
1 INTRODUCTION 

On-line operation and control of large-scale urban 

water distribution systems relies on integrating com-

puter simulation models with near real-time hydraulic 

data (i.e., with continuous pressure and flow rate 

measurements, provided by a sensor network in-

stalled on the distribution system). This on-line pro-

cedure can be used to estimate the system’s hydraulic 

state for operational planning of the water utility.   

There have been several recent studies that have 

assimilated on-line measurements into hydraulic state 

estimation models. Davidson and Bouchart (2006) 

proposed proportional and target demand methods.  

These are two techniques for adjusting estimated 

demands in hydraulic models of water distribution 

networks to produce solutions that are consistent 

with available Supervisory Control and Data Acquisi-

tion (SCADA) data.  

Shang et al. (2006) presented a Predictor-

Corrector method, implemented in an extended Kal-

man filter to estimate water demands within distribu-

tion systems in real-time. A time-series ARIMA 

model was used to predict the water demands based 

on the estimated demands at previous steps and the 

forecasts were corrected using measured nodal water 

heads or pipe flow rates.  

This study uses a Predictor-Corrector (PC) ap-

proach which integrates a limited number of conti-

nuous hydraulic observations to continually update 

predictions of the hydraulic state of a real urban wa-

ter supply network. The M5 Model-Trees algorithm 

(Quinlan 1992) is used to forecast future water de-

mands for a rolling planning horizon of 24 hrs ahead, 

and Genetic Algorithms (Holland 1975) are used to 

correct (i.e., calibrate) these predicted values in real-

time. Thereafter, at each subsequent time step, the 

corrected outputs of previous iterations are used as 

inputs for the prediction model.  

This a-priori estimation of the calibration parame-

ters values repeats itself at each subsequent time-step 

while the forecasting model inputs correspond to the 

corrected outputs of previous iterations, thus im-

proving the model performances over time and pro-

viding adequate information on the system’s hydrau-

lic state for real time operation and control.  

To meet the computational efficiency require-

ments of this on-line procedure, the urban network 

model is condensed to an equivalent system, with a 

reduced number of links and nodes through a system 

aggregation technique (Ulanicki et al. 1996).  

The reduced model, which resembles the original 

system’s hydraulic performances with high accuracy, 

simplifies the hydraulic model and facilitates efficient 
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implementation of the real-time, state estimation 

technique. 

2 METHODOLOGY 

2.1 Hydraulic Aggregation 

At the initial stage, which is carried out off-line, 

the algorithm developed by Ulanicki et al. (1996) 

was used to create an equivalent reduced system.  

The algorithm proceeds in a step-by-step elimina-

tion of pipes and nodes, allocating the demand at the 

node being eliminated to its neighboring nodes. All 

reservoirs, pumps, valves, tanks, and critical nodes 

(e.g., nodes in which pressure is monitored and 

nodes that represent significant water customers) re-

main in the reduced network. The validity of the sys-

tem’s reduction is measured by the similarity of the 

connectivity of the simplified system with that of the 

original system and its hydraulic performance (e.g., 

similarity of pressure at nodes, water levels at tanks, 

and\or pumps operation) over a wide range of oper-

ating conditions. The method of Ulanicki et al. 

(1996) is based on reducing the algebraic system of 

mass and energy conservation equations by eliminat-

ing variables using Gauss-elimination (Hammerlin 

and Hoffman 1991). The method involves the follow-

ing stages: 

2.1.1 Full nonlinear modeling of the system’s hy-
draulics 

The complete nonlinear mathematical description 

of the system hydraulics can be described by formu-

lating mass conservation equation for each node of 

the network (i.e., Kirchoff’s law 1):  
 

                                   qAQ =  (1) 

And energy balance equation for all basic loops of 

the network (i.e., Kirchoff’s law 2):  

                                   hhAT
∆=  (2) 

where A(nodes, links)] = directed incidence matrix of 

the network graph G(nodes, links); Q = vector of 

unknown flows in the links; h = vector of unknown 

nodal heads; q = vector of known demands at the 

nodes; ∆h=vector of the head-losses along the links 

(i.e., pipes). 

The relationship between the head loss and the 

flow in pipe, i, can be expressed with the pipes com-

ponent law using the Hazen-Williams coefficient: 

 

           Qi(∆hi)  = gi(Di ,CHWi ,Li)∆hi
1/e1            (3) 

where gi is the pipe’s conductance (i.e., a function of 

the pipe diameter Di, the Hazen-Williams head-loss 

coefficient CHWi, and the pipe length Li, with the 

constant e1=1.852). 

2.1.2 Linearization of the system’s hydraulic model 

For a given operating point defined by the nodal 

head h
0
 and demand q

0
, the linearized approximation 

describes the relationships between small changes in 

nodal head δh and demand δq around the chosen op-

erating point. After linearization, Eqs. (1) and (2) 

take the following form: 

 

                                   Gδ∆h = δq                        (4) 

  

where G=A[dQ(∆h)/d(∆h)]AT is the Jacobian sym-

metric matrix whose elements are linear pipe conduc-

tances , g~ , which can be evaluated using Eq. (5), 

and δ∆h and δq = fluctuations in the nodal head and 

demand, respectively. 

The elements of the Jacobian matrix are computed 

using 
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where jig ,
~ and jig ,  are the linear and nonlinear con-

ductances of a pipe connecting nodes i and j, respec-

tively; iig ,
~  is the linearized node, i, conductance (i.e., 

the sum of the linearized pipe conductances of the 

pipes which connected to the node); and ∆hi,j is the 

pipe’s head loss.  

The linear system of equations [Eq. (4)] describes 

head-flow relationship around an operating point.  

Eq. (4) corresponds to Ohm’s law and the flow in 

the pipe is equal to the linear conductance of the pipe 

multiplied by its head loss. 

2.1.3 Linear model reduction using Gauss-
Elimination procedure 

Following the linearization process, the network is 

then condensed by applying Hammerlin and Hoff-

man’s Gauss-elimination process (1991) at which 

node, i, is removed from the network by eliminating 

the corresponding equation (equation, i). The de-

mand of that node, δqi, is redistributed among other 

nodes connected to nodei, proportionally to the con-

ductance of the connecting pipes. The connecting 

pipes of the removed node are removed as well, and 



new linear conductances and nodal demands are cal-

culated for the remaining elements of the network. 

2.1.4 Reduced nonlinear model recovery from the 
reduced linear model 

At the last stage of the aggregation procedure, the 

reduced nonlinear model is retrieved using the rela-

tionships formulated in Eq. (5). The aggregated 

model contains fewer nodes and links, forms a new 

network topology, and resembles the hydraulic per-

formance of the original system with high accuracy 

as will be shown in the results section.  

2.2 Predictor – Corrector (PC) model 

The following paragraphs 2.2.1 to 2.2.5 describe 

the model steps: 

2.2.1 Demand Multiplication Factors (DMF) pre-

diction 

The patterns in demand over an hourly-basis time-

steps are described by the Demand Multiplication 

Factors (DMFs). For each time-step in the demand 

pattern, the relevant DMFs are multiplied with the 

baseline demands of the consumption nodes to obtain 

the actual water consumption. The consumption 

nodes are grouped into demand zones based on spa-

tial analysis of the system and each group of con-

sumption nodes is assigned its own set of DMFs.  

Grouping is based on the assumption that water 

customers in a given area of the system will have the 

same characteristics and will not need large adjust-

ments to achieve calibration (Walski et al. 2003).  

Thereafter, the demand zones DMFs are predicted 

using the M5 Model Trees algorithm (Quinlan 1992), 

with the inputs being the calibrated DMFs from past 

hours t-24, t-25, t-168, and t-169 [i.e., daily (24-h) 

and weekly (168-h) demand cycles are used for the 

DMFs forecasts]. 

The M5 model trees algorithm (Quinlan 1992) 

builds rule-based predictive models using a top-down 

induction approach. The tree is fitted to a training 

data set by recursively partitioning the data into ho-

mogeneous subsets based on its attributes. Thereaf-

ter, the tree is constructed with all training cases be-

ing predicted by the tree leaves (i.e., each leaf is a 

linear regression model that can explain the remain-

ing variability of each homogeneous subset).  

In order to simplify the tree structure, and thus to 

improve its ability to classify new instances, the tree 

is then pruned from the bottom-up by quantifying the 

contribution of each attribute to the overall predicted 

value and removing those attributes that add little to 

the model. At the last stage, a smoothing process is 

performed to compensate for the sharp discontinui-

ties that will inevitably occur between adjacent linear 

models at the leaves of the pruned tree. 

2.2.2 EPANET simulation 

The system hydraulics are simulated using the 

steady-state mode of EPANET (USEPA 2002), with 

the predicted DMFs as inputs. The simulation out-

puts are nodal pressures and pipe flow rates. 

2.2.3 On-line hydraulic data integration 

Pressure and flow measurements (from a set of in-

line sensors) are inserted to the model at each time 

step. 

2.2.4 DMF correction/calibration 

A calibration problem is formulated and solved us-

ing Genetic Algorithm (Holland 1975) which is a 

heuristic combinatorial search technique that imitate 

the mechanics of natural selection and natural genet-

ics of Darwin’s principles of evolution.  

Genetic Algorithms (GAs) basic idea is to simulate 

the natural evolution mechanisms of chromosomes 

(represented by string structures), involving: selec-

tion, crossover, and mutation. This is accomplished 

by creating a random search technique that combines 

survival of the fittest among string structures with a 

randomized information exchange.  

The objective function is the minimization of the 

differences between predicted and measured hydrau-

lic parameters (i.e., pressure and flow rates at the 

measured locations), with the decision variables be-

ing the consumers’ water demands (i.e., the Demand 

Multiplication Factors - DMFs). A modified Least 

Squares fit method [the Huber function (Huber 

1973)] which takes into account noisy measurements 

is implemented to solve the optimization problem.  

The Huber function implementation to the hy-

draulic state estimation problem is described as fol-

lows: 

The differences (i.e., residuals) between modeled 

and observed pressures and flow rates at each time 

step, at sensor node i - are defined as RP
i,t=k and 

R
Q

i,t=k respectively. The Huber function of each resi-

dual R is defined as 

 
                                                                        (6) 

where h is a predefined value that represent the toler-

ance to noise in measurements; for small residuals 

(|R| ≤ h) that represent low to zero values of noise in 

sensor measurements, the Huber function minimizes 

the usual least squares function (i.e., l2 norm approx-



imation), for large residuals (|R| > h) that represent 

high values of noise in sensor measurements, it mini-

mizes a linear penalty function which is relatively in-

sensitive to noise (i.e., l1 norm approximation). In 

this application, h = 2 × [average of previous time-

steps sensor node residuals]. 
The overall calibration problem objective function 

to be minimized at each hydraulic time-step t is de-

fined as 

                                                                                   

                                                                        (7) 

 

where i is the sensor nodes index, Np is the total 

number of pressure sensors, and NQ is the total num-

ber of flow rate sensors. 

2.2.5 DMFs delay 

      The calibrated DMFs are being delayed for 24, 

25, 168, and 169 hrs before being used as inputs in 

the prediction model. 

2.2.6 DMFs prediction-correction loop 

Steps 2.2.1 to 2.2.5 (Figure 1) start at t=169 hr, 

after performing an off-line calibration procedure for 

the first 168 hrs (1 week) of the collected data; the 

aim of this off-line calculation is to generate initial 

values for the input data-set of the prediction model. 

No a-priori information on the first 168 hrs DMFs 

values is available except of the min-max boundaries 

which are 0 and 3, respectively; previous publications 

(Walski et al. 2003; Jonkergouw et al. 2008) have 

shown that these min-max boundaries provide ac-

ceptable estimates for hourly basis demand multipli-

cation factors. 

 

 
Figure 1. Predictor- Corrector loop for Demand Multiplication 

Factors (DMFs) prediction at the t
th
 time step 

2.3 Full network and reduced model interaction  

The predictor-corrector method is implemented on 
the reduced model of the water system to meet the 
computational efficiency requirements of this on-line 

procedure. Once the future water demands are being 
predicted for each demand-zone in the reduced mod-
el those predictions are assigned to the same demand 
zones in the full network model and can be used for 
further analysis of the full system performances.  

3 RESULTS 
 

The predictor-corrector approach developed in this 

study was tested against the real input data of Net-

work 2 (Fig. 2) of the “Battle of the Water Sensor 

Networks (BWSN): A Design Challenge for Engi-

neers and Algorithms” (Ostfeld et al. 2008). The 

network corresponds to an anonymous but real water 

distribution system comprising 12,523 nodes, two 

constant head sources, two tanks, 14,822 pipes, four 

pumps, and five valves.  The system was subject to 

highly variable demand patterns over a period of 934 

hrs (~39 days). Hydraulic simulations for this system 

are considered valid for this entire duration. The 

original EPANET input file was downloaded from 

the University of Exeter Centre for Water Systems 

(ECWS) web-site: www.exeter.ac.uk/cws/bwsn. The 

current application assumes that continuous in-line 

data are available from 30 pressure sensors (Fig. 2). 

The nodal pressure records from these locations 

were generated by the EPANET model using real in-

put data for the system. The reservoirs and tank wa-

ter levels were considered as known inputs.  

 
Figure 2. Network 2 full model with the sensor nodes locations 

3.1 Network aggregation results 

The method of Ulanicki et al. (1996) was used to 

create the reduced model (Fig. 3). All reservoirs, 

tanks, pumps, valves, nodes connected to 24” diame-

ter pipes (main system’s skeleton), pressure monitor-



ing nodes and significant consumption nodes (total of 

347 nodes) remained in the aggregated network.  

The validity of the reduction is measured by the 

similarity of sensor nodal pressure data over time in 

the reduced model with that calculated by the full 

model (as will be shown in Table 1). The pressure 

data for the validation test was generated using a 

representative sample of hourly demand pattern for 

168 hrs (one week) of the utility operation. The min-

max demand multiplication factors boundaries are 0 

and 3, respectively. 

 
Figure 3. Network 2 reduced model with the sensor nodes loca-

tions 

 

The reduced model resembles the original system's 
hydraulic performances with high accuracy (Table 1). 
The aggregated network contains 347 nodes and 
1100 pipes, a reduction by a factor of about 35, and 
computation time for the hydraulic simulation is the-
reby reduced by 89 %. 

 
Table 1. Comparison of sensor nodes pressure data over 168 hrs 
in the reduced model with that calculated by the full model  
 

Ranges of pressure 
data accuracy (psi ) 

 Fraction of the total 
sample population (%) 

within 0.02 psi  99.88  

within 0.04 psi  99.93  

within 0.06 psi  99.96  

within 0.08 psi  100  

  
The analysis considers 20 demand zones [i.e., 20 

groups of demand nodes (see 20 indexed squares in 

Fig.4)] which were chosen based on a spatial analysis 

of the system. It is expected that the consumption 

nodes in each zone will follow the same demand pat-

tern and each nodal base demand at each zone will be 

multiplied with the same DMFs.  

 

 
Figure 4. Demand nodes groups (20 demand zones) on a plane 

grid of the system 

3.2 Demand Multiplication Factors (DMFs) 
prediction accuracy 

The total running time on a DELL PC (2.66 GHz, 

3.0 GB of RAM) of the GA calibration process (i.e., 

with a GA population of 120 decision variable strings 

and 100 GA iterations) is less than 5 seconds and the 

total running time of the data driven prediction 

process is less than 3 seconds. 

The predictive ability of the model can be eva-

luated with several prediction metrics. In this applica-

tion, the commonly used Correlation Coefficient 

(CC) was applied to evaluate the fit between pre-

dicted (p) and actual (a) DMF values. 

Correlation Coefficient (CC) measures the degree 

of correlation between predicted and actual values; it 

ranges from -1 to 1, with 1 corresponding to an ideal 

correlation: 

 

                          CC=Cov(p,a)/σpσa                      (8) 

       

where Cov(p,a) is the covariance between p and a; 

and σp, σa are their standard deviations. 

The accuracy of the 20 zones DMF predictions 

starting at t=169 hrs is summarized in Table 2. The 

improvement achieved in the predictor-corrector 

model predictions through experience, is also 

demonstrated in the table using 3 data segments of 

results at which the data set from t = 169 to t=934 

hrs was divided into 3 time segments (∆t1 = 169 - 

424 hrs; ∆t2 = 425 - 679 hrs; and ∆t3 = 680 to t = 

934 hrs).  

The relatively low CC values of ∆t1 (average of 

0.72) are  explained by insufficient input data for the 

Model Trees predictor in forecasting future DMFs. 

For the second (∆t2) and third (∆t3) time periods, 

with the increase in training data, there is an 

improvement in the predictor-corrector perfor-

mances that is refelected in higher correlation 



coefficients (e.g., average CC(∆t2) = 0.84 and aver-

age CC(∆t3) = 0.9). 

 
Table 2. Predictive metrics for DMFs in 20 demand zones for 
t=169 hrs to t=934 hrs 
 

Demand zone CC (∆t1) CC (∆t2) CC (∆t3) 

1 0.72 0.83 0.88 

2 0.69 0.81 0.86 

3 0.72 0.84 0.91 

4 0.76 0.86 0.92 

5 0.73 0.85 0.92 

6 0.68 0.82 0.90 

7 0.71 0.83 0.88 

8 0.75 0.83 0.90 

9 0.74 0.85 0.89 

10 0.68 0.82 0.87 

11 0.73 0.86 0.92 

12 0.72 0.84 0.88 

13 0.72 0.85 0.91 

14 0.75 0.86 0.92 

15 0.74 0.84 0.89 

16 0.69 0.80 0.86 

17 0.70 0.82 0.88 

18 0.72 0.84 0.91 

19 0.73 0.84 0.90 

20 0.71 0.86 0.92 

Average: 0.72 0.84 0.90 

4 SUMMARY 
 

This paper has presented and demonstrated a Pre-

dictor-Corrector (PC) model for on-line, hydraulic 

state prediction of urban water networks.  The me-

thod uses a statistical data-driven algorithm (M5 

Model Trees algorithm) to estimate future water de-

mands, while near real-time field measurements are 

used to correct (i.e., calibrate) these predicted values 

on-line. The calibration problem is solved using Ge-

netic Algorithms with a modified Least Squares (LS) 

fit method (Huber function) to account for noisy 

measurements.  

The a-priori estimation (i.e., prediction) of the de-

cision variables values, which improves through ex-

perience facilitates a better convergence of the cali-

bration model towards the optimal solution of the 

problem; and provides adequate information on the 

system’s hydraulic state for real time optimization.  

To meet the computational efficiency require-

ments of real-time hydraulic state estimation, the ur-

ban network model which is comprised of over ten 

thousand pipelines and nodes is reduced using a wa-

ter system aggregation technique.  

The reduced model, which resembles the original 

system's hydraulic performances with high accuracy, 

simplifies the computation of the PC loop and facili-

tates the implementation of the on-line model.  

Future research efforts will focus on the imple-

mentation of the developed methodology on large 

scale urban water system using physical data from an 

in-situ sensor network. Additional efforts will focus 

on the ability to detect anomalies such as leakage and 

burst events in real-time. 
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