

Author Accepted Manuscript

Future Generation Computer Systems

An agility-oriented and fuzziness-embedded semantic model for collaborative cloud

service search, retrieval and recommendation

Daren Fang
 a*

, Xiaodong Liu
 a
, Imed Romdhani

 a
, Pooyan Jamshidi

 b
, Claus Pahl

 b

a School of Computing, Edinburgh Napier University, Edinburgh, EH10 5DT, UK
b School of Computing, Dublin City University, Dublin, Ireland

1. Introduction

Cloud computing revolutionizes the world’s ICT with on-

demand provisioning, pay-per-use self-service, ubiquitous

network access and location-independent resource pooling. Its

reliable, scalable and elastic computational services and resource

provision can adapt rapidly and effectively to nearly all kinds of

needs for all major industry sectors [1, 2]. As considerable efforts

are made to drive and enhance the interoperability and

composition of cloud services/resources [3, 4, 5], significant

research gaps are found among the proposed service reference

frameworks and models. On the other hand, along with the rapid

development in the field, the number of cloud services continues

growing whilst the market becomes increasingly complex. Cloud

service consumers (CSCs) thus, may need to dig deeply to find

the optimal services, by researching on a large number of service

descriptions, characteristics, properties, service level agreements

(SLAs), etc. Furthermore, regarding the services’ features,

functionalities, customizability and interoperability, etc., existing

cloud service providers (CSPs) offer a diversity of interfaces,

standards, policies and SLA parameters, which result into

numerous difficulties in service information retrieval,

interpretation and analysis [6, 7]. Consequently, these impose

urgent needs and great challenges on the specification and

retrieval of cloud services, whereas an effective cloud service

recommendation system is in demand for a variety of CSCs.

Recently, as a series of cloud computing/service semantic

models propagate [4, 8, 9, 10, 11, 12], they suffer from certain

limitations. Firstly, the majority of the existing models cannot

maintain comprehensive service information across multiple

abstraction levels (i.e. Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)).

These models fail to reveal the various agile interactions among

cloud services and resources of such matrix structure (e.g. SaaS

services can be deployed on PaaS platforms whilst PaaS services

may rely on IaaS resources). Secondly, a limited number of

models can effectively present the diverse full and potential

service functions and features; none of them clarifies the range of

connections or cooperation among cloud services and companies

who have (hidden) relationships (e.g. some cloud services can

orchestrate with others whilst some CSPs have certain industry

relationships). Thirdly, most of the cloud services are “agile”, i.e.

adaptable at run time in their functions, interfaces, capacity, etc.

Yet, such agility aspects are often ignored or poorly disclosed in

existing models. Consequently, the lack of these critical aspects

would cause ineffectiveness while implementing service search,

discovery, retrieval, and recommendation tasks.

To eliminate the above limitations, a novel semantic model is

proposed, notably the agility-oriented and fuzziness-embedded

cloud service ontology (AoFeCSO). It adopts an agility-centric

design and maximally utilizes the full range of OWL2

specifications. Moreover, AoFeCSO is deployed as a fuzziness-

embedded model that stays active. It comprises fuzzy weighted

service specifications to present inexplicit/controversial facts.

The fuzzy weights can be collected from CSCs, CSPs and cloud

service brokers (CSBs), through the form of “collaborative

ART ICLE INFO AB ST R ACT

 Cloud computing enables a revolutionary paradigm of consuming ICT services. However, due

to the inadequately described service information, users often feel confused while trying to find

the optimal services. Although some approaches are proposed to deal with cloud service

retrieval and recommendation issues, they would only work for certain restricted scenarios in

dealing with basic service specifications. Indeed, the missing extent is that most of the cloud

services are "agile" whilst there are many vague service terms and descriptions. This paper

proposes an agility-oriented and fuzziness-embedded cloud service ontology model, which

adopts agility-centric design along with OWL2 (Web Ontology Language) fuzzy extensions.

The captured cloud service specifications are maintained in an open and collaborative manner,

as the fuzziness in the model accepts rating updates from users on the fly. The model enables

comprehensive service specification by capturing cloud concept details and their interactions,

even across multiple service categories and abstraction levels. Utilizing the model as a

knowledge base, a service recommendation system prototype is developed. Case studies

demonstrate that the approach can outperform existing practices by achieving effective service

search, retrieval and recommendation outcomes.

Keywords:

Cloud computing

Service agility

Semantic model

Service discovery

Ontology evolution

Knowledge retrieval

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/95876003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2
service specification fuzzy ratings”, i.e. users can collaborate to

rate the service specification applicability. Compared with the

conventional ontology building and managing processes executed

by limited number of field experts, the novel collaborative ratings

make AoFeCSO more resourceful as well as more credible. This

would bring much more cloud computing knowledge than any

single group of experts does alone.

Using AoFeCSO as a central interacting knowledge base, a

collaborative cloud service search, retrieval and recommendation

system (CSR) prototype is developed. With its built-in fuzzy

rating management and ontology evolution mechanism, CSR

facilitates automatic and dynamic model evolution without

interrupting concurrent service retrieval actions. The paper’s

contributions are: 1) an agility-oriented and fuzziness-embedded

cloud service semantic model that maintains comprehensive and

in-depth service information; it ultimately comprises a diversity

of cloud service descriptions, service resource aspects,

characteristics and features, plus their interactions, as a single

retrievable knowledge source; 2) a cloud service recommendation

system that is deployed on top of the model, allowing system

users to not only search and retrieve cloud services flexibly and

effectively, but also participate in model contents updates, which

ultimately drive dynamic model evolution.

The rest of the paper is organized as follows: Section 2

introduces the background concepts and knowledge. Section 3

defines the architecture design of the proposed semantic model.

Section 4 describes the adopted fuzzy OWL2 extension technique

and ontology fuzzy assertion management. Section 5 illustrates

the prototype implementation and component interactions.

Section 6 uses a case study to demonstrate how the proposed

model captures cloud service specifications and how the relevant

prototype features for cloud service search, recommendation and

retrieval are provided. Section 7 evaluates the model using state-

of-the-art ontology evaluation approaches. Section 8 discusses

the related research regarding web/cloud service semantic model,

service recommendation system and ontology fuzzy extension.

Finally, Section 9 concludes the paper with summaries and future

work.

2. Background

In recent years, Web Ontology Language (OWL) [13] has

been widely adopted for web service semantic specifications [14,

15]. The formal entity specification and reference framework can

enable the integration of a wide range of aspects, e.g. context

information [16], user requirements [17], business processes [18].

Accordingly, this would assist service design, development,

invocation and composition tasks in pervasive environments [6].

In fact, unlike web services and many other domains, cloud

computing involves many vague and imprecise descriptions,

terms, categorizations, etc. This may incur several issues during

specification process. For instance, according to the majority of

literature, “availability” and “security” are two separate service

properties, yet some [19, 20] argue that availability is a sub

category of security. For those diverse service models and

characteristics, should Amazon S3, Dropbox and Google Drive

be regarded as SaaS, PaaS, IaaS or Storage-as-a-Service? Do they

have the same extent (degree to the capability) towards

scalability, reliability, interpretability? Indeed, conventional

OWL/OWL2 modeling techniques cannot handle the above

scenarios effectively, since they are designed to clarify explicit

knowledge with concrete axioms, either true or false [6].

Fundamentally, this is due to the formal description logical (DL)

consistency requirement which does not support such fuzziness

[21, 22].

Fuzzy logic (FL) is a well-known extension to DL that has

been used widely in many fields. It includes two theories, known

as fuzzy set [23] and fuzzy relationship [24]. The former

describes vague subsumption between classes and their members,

whereas the latter specifies uncertain relationships between

individuals and classes. On the other hand, probabilistic logic

network [25] (PLN) is another theory for uncertainty

representation and inferences. It extends the existing fuzzy

theories and their reasoning applicability to a great extent: the

FL’s fuzzy membership theory is further divided into a number

of detailed scenarios (e.g. degreed belonging, chanced belonging,

sharing partial properties and overall weighted judgment). The

FL’s fuzzy relationship theory is extended with higher-order and

N-ary logical relationships.

While traditional OWL modelling techniques cannot handle

and express uncertainties, FL and PLN theories is able to provide

extended logic (reasoning) support for fuzzy specifications.

AoFeCSO adopts OWL2 fuzzy extensions on the ground of these

theories. This significantly enhances the accuracy of the model

specification and expression with the most appropriate facts.

More specifically, as an ordinary ontology axiom can only clarify

a definite fact, a fuzzy-extended axiom can describe the fact

along with “a truth degree”. The degree of truth, usually a float of

interval (0, 1), is viewed as the fuzzy weight of the axiom. With

such weighted assertions, AoFeCSO is able to clarify a variety of

vague specifications. For instance, a service owns certain

“partial” properties. A service works “closely” with another

service. A service is sometimes but not always regarded as what

it is being specified.

3. AoFeCSO model architecture design

This section presents the design of the proposed cloud service

ontology. Firstly, it introduces the loosely-coupled and agility-

centric ontology design features. Subsequently, the design of the

object property, data property and annotation property

constructions are revealed respectively. Finally, it discusses the

ontology design patterns adoption and application.

3.1. Loosely-coupled foundation

AoFeCSO is deployed with a “loosely-coupled” ontology

foundation. Firstly, it adopts flexible membership classifications,

which enables loose (class) boundary restrictions. Secondly, it

maximally utilizes property specifications for enhanced

reasoning application. More specifically, they are represented as

follows:

1) In AoFeCSO, cloud services are asserted as individuals that

belong to the respected cloud company classes (instead of certain

cloud service models). Among those who are related, there are

appropriate relationships such as “rely resource of”, “have

control over” and “can orchestrate with”.

2) The cloud service delivery/deployment models and

role/party specification are revealed via object relationships.

Object property specifications are asserted from a cloud service

towards its respected service model/role classes, e.g. service A

“is delivered as” IaaS; service B “is deployed as” public cloud;

company C “is recognized as” CSP. In this way, in AoFeCSO, a

service may own multiple models and roles, e.g. both IaaS and

SaaS, both public and private cloud, or even both CSC and CSP.

3) The characteristics and properties that cloud services apply

are illustrated as they have some relationships with the sub

entities of main service attribute classes, e.g. service

characteristics (elasticity, adaptability, reliability, etc.) and

service features (monitoring, notification, multiple OS and

programming language support, migration and transition support,

etc.).

4) In AoFeCSO, a cloud services can own several functions as

well. Except of the main designed function(s), a service is often

specified with additional functions as long as it can serve the

purpose. For instance, IaaS compute services may also provide

application development platform, or even network, database and

storage functions.

3.2. Agility-centric design

In cloud computing, agility is generally referred as the ability

of a cloud service to react appropriately and rapidly to certain

(adaptation, customizability, interoperability, etc.) requirements

[26]. In fact, such reaction capability may counts on a diversity of

service elements, such as the service deployment, flexible

resource provision, comprehensive monitoring, notification,

orchestration supports, etc.

Fundamentally, the functions a service achieves should matter

the most regarding one’s agility, since different functions require

distinct architecture designs and resource provisions [1, 26].

Most of the SaaS services, for instance, rely on fairly limited

computational resources and provide single or very limited

functions. Meanwhile, typical PaaS services do not necessarily

have fixed application-scale functions; instead, they are often to

develop or deploy certain applications/services where certain

(potential) usage/functions can be achieved. Similarly, for those

IaaS services which are designed for general computing needs,

they would offer greater service control, access and

customization whilst they can achieve even more (potential)

usage purposes. Indeed, the ranges of functions and resources a

cloud service is deployed decide its agility during service

composition. Accordingly, agility inevitably becomes the link

while specifying the above service function aspects and their

potential interactions.

The various cloud service characteristics and features can be

viewed as the further information regarding one’s main and

potential service functions [1, 26]. Elasticity and scalability, for

instance, are typical cloud service characteristics. Their sub-

concepts (e.g. available VM sizes, scaling options, further details

of vCPU speed/cores, intranet/Internet connection speed,

memory and virtual storage sizes, etc.) are, in fact, detailing a

service’s capability of scaling, either up/down or in/out as

required. Therefore, elasticity and scalability are extremely

relevant to cloud service agility. Likewise, the ability to support

different platforms, OSs, programming languages and application

programming interfaces (APIs) can reflect cloud service agility.

The supporting platforms, OSs, programming languages and

APIs clearly state a service’s interoperability and configurability

towards its agility. Similarly, detailed notification, monitoring

and security features can be considered relevant to cloud service

agility. Notification basically comprises the different service

usage notifications and various service health notifications.

Monitoring consists of a diversity of service element notification,

log monitoring, performance monitoring, and security

monitoring. Cloud security aspects are generally divided into

access control and data security. Access control comprises the

different layers that a cloud service supports for its security

implementation, e.g. application layer, data layer, network layer,

process layer and system layer [27, 28]. Data security involves

the data encryption and management supports for its security

implementation, e.g. client/application encryption, data loss

prevention, database encryption, externally managed encryption,

file/folder encryption and digital rights management, instance

managed encryption, link network encryption, and provider

managed encryption, proxy encryption [29, 30]. Indeed, all these

aspects above are often deployed as the guarantee for cloud

service agility requirements, since they ensure the availability,

reliability, integrity, confidentiality for appropriate agility

responses. Consequently, a wide range of service characteristics

and features are seen as the detailed reflection of cloud service

agility.

As a result, illustrates in Fig. 1, agility becomes the bridging

aspect that incorporates cloud service functions, characteristics

and features, both functionally and non-functionally. To this

extent, agility becomes the overall reflection of a cloud service’s

profile and capability. This is how AoFeCSO models cloud

service specification by focusing the in-depth cloud service

concept details and their relationships.

3.3. Ontology construction

Fig. 1. Agility-centric Ontology Design

 4
Built on the ground of the existing cloud computing/service

models and knowledge, AoFeCSO adopts the full range of

OWL2 property assertions, where several property handling

techniques are employed. Fig. 2, Fig. 3 and Fig. 4 demonstrate

the extensions AoFeCSO achieved in contrast to other existing

models (i.e. [8, 9, 10, 11, 12, 31]).

3.3.1 In-depth cloud service object property assertion

In ontology, an object property declares a certain relationship

between two entities. While existing practices [4, 9] utilize such

for attributing cloud service characteristics, functional and non-

functional properties, very few touches the details of how or how

well those cloud services own these characteristics and

properties.

Shown in Fig. 2, AoFeCSO describes the lower-level details

regarding the service characteristics and features. For instance,

scalability is divided into vertical scalability and horizontal

scalability, where each of them has individual sets of concepts.

Security comprises access control and data security; each

category leads to own sets of security aspects [19, 29]. By

digging into the details and relating them with appropriate cloud

services, AoFeCSO is capable of expressing in-depth facts of

cloud services’ characteristics, features and functions.

3.3.2 Explicit cloud service and concept relationship assertion

Existing models [4, 8, 9, 10, 11, 12, 32] tend to ignore the

many relationships among cloud computing concept. Firstly, the

interoperability between CSPs and cloud services is often

inexplicitly expressed. Indeed, many CSPs are found with certain

industry connections; several cloud services are built with the

ability to interact agilely with others. Secondly, interactions

among certain cloud service properties are often missed. In fact,

there are several obvious/hidden relations among cloud service

characteristics, features and functions. For instance, scalability is

often attributed to elasticity to a certain extent; monitor features

may affect services’ scaling and load balancing behaviors.

Demonstrated in Fig. 2, AoFeCSO covers these relationships

via individual-to-individual, class-to-class and individual-to-class

object property assertions. Among such relevant cloud services,

companies and other concepts, various direct/indirect and

strong/weak relationships are explicitly revealed (e.g. “has

industry relationship with”, “is controlled by”, “affects”, etc.) As

these object properties are asserted with property characteristics

such as “transitive”, “symmetric” and “inverse property”, it

Fig. 2. Advances of AoFeCSO in dealing with ontology object properties

allows DL reasoner to reason new inferred cloud service

relationships. In this way, AoFeCSO becomes a densely

interconnected ontology model in which very few

entities/concepts are seen “isolated” on their own.

3.3.3 Categorized and comprehensive data property assertion

Most of the existing models solely or largely focus on

clarifying the numerical data attributes of compute cloud services

[10, 11, 12]. In contrast, AoFeCSO employs data properties for

much wider specifications. As illustrated in Fig. 3, it employs

diverse data types, including String, Boolean, Data time, etc.

According to the different cloud services’ delivery models, the

data properties are divided into a series of sub categories. For

instance, IaaS compute services have “vCPU core, frequency,

memory size, network performance”, etc. PaaS application

platform services have “programming language version support,

maximum size of application file, maximum total number of file

per directory”, etc. SaaS file storage services have “binary

difference support, file session support, individual size limit,

revision history support”, etc.

In addition, cloud service SLA data is specified with data

property assertions. It involves specifications of SLA

descriptions, obligations and other relevant terms and conditions,

such as “SLA effective date, service commitment, service

compensation, service error rate, service credit request, service

annual/monthly up time”, etc. [33]. These become a separate

complete service data type specification category.

3.3.4 Multi-sourced annotation property assertion

As depicted in Fig. 4, AoFeCSO utilizes annotation properties

in a rather different approach against others [8, 34, 35] for entity

annotations. It involves annotating not only cloud services, but

all other concepts in the ontology, e.g. service models, service

characteristics, service properties, CSPs, programming

languages, protocols, APIs, etc., regardless of their uniqueness or

commonness. In this way, AoFeCSO becomes much more

interpretable, even to non-expert users.

Moreover, unlike the existing models which acquire cloud and

service (annotation) information from a single knowledge source,

AoFeCSO collects and presents multiple descriptions over a

diversity of knowledge sources. This establishes trustful entity

annotations, since each annotation asserted is accompanied with

its origin source information (by annotating the annotation with

the source information). Therefore, the multi-sourced annotations

enable a more comprehensive view for the target cloud entities.

3.4. Adoption and application of Reasoning OPs

Reasoning OPs are adopted to acquire certain desirable

reasoning outcome based on the behavior applied in reasoning

engines [36]. Such design enables valuable queries, inferences

and ontology evaluation, since it informs the ontology state and

allows customized reasoning processes [37]. Typical examples of

Reasoning OPs are found as classification, subsumption,

inheritance, materialization and de-anonymizing, which are also

known as normalizations [38]. Specifically, AoFeCSO adopts

Reasoning OPs by applying the following normalization steps.

To present concise class names and eliminate the anonymous

class descriptions, many new class names are introduced in

AoFeCSO. Complex class descriptions originated from existing

ontologies are replaced with ones that make more sense for cloud

service entity retrieval tasks. As depicted in Fig. 2, the subclasses

of security, scalability and monitoring are new class concepts

named from existing knowledge and can be seen as examples of

class normalization.

The implementation of the second normalization removes

potential anonymous individuals. Basically, each individual

entity would own a specific namespace with an URI reference,

e.g. cloud services, available VM types/sizes, choices of OSs and

software versions bundles, etc. As these entities become unique

in AoFeCSO, it enables precise queries while retrieving and

comparing information from distinct CSPs.

The subsumption hierarchy materialization and name

normalization of AoFeCSO is completed by maintaining only the

direct inheritance relationships. Using Protégé [39] and

customized DL reasoning inference behavior, this removes the

“duplicated” names and axioms originated from other semantic

sources while reusing the existing knowledge.

In AoFeCSO, the instantiations of classes and properties are

carried out to the deepest level. Evidences can be found in the

previous sections and seen from Fig. 2, Fig. 3 and Fig. 4. This

Fig. 3. Advances of AoFeCSO in dealing with ontology data

properties

Fig. 4. Advances of AoFeCSO in dealing with ontology annotation

properties

 6
conveys explicit knowledge of cloud service and relevant

entities via presenting the granular specifications and details.

Property normalization is done by materializing symmetric

and inverse properties, and cleaning the redundant transitive ones

where necessary. Several examples of this can be found in

AoFeCSO (see Fig. 2), e.g. symmetric properties such as “affects”

and “orchestrate with” between cloud service properties, inverse

properties such as “controlled by” versus “control over”, etc.

As all the above normalizations are applied, AoFeCSO

becomes a normalized ontology that is capable of providing

diverse cloud service specifications for different (reasoning)

needs. Accordingly, the adoption of Reasoning OPs results into

considerable valuable queries and new knowledge via ontology

reasoning (e.g. entities with similar assertion patterns can be

easily categorized, related or differentiated based on customized

query or reasoning behaviors).

4. Fuzzy cloud service specification with OWL2 fuzzy
extension

To enhance knowledge presentation in terms of capture and

revealing the vague/inexplicit cloud service specifications, this

section discusses relevant OWL2 fuzzy extension application.

4.1. Fuzziness notation and representation

To explain how the imprecise specifications are implemented

in AoFeCSO under PLN theory, we demonstrate some examples.

Dropbox [40] is a cloud storage service that allows users to

upload, download, synchronize, and share personal files and

folders from different OSs/platforms globally. Obviously, service

of the kind would own properties such as “reliability”; but

“reliability” is a vague term. Further, Dropbox also enables

developers to build applications based on the platform; to this

extent, it has some PaaS characteristics inexplicitly. While both

specifications suffer from the degrees of acceptance (truth) issues,

these can be well described according to relevant PLN fuzziness

presentations. Specifically, they are known as basic first-order

and higher-order logical relationships, which denote (values are

example fuzzy data obtained from experiment):

 e.g. IntensionalInheritance Dropbox PaaS < [0.3, 0.9] 0.8, 10>

 e.g. Evaluation hasReliability Dropbox < [0.3, 0.9] 0.8, 10>

The above two statements are to be understood as Dropbox is

considered to own PaaS characteristics/reliability attribute at a

degree within interval of 0.3 and 0.9 with “creditability”

(confidence) of 0.8 and “lookahead” of 10 (i.e. from 10

observations). In contrast to FL representation which can only

present a single fuzzy degree value, this comprehensively reveals

an interval (as the range of the fuzzy weights), a credibility (of

the fuzziness) and the number of evidences (collected from

observations).

4.2. Fuzzy data collection

While fuzziness can be very subjective, a closely constructed

fuzzy ontology would appear to be subjective, and eventually

become unideal. To this extent, we take the initiative to involve

users to rate their own perception weights for specification

applicability in AoFeCSO. This also complies with the data

collection and evaluation processes against relevant PLN

theories. By using an integrated user-friendly fuzzy rating

mechanism, users do not necessarily require any explicit

knowledge of knowledge engineering to make the (rating)

contribution. Here, the reputation management framework [41] is

adopted for the user expertise classifications. Then, for different

user expertise levels, we provide fuzzy rating authorization

control for appropriate AoFeCSO input, based on the

authorization reference illustrated in Table 1. Indeed, the user

expertise profile values obtained from other categorization

models can be altered if necessary.

Seen in Table 1, the lower the user’s level (expertise in cloud

computing) is, the smaller the degree of change would be

triggered: 1) “Beginners” users are not permitted to input/change

any AoFeCSO specifications. 2) Users from “Intermediate” level

and up are allowed to donate their own fuzzy ratings according to

their understanding for the target specifications. If so, accepted

fuzzy rating will trigger a series of ontology update actions,

where a new fuzzy value will be recalculated based on the

historical rating data stored plus the level of the donating user,

under relevant PLN theory. 3) In addition, the fuzzy interval will

be updated only if the user is at level of advanced or above. 4)

Finally, only “Expert” level users are permitted to make an initial

fuzzy rating for a certain specification axiom, as this means to

convert a regular axiom from explicit to fuzzy for the first time.

The algorithm prevents low level users from making critical

changes to AoFeCSO whilst it increases the overall credibility of

the applied fuzzy specifications.

4.3. Fuzzy axiom assertion and annotation

To illustrate the transformation of regular to fuzzy ontology

assertions plus the impact on the respected ontology reasoning,

an example is demonstrated in Fig. 5, using Amazon S3 [42].

Basically, as the service may be considered as SaaS, PaaS or IaaS,

three regular delivery model specifications would make no

difference among each other (“is delivered as some

IaaS/PaaS/SaaS”). In other words, regular assertions can only

mean an equal degree of truth among such similar axioms.

However, this is inappropriate for most of the cases, as users

often find some specifications more applicable than others.

Considering S3, the majority agrees that it is more a SaaS than

PaaS and IaaS (values are obtained from experiments). With the

fuzzy rating information, the fuzzy convention is applied, shown

in Protégé snapshots in Fig. 5. The extension is then able to

reveal that the “PaaS” delivery model for Amazon S3 is

considered to be vague (minority agrees only) with an overall

weighted average value of “0.21200001f” (“f” stands for float).

Here, since the fuzzy extension is applied with regular OWL2

data property (with rdfs:Literal schema), after the conversion, the

weight-combined axiom becomes an axiom that intersects the

original object property assertion and its fuzzy weight data

property assertion. This also follows standard OWL2 syntax. As

a result, such fuzziness-embedded ontology supports native

OWL2 DL reasoner such as FaCT++ [43] and HermiT [44] (see

the reasoned/inferred axiom in Fig. 5).

Meanwhile, apart from the fuzzy weight value added onto the

original axiom, complete fuzziness data including all historical

fuzzy rating information is presented in the annotation field of

the fuzzy-extended axiom (see “Annotations” in Fig. 5). With

respect to PLN fuzzy data representation, the “Interval”

concludes the fuzzy weight interval of the historical rating

ranges; the “Credibility” captures the up-to-date credibility of the

fuzzy weight ratings; the “Count”, which indicates the current

total number of ratings, is also known as the “lookahead” value.

Additionally, historical detailed rating data for each eligible user

expertise level is stored, which comprises the average values and

counts for “Intermediate”, “Advanced” and “Expert” users

respectively.

Table 1. Fuzzy Weight Rating Authorization Control

Authority Beginner Intermediate Advanced Expert

Fuzzy weight

update

╳ √ √ √

Fuzzy interval

update

╳ ╳ √ √

Explicit fuzzy

convention

╳ ╳ ╳ √

Let FW represents fuzzy weight, Coverall represents the overall

credibility, the equations for fuzzy weight and credibility

calculation take the form:

 FW =
RI̅̅ ̅∗CI∗NI+RA̅̅ ̅̅ ∗CA∗NA+RE̅̅ ̅̅ ∗CE∗NE

CI∗NI+CA∗NA+CE∗NE
 (1)

 Coverall =
CI∗NI+CA∗NA+CE∗NE

NI+NA+NE
 (2)

 where

 RI
̅̅̅ =

∑ RIi
NI
i=1

NI

 RA
̅̅ ̅̅ =

∑ RAi
NA
i=1

NA
 (3)

 RE
̅̅̅̅ =

∑ REi
NE
i=1

NE

Here RI
̅̅̅, RA

̅̅ ̅̅ , and RE
̅̅̅̅ represent the average rating values of

“Intermediate”, “Advanced” and “Expert” users respectively, for

each ratings RIi , RAi and REi ; CI , CA and CE represent the

credibility values of each respected user levels; NI , NA and NE

represent the number of total ratings of the different user levels.

From the equations, it can be seen that whenever a new rating is

accepted, the fuzzy weight and overall credibility is recalculated

whilst a series of detailed data fields are updated.

4.4. Fuzzy axiom management

The process of ontology fuzzy modification is described as

follows. When a new fuzzy rating is detected, it is first verified

against the authorization control specified in Section 4.2.

Afterwards, in case of an initial fuzzy weight assertion (explicit-

to-fuzzy conversion), a series of fuzziness statements and

parameters are created in the format illustrated in Section 4.3 at

first. Due to the fact that it is the first rating, the credibility would

be 100% whilst the interval is set to +/-10% of the rating value.

Followed by that, an ad-hoc data property is created using a name

which combines the name of the object property and class plus

the word “Weight”, indicating this is a specific restriction applied

onto the target axiom. The value of the ad-hoc data property, also

known as the fuzzy weight, is simply the rating entered by the

expert user.

For fuzzy weight update, the existing fuzziness data is

retrieved and validated at first. Then, based on the new rating,

appropriate fields are updated according to (3). As the updates

complete, a new fuzzy weight and the overall credibility value

are recalculated using (1) and (2).

While all fields of the detailed fuzziness data and fuzzy

axioms are successfully created/updated, a fuzzy annotation label

is also prepared for the fuzzy axiom, based on the new fuzzy

parameters as well as the nature of the axiom: e.g. with a weight

of (0,0.5)/[0.5,1), “STRONG/WEAK” on a service property

axiom suggests that the cloud service is strongly/weakly

considered to own the property; “DIRECT/INDIRECT” for a

service functionality axiom implies such is a primary/secondary

function of the service; “MAIN/ALSO” over other assertions

state that the assertions are mainly/also argued as such. These

further explanations help users better understand the fuzzy

weight values with respect to the nature of the information they

reveal.

Next, all above updated contents are imported to a temporary

ontology where the relevant contents are modified. If there is no

error occurred after the updates, the reasoning process will be

initiated to check for any inconsistency or new inferred axioms.

Here, any new inferred axioms, if it exists, will also be saved to

the ontology, whereas the original ontology data will be restored

Fig. 5. Fuzzy conversion, annotation and reasoning in AoFeCSO

 8
if there is any updating/saving error occurred or inconsistency

detected.

Additionally, all the fuzzy extensions (fuzzy weight axioms,

rating information annotation) can be eliminated, if some prefer a

typical/traditional cloud service ontology (with agility-centric

design). This is done by removing the fuzziness data properties

plus the relevant fuzzy annotations. As the fuzziness axioms are

not closely related with the core ontology architecture, this will

not affect the original explicit knowledge presentation.

5. Prototype implementation

CSR prototype is implemented in Java. As depicted in Fig. 6,

it comprises Active Ontology Manager, Authorization Manager,

Service Search & Recommendation Engine and User Interface

four main components.

5.1. System components

User Accounts and Profiles Database stores user account data,

which is used for Authorization Manager to authorize actions

such as service information access, recommendation and fuzzy

rating actions. Basically, all users can access the service

specifications via Service Seeker, Service Explorer and Service

Recommender; yet for inputting fuzzy ratings, restricted controls

are applied according to users’ expertise levels (based on

Table1).

Service Search and Recommendation Engine takes input of

both user’s preference entries and their profiles to provide service

search and recommendation functions. Through pre-set SPARQL

query clauses and API queries, service discovery is implemented

by collecting services for keyword/filter matches; service

recommendation is performed by evaluating services’

specifications against user weighted importance factors.

User Interface consists of Account Manager, Service Explorer,

Service Recommender, and Service Seeker interfaces. Account

Manager allows users to fill in and edit their account and profile

details. Service Seeker provides flexible service search and filter

options. Service Recommender produces service lists and

recommendation ratios based on user-defined recommendation

conditions. Service Explorer presents service specifications

through a number of tabs, i.e. General Description, General

Attributes, Detailed Attributes, and Agility Breakdown.

Active Ontology Manager manages AoFeCSO through OWL

API [45]. It incorporates Entity and Axiom Manager, Ontology

Reasoning Manager, Ontology Evolution Engine, and Revision

and Rollback Manager four subcomponents. Entity and Axiom

Manager interprets the ontology axioms whilst it makes changes

to them according to certain user requests. It deals with both

regular and fuzzy ontology specification interpretation and

modification tasks. Ontology Reasoning Manager handles

ontology consistency checks and inference controls through

binding OWL2 reasoner. The reasoner adopted here is FaCT++,

due to its faster response plus better syntax and property

characteristics support [43]. In case of ontology specification

modification, a temporary ontology copy will be created at first,

whereas Ontology Evolution Engine will attempt to discover new

knowledge through reasoning inference automatically: as the

reasoning process is complete, the consistent temporary ontology

plus any new inferred axioms (specifications) will be saved and

then replace the active ontology. This is how AoFeCSO evolves

progressively while remaining absolute consistency. Revision

and Rollback Manager maintains and conserves redundant

ontology copies, i.e. Historical Ontology Copies. This enables

ontology recovery in case of failures occurred during

modification.

5.2. Service profile (agility) evaluation

The evaluation of a cloud service’s agility is based on all the

specifications that are relevant to the service. An agility score is

calculated according to three evaluation criteria. Let PA, SA and

TA represent primary, secondary and tertiary agility aspects, the

assessing equation takes the form:

 AgilityScore = PA + FWSA ∗ ∑ SAI
NI
I=1 + ∑ TAi

ni
i=1 (4)

where NI and ni are the total numbers of the secondary and

tertiary aspects found, FWSAis the asserted fuzzy weight of the

aspect.

Basically, primary agility criterion accounts for 50% of a

service’s agility score, which is determined by the service’s

function utilities (e.g. resource/platform/software provisions,

etc.). Secondary agility criterion takes 40% of the total agility

score, which is decided based on the service’s main

characteristics and features (e.g. scalability, elasticity, API,

OS/programming language support, etc.). Tertiary agility

criterion makes up the rest 10%. It tracks the total number of

other service attributes that are regarded weakly relevant to

agility (e.g. logging access, application deployment support,

migration and transition support, customer service and

negotiation support, etc.).

5.3. Service recommendation

Cloud service recommendation is implemented based on user

selected weighted recommendation keywords. The process starts

by asking for relevant information (keywords) for the target

cloud services. The keywords can be of any categories, e.g.

services’ functions, features, characteristics, etc. The selectable

keywords are arranged in a hierarchical layout according to

relevant structure/relationships defined in AoFeCSO. Further, to

assist users in understanding the unfamiliar terminology, multi-

sourced annotation explanations of the keywords are retrieved

and displayed.

During the selection process, users can specify the degrees of

importance for each keyword selected. With the list of the

weighted recommendation keywords, the recommendation

engine scans AoFeCSO and analyzes all the specifications for

each candidate cloud service. Then, for the services which

comply with the keywords, recommendation ratios are calculated

and displayed:

 Ratio(Servicen) =
 ∑ IKI

∗∑ Iki∗FWi
ni
i=1

NI

I=1

ni
 (5)

Service Search &
Recommendation

Engine

Collaborative Cloud Service Recommendation System

Active Agility-
Oriented

Cloud Service
Ontology

Active Ontology Manger

Authorization
Manager

User
Accounts

&
Profiles

Ontology
Revision
Copies

Ontology
Revision
Copies

Ontology
Revision
Copies

Ontology
Revision
Copies

Ontology
Revision
Copies

Historical
Ontology

Copies

OWL API

UI

Service
Recommender

Account
Manager

Service
Explorer

Entity & Axiom
Manager

Ontology
Reasoning
Manager

Revision &
Rollback
Manager

Ontology
Evolution

Engine

Service
Seeker

OWL API

SPARQL
Query

Fig. 6. CSR system architecture

where IKI
 is the main importance degree of the home service

keywords category, NI is the number of the home categories

selected, Iki is the sub importance degree of the sub service

keywords, FWi is the fuzzy weight of the encountered service

specification if applicable, ni is the total number of the sub

keywords selected for recommendation.

Finally, a recommendation result is produced. It contains a list

of cloud services which are accompanied by certain computed

recommendation ratios. The ratios indicate the applicability that

the recommended cloud service would fit for the specified

weighted service requirements.

5.4. Component interactions

The main interactions among the above system components

are seen as follows. Basically, any ontology modification

requests must go through authorization checks at first. Ontology

Reasoning Manager is called every time AoFeCSO is

successfully updated, either by Entity and Axiom Manager (due

to new information added) or Ontology Evolution Engine (due to

any new ontology copy saved). Then, 1) if the temporary

ontology is inconsistent, it will notify Entity and Axiom Manager

to discard the temporary ontology and changes and tell the users

the inconsistency along with the cause; 2) if the temporary

ontology is consistent and free from new inferred knowledge, it

will be forwarded to Ontology Evolution Engine where it will be

deployed and take place of the current live ontology; 3) if the

temporary ontology is consistent with the updates whilst there are

new inferred axioms, the details will be sent back to Entity and

Axiom Manager to notify the system user, where upon

acceptance the temporary ontology along with the inferred

axioms will be saved. Revision and Rollback Manager only

receives calls from Ontology Evolution Engine when it fails to

deploy the new ontology with the updates. Furthermore, the

system components are controlled with a deadlock and queuing

mechanism, which prevents possible concurrent actions during

the ontology modification, temporary ontology creation,

reasoning processes, and ontology replacement processes.

6. Case study

To illustrate how AoFeCSO captures cloud service

specifications and how the information can be interpreted for

cloud service search, recommendation and retrieval tasks, we

provide a case study using Google AppEngine [46] (see Fig. 8).

6.1. Cloud service search with keywords and filters

With the stored service specifications, the search functions are

provided with two main processes: keyword-based search and

restriction filter. The former attempts to find any cloud services

which are relevant to the entered service information. The latter

seeks services which fulfill the applied restriction information.

Here, in case of multiple keywords, any services with at least one

(word) match would be selected; if multiple restriction filters are

used, only the services which satisfy all the filters would be

selected. The two processes can be used together or separately.

Seen the example search in Fig. 7, as a user enters “PaaS,

elasticity, database”, etc. words, the search would output all

cloud services which are specified as PaaS, or with elasticity, or

directly/indirectly offers database functions, etc., from applicable

CSPs. Then, as a series of filters are deployed, the service search

result lists are reduced based on whether they would fit into the

restrictions. Users can freely use the given filter terms (which are

acquired from AoFeCSO), or insert customize restrictions using

texts, numerical values and symbols. As a result, the proposed

approach enables much more flexible cloud service search.

6.2. Cloud service recommendation with ratios

The recommendation result demonstrated in Fig. 7 is obtained

from a series of weighted service information keywords

(displayed at the top of the “recommendation” panel).

 The ratios next to the recommended services reveal how well

the candidates fit into the recommendation profile. The example

demonstrates that PaaS services like IBM SmartCloud [47] and

AppEngine have the highest applicability for those selected

weighted keywords. As a user selects a service, the relevant

service specifications will be displayed on the right, indicating

the details of the ratio constitution.

6.3. Cloud service retrieval

Fig. 8 shows examples of CSR (Service Explorer tabs)

displaying AppEngine specifications. The specifications are

dynamically retrieved from AoFeCSO and are arranged into a

series of categories.

(1) Cloud service descriptions, which are modelled with entity

annotation assertions, are displayed on the “General Description”

tab. For the AppEngine example, there are two descriptions

originated from two sources: “Wiki” and “Official”.

(2) General cloud service attributes, which are modelled with

entity superclass assertions, are interpreted in the “General

Attributes” tab. This often involves the service delivery model,

deployment type, function, feature, etc. specifications. For

instance, AppEngine belongs to “PaaS” and “Public Cloud”; it

has functions of “Application Development & Testing”; it has

features of “Adaptability” and “Application Development

Support”. Further, for specifications which are considered to be

Search recommendation

Fig. 7. CSR Screenshots for cloud service search and recommendation

 10

inexplicit, users can view/edit their truth degrees. The “STRONG”

and the example fuzzy weight information suggest that

AppEngine offers good “Application Development Support”

features.

 (3) For any details regarding cloud service general attributes

or specific specifications, they are to be found on the “Detailed

Attribute” tab. For instance, AppEngine is capable of

orchestrating with other cloud services such as “Amazon EC2”,

“CloudBee Java Platform”, “Google Drive”, etc. It supports

multiple programming languages including “Java”, “PHP”,

“Python”, etc. It has scalable VM instance type of “B1”, “B2”,

“F4”, etc. whilst it offers scaling type of “Automatic Scaling”,

“Basic Scaling” and “Manual Scaling”. It supports Java platform

feature of “JVM 7 (sandboxed)”. It has a maximum static file

size limit of “32MB”. Such data is modelled with the individual’s

object property and data property assertion in AoFeCSO, which

guarantees the accuracy of the specification semantics and

knowledge presentation.

(4) Finally, all of the service specifications are evaluated,

which are then used to produce its overall agility score. The score

plus relevant agility constitutions are summarized in the “Agility

Breakdown” tab. Consequently, the series of dynamically

retrieved and arranged service specifications suggest that the

proposed approach can adequately capture and present a variety

of cloud service information for AppEngine.

7. Evaluation and discussion

For evaluation, we discuss a series of aspects according to

state-of-the-art ontology evaluation approaches [48, 49].

7.1. Domain coverage

In ontology evaluation, domain coverage attempts to justify

the ontology knowledge coverage in contrast with other

modelling practices (e.g. existing gold standard ontologies, other

model sources, etc.) [49]. Here, we compare AoFeCSO with a

number of existing cloud (service) ontologies in terms of both the

coverage scale and the details.

Table 2 summarized the domain coverage scales of existing

cloud (service) ontologies. Indeed, most of the existing

ontologies often concentrate on specific service delivery models.

(1) Service Description (2) General Service Attribute

(3) Detailed Service Attribute (4) Agility Evaluation

Fig. 8. CSR Screenshots for cloud service retrieval (Google App Engine)

Hence, they would present only partial knowledge of certain

service categories. Only AoFeCSO and mOSAIC cover the entire

cloud service models. The main differences between the two

ontologies are seen twofold: 1) AoFeCSO does not involve any

CSC requirement aspects whilst mOSAIC does not provide cloud

service billing specifications. 2) AoFeCSO provides focus-

neutral specifications and would not over-concentrate on any

specific cloud service models for details; in contrast, mOSAIC

lacks some SaaS descriptions. Accordingly, these suggest that the

proposed ontology owns a competent domain coverage.

7.2. Quality of modelling

Ontology modelling quality is often assessed based on its

syntactic, structural and semantic quality aspects [50], where the

logical consistency must be guaranteed. AoFeCSO is (initially)

built using Protégé. This means that it follows formal OWL2

syntactic features for axiom assertions. Table 3 describes the

details of AoFeCSO in terms of the total numbers of classes,

individuals, object properties, data properties, annotations,

axioms, plus its DL expressivity. As an active ontology, its DL

consistency has been automatically verified (by FaCT++)

whenever any new information is added.

AoFeCSO adopts Reasoning OPs. It has been kept to the

series of ontology normalization processes through the

construction cycle. While this not only guarantees the standard

and quality of the ontology, it also drives the desired reasoning

outcome, e.g. inferred cloud (service) entity specifications such

as inferred membership functions, property constraints and other

object relationships.

7.3. Suitability for service retrieval and recommendation tasks

For the suitability evaluation, we compare AoFeCSO with

other existing service specification models for service retrieval

and recommendation tasks.

Regarding the suitability of the service recommendation tasks,

the proposed approach is found to be advanced in three main

aspects (refer to Table 4): I) It facilitates a user-friendly

recommendation process due to the comprehensive keywords

annotation presentation, whilst this assistance feature is seldom

available in other cloud service recommendation tools. II) It is by

far the first tool that provides comprehensive service

recommendation functions for diverse service models and

categories. III) The recommendation functions consider the

fuzziness occurred in cloud service specifications; this enables a

clearer view of the small differences between similar cloud

services through more precise service recommendation ratios.

Table 2. Domain Coverage Scale

 Cloud ontologies

Coverage

mOSAIC

[58]

Unified

business and cloud

service ontology[9]

FCFA

[10]

CoCoOn

[11]

Cloud

ontology

[12]

Cloud

Ontology

[32]

Business

ontology

[56]

AoFe-

CSO

IaaS

cloud

entities and
properties

Compute √ √ √ √ √ √ √

Network √ √ √ √ √ √ √

Storage √ √ √ √ √ √ √

PaaS

cloud

entities and
properties

Application development

& testing

√ √ √ √ √ √

Application deployment
& hosting

√ √ √ √ √ √

Service & resource

integration

√ √ √

SaaS
cloud

entities and

properties

Business process &
intelligence

√ √ √ √ √

Cloud & web resource

management

√ √ √

General software
application

 √ √ √ √ √

Other cloud

entities and

properties

Party/actor/role √ √

SLA/contract √ √ √ √

Billing √ √ √ √ √ √

Requirement √ √

Table 3. Details of AoFeCSO

No. of

classes

No. of

individuals

No. of

object properties

No. of

data properties

No. of

annotations

No. of

axioms

DL

expressivity

1231 913 134 537 2544 27932 SROIF(D)

Table 5. Overall service attributes processing effectiveness

Overall

effectiveness

comparison

Other models and

service recommendation

systems

AoFeCSO & CSR

Description of

service attribute

Yes [4, 8, 9, 11, 12, 34,

32, 56, 57]

Yes

Granular service

attribute details

Very few [4] Yes

Service attribute

connections

N/A Yes

Service attribute

fuzziness

specification

N/A Yes, through

collaborative fuzzy

weight rating

Service/provider

relationships

N/A Yes

Table 4. Service attributes processing effectiveness: service

recommendations

Cloud service

recommendations

Other existing

practices

AoFeCSO & CSR

Description/

explanation of the

keywords

Few, partially,

single source [4,

8, 35]

Full, multiple sources

Cross/multiple service

categories/models

Partial [4, 32] Yes

Fuzzy cloud

specifications

considered

N/A Yes; processed during the

recommendation process

and represented in the

recommendation ratios

 12
Additionally, as Table 5 summarizes, the proposed approach

is able to capture and present extended service specifications

from a variety of aspects, e.g. to show multiple service model

information, explaining granular details of service attributes,

revealing service attribute connections, and processing fuzzy

service specifications. Fundamentally, we argue that other

existing work is held back by their conventional inflexible model

definition and implementation, whereas our approach rests on a

loosely-coupled class and relation hierarchy.

Concluded from the above case study and comparison data,

AoFeCSO and CSR offer distinguished effectiveness for cloud

specification processing with regard to the full range service

recommendation and retrieval tasks.

7.4. Adoption and use

 In addition to the present use, AoFeCSO is also actively

involved in a number of research projects. Indeed, its knowledge

is being widely used for recent cloud service orchestration [51]

and brokerage [52] studies. While being adopted to assist service

optimization tasks, it can provide adequate semantic support to

compare cloud services with similar functions, features,

characteristics, etc. Further, as being used for service brokerage

tasks, it would greatly enhance service matchmaking for cloud

(resource) interoperability enablement. Indeed, the

comprehensive service specifications across multiple abstraction

layers make it a preferred knowledge for a wide range of service

selection-relevant tasks.

8. Related work

8.1. Ontology-based knowledge representation on web services
and cloud

In the last decades, XML-based modelling specifications have

been widely utilized in semantic web services. Indeed, while

describing service resources, functions, properties, etc., the RDF

vocabulary and syntax provide a structured data presentation

which can be effectively interpreted and processed. This enables

and enhances relevant service discovery, selection, matchmaking,

and composition tasks for a variety of purposes [51, 54]. OWL,

as an advanced semantic modelling language from this origin,

offers even more features mainly due to its further DL reasoning

capabilities [6].

Particularly, research on cloud computing/service semantic

modeling involves various ontological approaches, such as single

ontology [9], multiple-layered ontologies [7] and multiple

ontologies [10], etc. The semantic platform for cloud service

annotation and retrieval [8] utilizes multiple ontologies of

different domains. Being advanced in its annotation term

extraction and indexing techniques plus the integrated ontology

evolution module, it can implement ontology updates according

to the service concept information found on Wikipedia. In their

incremental work [34], GATE [55] is employed for automatic

service annotation and ontology evolution. Nonetheless, a

limitation is that annotation specification update does not affect

the ontology structure or any other assertions, as they do not

participate in ontology reasoning process.

Alternatively, other work (e.g. [11, 56]) employs class, object

property and data property assertions with relevant DL rules and

inference in the proposed ontologies. Nevertheless, most of the

models are primarily designed to work for certain limited service

categories: e.g. infrastructure services [10, 11, 12, 32], platform

services [9, 56] and software services [8, 34]. FCFA [10], for

instance, is a hierarchical federated resource exploration and

sharing framework model which drives federated cloud

cooperation and eliminates interoperability issues among

independent organizations and providers. The model only

concentrates on the relationships between organizations and

communities in terms of federation contracts, SLA agreements,

the various physical and virtual resource properties, etc. CoCoOn

[11] is an infrastructure service model which comprises both

functional and non-functional specifications of cloud virtual

machine (VM) and storage resource aspects; it still does not

involve service information across wider resource abstraction

levels. Although Cloud Ontology [12] is able to specify service

information of a variety of cloud services, it only discloses some

basic aspects regarding the diverse service functions and levels.

In fact, for the existing models, the cloud computing/service

concept specifications are seldom established evenly across

multiple abstraction levels and service function categories.

Indeed, except mosaic [4], very few ontologies touch the explicit

details of both functional and non-functional properties of diverse

cloud services types. Besides, no other ontology attempts to

specify the several service agility aspects or the most appropriate

specifications through fuzzy extensions; none of the current

practices supports collaborative model editing for the field.

8.2. Cloud service recommendation systems

Existing service recommendation/discovery systems/tools are

seen limited in terms of their overall applicability, flexibility and

comprehensiveness. Some [11, 32] are found focusing on IaaS-

centric service recommendation. Specifically, CSDS [32]

presents a discovery system for VM services according to search

parameters such as virtual CPU architecture/frequency,

memory/storage size, network parameter, operating system (OS),

etc. CloudRecommender [11] offers enhanced functions which

accept both functional and non-functional service properties as

recommendation requirements. Nonetheless, due to their limited

service category applicability, the two systems cannot facilitate

comprehensive service recommendation in a wider domain (e.g.

PaaS and SaaS). Differently, the cloud repository and discovery

framework [9] advocates a cloud service recommendation

approach based on a business and cloud service combined

ontology. However, since the recommendation is implemented

through querying business-relevant service properties, it implies

that the recommendation process would be excessively business–

focused. Cloudle [12] can produce a list of discovered services

along with their similarity values from several services types by

offering diverse search criteria and options such as cost, time,

function, technical requirements, etc. Yet, the similarity

computation relies on purely numerical service properties and,

therefore it still cannot effectively handle comprehensive service

specification. On the other hand, non-ontology-based service

recommendation system, like the collaborative service

recommender mechanism [57], is an alternative that specifically

deals with service matchmaking through consumer rated service

qualities against users’ profiles. Yet due to the prototype mostly

concentrated on non-functional service aspects (e.g. response

time, availability, price, etc.), the limited functional requirement

processing capability would result into poor overall service

recommendation.

Indeed, currently there is not a comprehensive means of cloud

service search, retrieval and recommendation which covers a

diversity of service/application domains, whereas none existing

tool attempts to involve search/recommendation requirements

regarding any details regarding the unique (agility) aspects of

cloud services, e.g. scalability, adaptability, interoperability, etc.

8.3. Ontology fuzzy extensions

On the basis of the FL theories, a series of OWL/OWL2 fuzzy

extension techniques propagate. FuzzyOWL2Ontology [59]

advocates a merging approach to import the fuzzy

representations, which are wrapped as ontology entities, to the

target ontology for fuzziness expression. The drawback is the

limited support of complicated fuzzy scenarios plus the

considerable extra overhead. In contrast, new syntax-based fuzzy

extension [60] is proposed where the primitive OWL2 syntax is

extended with “owlx:degree”, “owlx:ineqType”, etc. elements.

Nevertheless, without specific extension mechanism/plug-in

support (for fuzzy assertion and interpretation), the modification

has little compatibility with main stream OWL/OWL2 tools. The

annotation-based fuzzy extension [21] presents another approach,

seen as to place the fuzziness in OWL2 annotations. With

comprehensive fuzzy set and relation theory support using “fowl”

and “fuzzyOWL2” syntax, a Protégé plug-in is developed for

easy fuzzy modification and illustration. Yet, fuzzy annotations

would only provide entity fuzzy descriptions whilst they do not

influence any other property assertions in the ontology.

As all the above approaches remain unideal, the OWL2

natively supported fuzzy extension [22] demonstrates a

promising technique by using fuzzy tag-alike modifications. The

extension employs no further new syntax but only OWL2 data

property assertions. This brings a series of advantages: the fuzzy

extended ontology is interpretable by all mainstream OWL2 tools

and reasoning engines; the asserted fuzziness can trigger

ontology (reasoning) inference changes. Due to the advances, we

advocate its extended version along with relevant PLN theory

support for ontology fuzzy specification in AoFeCSO.

To summarize, existing cloud computing/service semantic

models are often based on unbalanced and incomprehensive

service and concept specification establishment. For most of

them, explicit details regarding services’ characteristics,

properties and relationships are missing. Moreover, no existing

model involves the specification and presentation of cloud

service fuzziness. Consequently, they have limitations in terms of

the comprehensiveness and depth of the knowledge represented;

particularly, they fail to deal with service agility across the

abstraction levels and the service categories. These issues prevent

current service recommendation systems from providing the most

effective cloud service recommendation functions. In fact,

fundamentally, this is very likely caused by the conventional

inflexible design accompanied by the DL-consistent nature of

OWL ontology. From a range of proposed FL-based ontology

fuzzy extensions, we adopt the new PLN-based OWL2 natively

supported fuzzy extension to develop the loosely-coupled and

agility-oriented cloud service model and the resultant service

recommendation system. As such fuzziness is imported in a

collaborative manner (via fuzzy ratings), the proposed approach

ought to achieve an ultimate cloud service semantic model

towards comprehensive and flexible service search, retrieval and

recommendation.

9. Conclusions and future work

The continuously propagated cloud services have imposed

strong requirements for cloud service specification models and

service recommendation systems. Meanwhile, existing cloud

computing/service models cannot cover the diverse cloud service

concepts and their interactions across different function

categories and abstraction levels. The existing cloud service

recommendation tools would not handle the unique cloud service

characteristics, properties and orchestrations.

This paper presents a novel cloud service semantic model

named AoFeCSO. It adopts loosely-coupled, agility-oriented and

fuzziness-embedded deployment by introducing multiple sourced

annotation assertions, functionally categorized data property

assertions, and explicit cloud service concept relations.

Additionally, in contrast with existing models which are

managed exclusively and statically, AoFeCSO is maintained

collaboratively and can evolve accordingly. Users can not only

explore the model, but also contribute their own knowledge to it

interactively. This significantly enhances the specification and

presentation of cloud service information.

A prototype CSR tool is developed on top of AoFeCSO for

collaborative service search, retrieval and recommendation tasks.

The case studies and evaluation suggest that the model and tool

can overcome various existing limitations with effective service

explore and recommendation assistances. Although currently

AoFeCSO has not many use and reuse applications, this is

mainly due to its short establishment.

The future work will target at extending the proposed model

by enabling further model collaboration and evolution , e.g. to

allow CSPs to add services, change service specifications, etc.; to

allow CSBs to specify service interactions and orchestrations,

etc.; to allow CSCs to complete service usability ratings, reviews,

etc. An open fuzzy specification handling API is to be provided

to assist the collaboration. We believe this collaborative manner

of cloud service model specification, maintenance and update to

be a distinguished means in providing knowledge sources for

ultimate service search, retrieval and recommendation tasks.

Further, the prototype tool can be enhanced with some user-

centric functions. This can be achieved by meeting the specific

needs and knowledge based on different user expertise levels.

Acknowledgements

We acknowledge the support from a joint grant by the British Royal Society

and the Royal Irish Academy on a Cloud Migration Framework 2014-2016,

IE131105.

References

1 D.C. Marinescu, Cloud computing: Theory and practice, Elsevier, Waltham, USA,

pp. 2-17, 2013.

2 R.Buyya, C. Vecchiola and S. Thamarai, Master cloud computing: Foundations and
applications programming, Elsevier, Waltham, USA, pp. 3-27, 2013.

3 OASIS, TOSCA overview, available at: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=tosca#overview, 2014.

4 R. Aversa, B.D. Martino, F. Moscato, D.Petcu, M. Rak and S. Venticinque, An

ontology for the cloud in mOSAIC, Cloud Computing Book 2010: Cloud

Computing: Methodology, System, and Applications, CRC Press, pp. 467-486, 2011.

5 HEADS, HEADS project overview, available at: http://heads-project.eu/objectives,

2014.
6 J.M.S. Orozco, Applied ontology engineering in cloud services, networks, and

management systems, Springer Science+Business Media, pp. 23-52, 2012.

7 J. Shen, G. Beydoun, G. Low and L. Wang, Aligning ontology-based development

with service oriented systems, Future Generation Computer Systems, vol. 32, pp.

263-273, 2014.

8 M.A. Rodríguez-García, R. Valencia-García, F. García-Sánchez and J. J. Samper-

Zapater, Creating a semantically-enhanced cloud services environment through
ontology evolution, Future Generation Computer Systems, vol. 32, pp. 295-306,

2014.

9 A. Tahamtan, S.A. Beheshti, A. Anjomshoaa and A.M. Tjoa, A Cloud Repository

and Discovery Framework Based on a Unified Business and Cloud Service Ontology

IEEE World Congress on Services (SERVICES), pp.203-210, 2012.

10 G. Manno, W.W. Smari and L. Spalazzi, FCFA: A semantic-based federated cloud

framework architecture, International Conf. High Performance Computing and

Simulation (HPCS), pp.42-52, 2012.
11 M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, M. Menzel and S. Nepal, "An

ontology-based system for Cloud infrastructure services' discovery, 8
th
 International

Conf. Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), pp.524-530, 2012.

12 J. Kang and K. Sim, Cloudle: A Multi-criteria Cloud Service Search Engine, IEEE

Asia-Pacific Services Computing Conference (APSCC), pp.339-346, 2010.

13 M.K. Smith, C.Welth and D.L. McGuinness, OWL Web Ontology Language Guide,

W3C Recommendation, available at http://www.w3.org/TR/owl-guide/, Feb. 2004.
14 H. Nacer and D. Aissani, Semantic web services: Standards, applications, challenges

and solutions, Journal of Network and Computer Applications, vol. 44, pp. 134-151,

2014.

15 A. Tahir, D. Tosi and S. Morasca, A systematic review on the functional testing of

semantic web services, Journal of Systems and Software, vol. 86, no. 11, pp. 2877-

2889, 2013.

16 L. Li, D. Liu and A. Bouguettaya, Semantic based aspect-oriented programming for
context-aware Web service composition, Information Systems, vol. 36, no. 3, pp.

551-564, 2011.

17 C. Ke and Z. Huang, Self-adaptive semantic web service matching method,

Knowledge-Based Systems, vol. 35, pp. 41-48, 2012.

18 J.J. Jung, Semantic business process integration based on ontology alignment, Expert

Systems with Applications, vol. 36, no. 8, pp. 11013-11020, 2009.

19 A.L.V. Antwerp, K. Scoboria and J.R. Santos, Security guidance for critical areas of

focus in cloud computing v3.0, Cloud Security Alliance, available at:
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf, 2013.

20 W. Jansen and T. Grance, Guidelines on security and privacy in public cloud

computing, Draft NIST Special Publication, 2013, available at:

https://downloads.cloudsecurityalliance.org/initiatives/ guidance/NIST-Draft-SP-

800-144_cloud-computing.pdf, 2013.

21 F. Bobillo, U. Straccia, Fuzzy ontology representation using OWL2, International J.

Approximate Reasoning, vol. 52, no. 7, pp. 1073-1094, 2011.
22 D. Fang, X. Liu, I. Romdhani and H. Zhao, Towards OWL 2 Natively Supported

Fuzzy Cloud Ontology, 36th Annual Computer Software and Applications

Conference Workshops (COMPSACW), pp. 328-333, 2012.

http://heads-project.eu/objectives

 14
23 L.A. Zedeh, Fuzzy set, Information and Control, vol. 8, pp. 338-353, 1965.

24 T. J. Ross, Fuzzy logic with engineering applications, Third Edition, John Wiley &

Sons, Ltd, Chester, UK, pp 48-73, 2010.

25 B. Goertzel, M. Iklé, I.F. Goertzel and A. Heljakka, Probabilistic Logic Networks - A
Comprehensive Framework for Uncertain Inference, Springer, pp.1-148, 2008.

26 K. Jeffery and B. Neidecker-Lutz, The Future of Cloud Computing: Opportunities

for European cloud computing beyond 2010, available at:

http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf, 2013.

27 V. Hahn, L.JR. Santos, K.Scoboria, E.Scoboria and J.Yeoh, Secaas implementation

guidance: Web security, Cloud Security Alliance, 2013, available at:

https://downloads.cloudsecurityalliance.org/initiatives/secaas/SecaaS_Cat_3_Web_S

ecurity_Implementation_Guidance.pdf, 2013.
28 V. Hahn, L.JR. Santos, K.Scoboria, E.Scoboria and J.Yeoh, Secaas implementation

guidance: Security assessments, Cloud Security Alliance, 2013, available at:

https://downloads.cloudsecurity

alliance.org/initiatives/secaas/SecaaS_Cat_5_Security_Assessments_Implementation

_Guidance.pdf, 2013.

29 V. Hahn, L.JR. Santos, K.Scoboria, E.Scoboria and J.Yeoh, Secaas implementation

guidance: Encryption, Cloud Security Alliance, 2013, available at:
https://downloads.cloudsecurityalliance.org/initiatives/secaas/SecaaS_Cat_8_Encrypt

ion_Implementation_Guidance.pdf, 2013.

30 V. Hahn, L.JR. Santos, K.Scoboria, E.Scoboria and J.Yeoh, Secaas implementation

guidance: Network security implementation guidance, Cloud Security Alliance,

2013, available at:

https://downloads.cloudsecurityalliance.org/initiatives/secaas/SecaaS_Cat_10_Netwo

rk_Security_Implementation_Guidance.pdf, 2013.

31 V.I. Munteanu, C. Mindruta and T. Fortis, Service Brokering in Cloud Governance,
14

th
 International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC), pp.497-504, 2012.

32 T. Han and K. M. Sim,, An Ontology-enhanced Cloud Service Discovery System,

International Multi-Conf. Engineers and Computer Scientists (IMECS), vol. 1, 2010.

33 Cloud Computing Use Cases group, Cloud Computing Use Cases White Paper,

available at: http://opencloudman

ifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf, 2014.

34 M.A. Rodríguez-García, R. Valencia-García, F. García-Sánchez and J.J. Samper-
Zapater, Ontology-based annotation and retrieval of services in the cloud,

Knowledge-Based Systems, vol. 56, pp. 15-25, 2014.

35 M. Serrano, L. Shi, M.Ó. Foghlú and W.Donnelly, Cloud Services Composition

Support by Using Semantic Annotation and Linked Data, Knowledge Engineering

and Knowledge Management, Communications in Computer and Information

Science, vol. 348, pp 278-293, 2013.

36 V. Presutti and A. Gangemi, A Library of Ontology Design Patterns: reusable
solutions for collaborative design of networked ontologies. NeOn project deliverables

D2.5.1, available at: http://www.neon-

project.org/deliverables/WP2/NeOn_2008_D2.5.1.pdf, 2008.

37 A. Gangemi and V. Presutti, Ontology Design Patterns, Handbook on Ontologies,

International Handbooks on Information Systems, Springer-Verlag Berlin Heidelberg,

pp. 221-243, 2009.

38 D. Vrandeˇci´c, Y. Sure, R. Palma and F. Santana, Ontology
Repositories and Content Evaluation, Knowledge Web project

deliverables D1.2.10v2, available at:

http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.2
.10v2.pdf, 2007.

39 M. Horridge, A practical guide to building OWL ontology's using protégé 4 and CO-

ODE tools, The University of Manchester, edition 1.3, available at

http://owl.cs.manchester.ac.uk/tutorials/protege

owltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf, 2011.
40 Dropbox, Inc., Dropbox Platform developer guide, available at:

https://www.dropbox.com/developers/reference/devguide, 2014.

41 E. Portmann, A. Meier, P. Cudré-Mauroux and W. Pedrycz, FORA — A Fuzzy Set

Based Framework for Online Reputation Management, Fuzzy Sets and Systems,

2014.

42 Amazon Web Services, Inc., Amazon S3 Developer Guide, available at:

http://awsdocs.s3.amazonaws.com/S3/latest/s3-dg.pdf, 2014.

43 D. Tsarkov and I. Horrocks, FaCT++ description logic reasoner: system description,

3ird international joint conference on Automatic Reasoning, pp. 292-297, 2006.

44 R. Shearer, B. Motik and I. Horrocks, HermiT: a highly efficient OWL reasoner, 5th
OWL Experienced and Directions Workshop, pp. 26-27, 2008.

45 M. Horridge and S. Bechhofer, The OWL API: A Java API for OWL

Ontologies Semantic Web Journal 2(1), Special Issue on Semantic Web Tools and

Systems, pp. 11-21, 2011.

46 Google, Inc., Overview of App Engine Features, available at:

https://developers.google.com/appengine/features/, 2014.

47 Policy-Based Automated Scaling for IBM SmarCloud Application Services,

available at: http://www.ibm.com/cloud-computing/uk/en/paas.html, 2013
48 M. Sabou and M. Fernandez, Ontology (network) evaluation. Ontology Engineering

in a Networked World, Springer, pp. 193-212, 2012.

49 M. Rico, M.L. Caliusco, O. Chiotti and M.R. Galli, OntoQualitas: A framework for

ontology quality assessment in information interchanges between heterogeneous

systems, Computers in Industry, vol. 65, no. 9, pp. 1291-1300, 2014.

50 A. Burton-Jones, V.C. Storey, V. Sugumaran and P. Ahluwalia, A semiotic metrics

suite for assessing the quality of ontologies, Data & Knowledge Engineering, vol. 55,

no. 1, pp. 84-102, 2005.
51 D. Fang, X. Liu, I. Romdhani and C. Pahl, An approach to unified cloud service

access, manipulation and dynamic orchestration via semantic cloud service operation

specification framework, Journal of Cloud Computing, vol. 4, no. 14, available at:

http://www.journalofcloudcomputing.com/content/4/1/14, 2015.

52 C. Pahl, F. Fowley, P. Jamshidi, D. Fang and X. Liu, A classification and comparison

framework for cloud service brokerage architectures, IEEE Transactions on Cloud

Computing, under review, 2015.
53 H.N. Talantikite, D. Aissani and N. Boudjlida, Semantic annotations for web services

discovery and composition, Computer Standards & Interfaces, vol. 31, no. 6, pp.

1108-1117, 2009.

54 J. Sangers, F. Frasincar, F. Hogenboom and V. Chepegin, Semantic Web service

discovery using natural language processing techniques, Expert Systems with

Applications, vol. 40, no. 11, pp. 4660-4671, 2013.

55 H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, C. Ursu, M. Dimitrov, M.

Dowman, N. Aswani, I. Roberts, Y. Li, Developing Language Processing
Components with GATE Version 5: (a User Guide). University of Sheffield,

available at: http://gate.ac.uk /releases/gate-5.0-build3244ALL/doc/tao/splitch1.html,

2013.

56 G.D. Modica, G. Petralia and O. Tomarchio, A Business Ontology to Enable

Semantic Matchmaking in Open Cloud Markets, 8th International Conference

on Semantics, Knowledge and Grids (SKG), pp. 96-103, 2012.

57 K. Tserpes, F. Aisopos, D. Kyriazis and T. Varvarigou, A Recommender

Mechanism for Service Selection in Service-oriented Environment, Future
Generation Computer Systems, vol. 28, no. 8, pp. 1285-1294, 2012.

58 F. Moscato, F. Fortis, V. Munteanu, R. Aversa and D. Petcu, Cloud ontology and

Cloud resources representations, mOSAIC project deliverables D1.2, 2011.

59 F. Bobillo, U. Straccia, An OWL ontology for fuzzy OWL2, Foundations of

Intelligent Systems, Lecturer notes in Computer Science, vol. 5722, pp. 151-160,

2009.

60 G. Stoilos, G. Stamou and J.Z. Pan, Fuzzy extensions of OWL: Logical properties
and reduction to fuzzy description logics, International J. Approximate Reasoning,

vol. 51, no. 6, pp. 656-679, 2010.

Daren Fang is a PhD student and research assistant at Edinburgh Napier University. His

research interests include cloud service modeling, knowledge engineering, green service

optimization, service adaptation, and service evolution.

Dr. Xiaodong Liu is a reader and the director of Centre for Information & Software Systems
in School of Computing at Edinburgh Napier University. His research interests include

context-aware adaptive services, service evolution, mobile clouds, pervasive computing,

software reuse, and green software engineering. He is a member of IEEE Computer Society

and British Computer Society.

Dr. Imed Romdhani is a Lecturer in Networking at Edinburgh Napier University. He

obtained a M.Sc. in networking from Louis Pasteur University of Strasbourg (ULP), France
in 2001. He received his PhD degree from the University of Technology of Compiegne,

France in 2005. He was a research engineer with Motorola Labs Paris from 2001 to 2005.

His research interests include cloud-based networking, mobile IP, moving network, mesh

networks, and IP security.

Dr. Claus Pahl is a senior lecturer in Dublin City University. He published over 250 papers

on a range of software engineering, including cloud and services system engineering. He

has been involved in a number of national and international research projects, and as a PI,
received research grants with a total awarded funding of more than € 5 million.

Dr. Pooyan Jamshidi is a postdoctoral research fellow at Dublin City University, currently

working on cloud migration and trust and dependability aspects of cloud systems within IC4

– the Irish Centre for Cloud Computing and Commerce. His key research interest is the

dynamic evaluation of quality metrics in software systems and environments such as the

cloud.

http://link.springer.com/search?facet-author=%22Mart%C3%ADn+Serrano%22
http://link.springer.com/search?facet-author=%22Lei+Shi%22
http://link.springer.com/search?facet-author=%22M%C3%ADche%C3%A1l+%C3%93+Foghl%C3%BA%22
http://link.springer.com/search?facet-author=%22William+Donnelly%22
http://link.springer.com/book/10.1007/978-3-642-37186-8
http://link.springer.com/book/10.1007/978-3-642-37186-8
http://link.springer.com/bookseries/7899
http://link.springer.com/bookseries/7899
http://www.neon-project.org/deliverables/WP2/NeOn_2008_D2.5.1.pdf
http://www.neon-project.org/deliverables/WP2/NeOn_2008_D2.5.1.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.2.10v2.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.2.10v2.pdf
http://www.journalofcloudcomputing.com/content/4/1/14

