework to account for uncertainty.  First, 

any modifications to the framework must preserve the original flow of inputs and outputs in the 

framework.  The inherent utility of the framework depends on its underlying mechanics (functionality) such 

as the system transform (see Section 4.3.1), and these core functions of the framework must be maintained 

in order to realize its intended utility.  A good example of making modifications to the framework while 

maintaining its underlying functionality can be found in this case study where a MCA was effectively 

wrapped around the system transform but did not change the underlying inputs or outputs of this 
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framework element.  The second consideration when making modifications to the framework is whether 

these modifications still allow the framework to be used to meet the original objectives of the framework 

application.  Modifications can disrupt the framework execution and so care needs to be taken in making 

modifications in order to meet the original objectives set forth for the framework usage, given the 

application of interest.  For example, if using a MCA increases the time required to execute the framework, 

so much so that it becomes intractable to analyze the system of interest, then the MCA modification to the 

framework is inappropriate since the original objectives of the framework execution cannot be achieved.   

 

REPRESENTING (VISUALIZING) UNCERTAINTY 

The second and remaining framework implementation insight that will be discussed deals with representing 

uncertainty.  When two or more sources of uncertainty exist in the framework, it leads to layered 

uncertainty in the value proposition, since each source of uncertainty must be explicitly accounted for 

through value.  Layered uncertainty may lead to challenges in representing value, which may not be trivial.  

The remaining challenge due to uncertainty in the framework is therefore representing uncertainty, 

specifically through the hyperspace visualization component of the framework.  Depending on the methods 

used to quantify uncertainty, the task of visualizing the resulting value proposition(s) may become more 

difficult than visualizing deterministic data.  Uncertainty in the framework, regardless of how it is 

quantified, will introduce a tolerance (or confidence) in the value proposition and this tends to make the 

visualization of this proposition more complex through requiring a single metric value to be represented 

with respect to its range of possible values.  While this challenge remains very specific to a given framework 

application, an important source of guidance for visualizing uncertainty in the framework outputs is Miller’s 

Cognition Limitation Rule (aka “Miller’s Law).  Miller’s Law states that people (e.g., stakeholders) are 

limited to simultaneously trading (managing) in 7 +/- 2 dimensions [151], although more recent research 

regarding this landmark study suggests that Miller’s estimate is high and that people are more likely limited 

to simultaneously trading in 4 dimensions [152].  Uncertainty or not, Miller’s Law serves as constructive 

guidance for the maximum practical number of dimensions that can simultaneously visualized, if the 

information is to be effectively understood and used by the analyst and/or stakeholders in the framework.  

 

In terms of visualization, the solutions offered in this case study include: a composite variable representation 

via Principal Component Analysis (Figure 8-10); a histogram, or probability density function (Figure 8-12); 

an order-statistic, five-number summary (Figure 8-14); and value-at-risk and gain (VARG) curves, or 
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cumulative distribution functions (Figure 8-15).  While all of these approaches are valid for visualizing 

uncertain outputs, the most common technique for representing uncertain system outputs is to simply use 

the mean trends in the system outputs and ensuing value proposition as shown in Figure 8-11.  This 

visualization approach, however, abstracts the potential system output space to a single number, therein 

losing the important insights to be had from the distribution of these framework outputs.  Subsequently, the 

four previously mentioned visualization approaches were explored in this case study for representing value 

uncertainty.  While these approaches to visualizing uncertainty are not all-inclusive (see Appendix A for 

other potential visualization options), they demonstrate the common tradeoff between abstract and detailed 

representations of uncertain metrics (outputs) and therein the limitations of visualization in terms of the 

volume of uncertain information that can be effectively conveyed at one time. 

 

EXPLORING THE SYSTEM OUTPUT TRADEOFFS WITH PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (PCA) was used in this case study to analyze the tradeoff hyperspace 

comprised of the system outputs of interest in this study.  A relevant discussion about the use of PCA in the 

context of the Tradeoff Analysis Framework can be found in Section 6.5.2. 
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9.  DISCUSSION 
The focus of this section is the key insights gained through this research through applying the Tradeoff 

Analysis Framework.  This section begins with discussing the potential opportunities to extend this research 

in relation to the tangible outcomes of this research, namely the Tradeoff Analysis Framework and Change 

Taxonomy.  Then, the core insights and ensuing contributions of this research are presented followed by a 

discussion of the scope of problems that might be analyzed with the framework.  It is important to 

recognize that the framework opportunities and ensuing contributions of this research are purposefully 

independent of the specific application of the framework given the intention of this research to provide a 

general, or system-agnostic approach for analyzing tradeoff hyperspaces associated with aerospace systems.  

9.1.   Framework Opportunities 
In order to provide a balanced perspective of the ensuing contributions of this research, three key 

opportunities for extending this research are discussed hereafter, specifically of the Tradeoff Analysis 

Framework and Change Taxonomy.  In addition to these, the unique usage of Principal Component 

Analysis to identify the complementary and competing nature of the system outputs in a tradeoff hyperspace 

is also discussed as a potential opportunity.  While there are observed opportunities for extending the 

specific methods and framework from its application in the case studies employed in this research, these 

opportunities are contingent upon the specific applications and ensuing methods used in the framework and 

therefore are excluded in this discussion of the framework opportunities.  The corresponding opportunities 

of interest are those at the macroscopic level, meaning that these opportunities are inherent to the Tradeoff 

Analysis Framework, Change Taxonomy, and methods independent of framework application. 

9.1.1.   Framework Applicability 

The first opportunity to extend this research stems from the observation that the Tradeoff Analysis 

Framework is an example of a prescriptive methodology that characterizes how engineering design and 

evaluation should be executed based on observations of the design process being executed in practice.  

Therefore, the prescriptive framework provides a basic methodological structure with constituents that can 

be defined and tailored by a given designer or user of the framework, and thus the framework provides a 

convenient platform for analyzing engineering systems.  However, the limitation of the framework is that it 

is a prescriptive and not descriptive framework.  The latter type of framework is structured such that it 

characterizes how engineering design and evaluation is executed based on observations of the engineering 

design process executed in practice.  In a descriptive framework, each component is fully defined for any 
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designer and user and is specific to the engineering process(es) used to develop the framework.  The major 

difference between prescriptive and descriptive frameworks is therefore that the descriptive framework 

development and execution will differ for each user and application since it is built from scratch and 

specifically to the application of interest, whereas with a prescriptive framework, the underlying structure 

of the framework never changes and thus the only development and execution changes are specific to the 

methods used for each framework component [153].  Therefore, prescriptive frameworks are somewhat 

ideal representations of a process, but they are typically more general (abstract) and thus widely applicable 

than descriptive frameworks.   

 

The resulting Tradeoff Analysis Framework thus suggests how tradeoff hyperspaces should be analyzed, but 

this may not be indicative of how a particular user or analyst of the framework desires to analyze such 

hyperspaces, for a particular application.  Therefore, while the framework was developed to be as 

generalizable as possible, the tradeoff is that the framework has to be abstracted and representative of 

observed engineering design processes.  As such, the analyst or user of the framework may find that 

departures from the framework are needed in order to conform to their particular intended application and 

these become potential opportunities to extend the framework development and further its applicability.  

The best evidence of this are the three Tradeoff Analysis Frameworks developed in this research, specifically 

the Framework with Multiple Stakeholders and the Framework with Optimization, which are departures 

from the Baseline Framework, which were developed in response to extending the Baseline Framework to 

analyze new types of tradeoff problems.  Even though the framework provides a convenient structure for 

adaptations, it cannot prescribe how this is to be done, thus the opportunities to extend the framework may 

be abundant and developing such extensions is a creative process.  For a specific example, consider the 

framework as it was modified in the third case study in order to account for uncertainty, which was an 

important aspect of understanding the impact of innovation in this particular application.  Subsequently, the 

framework, specifically the system transform, was modified using a Monte Carlo Analysis (random 

sampler) to account for the uncertainty in the external factors (see Section 8.5.2).  And while the 

underlying framework provided a convenient structure for making this modification, it did not prescribe 

how one must account for uncertainty in the framework.  

 

Any prescriptive framework provides opportunities for further development and maturation based on the 

users of the framework.  The concluding point about this observation is that the Tradeoff Analysis 
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Framework and subsequent versions of the framework provide a convenient starting point for analyzing 

tradeoff hyperspaces for engineering systems, but as demonstrated through the framework implementation 

insights in Sections 6.5.2, 7.5.2, and 8.5.2, each application of the framework will likely have to be tailored 

to the system/problem of interest and this may not be trivial.  Therefore, because the framework is so 

generalized (prescriptive), it cannot be executed for a particular application without defining and 

developing the framework components and the required creativity and effort to do this should not be 

overlooked, and this is therein an important opportunity for the analyst or user of the Tradeoff Analysis 

Framework. 

9.1.2.   The Change Taxonomy 

The second potential opportunity to extend this research and the Tradeoff Analysis Framework applicability 

arises from the Change Taxonomy used to structure the proposed changes in the applications of the 

framework in the case studies.  Although the taxonomy was a central theme in the case studies, this 

opportunity is only realized when using the taxonomy to the structure the proposed changes in applying the 

Tradeoff Analysis Framework.  Recall, that the purpose of the Change Taxonomy was to identify, and 

thereby structure the potential sources of change, or innovation in a given system to be analyzed by the 

framework.  Subsequently, two dimensions of change in engineering systems were identified and used to 

create the Change Taxonomy and they are technological (technology) and operational (ConOps) change.  

The resulting four combinations of these two axes of change are No Change, singular (i.e., uncoupled) 

change in technology or ConOps, and radical (i.e., coupled) change in technology and ConOps.  The 

perspective of change inherent to the Change Taxonomy is thus a product- or system-focused change, given 

the taxonomy’s emphasis on changes in technology (hardware, configuration) and operations. 

Correspondingly, the manifestation of these changes in the Tradeoff Analysis Framework is the analysis of 

new system designs and operations and/or modifications to existing system designs and operations.   

 

The previous, brief summary of the Change Taxonomy consequently substantiates one of its inherent 

limitations, which becomes an opportunity, namely, it does not holistically capture potential sources of 

change that can affect a system.  While the Change Taxonomy does identify the two common sources of 

change in engineering systems, depending on the perspective of change adopted, there may be several 

sources or types of change that are not captured by the Change Taxonomy and these become opportunities 

to extend the taxonomy to be explored with the Tradeoff Analysis Framework.  For example, one 

important source of change and thereby source of potential innovation is organizational change.  Since any 



162 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

system development is the 

responsibility of an underlying 

organization (or organizations), 

there is an important human 

element and subsequent 

interaction that can strongly 

influence the ultimate design and 

operation of a system and thereby 

its respective value.  This, and 

other unique forms of change, or 

innovation may therefore need to 

be included in the Change 

Taxonomy in order to be representative of the progression in a particular type of engineering system (and 

program).  Conceptually Figure 9-1 shows the addition of a new, third axis of change, or innovation to the 

current Change Taxonomy using the previous example of organizational change as the newly added 

dimension to the taxonomy.  As seen in Figure 9-1, there are now eight categories of change in the 

taxonomy, the most significant departure from No Change being coupled-coupled (i.e., the combination of 

both types of Radical Change) change amongst technology, ConOps, and organizational change. 

 

While the current Change Taxonomy may not holistically capture every source of potential change in an 

engineering system or program, the above example demonstrates that the underlying construct of the 

taxonomy is easily adaptable to fit a particular change, or innovation emphasis.  Despite this, applying the 

Change Taxonomy as it was in the case studies of this research to analyze aerospace systems remains an 

important contribution of this research.  

9.1.3.   Analyzing the Tradeoff Hyperspaces with Principal Component Analysis 

In two of the case studies in this research (refer to Sections 6 and 8), Principal Component Analysis (PCA) 

was used to quantify the competing and complementary nature of the system outputs constituting the 

tradeoff hyperspaces considered in the case studies.  PCA can be used to map a multi-variate set of data to a 

single model where the model is a dimensionless representation of the data set derived from an Eigen-

analysis of the data set; a detailed discussion of the PCA method can be found in Ref. [86].  As discussed in 

its application in Section 6.4.2 and 8.4.4, PCA can be used to represent a hyperspace of system output 
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tradeoffs in a reduced-order space, which provides a simplistic, or lower-order representation of the 

relative correlation, or tradeoffs amongst the outputs of interest in a hyperspace.  PCA achieves this by 

mapping the system output space to a n-dimensional principal component space, where n may be less than 

the order of the original system output space.  If this is the case, PCA effectively reduces the order of a 

tradeoff hyperspace.  The particular manner in which PCA can be used to identify the complementary and 

competing nature of the system outputs is by representing the tradeoff dimensions in angular proximity to 

one another in a reduced-order space, given the space of system outputs analyzed with the Tradeoff Analysis 

Framework; in the PCA representation, the outputs increase in magnitude along their respective 

dimension.  Specifically, as the angular offset between any two dimensions nears 0º, 90º, and 180º, the two 

outputs become perfectly complementary, neutral, and perfectly competing, respectively, assuming that an 

increasing magnitude in an output is more desirable.  Complementary output dimensions are aligned such 

that increasing the value of one increases the value of the other, whereas competing dimensions (i.e., 

tradeoffs) demonstrate the converse of this situation.  And neutral output dimensions are uncorrelated, or 

independent.  Refer to Sections 6.4.2 and 8.4.4 for examples of using PCA to identify the complementary 

and competing nature of system outputs in a tradeoff hyperspace.  

 

The usage of PCA to quantify the relative complementary and competing nature of a set of system outputs 

can be extended by analogy to analyze the stakeholder valuation space.  For example, if the uniform-

additive cost-benefit preference structure (i.e., “λ-Set”) used in the first case study is assumed (refer to 

Sections 6.3.3 for a description of this preference structure), it is possible to analyze the collective value, or 

preference structure space of the stakeholders using PCA.  If this is done, PCA can be used to identify the 

relative complementary and competing nature of the stakeholders’ preferences.  This type of analysis would 

lead to determining the correlation, or lack thereof, amongst stakeholder preferences and thereby areas of 

stakeholder alignment and misalignment amongst the stakeholders in terms of their respective preferences.  

This analysis will in turn may be useful for facilitating negotiations amongst stakeholders in the value, or 

preference domain (see Section 2.2.6), rather than in the system output space as was explored in the first 

and third case studies in this research when PCA was applied in combination with the Tradeoff Analysis 

Framework.   

 

In its application in the first and third case studies, the correlations amongst the system outputs, as 

determined using PCA, were found to be highly sensitive to the assumed external factors, which described 
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the operating environments of the respective system considered in each of these case studies.  Therefore, in 

order to gain an understanding of the robustness of the competing/complementary nature of the system 

outputs, it might be constructive to use the Tradeoff Analysis Framework to generate the system output 

space corresponding to a number of candidate external factors, or operating environments for a system and 

then to analyze them using PCA.  For example, in the PCA analysis in the first case study, the observations 

about the system output tradeoffs were based on comparing the PCA analysis of the system outputs from 

two different days of weather.  However, in order to generalize the system output tradeoff trends it might 

be worth comparing the PCA analysis of the system outputs generated from the framework corresponding 

to a year’s worth of atmospheric cruise conditions, or weather.  This would ultimately lead to a 

quantification of the volatility of the system output tradeoffs in a hyperspace as they depends on the assumed 

operating environment for the system, and this may be useful for providing a more comprehensive 

perspective of the important tradeoffs for a system, relative to its operating environment.   

9.2.   Contributions 
Despite the aforementioned limitations of the research, given the scope of this research and the 

corresponding literature review in Sections 2 and 3, this research collectively makes a unique and 

independent contribution to the existing methodological literature on methods for evaluating the impact of 

change, or innovation in aerospace systems.      

 

SUMMARY OF CONTRIBUTIONS 

1. A coupled change (innovation) assessment 

This research developed a unique Change Taxonomy based on the technology forecasting and 

management literature to guide and characterize the change, or innovation investigations 

conducted in this research.  The operational and technology dimensions of the Change Taxonomy, 

and the resulting coupled change, or innovation studies conducted in this research via the Tradeoff 

Analysis Framework are unique to the relevant literature on frameworks for evaluating the impact 

of change in the aerospace field.   

 

2. A framework for analyzing tradeoff hyperspaces 

The framework developed in this research in order to evaluate the impact of changes in aerospace 

system design and operation (via the Change Taxonomy) identifies many key components 

important for analyzing the tradeoff hyperspaces associated with a system.  The resulting Tradeoff 
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Analysis Framework developed in this research organizes these components into a coherent, 

repeatedly executable framework that has many attributes, which are discussed in the relevant 

sections throughout this document.  As a whole, the Tradeoff Analysis Framework is unique to the 

methods and approaches offered in the literature, which are discussed in Sections 2 and 3.    

 

3. Accounting for value structures from multiple stakeholders 

The cornerstone of the framework development and application is accounting for the preferences 

of multiple stakeholders, specifically through the use of valuation theory.  These preferences are a 

crucial consideration for determining the best design and operation of a system, given the 

stakeholders of interest.  In considering stakeholder preferences, the framework was subsequently 

used to identify stakeholder misalignment, which can lead to conflicts, and correspondingly 

facilitate stakeholder alignment, and both of these aspects of the framework usage are unique to 

the relevant literature.   

 

4. Framework Implementation Insights 

The implementation insights gained through applying the Tradeoff Analysis Framework in the case 

studies are the fourth and remaining contribution of this research.  This contribution is specifically 

manifested through the unique framework implementation insights gained through the previous 

applications of the framework in the case studies, which have ultimately started a dialogue on the 

attributes and potential usages of the framework that will hopefully be continued through future 

applications of the framework. 

9.2.1.   A Coupled Change (Innovation) Assessment 

The first contribution of this research is the Change Taxonomy and as it was applied to analyzing the 

tradeoffs associated with change, or innovation in aerospace systems; this taxonomy is shown again in Figure 

9-2 for convenience.  Given the aerospace innovation literature discussed in Section 3, the Change 

Taxonomy represented in Figure 9-2 is unique, in terms of identifying distinct sources of change or 

innovation as well as the ensuing exploration of this taxonomy in the respective case studies of this research.  

The common trait amongst these literature sources is that they singularly evaluate the impact of Technology 

Change relative to No Change, which implies that the approaches they developed are to assess the impact of 

developing new technologies, or improving the performance of existing technologies (while considering the 

associated reliability of these technologies).  But this ignores the other important dimensions of innovation, 
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namely, Radical Change, which is a 

coupling of Technology and ConOps 

innovation and is an important aspect 

of the evaluation of innovation for 

many systems.     

 

In response to the observed change, or 

innovation examined in the literature 

and given the Change Taxonomy, this 

research and the ensuing Tradeoff 

Analysis Framework, which is the 

second major contribution of this work 

(see Section 9.2.2), explored both 

instances of singular (decoupled) and 

coupled change, or innovation. The 

resulting categories of change analyzed 

in the case studies performed in this 

research are summarized in Figure 9-3.  

In the aircraft cruise operations case 

study only singular change along the 

ConOps axis was explored (Case Study 1, Section 6).  In the aircraft approach procedures case study (Case 

Study 2, Section 7), the emphasis was on evaluating Radical Change as enabled through new aircraft 

technology, which in turn allowed for the design of new aircraft approach procedures.  And, lastly, in the 

remote sensing spacecraft case study (Case Study 3, Section 8), singular change was examined along the 

Technology and ConOps axis, specifically with fractionated spacecraft using the On-Demand operational 

scheme and monolithic spacecraft using the Predicted operational scheme, respectively.  Then, coupled 

change was analyzed in this case study to assess the impact of fractionated spacecraft using advanced 

operational schemes.  Given the types of change, or innovation collectively evaluated in the case studies, the 

entire Change Taxonomy was therefore explored in this research. 
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Figure 9-3.  Changes Explored in the Case Studies. 

Figure 9-2.  Change Taxonomy. 
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The remaining contribution stemming from the ensuing coupled change assessments in this research, which 

explore the Change Taxonomy, is their departure from a metric-centric approach for identifying and 

evaluating change, or innovation.  The approaches in the relevant literature (see Section 3) predominantly 

rely on methods for assessing the impact of innovation centered upon a critical metric, or measure of 

success; for example, using the TRL scale to measure the success of innovation.  This a priori focus on a 

measure of success can bias the ensuing identification of innovation through conforming the sources of 

innovation to the metric(s) chosen to measure how successful innovation is.  The coupled change and 

innovation emphasis adopted in this research, and corresponding Change Taxonomy developed, identifies 

potential sources of change or innovation without any premise, which would include the metric(s) by which 

the impact of change, innovation will be measured.  While a seemingly subtle contribution, in terms of 

generality, keeping the basis for change or innovation independent of a specific system (to be analyzed) or 

measures of success ultimately makes the Change Taxonomy more broadly applicable.    

9.2.2.   A Framework for Analyzing Tradeoff Hyperspaces 

The Tradeoff Analysis Framework is 

the second major contribution of this 

research, which is shown again in 

Figure 9-4 for convenience.  The 

framework was specifically developed 

through identifying crucial components 

that lead to the creation of tradeoff 

hyperspaces for aerospace systems and 

that are, hopefully, required to resolve 

these hyperspaces.  As discussed in 

detail in Section 4, the major framework constituents include the analyst and stakeholders, system and 

external factors, valuation, the impact hyperspace, and visualization.  And each of these components is 

connected directly, or indirectly via a flow of information.  This framework therefore addresses the first 

objective of the research, which is to “develop a framework to analyze tradeoff hyperspaces” and provides a 

much more holistic perspective of the various factors that affect the value (impact) of change or innovation 

in systems than demonstrated in the relevant innovation framework literature (see Section 3).  There are a 

few immediate departures of this framework from those offered in this literature to assess the impact of 

innovation and each of these will be discussed in turn.      
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First, the Tradeoff Analysis Framework can be used to categorize and ultimately analyze potential types of 

change, or innovation through the proposed changes to the system in the framework.  As discussed in the 

previous section (Section 9.2.1), this approach to change, or innovation identification and subsequent 

analysis is unique to the literature.  While the proposed changes were structured through the types of 

change in the Change Taxonomy for the case studies performed in this research, it is important to note that 

the framework is not constrained to structuring proposed system changes as types of change and instead 

may be tailored to any system and investigation of interest, there further increasing its potential 

applicability.     

 

The second inherent departure of the framework from those offered in the literature is that it is not 

constrained to assessing the impact of a system using one (or very few), performance-based, metrics such as 

“technology readiness” or “technology maturity.”  While these metrics may be appropriate choices for some 

applications, this negates the original motivation of this research, which is established through recognizing 

the increasing importance of considering the multiple tradeoffs associated with the design and/or operation 

of aerospace systems.  Therefore, an approach hoping to realistically analyze the impact of a system’s 

respective design and operation should account for multiple (sometimes numerous) important system 

objectives. 

  

The concluding observation made in the previous paragraph uncovers the third major departure of the 

Tradeoff Analysis framework from the approaches offered in the literature, which is generalization.  Within 

the context of innovation frameworks in the aerospace domain, providing general approaches to perform 

such analyses as this research does through the Tradeoff Analysis Framework has several key benefits.  First, 

in many analyses it is desirable to run experiments and compare and contrast the results from the studies.  A 

general framework that provides a clear, repeatable process can help keep experiments unbiased relative to 

the means of obtaining the experimental results.  Without having an underlying structure to guide the 

evaluation of a system, it is easy to make assumptions or add factors to the evaluation process, thereby 

compromising the equity of the results.  Despite the benefits of providing general frameworks, for those 

approaches in the literature that intended on being generalizable, thus aligning themselves with the 

objective in this research to provide a general framework for analyzing tradeoff hyperspaces, they are overly 

constraining in terms of implementation.  To start, and as mentioned previously, many of the “general” 
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frameworks in the literature already define the metrics to be used to measure the impact of a system.  

Second, all of the frameworks, generalizable or not, are entirely focused on quantifying the impact of 

technological change, thus already constraining their usage along this axis of change.  As evidenced by their 

cited application(s), the frameworks in the literature have either never been applied or applied to a very 

specific system and innovation assessment problem.  Thus the approaches in the literature are useful for the 

particular application(s) they examine, but they offer limited utility from the perspective of this research.   

 

The general applicability of the framework developed in this research is best evidenced by: (1) the 

retroactive, conceptual framework applications to the historical case studies (Section 4.2.2) and (2) the 

detailed application of the framework to three appreciably different case studies in the aerospace domain 

(see Sections 5-7).  Ultimately, through identifying important considerations in analyzing tradeoff 

hyperspaces, the Tradeoff Analysis Framework expands the breadth of influences to be considered in 

performing such analyses.  Frameworks, especially those constrained to evaluating the impact of Technology 

Innovation, tend to focus entirely on the system transform in the Tradeoff Analysis Framework, where in 

reality the problem of analyzing 

tradeoffs is much larger; Figure 9-5 

positions the limited scope of the 

frameworks offered in the literature 

(and their subsequent developmental 

emphases) in the context of the 

Tradeoff Analysis Framework.  

Therefore, while, the Tradeoff 

Analysis Framework is not all 

encompassing, it provides additional 

perspectives that ultimately broaden 

the view and subsequent understanding of the innovation evaluation problem.      

 

Another attribute of the framework is extensibility.  As a complement to the generalizable nature of the 

Tradeoff Analysis Framework, the ability to adapt and extend the framework to a particular application is 

valuable.  As previously mentioned, the Tradeoff Analysis Framework developed and applied herein 

implicitly recognizes that it is not an “end-all” framework for analyzing the tradeoffs associated with the 
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design and operation of a system.  Thus, the framework allows for adaptations and additions to be made to 

it as seen fit for a particular application.  This extensible nature of the framework was first demonstrated 

through its respective development, specifically through the three versions of the framework, the: Baseline 

Framework, Framework with Multiple Stakeholders, and Framework with Optimization.  Additionally, the 

extensibility and adaptability of the framework was demonstrated through the application of the framework 

in the three case studies (see Sections 6-8).  Subsequently, there have been many versions of the framework 

explored in this research and each subsequent version leverages the implementation insights gained from the 

other framework versions to adapt the framework to the particular application of interest, thereby 

contributing to the overall utility of the Tradeoff Analysis Framework.   

 

The remaining attribute of the framework is its simplistic representation.  The simplistic nature of the 

framework is a derivative of its level of abstraction and, while each framework constituent may be complex 

to develop and execute, conceptually, the framework is straightforward to understand and discuss.  One 

advantage of breaking down a potentially complex problem into simple “blocks” and information flows is 

that it can facilitate the framework development and subsequent application.  For example, through parsing 

out the various major components in analyzing tradeoff hyperspaces, the framework development can take 

on many forms, including the simultaneous development of various constituents, a series development of 

the constituents, or hybrid schemes.  In large engineering programs where there are often teams of 

engineers working on a project, having this conceptual framework to communicate the combined effort 

amongst the team and, more importantly, to the relevant stakeholders may be invaluable.  From this 

perspective, the framework can be thought of more as a communication platform than an analysis tool.  

9.2.3.   Accounting for the Preferences of Multiple Stakeholders 

The third contribution of this research is explicitly accounting for the preferences of multiple stakeholders 

and incorporating these preferences as part of evaluation criteria in the framework.  In doing this, the 

second objective of this research is met, namely, “account for value structures from multiple stakeholders.”  

Accounting for the preferences of these stakeholders is paramount to implementing the framework and 

evaluating the ensuing results in the context of stakeholder value.  Given a set of stakeholders and their 

implicit preferences as to the best balance amongst the system output tradeoffs of interest, there are many 

approaches for incorporating their preferences in the framework.  One approach is to use valuation theory; 

this is presently the approach considered in the Tradeoff Analysis Framework, specifically for the valuation 

framework constituent.  However, this is not the only means for incorporating stakeholder preferences in 
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the framework and, thus, using valuation theory in the framework may be viewed as a present limitation of 

the framework, provided more preferable methods for incorporating stakeholder preferences exist.   

 

Since stakeholders are often responsible for making decisions about the system’s respective design and 

operation, the stakeholder and valuation component of the framework is a crucial and a new addition 

relative to those frameworks offered in the literature for analyzing the impact of innovation or change in 

engineering systems.  This thereby demonstrates a unique attribute of the Tradeoff Analysis Framework, 

which is a broadened (i.e., beyond technical) consideration of the various influences and factors affecting the 

analysis of tradeoff hyperspaces.  The systemic issue that may arise from incorporating multiple stakeholder 

value structures is potential stakeholder misalignment.  This research suggests the use of valuation theory to 

identify this misalignment and then the use of several complementary approaches for facilitating stakeholder 

alignment.   

9.2.4.   Framework Implementation Insights 

In order to evaluate the applicability of the Tradeoff Analysis Framework, three case studies were 

employed; these studies and their key findings are summarized in Sections 6.5.1, 7.5.1, and 8.5.1 and these 

findings form one contribution this research.  However, another source of important contributions in this 

research are the framework implementation insights, which were gained from applying the framework in 

the case studies.  These implementation insights are justified as major contributions of this research because 

they ultimately improve the Tradeoff Analysis Framework, regardless of the framework application, and 

because in the context of the relevant literature on developing frameworks for evaluating aerospace 

systems, none of these sources discusses the important issues/considerations raised through these insights.  

These framework implementation insights also serve the purpose of providing appropriate closure to the 

case studies investigated in this research.  The key framework implementation insights gained in this 

research are summarized hereafter and discussed in full in the appropriate case study sections as cited.   

 

CASE STUDY 1 – SINGLE STAKEHOLDER, AIRCRAFT CRUISE OPERATIONS (SECTION 6.5.2) 

The framework implementation insights resulting from this case study include: 

• Using the framework as a policy analysis mechanism 

• Using the framework to infer stakeholder preferences 

• Representing (visualizing) the system outputs and value propositions 
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CASE STUDY 2 – MULTI-STAKEHOLDER, AIRCRAFT APPROACH PROCEDURES (SECTION 7.5.2) 

The framework implementation insights resulting from this case study include: 

• Using the framework to identify stakeholder misalignment 

• Using the framework to facilitate stakeholder alignment 

• The complementary usage of different framework versions  

 

CASE STUDY 3 – MULTI-STAKEHOLDER, REMOTE SENSING SPACE MISSION (SECTION 8.5.2) 

The framework implementation insights resulting from this case study include: 

• Addressing uncertainty in the framework 

• Making modifications to the framework 

• Representing (visualizing) uncertainty in the system outputs and value propositions 

9.3.   Scope of Framework Applicability 
The Tradeoff Analysis Framework is of potential use for analyzing a variety of tradeoff problems, provided 

they can be characterized through the framework components.  Given the system-agnostic nature of the 

framework, it also provides a uniform basis for comparing and contrasting different tradeoff analyses.  As 

shown through the case studies conducted herein, the framework can be used to analyze appreciably 

different systems.  In terms of why the framework should be used, this is established in Section 1 through 

the research motivation, specifically, that the framework offers opportunities to understand and ultimately 

analyze important tradeoff hyperspaces associated with a system’s respective design and/or operation.  It is 

worth noting that the framework does not have to be used to analyze a tangible system, for example, the 

framework can be used to analyze the tradeoffs associated with an organization.   

 

The ultimate key to knowing whether or not the framework is applicable is whether or not the problem of 

interest can be characterized through the framework components, with or without modifications to the 

framework that do not affect its underlying functionality (this is discussed in more detail in Section 8.5.2).  

If departures from this underlying functionality are required to analyze a system, then technically the 

framework is not applicable to that problem, however, the framework may still be of use as a basis for 

creating a new version of the framework to analyze that problem.  From a system/problem-agnostic 

perspective, this is exactly why the Framework with Multiple Stakeholders (Figure 4-2) and the Framework 



173 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

with Optimization (Figure 4-3) were created and are treated as different versions of the Baseline 

Framework, each with their emphasis on performing a certain kind of tradeoff analysis.       

 

Given the breadth of potential framework 

applications, it might be applicable at any point 

during the engineering design/evaluation 

process, beginning with the early concept 

studies, to retroactively analyzing a system 

following the end of its respective operation.  

Thus, given the notional design process shown 

in Figure 9-6, the Tradeoff Analysis 

Framework might be applicable during any of 

the stages shown in this figure.  This is 

evidenced within this research, specifically the 

three case studies used to evaluate the 

framework applicability, which demonstrate this breadth of applicability during the design process.  In the 

first and second case studies, the framework is used to analyze the tradeoffs associated with currently 

operational aircraft; hence, the framework is being applied in the operational phase of the design process.  

Conversely, the third case study (Section 8) analyzes the tradeoffs associated with a hypothetical spacecraft, 

thus the framework is being applied during the conceptual design stage.  Thus, in summary, the Tradeoff 

Analysis Framework may likely be applicable at any point during the design process.  With this said, 

research is required to fully substantiate this claim through further testing of the framework applicability on 

systems with different levels of maturity.  

Conceptual 
Design 

Manufacturing 

Preliminary 
Design 

Detailed 
Design 

Integration 
and Testing 

Operation 

Figure 9-6.  A Notional Design Process. 
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10.   CONCLUSION 
This research was motivated by to need to analyze tradeoff hyperspace problems associated with the design 

and operation of aerospace systems.  Tradeoff hyperspaces are created through internal tradeoffs amongst 

the objectives of interest for a system, for example, reducing fuel burn at the cost of increasing flight time 

in the case of an aircraft.  In addition to system tradeoffs there may be multiple stakeholders of interest to 

the system and each may have different preferences as to the best balance amongst the tradeoffs.  

Consequently, the combination of different, or competing stakeholder preferences and tradeoff hyperspaces 

makes the process of determining the best, that is, most stakeholder amenable, design and operation of a 

system more challenging.  In response to this, the corresponding objectives of this research were to develop 

a framework to analyze tradeoff hyperspaces and to account for the preferences of multiple stakeholders.   

 

The Tradeoff Analysis Framework developed in this research to analyze tradeoff hyperspaces is the focal 

contribution of the research.  The major advantage of the framework is that it is a useful tool for analyzing 

real tradeoff problems in engineering and it also provides a common basis for discussing how complex 

tradeoff problems in engineering can be understood and subsequently analyzed.  The framework 

applicability was evaluated through using it to analyze three different relevant tradeoff problems in the 

aerospace field.  These applications focused on using the framework to assess the impact of changes, or 

innovation in aerospace system design and operation.  The framework applications grew in complexity in 

terms of both the challenges of applying the framework as well as the type and magnitude of proposed 

changes to the system that were subsequently analyzed.  The first, second, and third case studies specifically 

analyzed the impact of change (or innovation where applicable) for aircraft cruise operations, aircraft 

approach procedures, and remote sensing space missions, respectively. The case studies also demonstrate 

the framework usage and applicability at different stages of engineering program lifecycles.  The first two 

case studies assessed the impact of changes to existing systems (i.e., fully operational aircraft) whereas the 

third case study assessed the impact of changes to new, hypothetical spacecraft concepts (i.e., a spacecraft 

currently under development) called fractionated spacecraft.  Valuable insights were subsequently gained 

from the applications of the framework in the case studies regarding the tradeoffs and value associated with 

change or innovation in the respective system of interest in the studies; a summary of these key insights is 

presented hereafter. 

 



176 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

The application of the Tradeoff Analysis Framework yielded insights about the framework’s applicability to 

analyze tradeoff problems in engineering.  The first key insight was with regard to exploring how the 

framework can be used to represent, or visualize tradeoff hyperspaces.  This element of the framework is 

crucial as it provides the key information to be fed back to analyst and stakeholders in order for them to 

make educated decisions about the design and operation of a system.  With regard to visualization it was 

found that there are numerous techniques for visualizing large volumes of information but the three 

fundamental dimensions that can be used to represent data effectively limit these techniques.  In response, 

Principal Component Analysis (PCA) was used with the framework to combat this limitation and lead to an 

ability to represent high-order (i.e., 3+ dimensional) tradeoff hyperspaces with a lower order (e.g., a two-

dimensional) representation.  In two of the case studies performed in this research, the PCA representation 

readily showed the most important tradeoffs in two dimensions, for example, rather than in the original six 

dimensions constituting the tradeoff hyperspace in the first case study regarding aircraft cruise operations.  

These representations were then conveyed back to the analyst and stakeholders in order for them to make 

informed decisions about the design and operation of a system on the basis of needing to resolve the most 

important system tradeoffs.  

 

The second key framework implementation insight was exploring the potential uses of the valuation 

component of the framework, which is important since it provides to necessary mechanism to incorporate 

stakeholder preferences as part of the criteria to evaluate candidate designs and/or operations of a system.  

In this research, the valuation framework component was specifically used to: identify stakeholder 

misalignment in terms of their respective preferences; facilitate stakeholder alignment in order to find a 

stakeholder-wide amenable design and operation of a system; to explore stakeholder behavioral responses 

to a hypothetical tax on certain system outputs; and to infer stakeholder preferences if they cannot elicit 

them.  In the second case study regarding the design of new aircraft approach procedures into Boston-Logan 

airport, it was found that valuation can be used to identify stakeholder misalignment using the preference 

structures of the three stakeholders of interest: airlines, airports, and communities.  In particular, there was 

a major source of misalignment between the community’s and airline’s/airport’s preferences since the 

community directly bears the cost of aircraft noise but does not directly benefit from the operation of 

aircraft, which the latter two stakeholder do directly benefit from.  After identifying stakeholder 

misalignment in this case study, a method for designing new procedures based on facilitating stakeholder 

alignment in order to address this misalignment was developed, which lead to development and subsequent 
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use of a valuation-based approach for optimizing the design of new approaches, which ultimately led to the 

successful design of a new approach route into Boston that balanced the preferences of all of the 

stakeholders.  The second exploration of the usage of valuation within the framework was in the first case 

study where it was used as a policy analysis mechanism, specifically to explore an airline’s behavioral 

response, as measured by their perceived value-optimal cruise trajectory, to a hypothetical tax on producing 

contrails as well as direct operating costs.  Specifically, this usage of valuation contributed to learning about 

how valuation can be used to explore the relationship between value-based incentive mechanisms and the 

preferred design and operation of a system from a stakeholder’s perspective.  Lastly, in the first case study, 

valuation was used to infer stakeholder preferences for the system outputs if they cannot elicit them for 

some reason.  Situations when this may occur are if stakeholders are unsure of their preferences for certain 

system outputs in the tradeoff hyperspace.  The subsequent use of valuation within the framework in this 

particular analysis lead to the inference of an airline’s possible preferences for the cost of flight time and 

fuel, assuming the hypothetical situation they were unsure of their preferences for these outputs.  Thus, 

unique insights about ways to use valuation to address stakeholder preference uncertainty were developed 

in this last exploration of the valuation component in the framework.     

 

The third key framework implementation insight was derived from exploring modifications to the 

framework in order to use it to analyze specific tradeoff problems.  This aspect of learning about the 

framework applicability was important because each of the framework components offers opportunities for 

the analyst in the framework to develop and apply unique methods to fit the framework to a particular 

application.  One example of this was in the second case study performed in this research where the 

framework was modified and used to conduct a design of experiments approach to design new aircraft 

approach procedures into airports.  This modification specifically lead to the use the framework version 

with optimization to explore the space of potential routes around an airport and therein determine the most 

valuable route to analyze in detail.  Another example of modifications made to the framework was in the 

third case study where the framework was modified in order to address significant uncertainty in the system 

outputs and therein stakeholder value introduced from uncertain external factors (i.e., operating 

environments) for a remote sensing spacecraft.  Specifically, a Monte Carlo Analysis was adapted to the 

framework in order to capture this uncertainty.  Many other modifications to the Tradeoff Analysis 

Framework were made throughout the case studies in order to use it to perform certain types of analyses, 

and it is important to reflect on these as this provides to most direct contribution of knowledge about how 
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the framework can be extended to fit a particular type of application, which may in turn be useful for other 

similar framework applications.   

 

While the Tradeoff Analysis Framework application in the case studies offered detailed insights about the 

specific systems analyzed in the studies, the aforementioned summary of insights with regard to 

implementing the framework in the case studies yield the methodological contributions of this research.  In 

particular, this is because the implementation insights offered opportunities to learn about the potential 

breadth and depth of framework applicability and ultimately contribute to its development and maturity for 

future applications.  As previously discussed, each of the insights was gained through testing the 

framework’s applicability in the case studies and demonstrates the importance of learning about the 

framework through application.  Applying the framework to real tradeoff problems in engineering is the 

most abundant source of feedback to further improve the framework and explore its continued 

functionality. And this feedback ultimately makes a meaningful contribution to the dialogue on analyzing, 

and subsequently gaining insights into, real tradeoff problems in aerospace engineering.  While the case 

studies applied in this research yielded the first contributions to this feedback and dialogue, future uses of 

the framework will yield additional insights to contribute to the development and ultimate improvement of 

it.  Specific recommendations for future work are discussed next. 

 

One of the key areas for future work is to further explore situations when there are competing stakeholder 

preferences and to subsequently work on developing and applying methods for facilitating stakeholder 

consensus.  Engineering tradeoff problems often involve multiple stakeholders who have different 

preferences with regard to the balance amongst the system objectives, or tradeoff dimensions of interest.  If 

these situations occur, it increases the challenges associated with determining the “best” design and 

operation of a system.  The Tradeoff Analysis Framework was used in the case studies performed in this 

research to explore methods for facilitating stakeholder consensus, in particular visualization approaches.  

The visualization component can help facilitate stakeholder consensus through identifying the key system 

output tradeoffs, which can educate stakeholders about the key tradeoff dimensions that need to be 

negotiated in order to decide on the design and operation of a system, given a set of candidate system 

designs and operations.  While several visualization methods were explored to facilitate stakeholder 

consensus, this remains an active area of research and development in terms of the Tradeoff Analysis 

Framework.      
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The second key area for future research is further exploring the valuation component of the framework, as 

this remains the crucial mechanism for incorporating stakeholder preferences as part of the evaluation 

criteria for candidate system designs and operations.  In the case studies performed in this research, a value 

function, specifically a uniform-additive cost-benefit function, was used to aggregate all of the system 

outputs into one metric of value via a preference structure called a λ-Set, which mapped the system outputs 

to value using stakeholder preference structures.  While the analyses in the case studies did explore 

candidate designs and operations of a system relative to the tradeoff hyperspace dimensions created from 

the multiple system output of interest, ultimately at the end of each case studies the candidate designs and 

operations of the systems of interest were evaluated and then compared on the basis of value.  However, it 

is important to recognize that there may be situations when it is not possible, or desirable to use a value 

function to aggregate all of the system output tradeoff dimensions into one value metric.  Thus, an area for 

future research might be to explore the framework to analyze tradeoff problems when the evaluation 

criteria remains multi-dimensional for each stakeholder, which may consist of a set of system outputs that 

are partially combined into one value metric, but there remains several outputs that are not included in the 

value function.  In addition to this recommendation, future work might also examine the usage of different 

valuation approaches to analyze tradeoffs.  In the case studies performed in this research, cost-benefit 

analysis was used in one form or another as the value structure in the framework, but this is only one of 

many potential types of valuation methods, or approaches that may be applicable for providing a structure 

to capture stakeholder preferences.  For example, future research in this area could explore the use of more 

complex valuation structures that may be better suited to value system outputs that are subjective such as 

the benefit that an airport derives from minimizing passenger delays.  Alternatively, future work might 

analyze the sensitivity of uncertain value structures or functions to the proposed changes, or evaluate the 

impact of non-linear valuation on the resulting tradeoff insights gained from applying the framework.   

 

The remaining recommendation for future work is to continue to apply the Tradeoff Analysis Framework 

to analyze other tradeoff problems than those analyzed in this research.  Through this research, the 

framework was found to be useful for analyzing real tradeoff problems in engineering, and while the 

framework is still under development, it may benefit the analysis of other important tradeoff problems.  

For example, it might be of interest to use the framework to analyze systems with different maturity levels, 

thus exploring new and different stages of typical engineering program lifecycles where the framework may 
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be of use.  Alternatively, it might be useful to examine tradeoff problems where there are a large number of 

stakeholders as this may make the framework implementation notably more challenging in terms of 

capturing stakeholder preferences and facilitating alignment amongst the stakeholders, given the system and 

tradeoff dimensions of interest.  Ultimately, future applications of the Tradeoff Analysis Framework not 

only provide a benefit to the problems being analyzed but they also provide the richest area for learning 

about the key attributes of the framework and its potential applicability, in the context of tradeoff 

hyperspace problems in engineering.    
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APPENDIX A: HYPERSPACE VISUALIZATION (EXTENDED DISCUSSION) 
The hyperspace visualization is a critical aspect of the framework because it is the mechanism for 

communicating the value proposition (or impact) of a proposed change to the analyst and stakeholders.  

There are numerous visualization methods and software packages available that can be used for the 

hyperspace visualization.  A subset of these approaches and packages will be discussed hereafter, starting 

with an overview of fundamental visualization methods followed with a discussion of open-source software 

packages developed to visualize multi-dimensional information/data.   

 

The fundamental visualization methods are parsed into 

two categories: patterns and detailed.  A summary of 

these methods is provided in Table A-1 along with the 

maximum number of dimensions that can be practically 

visualized with the method.  Note that the “Miller’s 

Limit” is in reference to Miller’s Cognition Limitation 

Rule, which states that people (e.g., stakeholders) are 

limited to simultaneously trading (managing) in 7 +/- 2 

dimensions [151].  So, although methods subject to Miller’s limit are suggested as having a maximum 

practical visualization limit of nine dimensions, technically the number of dimensions that can be visualized is 

unlimited.    

 

AN IMPORTANT CONSIDERATION – THE OUTPUT AND DESIGN SPACE 

The ensuing discussion of hyperspace visualization methods focuses on visualizing the system output and 

value proposition space, however, in terms of framework implementation it may also be useful to visualize 

the design space (i.e., the proposed change/system representation space).  Given that visualizing a proposed 

change (i.e., the design space) is particular to the specific system and application of the framework, the 

hyperspace visualization described hereafter does not explicitly address visualizing the design space, 

although some of the visualizing methods discussed hereafter may be helpful in achieving this.   

 

VISUALIZATION TYPE 1: PATTERNS 

Pattern visualization methods rely on shape recognition to synthesize and ultimately represent multivariate 

data.  Thus, these methods often abstract specific data details for the sake of providing a means to quickly 

Visualization Method
Maximum 

Visualization 
Dimensions 

Icons
Glyphs
Parallel Coordinates
4D 4
Slices 2+
Plot-in-Plot 4+
Carpet
Worlds-within-Worlds
Hyperslices

Patterns

Detailed

Miller's Limit       
(1-9)

Miller's Limit      
(1-9)

Table A-1.  Summary of Visualization 
Methods. 
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determine broad trends across the data.  The commonality amongst pattern plots is representing data of 

different dimensions (or units) in the same plot by effectively normalizing each metric so that differences 

across the data can be compared, albeit not absolutely.  Three pattern plotting methods are discussed 

hereafter: Icons, Glyphs, and Parallel Coordinate Plots.    

• Icons 

Icon plots abstract data by mapping it to a series of recognizable shapes (and colors).  Once a data set is 

mapped to a set of icons, a macroscopic view of the data often readily identifies trends amongst the data 

(or variables).  A simple example of an icon plot is shown in Figure A-1.  Here, each 3x3 square 

represents the 9 outputs of interest for an aircraft cruise operation.  Each entry is colored according to 

how large the output metric is in magnitude relative to the range of observed values for that metric.  

So, for example, a red shaded square indicates that a metric is the highest possible for that metric 

(100%) and, as the square shades near blue and purple, they reach the lowest observed value for a given 

metric (0%). 

 

 

• Glyphs 

Glyph plots represent a set of data as a series of concentric rings at an angular offset of 2π/n, where 

n is the number of independent data dimensions.  Similar to the previous icon plot example, the 

data are plotted by normalizing them on the range of observed values for each data dimension (or 

metric).  As the concentric rings increase in diameter, it represents an increasing normalized metric 

value.  The construction of a glyph plot is summarized in Figure A-2 along with an example of 

glyph plot for an arbitrary six-dimensional data set. 

Figure A-1.  Example of an Icon Plot. 
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A collection of Glyph plots can be use to create a pattern plot, thus showing trends in the data on a 

macroscopic scale just as icon plots do.  An example of this is provided in      Figure A-3.   

 

 

• Parallel Coordinates 

Parallel coordinate plots allocate data to a set of vertical scales or bars where each bar is dedicated 

to one data dimension or metric.  The height of each bar is held constant and the range of the bar is 

that of the minimum and maximum observed values for a given metric.  Each entry contributing to 

the data set is then plotted as one dot along these bars and then the dots are connected, thus 

creating a polyline.  The result of plotting a large data set is a series of polylines that show general 

trends in the data amongst the metrics considered.  An example of a five-variable parallel 

coordinate plot is provided in           Figure A-4. 

Figure A-2.  Constructing a Glyph Plot. 
con Plot Example. 

     Figure A-3.  Example of a Pattern Glyph Plot. 
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VISUALIZATION TYPE 2: DETAILED 

Unlike pattern plots, detailed plots represent multivariate data such that it is not normalized and thus kept 

in absolute units.  The advantage of detailed plots is therefore that absolute comparisons and trends in data 

can be made, however, the disadvantage is that without normalizing the data, it limits the number of 

dimensions that can be effectively visualized.  Six different detailed plots are presented hereafter and they 

include: 4D, slices, plot-in-plot, carpet, worlds-within-worlds, and hyperslices. 

• 4D 

4D plots are the most straightforward multi-dimensional detailed plotting technique.  This 

visualization method plots data in three dimensions and then maps the fourth dimension of data to a 

color scale.  An example of this visualization technique is provided in Figure A-5, which shows a 

4D plot corresponding to an analysis of spacecraft architectures conducted by the author being 

evaluated with the metrics of lifetime (x), orbit altitude (y), revenue (z), and cost (color shading). 

          Figure A-4.  Example of a Parallel Coordinate Plot. 
         (Source: Centre for Process Analytics and Control Technology) 
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• Slices (2D) 

Slices are two-dimensional cross-sections of a three-dimensional plot.  Slices effectively dissect 

three dimensions of information into a series of two-dimensional planes.  Thus, Slices are 

particularly useful for analyzing three-dimensional surfaces with complex curvatures since these 

types of surfaces often obscure trends in the data when viewed in three dimensions.  A good 

example of this is the Matlab peaks function shown in Figure A-6 where, for example, it may be 

difficult to know the exact Z-axis value along the range of Y-axis values, given a specific X-axis 

value.  For example, Figure A-6 shows a 2D slice of the Matlab peaks function at X = 0. 

 

    
 

Figure A-5.  Example of a 4D Plot. 

Figure A-6.  Matlab Peaks Function with a 2D slice at X = 0. 
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• Plot-in-Plot 

Plot-in-plot is a method for capturing multiple dimensions of information in either a two or three-

dimensional plot.  This method is a type of active visualization (as opposed to passive in the case of 

a 4D plot) where, given a point of interest in a two or three-dimensional plot, further information 

regarding that point is then called up and displayed.  This type of plotting is useful when a given 

data point contains layers of information, for example, each data point is an aggregate statistic such 

as the median of a distribution of values.  In this case, it may be useful to understand the 

distribution of values behind each plotted data point and this can be achieved with plot-in-plot 

methods, where the selection of a given data point automatically produces the corresponding 

distribution of data values.  An example of this is shown in Figure A-7.  In Figure A-7, the vertical 

axis displays the median lifecycle cost of spacecraft architectures versus spacecraft performance.  

While performance is constant, the median lifecycle cost is taken from a distribution of potential 

lifecycle cost values generated by a Monte Carlo Analysis.  In this example, each time a data point is 

selected in the performance-lifecycle cost plot, the probability density distribution of lifecycle 

values is produced.  Plot-in-plot methods can be customized to a particular application, but even 

this simple example shows how useful plot-in-plot methods may be for representing multiple layers 

of data in two or three dimensions. 

  

 
 

 

Figure A-7.  An Example of a Plot-in-Plot Technique. 
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• Carpet 

Carpet plots are a series of individual scatter plots organized in a particular fashion, thus, they are a 

mixture of detailed and pattern plotting types.  The organization of a carpet plot is that of a N-

Squared (N2) Diagram or Design Structure Matrix (DSM) where, given a set number of metrics, 

every possible combination of those metrics plotted against one another is explored (refer to Ref. 

[154,155] for an explanation of N2 Diagrams and DSM’s).  This is specifically achieved by 

generating a matrix of scatter plots where the x-axis metric of the scatter plots remains consistent 

in each column of the carpet plot but, in each column, the y-axis varies by cycling through all of the 

metrics.  Conversely, the y-axis metric of the scatter plots remains constant in each row of the 

carpet plot but, in each row, the x-axis varies by cycling through all of the metrics.  An example of 

a scatter plot is provided in Figure A-8, which shows a carpet plot comparing data corresponding to 

several metrics of interest for the design of aircraft including: Estimated Return on Capital 

(EROC), Engine Weight, Fan Diameter, Takeoff Field Length (TOFL), and Thrust Specific Fuel 

Consumption (TSFC).  The subplots along the diagonal are linear so they are emitted.  As seen in 

Figure A-8, carpet plots provide a mixture of specific details about the data but also yield insights 

about the macroscopic trends in the data.  For example, hypotheses about the invariance in the 

other metrics relative to a certain metric can be readily responded to using a carpet plot.       

 

 

Figure A-8.  An Example of a Carpet Plot. 
(Source: RAVE Tutorial, Georgia Institute of Technology www.rave.gatech.edu) 
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• Worlds-within-Worlds 

Worlds-within-worlds plotting methods are similar to the plot-in-plot approach and are useful 

when the number of metrics to be visualized exceeds four.  A simple example of this is a function, 

f(x1, x2, x3, x4, x5).  In this case, one may start with a three-dimensional plot of f(x1, x2).  Then, 

assume there is a particular (x1, x2) point of interest, f(c1, c2).  Following the selection of this point, a 

new three-dimensional plot (i.e., world) is generated at the point f(c1, c2), but in the remaining 

three dimensions, (x3, x4, x5).  If there are multiple (x3, x4, x5) value combinations that correspond to 

f(c1, c2), then this next three-dimensional plot, or world will also be a surface.  The advantage of 

worlds-within-worlds plotting methods is that the entire space of 3+ variables may be quickly 

explored by creating these worlds-within-worlds, assuming that one anchor point in each world is 

selected before generating the next world.  This type of visualization is thus similar to plot-in-plot 

methods because it is active, that is, requires user feedback to continually create and adapt the 

visualization.  An example of a world-within-world plot is shown in              Figure A-9.  Here, the 

first world is f(x1, x2).  Then the point function, (x1, x2) = (0.845, 0.691) is selected, which 

corresponds to a 0.672 f value.  The next world is then generated at this point in the (x3, x4, x5) 

space.    

 

 
 

 

             Figure A-9.  An Example of a Worlds-within-Worlds Plot. 
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• Hyperslices 

Hyperslices characterize a multi-dimensional (hyper-spatial) function through a matrix of 

orthogonal two-dimensional slices (i.e., contours) [156].  Hyperslices are an active visualization 

technique because they allow the user (observer) to manipulate and explore the data space by 

pointing and dragging a given two-dimensional contour, which, in turn, changes the other two-

dimensional contours.  A hyperslice specifically works by the user focusing on a particular contour 

and then moving the contour along its respective axes a certain distance.  Once this is done, the 

contours in the same column and row as the contour of interest move an equal displacement.  

Thus, moving a contour is equivalent to resetting the range of interest for the two variables in the 

contour of interest and this is reflected where applicable in the hyperslice plot.  Hyperslices also 

allow the user to rotate contours, which again causes analogous displacements and rotations in the 

other contours.                  Figure A-10 shows a hyperslice characterizing the orbit of a point mass.  

In                 Figure A-10, each contour may be manipulated, which in turn causes the others to 

move, effectively allowing the user to explore the contour space.  This example along with another 

hyperslice example is found and explained in detail in Ref [156]. 

 

 
 

 

                Figure A-10.  An Example of a Hyperslice Plot. 
                (Source: Ref. [156]) 
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OPEN-SOURCE VISUALIZATION SOFTWARE 

There are several open-source software packages that can be used to visualize multi-dimensional 

information. While this list is not exhaustive, it provides a foundation for understanding how software 

developers have incorporated some of the aforementioned visualization methods into a user-friendly 

visualization tool.   

• Advanced Trade Space Visualizer (ATSV) [157] 

ATSV is a software package developed at Penn State University, which allows users to build 

models, run experiments on those models, and ultimately explore and visualize the interaction 

amongst characteristics of the system of interest through hyperspatial visualization methods.  The 

visualization approaches used in ATSV include: three-dimensional glyph plots, two-dimensional 

carpet plots, histograms, parallel coordinate plots, brushing, and preference shading/Pareto 

frontier generation.  ATSV also has several different active visual steering capabilities: basic, active, 

and Pareto, which can be used to explore a multi-dimensional data set.  Basic steering randomly 

populates the tradespace, thereby providing a broad view and exploration of the space.  Attractor 

steering populates the tradespace in a local neighborhood around a user-selected point.  And Pareto 

steering generates a Pareto front given user input preferences for maximizing or minimizing each 

objective or metric, thus allowing the user to explore along a data set’s respective Pareto set. 

 

• Xmdv Tool [158]  

The Xmdv Tool uses a variety of visualization techniques and has several unique capabilities.  

Visualization options within Xmdv include: carpet plots, star glyph plots, parallel coordinate plots, 

dimensional stacking, and pixel-oriented display. And the visualization capabilities include 

multivariate data manipulation, distortion techniques, screen brushing, and zooming. 

 

• Rave [159] 

Rave is a visualization software package developed at Georgia Institute of Technology and is similar 

to ATSV in terms of capabilities.   Rave allows for the visualization of multivariate data using 20+ 

different visualization techniques.  Rave also uses data filtering methods to facilitate an exploration 

of the data space as well as generates user-defined multi-objective utility functions to find the 

optimum data point in a multivariate data space. Additionally, Rave can use surrogate models to 
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speed up the exploration and/or optimization of the data space.  Lastly, Rave allows the user to 

generate Design of Experiment tables, which can then be automatically applied and used to explore 

the design space.   

 

• ModelCenter [160]  

ModelCenter is developed by Phoenix Integration and has a variety of capabilities.  The key 

attribute of ModelCenter is its ability to serve as a meta-model consisting of a series of individual 

models that are written in different programs (e.g., Excel and Matlab) and then execute those 

models together.  The obvious advantage of this is that a model does not have to be written in one 

program, which may be more desirable so that the model constituents can each be written 

(developed) in the most appropriate program.  Specific capabilities and features of ModelCenter 

include a: server for analyses, Response Service Model (RSM) Toolkit, Monte Carlo Risk Analysis, 

Design of Experiments, and Geometry Viewer.  ModelCenter’s current base plug-in libraries (i.e., 

programs it can integrate) include Excel, Matlab, and Mathcad.  And ModelCenter’s current 

modeling and simulation tools include Flames, Satellite Tool Kit (STK), and Extend.  Lastly, 

ModelCenter’s current costing tools/models include PRICE TruePlanning, SEER, and Automatic 

Costing Estimating Integrated Tool (ACEIT).  In addition to these models, ModelCenter provides 

various visualization capabilities to contextualize the outputs of meta-models implemented in it. 
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APPENDIX B: THE DOE METHOD FOR RNAV/RNP APPROACHES   
OVERVIEW 

The objective of the Design of Experiment (DoE) method is to provide a preliminary search of the 

RNAV/RNP route space around a given airport and, for each potential route, evaluate its corresponding 

system outputs (see Section 7.3.2).  The key is mapping a given route geometry to the resulting four system 

outputs of interest, and this is accomplished through surrogate models that relate a route’s geometry 

directly to the outputs.  The advantage of the surrogate models is that the system outputs can be computed 

in a fraction of a second for a given route rather than the 4-6 hrs required for each full analysis of a route via 

the NPIM (refer to Section 7.3.5 for a description of the NPIM).  Thus, a very large number of potential 

RNAV/RNP routes can be evaluated with the DoE method and the best of these can then be analyzed in 

detail with the NPIM, based on user-defined criterion.  

 
DOE SURROGATE MODELS 

DoE surrogate models relate the geometry of a given approach route to the four direct system outputs 

considered in the Approach Procedures case study and, in doing so, allow for estimations of the outputs to 

be made rapidly for a given route.  The governing assumption in developing these surrogate models is that 

aircraft fly the same descent profile (i.e., altitude, thrust, and speed vs. ground track distance profiles) based 

on distance from the runway of interest.   

• The surrogate model for the outputs of fuel burn, and flight time are direct correlations 

with ground track distance.  These correlations were derived using the system outputs 

corresponding to several ILS routes into Boston-Logan airport (BOS) determined from previous 

analyses conducted by the author; BOS is the airport of interest in this case study.  The resulting 

linear surrogate models form a set of equations for these outputs dependent on the ground track 

distance of a given route; these are summarized in Equation 16 along with the R2 values from the 

linear regressions.   

Equation 16 

€ 

FB = 7.80dtrack +135.13 R2 =1.00
FT = 0.003dtrack + 0.17 R2 = 0.89

 

In Equation 16, FB and FT are the fuel burn (gal) and flight time (hrs), respectively.  As seen in the 

equation, these two system outputs are highly correlated to ground track distance, dtrack, and they 

can thus be readily approximated for a given approach route geometry.  In addition to creating a 

surrogate model for these outputs, given the valuation approach used in this case study (see Section 
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7.3.3), a surrogate model of operational costs (i.e., the cost of fuel and time) can also be created; 

this will serve a unique purpose in the DoE method as will be described later.  Equation 17 

provides the resulting operational cost surrogate model.   

Equation 17 

€ 

COps = 22.56dtrack + 549.46 R2 = 0.99  

In Equation 17, COps is the cost of the flight path in United States Dollars dependent on ground track 

distance.  As seen by the R2 value in Equation 17, it is highly correlated with ground track distance.   

 

• The surrogate model for population noise exposure is the number of people in the critical 

population noise corridor along a given route.  The critical noise corridor is the area adjacent to a 

route’s respective ground track a distance of x nm on either side of the route until aircraft 

touchdown.  The portion of an approach creating the critical noise corridor is that during final 

descent, since this is when population noise exposure at critical levels (i.e., 60+ dB) is the highest.  

The basis for the population noise exposure surrogate model is therefore that communities within a 

certain proximity of the final descent portion of an approach will experience the highest noise 

exposure.  And, thus, the number of people in a critical noise corridor effectively predicts the 

ultimate population noise exposure at critical levels.  The key to this surrogate model is defining 

how large the buffer should be because this is very aircraft and procedure dependent, so the buffer 

value must be based on experience.  Preliminary research conducted by the author suggests that a 

2nm buffer on either side of a route’s final descent phase captures the communities that will be 

exposed to the most critical noise, so this effectively creates a 4nm wide critical population noise 

exposure corridor during an aircraft’s final descent.  However, this assumption, and more generally 

this surrogate model for population noise exposure needs to be refined through further 

development and testing.       

 
• A surrogate model for the throughput system output is not required because in this case study 

throughput is an exogenous input into the Noise and Performance Impact Model (see Section 

7.3.5).  Given this input, the traffic density along a given route is computed.  Therefore, in 

designing new routes, the throughput system output is an input.  
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DOE APPROACH (STEP-BY-STEP PROCESS) 

The previously described surrogate models allow for the rapid evaluation of a given approach route in terms 

of the four system outputs of interest (note that these outputs only include the direct outputs considered in 

the Approach Procedures case study).  The corresponding DoE method is summarized in Figure B-1 and the 

formal steps of the method are discussed thereafter. 

 

 
1. Select a baseline route: this baseline route will serve as the comparison basis in the DoE 

method.  When designing new RNAV/RNP routes, a typical choice for the baseline route is the 

existing ILS approach corresponding to the runway of interest. 

 

2. Select a constraint option: Potential routes can be constrained by Option A or Option B, 

which dictates the allowable system output range for fuel burn or flight time.  If Option A is 

selected, the user sets an allowable threshold for the change in operational cost (see Equation 17) 

relative to the baseline route.  Conversely, if Option B is selected, then a threshold on one of the 

either the fuel burn or flight time system outputs is set and this effectively sets a threshold on the 

other system outputs since their respective surrogate models all depend on ground track distance.  
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Figure B-1.  The Design of Experiment Method. 



206 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

If it is desirable to only consider new routes that have less fuel burn and flight time relative to the 

baseline route, then the allowable change in flight path cost (Option A), or allowable change in one 

of the system outputs should be less than that of the baseline route (i.e., a negative change).  The 

converse is true if new routes are allowed to exceed the fuel burn and flight time of the baseline 

route; note that this situation is often needed in order to reduce population noise exposure relative 

to a current ILS procedure.  

 
3. Determine the allowable ground track distance: since the surrogate models relate fuel burn 

and flight time to ground track distance, once Option A or B is used to constrain a system output 

(or the cost of the outputs), this can be translated into an effective constraint on the maximum 

allowable ground track distance of new routes relative to the baseline route. 

    

4. Track Finder Program: given the maximum allowable ground track distance, the track finder 

program then searches the ground track route space around the airport/runway of interest and 

finds the route that: (a) is no longer than the maximum allowable ground track distance, which 

ensures that the fuel burn and flight thresholds are not exceeded; (b) minimizes the number of 

residents within the critical noise exposure corridor; and (c) has the same throughput as specified by 

the analyst in the Tradeoff Analysis Framework. 

 

The corresponding output of the track finder program is the route that minimizes the number of residents 

in the critical noise exposure corridor and that does not violate the fuel burn, flight time, and throughput 

constraints set by the user of the DoE method.  This route is then analyzed in full by the NPIM discussed in 

Section 7.3.5.   

 

From a practical perspective, in terms of implementing the aforementioned DoE method, in order to search 

the ground track space with the Track Finder Program, it must be discretized into a latitude/longitude grid 

ending with the latitude/longitude of the runway of interest.  Additionally, the grid should account for any 

requirements in terms of minimum allowable curvature in approach routes and required straight-in legs 

before landing.  Intuitively, the finer the latitude/longitude grid, the more tailored routes can be, but the 

longer the time required to execute the DoE method. 



207 - © 2012 Massachusetts Institute of Technology. All rights reserved. 

 

APPENDIX C: PCA OF THE REMOTE SENSING MISSION CASE STUDY RESULTS 
Appendix C compares the PCA of the fractionated 

spacecraft results corresponding to the three 

different ConOps schemes presented in the first 

case study (see Section 7); this comparison is 

provided in Figure C-1 - Figure C-3.  The 

interesting insights to be gained from these 

schemes arise from comparing the relative 

differences amongst the plots in this appendix.  

The On-Demand and Threshold schemes provide 

very similar relative tradeoffs amongst the system 

outputs considered.  Additionally, in all three 

ConOps schemes, SLCC is nearly neutral to 

TWAP and Revenue, which are always nearly 

perfect complements.  This suggests that TWAP 

and Revenue remain correlated and relatively 

independent of SLCC no matter what 

redeployment/replenishment scenario used for 

fractionated spacecraft, thus supporting the general 

independence between TWAP and SLCC as 

reasoned in Section 8.4.4.  The remaining 

observation is that in the On-Demand and 

Threshold schemes, TWAP/Revenue are fairly 

complementary with ToS, but in the Predicted 

scheme, TWAP/Revenue are almost perfectly 

complementary with ToS.  The reason for this is 

that the ToS is larger with the Predicted 

replenishment scheme (as compared to the On-Demand and Threshold scenarios), and thus a larger 

contributor to TWAP, since ToS is effectively a multiplier on TWAP; hence, these tradeoff dimensions are 

more closely aligned in the Predicted Replenishment scheme.  Therefore this result substantiates the 
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Figure C-3.  PCA (Threshold). 
 

Figure C-2.  PCA (Predicted). 
 

Figure C-1.  PCA (On-Demand). 
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intuition that the stronger the dependency between two metrics, the closer in proximity they will be in the 

PCA space and, hence, the closer they are to becoming complements. 
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APPENDIX D: SPACECRAFT OPERATIONAL HISTORIES  
This section compares the operational 

histories for the fractionated spacecraft 

examined in the remote sensing 

mission case study (see Section 7).  

This comparison demonstrates the 

underlying behavior of spacecraft 

relative to each of the ConOps 

scenarios (i.e., replenishment 

strategies) considered.   It is important 

to note that fractionated spacecraft 

initial builds are not started until the 

minimum acceptable enabling 

technology performance is achieved; 

hence, the initial development time for 

a spacecraft may be longer than the 

assumed 5 year initial build time. 

Figure D-1 - Figure D-3 show 

representative operational histories of 

the fractionated architecture relative to 

each ConOps scheme.  As seen in the 

figures, the operations span the 

assumed 30-year time-window, the 

periods of active payload operation are 

highlighted in blue, and the 

corresponding on-orbit payload 

performance is indicated by the y-axis 

value.  In the On-Demand scheme (see 

Figure D-1), there are punctuated 

periods of downtime since in this 

scheme module rebuilds only begin after an observed on-orbit failure.  Conversely, payload continuity is 

On-Demand 

Predicted 

Threshold 

Figure D-2.  Lifecycle Performance (Predicted). 
 

Figure D-3.  Lifecycle Performance (Threshold). 
 

Figure D-1.  Lifecycle Performance (On-Demand). 
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maintained with the Predicted replenishment scheme as shown in Figure D-2.  Here, the modules are 

immediately replaced after they fail, thus maintaining payload continuity throughout the time window.  The 

last replenishment scenario is the Threshold scheme.  As seen by the representative operational history 

shown in Figure D-3, modules are not rebuilt unless there are improvements in the enabling technologies; 

hence, each payload module redeployment increases the spacecraft performance.  The result is that the 

operational history of the Threshold scheme is very similar to that of the On-Demand scheme (this is 

reasoned in more detail in Section 8.5).  As can be seen in Figure D-1, the downtimes with the On-Demand 

scheme are, on average, shorter than that of the Threshold scheme, since in this latter scheme enabling 

technology improvements dictate the replenishment timing, which happen to be on average slightly longer 

than the 3-year module rebuild time assumed in this case study; the reasoning for this is based on the 

assumption used in the analysis as discussed in Section 8.5.  

  

The representative examples of fractionated spacecraft operational histories shown in Figure D-1 - Figure 

D-3 support the value proposition conclusions made in the remote sensing mission case study in Section 

5.6.4.  Namely, that the average value delivered by the On-Demand and Threshold schemes is very similar, 

which is indicative of the very similar operational histories shown in Figure D-1 and Figure D-3.  And, in 

addition, given the much higher time of payload service exhibited with the Predicted scheme, as shown in 

Figure D-2, the value of this scheme leads to consistently higher fractionated spacecraft value than that 

realized when using the other two schemes. 

 

 
 
 
 
 
 
 


