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Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma sub-
type, and the Epstein-Barr virus (EBV)-positive subtype of DLBCL is known to
show a more aggressive clinical behavior than the EBV-negative one. BTB and
CNC homology 2 (BACH2) has been highlighted as a tumor suppressor in
hematopoietic malignancies; however, the role of BACH2 in EBV-positive DLBCL is
unclear. In the present study, BACH2 expression and its significance were studied
in 23 EBV-positive and 43 EBV-negative patient samples. Immunohistochemistry
revealed BACH2 downregulation in EBV-positive cases (P < 0.0001), although bial-
lelic deletion of BACH2 was not detected by FISH. Next, we analyzed the contri-
bution of BACH2 negativity to aggressiveness in EBV-positive B-cell lymphomas
using FL-18 (EBV-negative) and FL-18-EB cells (FL-18 sister cell line, EBV-positive).
In BACH2-transfected FL-18-EB cells, downregulation of phosphorylated trans-
forming growth factor-p-activated kinase 1 (pTAK1) and suppression in p65
nuclear fractions were observed by Western blot analysis contrary to non-trans-
fected FL-18-EB cells. In patient samples, pTAK1 expression and significant nuclear
p65, p50, and p52 localization were detected immunohistochemically in BACH2-
negative DLBCL (P < 0.0001, P = 0.006, and P = 0.001, respectively), suggesting
that BACH2 downregulation contributes to constitutive activation of the nuclear
factor-xB pathway through TAK1 phosphorylation in BACH2-negative DLBCL
(most EBV-positive cases). Although further molecular and pathological studies
are warranted to clarify the detailed mechanisms, downregulation of BACH2 may
contribute to constitutive activation of the nuclear factor-kB pathway through
TAK1 activation.

he Epstein—Barr virus (EBV), a linear double-stranded

DNA virus and member of the Herpesviridae family, was
initially discovered from a Burkitt lymphoma-derived cell line
in 1964." Epstein—Barr virus was subsequently found to induce
the proliferation of human B cells® and is currently considered
to contribute to the oncogenesis of several types of B-cell lym-
phoma, including Burkitt lymphoma and diffuse large B-cell
lymphoma (DLBCL).® Of these, DLBCL is the most common
subtype accounting for 40% of all non-Hodgkin lymphoma
cases. EBV-positive DLBCL accounts for §-10% of DLBCL
cases in Asian countries and is frequently detected in immuno-
competent people aged 50 years or older.”” Compared with
EBV-negative DLBCLs, EBV-positive DLBCLs show an
aggressive clinical behavior and were accordingly designated as
a separate category in the 2008 WHO classification.
Immunophenotypically, most EBV-positive DLBCLs are of the
non-germinal center B cell type;* in such cases, nuclear factor-
kB (NFxB) activation through TNFAIP3, CARDII, and other
gene mutations has been reported to play a pathogenic role.”
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In addition, several groups also described NFxB activation
through latent infection membrane protein 1 (LMP1) in EBV-
positive lymphoma cells.®?

BTB and CNC homology 2 (BACH2) has been highlighted
as a transcriptional factor in the regulation of plasma cell dif-
ferentiation. Specifically, BACH?2 inhibits plasma cell differen-
tiation by repressing PRDM1 expression, thus allowing B cells
to underigo class switch recombination and somatic hypermuta-
tion."*'D Sakane-Ishikawa er al."® reported that patients with
higher levels of BACH2 expression had a better prognosis in
DLBCL, although there seemed to be little consensus regard-
ing the significance of BACH2 as a prognostic factor."'” As
BACH2 was reported to mediate the negative selection of pre-
B cells by p53 upregulation, the tumor-suppressive function of
BACH2 has been highlighted."* However, the role of BACH2
expression and its tumor-suppressive function in EBV-positive
DLBCL is still unclear.

In the present study, we examined BACH2 expression in
EBV-positive DLBCLs and found it to be downregulated in
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78.3% of cases. In addition, we sought to investigate how
BACH?2 negativity contributes to aggressiveness in EBV-posi-
tive DLBCL using B-cell lymphoma-derived EBV-positive and
-negative cell lines.

Materials and Methods

Patient selection. Formalin-fixed, paraffin-embedded tissues
(FFPET) were obtained from 23 patients with EBV-positive
DLBCL who were diagnosed from 2008 to 2011 and 43
patients with EBV-negative DLBCL who were diagnosed
from 2004 to 2012 at Okayama University Graduate School
of Medicine (Okayama, Japan). Three hematopathologists
diagnosed the cases according to the criteria described in
the 2008 WHO classification. The study protocol was
approved by the Institutional Review Board of Okayama
University (IRB No. 493, November 29, 2011). All study
procedures were undertaken in accordance with the guideli-
nes of the Declaration of Helsinki.

Immunohistochemical analysis and in situ hybridization. All
immunohistochemical analyses of FFPET were carried out using
an automated immunostainer (Bond-max; Leica Microsystems,
Wetzlar, Germany). The following primary antibodies and dilu-
tions were used: CD20 (L26, 1:200), CD3 (PS-1, 1:50), CD10
(56C6, 1:50), CD5 (4C7, 1:100), Ki-67 (MIB-1, 1:5000), LMP1
(1:10) (all Leica Microsystems); multiple myeloma oncogene 1
(MUM1) (MUM1p, 1:50), NFxB p65 (1:1000) (both from Dako,
Glostrup, Denmark); BCL-6 (D-8, 1:100) (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA); germinal center B-cell
expressed transcript 1 (GCET1) (RAM341, 1:100), NFkB p105/
p50 (E381, 1:250) (Abcam, Cambridge, UK); NFkB2 p100/p52
(18D10, 1:100) (Cell Signaling Technology, Danvers, MA,
USA); forkhead box protein P1 (FOXP1) (JC12, 1:500), and
BACH2 (1:400) (both from Life Span Biosciences, Seattle, WA,
USA). In situ hybridization with EBV-encoded small RNA
probes (Leica Microsystems) was used to detect EBV. A sample
was scored as positive if >30% of the lymphoma cells were pos-
itively stained.

Fluorescence in situ hybridization for BACH2. The FFPET
were subjected to FISH using a spectrum red-labeled BACH2
probe and spectrum green-labeled centromeric probe for chro-
mosome 6 (CEP6) (Vysis/Abbott Molecular Laboratories, Des
Plaines, IL, USA) according to the manufacturer’s instructions.
To identify the BACH2 gene, we prepared specific probes
using the BAC clones RP11-16C2, RP11-402C18, and RP11-
147G14, which cover approximately 500 kb of the BACH2
gene, and incubated samples with these probes at 37°C for
approximately 48 h in a Hybridizer (Dako). Cells with two
CEP6 signals were scored, and the signal ratio of BACH2 to
CEP6 was calculated. BACH2 biallelic and monoallelic
deletions were defined as having signal ratios of 20-60% and
60-80%, respectively, as previously described.'*

Cell lines, RNA extraction, and RT-PCR. We prepared human
non-Hodgkin’s lymphoma cell lines (FL-18, FL-218, and FL-
318) and an EBV-positive sister cell line (FL-18-EB),'%17 a11
provided by Dr. Ohno at Kyoto University (Kyoto, Japan).
RNA was extracted from cultured cells using the miRNeasy
Mini kit (Qiagen, Hilden, Germany), and cDNA was produced
using SuperScript VILO MasterMix (Life Technologies, Palo
Alto, CA, USA). BACH2 and B-actin were amplified as previ-
ously described;'® the primers are listed in Table S1.

Transfection assay. FL-18-EB cells were transfected with a
pIRES2-EGFP plasmid containing a BACH2 sequence using
the Neon transfection system (Life Technologies). The
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optimum transfection conditions (pulse voltage, 1100 V;
pulse width, 30 ms; once) were set using the control plas-
mid pmaxGFP (Amaxa Bioscience, Basel, Switzerland).
Transfected cells were grown in RPMI 1640 medium con-
taining 10% (v/v) FBS at 37°C in an atmosphere with 5%
COs.

Western blot analysis. Whole cell lysates and nuclear and
cytoplasmic fractions were resolved by SDS-PAGE and trans-
ferred onto nitrocellulose membranes using a Trans-Blot Turbo
Blotting System (Bio-Rad, Hercules, CA, USA). The nuclear
and cytoplasmic fractions were separated using a nuclear/cy-
tosol fractionation kit (BioVision, Milpitas, CA, USA) accord-
ing to the manufacturer’s instructions. Antibody reactions were
carried out as previously described;'” the primary antibodies
and conditions are listed in Table S2 (phosphorylated trans-
forming growth factor-fB-activated kinase 1 [pTAKI1] was the
resource from the previous report.?”). ImageJ (NIH, Bethesda,
MD, USA) was used to quantify the protein expression and the
ratio to control was calculated.

Statistical analysis. STATCEI3 software (OMS, Saitama, Japan)
was used to undertake y’-test and r-test analyses. Kaplan—
Meier plots were made using spss version 14.0 (IBM, Chicago,

Table 1. Clinicopathological features of patients with diffuse large
B-cell lymphoma (DLBCL), grouped according to Epstein-Barr virus
(EBV) positivity

EBV-positive EBV-negative pvalue
DLBCL (n = 23) DLBCL (n = 43)

Clinical features

Median age, 77 (2-88) 71 (30-91) 0.66
years (range)

Male : female 1.6:1.0 1.0:1.0 0.50

Clinical stage
111 (%) 14/23 (61) 24/40 (60) 0.84
-V (%) 9/23 (39) 16/40 (40)

Median LDH, 290 (141-1255) 243.5 (158-970) 0.31
IU/L (range)

Median sIL2R, 1932 (340-11000)  1483.5 (165-25400) 0.63
U/mL (range)

Anemia 8/11 (73) 13/31 (42) 0.16

Three-year 38.9 72.2 0.04
survival rate, %

Immunohistochemical
features

CD5-positive (%) 0/15 (0) 5/43 (12) 0.40

Median 49.95 (20.5-76.1) 60 (27.9-83.7) 0.08
Ki-67 labelling

index (range)

ABC type (%) 15/18 (83) 22/43 (51) 0.04
GCB type (%) 3/18 (17) 21/43 (49)
Treatment
R-CHOP or 8/13 (62) 23/32 (72)
R-CHOP-like
regimen (%)
CHOP or CHOP-like 2/13 (15) 6/32 (19)
regimen (%)
Radiotherapy (%) 0/13 (0) 1/32 (3)
Other (%) 3/13 (23) 2/32 (6)

Bold indicates statistical significance (P < 0.05). ABC, activated B-cell-
like; CHOP, cyclophosphamide, doxorubicin, vincristine, and pred-
nisolone; GCB, germinal centre B-cell-like; LDH, lactate dehydroge-
nase; R, rituximab; sIL2R, soluble interleukin-2 receptor.
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IL, USA).
significant.

P-values <0.05 were considered statistically

Results

Significant downregulation of BACH2 expression in EBV-posi-
tive DLBCL. The clinicopathological features of 23 cases of
EBV-positive DLBCL and 43 cases of EBV-negative DLBCL
are summarized in Table 1. The histological features and
immunohistochemical findings of representative cases are
shown in Figure 1. The EBV-positive cases had a significantly
poorer prognosis than EBV-negative cases (P = 0.04; Table 1,
Fig. S1). In addition, 15 of the 18 cases (83%) of EBV-posi-
tive DLBCL showed an activated B-cell-like (ABC) phenotype
according to Choi’s criteria (P = 0.04; Table 1, Fig. 2). There

Fig 1. Histological  features  and immuno-
histochemical findings of representative cases of
diffuse large B-cell lymphoma (DLBCL). (a)
Immunohistochemical analysis of Epstein-Barr virus
(EBV)-positive DLBCL, activated B-cell-like (ABC)
type reveals that the sample is CD20-positive, CD3-
negative, germinal center B-cell expressed transcript
1 (GCET1)-positive, multiple myeloma oncogene 1
(MUM1)-positive,  CD10-negative, EBV-encoded
small RNA in situ hybridization (EBER (ISH))-positive,
and BACH2-negative with a Ki-67 labeling index of
62.8%. (b) Immunohistochemical analysis of EBV-
negative DLBCL, ABC type indicates that the sample
is CD20-positive, CD3-negative, GCET1-positive,
MUM/1-positive, CD10-negative, EBER(ISH)-negative,
and BACH2-positive with a Ki-67 labeling index of
81.2%.
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were no other significant differences in clinicopathological
characteristics between EBV-positive and -negative cases of
DLBCL.

Immunohistochemically, 38 of 43 (88.4%) EBV-negative
DLBCL cases were BACH2-positive, compared to only 5 of
23 (21.7%) EBV-positive cases (P < 0.0001; Table 2a). When
the analysis was restricted to ABC cases, EBV-positive
DLBCL cases also showed a significantly lower BACH2
expression rate relative to EBV-negative cases (P < 0.0001;
Table 2b), suggesting that the downregulation of BACH2
expression is associated with the presence of EBV. When com-
pared with ABC-type (22 cases) or germinal center B-cell-type
(21 cases) EBV-negative DLBCL cases, EBV-positive cases
showed a significantly lower rate of BACH2 positivity
(P < 0.0001 and P < 0.0001, respectively; Table S3).
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In accordance with a previous report,*" we categorized our

data into negative, weakly positive, or strongly positive BACH2
expression (Table S4). In total, BACH2 expression was nega-
tive, weakly positive, and strongly positive in 34.8%, 15.2%,
and 50% of cases, respectively. In EBV-negative cases, BACH2
negative, weakly positive, and strongly positive expression con-
stituted 11.6%, 23.3%, and 65.1%. In EBV-positive cases, all
five BACH2-positive cases were strongly positive, and in EBV-
negative cases, 10 cases of 38 BACH2-positive cases were weak
and 28 cases of BACH2-positive cases were strongly positive.
There was no significant difference between EBV status and the
staining intensity of BACH2 (P = 0.247).

Biallelic BACH2 deletion was not detected in EBV-positive
DLBCL cases and human B-cell lymphoma cell lines. We used
FISH for the 18 EBV-positive DLBCL cases that were
immunohistochemically negative for BACH2. Of these, 15
cases (83.3%) had no evidence of BACH2 gene deletion
(Fig. 3a). The other three cases (16.7%) showed monoallelic
deletion; no cases had biallelic deletion. Notably, BACH2 gene
loss was not detected in any EBV-negative case (Fig. S2). Fur-
ther studies using human B-cell lymphoma-derived cell lines
(FL-18, FL-218, FL-318, and the FL-18 sister cell line FL-18-
EB) were carried out. Through RT-PCR analysis, BACH2
mRNA was detected in FL-18, FL-218, and FL-318 but not in
the EBV-infected line, FL-18-EB (Fig. 3b). An immunohisto-
chemical study yielded consistent results (Fig. 3c). Notably,
biallelic BACH2 deletion was not detected in either FL-18-EB
or FL-18 using FISH (Fig. 3d), indicating that BACH2 expres-
sion was downregulated in the former despite the lack of gene
deletion. This result was concordant with the findings from
patient sample analyses.

Transfection of the BACH2 gene into FL-18-EB inactivated the
TAK1-NFxB pathway. We transfected the BACH2 gene into FL-
18-EB cells to analyze the effect of BACH2 on the expression
of other genes. First, we confirmed the overexpression of

© 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
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Fig. 2. Distribution of Epstein-Barr virus (EBV)-
negative (a) and EBV-positive (b) diffuse large B-cell

N
% A FOXP1
N o
~ Bcl-6 3

lymphoma (DLBCL) molecular phenotypes. -,

Sl Positive; >, negative. ABC, activated B-cell-like;

n=2(11.1%)

FOXP1, forkhead box protein P1; GCB, germinal
center B-cell-like; GCET1, germinal center B-cell
expressed transcript 1, MUM1, multiple myeloma
oncogene 1.

BACH? in FL-18 cells using RT-PCR (Fig. 4a), and we exam-
ined the NFkB pathway protein expression by Western blot
analysis. From real-time PCR analysis, NFKB2 (encodes p52)
and RELA (encodes p65), the products of which comprise the
NFxB pathway, were significantly downregulated in the
BACH?2-transfected FL-18-EB cells (Fig. S3). Then we particu-
larly focused on the expression of TAKI, a representative
NFkB pathway molecule in EBV-positive B cells.** FL-18-
EB cells contained pTAKI, an active form of TAKI, whereas
this form was not detected in FL-18 cells. Notably, the trans-
fection of BACH?2 into FL-18-EB cells repressed the activation
of TAKI, as shown by the reduced levels of pTAKI1 (Fig. 4b).
No significant difference was observed in the expression of
total TAK1. Moreover, p65 expression of the nuclear fractions
was suppressed in BACH2-transfected FL-18-EB cells,

Table 2. Differential BTB and CNC homology 2 (BACH2) expression
in Epstein-Barr virus (EBV)-positive and EBV-negative diffuse large B-
cell lymphoma (DLBCL) and EBV-positive and EBV-negative DLBCL,
activated B-cell-like (ABC) type (b)

BACH2 expression

Diagnosis P-value
Positive Negative

(a

EBV-positive DLBCL (n = 23) 5 18 <0.0001
EBV-negative DLBCL (n = 43) 38 5

(b)

EBV-positive DLBCL, ABC type (n = 15) 3 12 <0.0001
EBV-negative DLBCL, ABC type (n = 22) 20 2

According to the criteria reported by Kikuchi et al.,?" all five BACH2-
positive cases of EBV-positive DLBCL were strongly positive for BACH2.
Among 38 BACH2-positive cases of EBV-negative DLBCL, 10 cases were
weakly positive and 28 cases were strongly positive for BACH2.

Cancer Sci | May 2017 | vol. 108 | no.5 | 1074
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suggesting that BACH2 represses the TAKI-NFxB pathway
(Fig. 4c,d).

Phosphorylated TAK1 expression and p65, p50, and p52 nuclear
localization in BACH2-negative DLBCL. Finally, we immunohisto-
chemically evaluated the localization of p65, which was signif-
icantly downregulated in BACH2-transfected FL-18-EB cells,
by real-time PCR, in 36 cases of BACH2-positive DLBCL and
14 cases of BACH2-negative DLBCL that were available for
further examination and successfully stained. Among the
BACH2-positive DLBCLs, only 2 of 36 cases (5.6%) showed
nuclear p65 localization, whereas 10 of 14 cases (71.4%) of
BACH2-negative DLBCL showed nuclear p65 localization
(P < 0.0001; Table 3, Fig. 4e,f). The BACH2-negative cases
were found to express pTAK1, whereas BACH2-positive cases
did not (Fig. 4e,f). Furthermore, BACH2-positve DLBCL
showed significant cytoplasmic staining of p50 and p52
(P = 0.006 and P = 0.001, respectively; Fig. 4g,h, Table 3),
although the total number of examined cases was limited due
to shortage of samples. In addition, significant nuclear localiza-
tion of p65, p50, and p52 was observed in EBV-positive cases
(P <0.0001, P <0.01, and P < 0.01, respectively; Table S5).

Discussion

Despite previous reports of the aggressive behavior of EBV-
positive DLBCL, no reports have addressed the tumor-suppres-
sive factor BACH2. The findings from the present study reveal
significant downregulation of BACH?2 expression in EBV-posi-
tive DLBCL and suggest its importance in EBV-positive B-cell
lymphomas. In our study, we used the FL-18 and EBV-posi-
tive FL-18-EB cell lines, established from a single patient
diagnosed with follicular lymphoma, which harbor t(14;18)
and the MYC-related translocation t(8;22)(q24;q13).(16"7)
Therefore, these paired cell lines were considered a good
model to analyze the impact of EBV in aggressive B-cell lym-
phoma. Additionally, FL-18-EB showed partial LMP1 positiv-
ity in our examination (Fig. S4).

(© 5\ positive DLBCL

Fig. 3. (a) Fluorescence in situ hybridization (FISH)
analysis using a spectrum red labeled BACH2 probe
and spectrum green labeled centromeric probe for
chromosome 6 (CEP6). Epstein-Barr virus (EBV)-
positive diffuse large B-cell lymphoma (DLBCL)
yielded a signal ratio of 90.5%. (b-d) BACH2
expression in human non-Hodgkin’s lymphoma cell
lines. (b) BACH2 expression was not detected by
PCR in the FL-18-EB cell line. () BACH2 was
expressed in FL-18 cells but not in FL-18-EB cells. (d)
FL-18 and FL-18-EB showed signal ratios of 94%
and 93%, respectively, by FISH analysis with the
BACH2 probe.
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A member of the CNC (Cap’n’collar) group of transcription
factors, BACH2 forms heterodimers with small Maf family
proteins. These heterodimers repress the expression of target
genes by binding to a DNA element termed the Maf recogni-
tion element."%* Expression of BACH2 has been described
in hematopoietic cells and nerve cells,(24’25) and the function
of BACH2 has been well investigated in B lymphocytes.
BACH2 represses plasma cell differentiation by repressing
BLIMPI transcription, and studies of BACH2-deficient mice
have led to the description of this protein as indispensable for
the induction of class switch recombination.!!*®

In high-grade lymphomas, a loss of heterozygosity on the
long arm of chromosome 6 is frequently detected.”” BACH2
is accordingly among the candidate genes associated with lym-
phomagenesis,**2 and several research groups have recently
described the tumor-suppressive function of its protein product.
For example, Swaminathan et al.'* reported that BACH2-
positive B cells resist MYC-induced leukemic transformation
through p53 upregulation. In chronic myeloid leukemia,
Yoshida et al.®? reported that BACH2 phosphorylation, which
occurred downstream of BCR/ABL signaling, repressed
nuclear translocation and led to the expression of the anti-
apoptotic factor heme oxygenase-1. Furthermore, Chen
et al.®V reported that, in mantle cell lymphoma, BACH2
localization determined cell viability in response to oxidative
stress. In the present study, significant downregulation of
BACH2 expression was observed in EBV-positive DLBCL,
suggesting that BACH2 negativity contributes to the presence
of EBV.

In previous reports, immunohistochemical BACH2 expres-
sion was described as negative, weakly positive, and strongly
positive. The negative-case ratio of our series (34.8%) is ver
similar to that of the series (35%) by Kikuchi er al.®"
Sakane-Ishikawa e al."? and Ichikawa et al.'? reported no
BACH2-negative case in their series, which seems to be differ-
ent from our data. However, in our series, only 11.6% of
EBV-negative cases were completely negative for BACH2.

(b)

FL-18
FL-18 -EB FL-218 FL-318

400 bp -
e m ]

FL-18-EB

FL-18-EB
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Fig. 4.
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(a) BACH2 was detected in BACH2-transfected FL-18-EB cells (FL-18-EB [BTB and CNC homology 2 (BACH2)+]) by PCR. (b) Phosphorylated

transforming growth factor-p-activated kinase 1 (pTAK1) expression was downregulated in FL-18-EB (BACH2+) cells as shown by Western blot
analysis. (c) p65 expression was downregulated in nuclear fractions of FL-18-EB (BACH2+) cells compared to FL-18-EB and FL-18-EB (control vec-
tor) cells. (d) The ratio of BACH2 expression level to LaminB1 is shown. (e) Immunohistochemistry in BACH2-negative diffuse large B-cell lym-
phoma (DLBCL) shows p65 positivity in the nucleus, pTAK1 positivity, and EBV-encoded small RNA in situ hybridization (EBER (ISH)) positivity. (f)
Immunohistochemistry in BACH2-positive DLBCL shows p65 positivity in the cytoplasm, pTAK1 negativity, and EBER (ISH) negativity. (g) Immuno-
histochemistry in BACH2-negative DLBCL shows nuclear staining of p50 and p52. (h) Immunohistochemistry in BACH2-positive DLBCL shows cyto-

plasmic staining of p50 and p52.

Therefore, we suppose this difference is not crucial. We
focused on EBV status, and our proportion of EBV-positive
cases is different from other reports. We suppose that the
higher negative ratio of BACH2 was due to the larger number
of EBV-positive DLBCLs in our series. Moreover, the anti-
BACH2 antibody used was different among the studies, which
might affect the results. In our cases, there was no significant
difference between EBV status and the staining level of
BACH?2, indicating BACH2 positivity or negativity is more
important than BACH2 immunostaining intensity as to EBV
status.

Previous reports have not examined the mechanism underly-
ing the downregulation of BACH2 protein expression in EBV-
positive DLBCL. Notably, Takakuwa et al. 32 reported that
the integration of EBV into BACH?2 induced a loss of BACH2
expression in the Raji Burkitt lymphoma cell line. As FISH
did not detect biallelic deletion in any patient samples or cell
lines used in our study, viral integration may have occurred in
BACH?2. Epigenetic silencing is another possible mechanism
underlying the downregulation of BACH?2 expression, as was
previously reported in gastric cancer.®¥ Although we treated
FL-18-EB cells with the DNA methylation inhibitor 5-azacyti-
dine, we were unable to recover BACH2 expression (data not
shown), thus failing to support a methylation-based mechanism
of reduced expression. In contrast, proteolytic underlying
mechanisms remain worth considering. Another member of the
CNC transcription factor group, Nrf2, has been widely investi-
gated, and the role of Keapl in Nrf2 ubiquitination and subse-
quent proteasomal degradation has attracted considerable
attention. Many reports have revealed an association between
abnormal Keapl-Nrf2 sig,naling and tumorigenesis in many
types of carcinomas.®** Therefore, further evaluation of
BACH2 proteolysis may be merited.

In this report, we also attempted to elucidate the association
between BACH2 downregulation and NFxB activation. In
EBV-infected cells, LMP1, which is produced by EBV and
expressed in the cell membrane, has been reported to affect
neoplastic transformation through the ligand-independent

Table 3. Differential p65, p50, and p52 expression in BTB and CNC
homology 2 (BACH2)-positive and BACH2-negative diffuse large B-cell
lymphoma (DLBCL)

Diagnosis Cytoplasmic Nuclear P-value
p65

BACH2-positive DLBCL (n = 36) 34 2 <0.0001
BACH2-negative DLBCL (n = 14) 4 10

p50

BACH2-positive DLBCL (n = 17) 16 1 0.0060
BACH2-negative DLBCL (n = 16) 8 8

p52

BACH2-positive DLBCL (n = 14) 14 0 0.0010
BACH2-negative DLBCL (n = 16) 7 9
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activation of several signaling pathways that induce cell
growth.(36’37) As the NFkB pathway was among these onco-
genic pathways, we focused on the association between
BACH2 and the NFkB pathway.m) In canonical NFkB activa-
tion, tumor necrosis factor receptor-associated factor 6 ubiqui-
tination by the C-terminal activation region 2 of LMPI1
induces TAKI1 binding protein 2/3 activation. Transforming
growth factor-f-activated kinase 1 forms a complex with
TAKI1 binding protein 2/3 and TAKI1 is subsequently activated
by phosphorylation and polyubiquitination, leading to phospho-
rylation of the IkB kinase complex and degradation of IkBo.
Subsequently, pS0 and p65 transfers to the nucleus and induces
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Fig. 5. Schema of BTB and CNC homology 2 (BACH2) interaction in
the nuclear factor-xB (NFkB) signaling pathway. BACH2 repressed the
transforming growth factor-B-activated kinase 1 (TAK1) phosphoryla-
tion and induced the inactivation of the NFxB signaling pathway. In
Epstein—Barr virus (EBV)-positive B-cells, BACH2 downregulation con-
tributes to the activation of the NFxB pathway through TAK1 activa-
tion. CTAR2, C-terminal activation region 2; IKK, IkB kinase; LMP1,
latent infection membrane protein 1; P, phosphorylation; TAB2/3,
TAK1 binding protein 2/3; TRAF6, tumor necrosis factor receptor asso-
ciated factor 6; Ub, ubiquitination.
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the expression of genes related to cell proliferation and
survival.®

Although the target protein of BACH2 in the NFxB pathway
has not yet been clarified, BACH2 expression led to a decrease
in TAK1 phosphorylation, which occurs upstream of the NFxB
pathway. Therefore, BACH2 was suggested as a repressive
factor upstream of TAK1 phosphorylation. Immunohistochem-
istry of pTAK1 was not detected in BACH2-positive DLBCL
cases and it was determined that these cases showed cytoplas-
mic p65 expression, whereas pTAKI1 positivity and nuclear
p65 expression were observed in BACH2-negative DLBCL.
Furthermore, nuclear p65 expression was repressed in the
BACH2-transfected cells by Western blot analysis.

Compagno et al.*” and Montes-Moreno er al.® used anti-
p50 and -p52 antibody to evaluate NFkB activation, and Ok
et al.*" reported that expression of p65 showed no difference
between EBV-positive and -negative DLBCLSs, contrary to the
results of p50 and p52 in Caucasian. In our present study, p50,
P52, and p65 had very similar status, and p65 frequently local-
ized to the nucleus in EBV-positive cases (P < 0.0001;
Table S5). There are some possible factors for the discrepancy,
such as differences in race and antibodies (although the anti-
body information was not available for the previous report).
EBV-associated lymphoproliferative disorder is more frequent
in Asian than in Caucasian, that is, vast majority of patients
with chronic active EBV infection, or EBV-associated natural
killer cell lymphoma of nasal type is almost exclusively found
in Asia. Therefore, this discrepancy could be potentially
explained by the difference of the population. All 66 DLBCL
cases in our series are from Japanese patients.

Figure 5 shows a schema of the relationships between
BACH2 and the NFxB pathway, showing that BACH2
repressed TAK1 phosphorylation and induced the inactivation
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of the NFxB signaling pathway. In EBV-positive B cells,
BACH?2 downregulation contributes to the activation of the
NFxB pathway through TAKI activation. From a recent
report, C-Rel (an NFxB subunit) regulates BACH2 expression
and the NFkB subunit binds to the region of the BACH2 gene
in an EBV-positive B cell line.*” Further study needs to clar-
ify the relationships of TAK1, BACH2 and C-Rel.

In conclusion, our study reported the downregulation of
BACH?2 expression in the majority of EBV-positive DLBCL
cases, and indicated that it contributes to constitutive activation
of the NFkB pathway in an EBV-positive B-cell lymphoma
cell line. Points such as the target genes of BACH2 and the
mechanism by which BACH2 expression is downregulated in
EBV-positive B-cell lymphomas remain unresolved. Accord-
ingly, further molecular and pathological studies are warranted
to clarify the significance of BACH2 in EBV-positive B-cell
lymphomas.
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