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Presence of vascular endothelial growth factor during the first half of IVM improves the 
meiotic and developmental competence of porcine oocytes from small follicles 
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The aim of the present study was to investigate the effect of vascular endothelial growth factor (VEGF) on the 

meiotic and developmental competence of porcine oocytes from small follicles (SF; 0.5–3 mm diameter). When 

cumulus–oocyte complexes (COCs) from medium-sized follicles (MF; 3–6 mm diameter) and SF were cultured for 

IVM, the maturation rates were significantly higher for oocytes from MF than SF. Concentrations of VEGF in the 

medium were significantly higher for COCs cultured from MF than SF. When COCs from SF were exposed to 200 

ng mL–1 VEGF during the first 20 h of IVM, the maturation rate improved significantly and was similar to that of 

oocytes derived from MF. The fertilisability of oocytes was also significantly higher than that of VEGF-free SF 

controls. Following parthenogenetic activation, the blastocyst formation rate improved significantly when SF COC 

culture was supplemented with 200 ng mL–1 VEGF, with the rate similar to that of oocytes from MF. The results of 

the present study indicate that VEGF markedly improves the meiotic and developmental competence of oocytes 

derived from SF, especially at a concentration of 200 ng mL–1 during the first 20 h of IVM. 
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Effect of VEGF on IVM of porcine oocytes 

Ovaries contain a large number of small follicles, but the meiotic and developmental competence of oocytes from 

these follicles is quite low. In the present study we demonstrated that the addition of 200 ng mL–1 vascular 

endothelial growth factor to the IVM medium increased the maturation rate of porcine oocytes from small follicles 

and that blastocyst formation following parthenogenetic activation also increased. These findings may contribute to 

efficient animal production and human assisted reproductive technology. 

Introduction 
Using IVM oocytes to produce embryos is a common practice that is essential for applications such as 

increasing opportunities for the successful birth of babies in assisted reproductive medicine, reducing the 

generation interval in important species and producing transgenic animals for cell therapies, protein 

production or other medical applications (Galli et al. 2003; Cooper et al. 2013). However, only cumulus–

oocyte complexes (COCs) derived from medium-sized follicles (MF; 3–6 mm diameter) or larger follicles 
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have been used for IVM and IVF; oocytes derived from small follicles (SF; <3 mm diameter), which 

account for most follicles in ovaries, have been found to have much lower competence to mature to MII 

in vitro (Yoon et al. 2000; Romaguera et al. 2010a; Kohata et al. 2013) because of a lack of factors that 

regulate meiotic and cytoplasmic maturation (Romaguera et al. 2010b). Therefore, if we can improve the 

meiotic and developmental competence of oocytes derived from SF, we may be able to use more 

follicular oocytes per ovary to produce embryos in vitro, consequently contributing to the development of 

animal production and human assisted reproductive technologies (ARTs). Because porcine ovaries 

contain a relatively larger number of follicular resources than other species, including humans (Gosden 

and Telfer 1987), the pig is one of the suitable species in which the meiotic and developmental 

competence of oocytes derived from SF can be studied. 

Angiogenesis plays an important role in the mechanism of selection and development of ovarian 

follicles (Bruno et al. 2009). In the ovary, vascular endothelial growth factor (VEGF) has been identified 

as promoting (Leung et al. 1989) and being involved in the regulation of normal or abnormal 

angiogenesis (Ferrara et al. 2003). This protein was first identified as vascular permeability-inducing 

factor (VPF) secreted by tumour cells (Senger et al. 1983). VEGF is a 34- to 42-kDa protein, and there 

are seven members of the VEGF family. VEGF interacts with its receptors present in granulosa and theca 

cells to act as a mitogenic factor in developing goat (Bruno et al. 2009) and preantral human follicles 

(Abir et al. 2010). 

The expression and levels of VEGF and its receptors (VEGFR2) are upregulated as the follicle 

develops (Greenaway et al. 2004). The presence of VEGF allows development of the vascular network 

and induces cell proliferation, whereas a lack of VEGF results in regression of vessels in non-productive 

ovarian follicles, likely atresia (Hanahan 1997). Inactivation of the Vegf gene causes abnormal 

development of angiogenesis and reduces the viability of murine embryos (Ferrara et al. 1996). In 

addition, blocking the Flk/KDR pathway demonstrated that VEGF was involved in the delay of 

folliculogenesis in rhesus monkey (Zimmermann et al. 2002). In addition, concentrations of VEGF in 

bovine follicular fluid have been found to be fivefold higher in dominant follicles just before ovulation 

compared with early antral follicles (Einspanier et al. 2002). Together, these findings suggest that VEGF 

is involved in the acquisition of meiotic and developmental competence by oocytes. 

It has been reported that supplementing the culture medium with VEGF has stimulatory effects on the 

quality of mature porcine oocytes derived from MF and their developmental competence following 

parthenogenetic activation (Kere et al. 2014). In the bovine, exposure of COCs derived from MF to 5 ng 

mL–1 VEGF during the first 20 h of IVM resulted in a higher percentage of matured oocytes, normal 

fertilisation and increased blastocyst yield, suggesting that VEGF may induce not only nuclear 
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maturation, but also cytoplasmic maturation (Luo et al. 2002). Similar results were reported recently with 

concentrations of 300–500 ng mL–1 VEGF (Anchordoquy et al. 2015). Positive effects of VEGF have also 

been shown to promote the transition from primary to secondary follicles in the bovine (Yang and Fortune 

2007) and to induce follicular growth and increase oocyte diameter in the goat (Bruno et al. 2009). In 

pigs, the presence of 5 ng mL–1 VEGF during the IVM of COCs derived from MF significantly increased 

the blastocyst formation rate and the total number of cells per blastocyst, and reduced the number of 

apoptotic embryos following parthenogenetic activation (Biswas and Hyun 2011; Kere et al. 2014); 

however, a higher concentration (500 ng mL–1) of VEGF did not have these positive effects (Kere et al. 

2014). Furthermore, similar effects were observed even if VEGF was only supplemented during the first 

20 h of IVM (Kere et al. 2014). However, it is not clear whether the presence of VEGF during IVM, 

especially the first half, is effective in improving the meiotic and developmental competence of oocytes 

derived from SF. 

Therefore, in the present study we compared VEGF content of porcine COCs from MF and SF, as well 

as that secreted during IVM. In addition, we evaluated the effects of VEGF supplementation during the 

first 20 h of IVM on improvements in the meiotic and developmental competence of oocytes derived from 

SF. 

Materials and methods 

Chemicals and culture media 

Sodium chloride, KCl, HCl, NaOH, MgCl2·6H2O, KH2PO4, gentamicin sulfate, phenol red and paraffin 

oil were obtained from Nacalai Tesque, whereas NaH2PO4·2H2O and CaCl2·2H2O were purchased from 

Ishizu Pharmaceutical and equine chorionic gonadotrophin (eCG; Serotropin) and human chorionic 

gonadotrophin (hCG; Gonatropin) were purchased from ASKA Pharmaceutical. Unless specified 

otherwise, all other chemicals were purchased from Sigma-Aldrich. 

The medium used for collecting and washing COCs was modified Hepes-buffered Tyrode’s Lactate 

with polyvinyl alcohol (TL-HEPES-PVA), which contained 114 mM NaCl, 3.2 mM KCl, 2 mM 

NaHCO3, 0.34 mM KH2PO4, 10 mM Na-lactate, 0.5 mM MgCl2·6H2O, 2 mM CaCl2·2H2O, 10 mM 

HEPES, 0.2 mM Na-pyruvate, 12 mM sorbitol, 0.1% (w/v) polyvinyl alcohol, 25 μg mL–1 gentamicin and 

65 μg mL–1 potassium penicillin G. The basic IVM medium used was a bovine serum albumin (BSA)-free 

chemically defined medium (Porcine Oocyte Medium (POM); Research Institute for the Functional 

Peptides) supplemented with 50 µM β-mercaptoethanol (mPOM; Akaki et al. 2009). The medium used 

for IVF was Medium-199 (Invitrogen), to which 3.05 mM glucose, 2.92 mM hemi-calcium lactate, 0.91 

mM Na-pyruvate, 12 mM sorbitol, 75 mg mL–1 potassium penicillin G, 25 mg mL–1 gentamicin, 5 mM 



Page 4 of 15 

caffeine sodium benzoate and 4 mg mL–1 BSA were added (mM199; Funahashi and Day 1993). All media 

(except modified TL-HEPES-PVA) were equilibrated at 39°C in an atmosphere of 5% CO2 in air 

overnight before use; though mM199 was equilibrated under paraffin oil. 

IVM of COCs 

Ovaries without any evidence of corpora lutea were collected from slaughtered commercial gilts at a 

local public abattoir and transported within 1 h to the laboratory at 32–35°C in 0.9% (w/v) NaCl solution 

containing 75 μg mL–1 potassium penicillin G and 50 μg mL–1 streptomycin sulfate. After washing three 

times with the NaCl solution at room temperature, COCs were aspirated from MF (3–6 mm diameter) and 

SF (0.5–2 mm diameter) using a 10-mL disposable syringe and 18-gauge needle, placed in 50-mL 

centrifuge tubes (SF and MF separately) and then washed three times with TL-HEPES-PVA. Only COCs 

with at least three layers of unexpanded cumulus cells were washed three times with mPOM. Forty COCs 

each from MF and SF were cultured separately in 500 μL mPOM supplemented with gonadotropins (10 

IU mL–1 eCG, 10 IU mL–1 hCG) and 1 mM dibutyryl cAMP (db-cAMP) in a four-well culture plate 

(Thermo Fisher Scientific) for 20 h under an atmosphere of 5% CO2 in air at 39°C (Funahashi et al. 1997; 

Akaki et al. 2009). The COCs were then washed three times with fresh IVM medium without 

gonadotropins and db-cAMP and cultured continuously in the medium for an additional 24 h. 

Evaluation of meiotic stage 

After IVM, cumulus cells surrounding the oocytes were removed by pipetting in a modified TL-

HEPES-PVA medium containing 0.1% (w/v) hyaluronidase (H3506; Sigma). Some of the denuded 

oocytes were used for IVF and parthenogenetic activation, whereas others were mounted on glass slides 

and fixed in acetic alcohol (25% (v/v) acetic acid in ethanol) for 2–3 days. The oocytes on glass slides 

were then stained with 1% (w/v) orcein in 45% (v/v) acetic acid for 5 min and meiotic progression 

evaluated under a phase contrast microscope at magnifications of ×200 and ×400. 

Preparation of fresh boar spermatozoa and IVF 

Semen-rich fractions (40–50 mL) collected from a Berkshire boar by the gloved-hand method were 

donated from a local AI center  and processed as reported previously (Funahashi 2005). Briefly, 

spermatozoa were resuspended (to 1 × 108 cells mL–1) in fresh modified Modena solution containing 5 

mM cysteine and 20% (v/v) boar seminal plasma and kept at 15°C until used in IVF (within 2 days of 

collection). Stored spermatozoa were kept at room temperature for 15–20 min before use, washed three 

times with Modena solution and then resuspended (to 1 × 108 cells mL–1) in fertilisation medium. 

After dilution of the sperm suspension to 1 × 106 cells mL–1 with caffeine-free mM199, 50 μL diluted 

suspension was added to a 50-µL droplet of mM199 containing 10 mM sodium benzoate caffeine and 30–
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40 denuded mature oocytes (Wang et al. 1991). The oocytes were cocultured with spermatozoa in the 

100-μL droplets under paraffin oil at 39°C and an atmosphere of 5% CO2 in air for 7 h. After washing 

three times with mM199 supplemented with 0.4% (w/v) BSA, oocytes were cultured in a 50-µL droplet 

of the same medium under the same conditions for a further 4 h. 

Sperm penetration and pronuclear formation assessment 

To assess sperm penetration and pronuclear formation, oocytes were washed with TL-HEPES-PVA, 

mounted on glass slides, fixed in 25% (v/v) acetic acid–ethanol for 2–3 days, stained with 1% (w/v) 

orcein in 45% (v/v) acetic acid for 5 min and then examined under a phase contrast microscope at 

magnifications of ×200 and ×400. Oocytes were designated as ‘penetrated’ when they had at least one 

sperm head or male pronucleus with corresponding sperm tail in their ooplasm. Oocytes with more than 

one sperm nuclei or male pronuclei were considered polyspermic. 

Parthenogenetic activation and in vitro culture of oocytes 

Only mature oocytes with the first polar body in the perivitelline space were selected. These oocytes 

were washed three times with a solution of 0.25 M mannitol containing 0.01% (w/v) PVA, 0.5 mM 

HEPES, 100 µM CaCl2·H2O and 100 µM MgCl2·6H2O, pH 7.2, then transferred to sit between electrodes 

separated by a distance of 1 mm in an activation chamber and overlaid with the same solution. A single 

electrical pulse (direct current; 1.2 kV cm–1, 30 µs) was applied to oocytes to activate them using a BTX 

Electro-Cell Manipulator 2001M. The activated oocytes were washed three times with mM199 

supplemented with 0.4% BSA and 5 µM cytochalasin B and incubated in the same medium at 39°C under 

an atmosphere of 5% CO2 in air for 4 h. The oocytes were then washed three times with porcine zygote 

medium (PZM; Yoshioka et al. 2008) and cultured in 500 µL PZM under paraffin oil at 39°C and an 

atmosphere of 5% CO2 in air for 5 days. To assess the developmental competence of oocytes derived 

from MF and SF, cleavage and blastocyst formation rates were observed at 2 and 5 days after the start of 

culture respectively. Blastocysts were fixed in 4% paraformaldehyde for 15 min at room temperature and 

then stained with Hoechst 33342 (20 µg mL–1 in phosphate-buffered saline (PBS) containing 1% (v/v) 

Triton X-100) for 30 min at room temperature. Samples were mounted on glass slides and the number of 

cells per blastocyst counted under a fluorescence microscope (ECLIPSE 80i; Nikon). 

VEGF secretion from COCs during IVM 

At 20 and 44 h after the start of IVM, the media from 40 COCs in culture were collected into 

microtubes and stored at –80°C until analysis. The amount of VEGF secreted from COCs into the culture 

medium was measured using a Quantikine ELISA Human VEGF immunoassay kit (SVE00; R&D 

Systems) and a microplate reader (Bio-Rad), as described previously by Barboni et al. (2000), who 
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demonstrated that there was no difference between the ability of this system to detect human and pig 

VEGF. 

Experimental design 

Experiment 1: VEGF secretion by MF- or SF-derived COCs during IVM and oocyte meiotic 
competence 

Forty COCs derived from MF and SF were cultured according to a standard IVM protocol (as 

described above) for a total of 44 h. After culture, the meiotic progression of the oocytes was assessed as 

described above. Furthermore, ELISA was used to determine the amount of VEGF secreted into the IVM 

media collected 20 and 44 h after the start of IVM. This experiment was replicated six times. 

Experiment 2: effects of VEGF supplementation during the first 20 h of IVM on the meiotic competence 
of SF-derived oocytes  

COCs derived from SF were exposed to different concentrations of VEGF (V4512; Sigma-Aldrich; 0, 

20, 50, 100 and 200 ng mL–1) for the first 20 h of IVM. After IVM, the meiotic stage of oocytes was 

evaluated, as described above. This experiment was replicated five times. 

Experiment 3: effects of VEGF supplementation during the first 20 h of IVM on the fertilisability of SF-
derived oocytes 

COCs derived from SF were exposed to 0, 100 and 200 ng mL–1 VEGF for the first 20 h of IVM. After 

IVM culture for a total of 44 h, oocytes were inseminated and cocultured with spermatozoa for 7 h. At 11 

h after insemination, oocytes were mounted, fixed and stained with 1% (w/v) orcein in 45% (v/v) acetic 

acid. The meiotic stage of these oocytes was compared with that of oocytes derived from MF and cultured 

in the absence of VEGF. This experiment was replicated five times. 

Experiment 4: effects of VEGF supplementation during the first 20 h of IVM on the developmental 
competence of SF-derived oocytes 

To determine the developmental competence of oocytes exposed to different concentrations of VEGF 

(0, 100 and 200 ng mL–1) during the first 20 h of IVM, after a total of 44 h in culture only oocytes with 

the first polar body were parthenogenetically activated by an electrical pulse and cultured as described 

above. Cleavage and blastocyst formation rates at 2 and 5 days after the start of culture respectively were 

compared with those of oocytes derived from MF (positive control); in addition, cell numbers in 

blastocysts were compared. This experiment was replicated five times. 

Statistical analysis 

Data from five or six replicated trials were evaluated using one- or two-way analysis of variance 

(ANOVA) in StatView (Abacus Concepts). To fit a normal distribution, percentage data were arc-sine 
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transformed before analysis if the data contained percentages >90% or <10%. The variables examined in 

Experiment 1 were the meiotic stage of oocytes and the amount of VEGF (two-way ANOVA; COCs 

origin × time interaction when VEGF concentration was measured). In Experiment 2, the meiotic stage of 

oocytes was evaluated; in Experiment 3, the rate of penetration, monospermy, the formation of male and 

female pronuclei and the number of spermatozoa per penetrated oocyte were evaluated; finally, in 

Experiment 4, cleavage rate, blastocyst formation rate and the number of cells in a blastocyst were 

evaluated. All data are expressed as the mean ± s.e.m. Findings were considered significantly different at 

P < 0.05 and, when there was a significant effect, values were compared with a Dunn–Bonferroni post 

hoc test. 

Results 

Experiment 1: VEGF secreted by MF- or SF-derived COCs and meiotic competence of oocytes 

The effect of the origin of COCs (MF vs SF) on the resumption of meiosis was examined in 468 

oocytes (n=6 for each group). As indicated in Table 1, there were significant differences in the percentage 

of oocytes at MI and MII between the two groups (P < 0.01). The percentage of mature oocytes was 

significantly higher when COCs were collected from MF than SF. 

Conditioned media were collected at 20 and 44 h after the onset of IVM of COCs derived from MF or 

SF and the amount of VEGF secreted into the media was determined (n = 6 replicates). VEGF 

concentrations secreted into the medium after 20 and 44 h IVM was significantly (P < 0.001) greater for 

COCs derived from MF (115.1 ± 21.2 and 376.9 ± 78.9 pg mL–1 respectively) than for those derived from 

SF (35.6 ± 4.0 and 67.8 ± 16.1 pg mL–1 respectively; Table 2). The amount of VEGF collected at the end 

of the second half of IVM (over a 24- period) was also significantly higher (P < 0.007) than that collected 

at the end of the first half of IVM (20 h), and was nearly doubled. 

Experiment 2: effects of VEGF supplementation during the first 20 h of IVM on the meiotic competence of 
SF-derived oocytes 

As shown in Fig. 1, when COCs were exposed to 100 and 200 ng mL–1 VEGF during the first 20 h of 

IVM, the percentages of mature oocytes was significantly higher than in the control group, cultured 

without VEGF (P < 0.01). The higher percentage of mature oocytes was similar to that seen for oocytes 

from MF-derived COCs cultured in the absence of VEGF supplementation. There were no significant 

differences in the percentage of mature oocytes when COCs were exposed to 0, 20 or 50 ng mL–1 VEGF. 
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Experiment 3: effects of VEGF supplement during the first 20 h of IVM on the fertilisability of SF-derived 
oocytes 

The percentage of oocytes penetrated and those that formed male and female pronuclei was 

significantly higher (P < 0.05) following exposure of SF-derived COCs to 200 compared with 0 ng mL–1 

VEGF during the first 20 h of IVM (n = 5 replicates; Table 3). There were no significant differences 

among experimental groups in either the incidence of monospermic penetration, which ranged between 

24.5% and 41.5%, and the number of spermatozoa in penetrated oocyte, which ranged between 2.0 and 

2.8 (Table 3). 

Experiment 4: effects of VEGF supplementation during the first 20 h of IVM on the developmental 
competence of SF-derived oocytes 

The developmental competence of SF-derived oocytes cultured in the presence of 0, 100 or 200 ng mL–

1 VEGF during the first 20 h of IVM was examined following electrical activation. As indicated in Table 

4, data from six replicates demonstrated that supplementation of the IVM medium with 200 ng mL–1 

VEGF during the first 20 h of IVM significantly improved the rate of blastocyst formation for mature SF-

derived oocytes following parthenogenetic activation compared with control. The blastocyst formation 

rate did not differ significantly different from that of MF-derived oocytes (Table 4). 

Discussion 

The focus of the present study was on the effects of VEGF on the meiotic ability to reach to the MII 

stage, fertilisability and developmental competence of oocytes derived from SF. In Experiment1, 

comparing the meiotic competence of oocytes derived from MF and SF, the number of oocytes maturing 

to MII was significantly lower in the SF than MF group. With regard to follicular size, many studies in 

humans (Wittmaack et al. 1994), porcine (Marchal et al. 2002), bovine (Lonergan et al. 1994), goat 

(Crozet et al. 1995), sheep (Cognie et al. 1998), dromedary (Khatir et al. 2007), buffalo (Raghu et al. 

2002) and canine (Otoi et al. 2000) have demonstrated a clear relationship between follicle size and IVM 

and fertilisation rates. In the present study, we observed that only half the SF-derived oocytes were fully 

competent to mature to the MII stage. 

The expression of VEGF mRNA in granulosa and theca cells is known to increase significantly and is 

correlated with follicular growth (Berisha et al. 2000; Shimizu et al. 2003). Intrafollicular concentrations 

of VEGF have also been demonstrated to be lowest in follicle fluid aspirated from SF and to increase 

gradually with increases in follicular diameter (Mattioli et al. 2001; Kere et al. 2014). In the present 

study, we hypothesised that the lower meiotic competence of oocytes from SF may be affected by the 

lower concentration of VEGF secreted from COCs into the IVM medium. In Experiment 2, we found that 

the concentrations of VEGF secreted into the medium at both 20 and 44 h after the start of IVM were 
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significantly higher when COCs were collected from MF rather than SF. These results are consistent with 

previous observations in which VEGF content in the follicular fluid was compared among follicles of 

different sizes (Mattioli et al. 2001; Kere et al. 2014). 

A study with porcine COCs derived from MF has demonstrated that maturation, fertilisation and even 

blastocyst formation are significantly improved when VEGF was added to the medium during the first 20 

h of IVM (Kere et al. 2014). However, a high concentration of VEGF (500 ng mL–1) did not affect oocyte 

competence (Einspanier et al. 2002; Biswas et al. 2011; Kere et al. 2014). In the present study, when SF-

derived COCs were exposed to different concentrations of VEGF during the first 20 h of IVM, 

supplementation with 100 and 200 ng mL–1 VEGF significantly improved the number of oocytes at MII to 

levels similar to those seen for oocytes from MF. These results suggest that the acquisition of meiotic 

competence by oocytes is achieved in the presence of VEGF at appropriate concentrations during the first 

20 h of IVM, even when the COCs are obtained from SF. The effective concentrations of VEGF appear to 

be 100 and 200 ng mL–1 for COCs derived from SF, but may be different for those COCs from MF. 

Previous studies have indicated that VEGF can protect bovine granulosa cells from apoptotic cell death 

and follicle atresia (Greenaway et al. 2004; Kosaka et al. 2007). It is well known that VEGF induces 

activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway via 

VEGF receptor 2 (VEGF-R2), preventing cells from undergoing atresia (Wang et al. 2009). Considerable 

evidence indicates that VEGF suppresses damage to cumulus cells (Shin et al. 2006) and enhances 

cumulus cell expansion in vitro (Biswas et al. 2010). Therefore, VEGF may play a key role preventing the 

apoptosis of cumulus cells, indirectly participating in maintaining the meiotic competence of oocytes. So 

it is possible that a decrease in the amount of VEGF secreted by COCs may be one causes for the 

decreased competence of SF-derived oocytes. 

Furthermore, when matured oocytes were subjected to IVF, the percentage of oocytes penetrated and 

those forming a male pronucleus was significantly higher for SF-derived COCs exposed to 200 ng mL–1 

VEGF during the first 20 h of IVM, with values similar to those fro MF-derived oocytes. The 

fertilisability of oocytes, including the competence to form male and female pronuclei after sperm 

penetration, is considered one of the indicators of oocyte cytoplasmic maturation (Watson 2007). In the 

present study, in Experiment 5, we examined developmental competence following parthenogenetic 

activation because a high incidence of polyspermic penetration following IVF of IVM porcine oocytes 

has frequently been reported (Funahashi 2003; Romar et al. 2016). Herein we demonstrated that the 

developmental competence of SF-derived oocytes was significantly improved when the COCs were 

supplemented with 200 ng mL–1 VEGF during the first 20 h of IVM. Recently, it was reported that the 

addition of 5 ng mL–1 VEGF to the IVM medium improved the quality of mature porcine oocytes derived 



Page 10 of 15 

from MF, as well as developmental competence following parthenogenetic activation (Kere et al. 2014). 

The results of the present study indicate that VEGF is effective in improving both the quality and 

developmental competence of oocytes, even when derived from SF, although the appropriate 

concentration appears to differ between COCs derived from MF and SF. Therefore, the presence of 200 

ng mL–1 VEGF during the first 20 h period of IVM appears to improve the abilities of  SF-derived oocytes 

to develop to the MII and blastocyst stages following IVM and IVC, respectively. Supplementation of the 

IVM medium with VEGF will make it possible to use COCs not only from MF, but also from SF for the 

in vitro production of porcine embryos. 

In conclusion, COCs derived from SF secrete lower concentrations of VEGF than those from MF. 

Supplementation of the IVM medium with 200 ng mL–1 VEGF during the first 20 h of IVM improved the 

meiotic ability to the MII stage, fertilisability and developmental competence of SF-derived oocytes. 

Therefore, we recommend the addition of 200 ng mL–1 VEGF during the first 20 h of IVM to optimise 

results of in vitro embryo production from COCs derived from SF. 
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Fig. 1. Effect of vascular endothelial growth factor (VEGF) supplementation during the first 20 h of IVM on the 

meiotic competence of oocytes (% of mature ones) derived from medium-sized follicles (MF; 3–6 mm diameter) 

and small follicles (SF; 0.5–3 mm diameter). Data are the mean ± s.e.m. *P < 0.05 compared with MF (n = 5 

replicates). 

Table 1. Meiotic progression of oocytes derived from medium-sized follicles (MF; 3–6 mm 
diameter) and small follicles (SF; 0.5–3 mm diameter) 44 h after the start of IVM 

Data are the mean ± s.e.m. (n = 6 replicates for each group). Within columns, values with different 

superscript letters differ significantly (P < 0.05). COCs, cumulus–oocyte complexes; GV, germinal 

vesicle; AI/TI: anaphase I/telophase I 
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Origin of COCs No. oocytes 
examined 

% Oocytes 
Degenerated GV MI AI/TI MII 

MF 230 2.3 ± 1.0 2.5 ± 1.6 16.3 ± 1.9a 0.5 ± 0.5 78.4 ± 0.7a 
SF 238 8.1 ± 2.8 3.8 ± 2.4 36.7 ± 7.3b 0.8 ± 0.8 50.6 ± 1.5b 
Table 2. Concentration of vascular endothelial growth factor (VEGF) secreted from cumulus–

oocyte complexes (COCs) from medium-sized follicles (MF; 3–6 mm diameter) and small follicles 
(SF; 0.5–3 mm diameter) into the medium 20 and 44 h after the start of IVM, as well as the 

significance of the origin of COCs and the duration of IVM on VEGF concentration in the medium 

Data are the mean ± s.e.m. Within columns, values with different superscript letters differ significantly (P 

< 0.05) 

 VEGF (pg mL–1) 
20 h IVM 44 h IVM 

COC origin   
 MF 115.1 ± 21.2a 376.9 ± 78.9a 
 SF 35.6 ± 4.0b 67.8 ± 16.1b 
P-values (n = 6) 
 COC origin P < 0.001 
 Duration of IVM P < 0.007 

Table 3. Effect of vascular endothelial growth factor (VEGF) supplementation during the first 20 
h of IVM on sperm penetration and pronuclear formation of oocytes 

Unless indicated otherwise, data show the mean ± s.e.m. (n = 5). Within columns, values with different 

superscript letters differ significantly (P < 0.05). COC, cumulus–oocyte complex; MF, medium-sized 

follicles (3–6 mm diameter); SF, small follicles (0.5–3 mm diameter) 

COC 
origin 

VEGF 
(ng 

mL–1) 

No. 
oocytes 

examined 

Penetrated Monospermy Male and female 
pronuclei formed 

Sperm-
penetrated 

oocytes n % n % n % 
MF 0 198 157 79.3 ± 4.1a 36 24.5 ± 3.3 150 75.7 ± 3.3a 2.8 ± 0.3 
SF 0 195 117 60.0 ± 5.6b 38 41.5 ± 9.9 97 49.7 ± 3.5b 2.0 ± 0.2 
SF 100 197 134 68.0 ± 5.9ab 33 29.0 ± 1.5 114 57.9.0 ± 2.9b 2.8 ± 0.4 
SF 200 194 153 78.9 ± 2.0a 38 27.9 ± 6.1 137 70.6 ± 1.5a 2.8 ± 0.4 

Table 4. Effects of vascular endothelial growth factor (VEGF) supplementation during the first 20 
h of IVM on the developmental competence of oocytes from small follicles (SF; 0.5–3 mm diameter) 

Unless indicated otherwise, data show the mean ± s.e.m. (n = 6). Within columns, values with different 

superscript letters differ significantly (P < 0.05). MF, medium-sized follicles (3–6 mm diameter) 

Origin of 
oocytes 

VEGF (ng 
mL–1) 

No. mature 
oocytes 

examined 

Cleaved  Blastocysts formed No. cells per 
blastocyst n % n % 

MF 0 184 171 93.0 ± 2.0 52 28.2 ± 1.4a 31.7 ± 1.3 
SF 0 132 115 87.0 ± 1.0 18 13.6 ± 2.8b 29.2 ± 1.0 
SF 100 164 142 86.2 ± 2.3 35 21.3 ± 2.9ab 29.1 ± 1.4 
SF 200 166 150 90.3 ± 1.3 41 24.6 ± 2.4a 33.8 ± 3.0 
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