
Citation:  Goussev,  Arseni,  Waltner,  Daniel,  Richter,  Klaus  and  Jalabert,  Rodolfo  A.  

(2008)  Loschmidt  echo for  local  perturbations:  non-monotonous  cross-over  from  the  

Fermi-golden-rule to the escape-rate regime. New Journal  of Physics, 10. 093010. ISSN  

1367-2630

Published by: IOP Publishing

URL: http://dx.doi.org/10.1088/1367-2630/10/9/093010

This  version  was  downloaded  from  Northumbria  Research  Link:  

http://nrl.northumbria.ac.uk/10199/

Northumbria  University  has  developed Northumbria  Research  Link  (NRL)  to  enable 

users to access the University’s research output.  Copyright  © and moral  rights  for  items 

on NRL  are retained by the individual  author(s) and/or other  copyright  owners.  Single  

copies of full  items can be reproduced, displayed or performed, and given to third  parties  

in  any  format  or  medium  for  personal  research or  study,  educational,  or  not-for-profit  

purposes without  prior  permission  or  charge,  provided  the  authors,  tit le  and  full  

bibliographic  details  are  given,  as  well  as  a  hyperlink  and/or  URL  to  the  original  

metadata  page. The content  must  not  be changed in  any way.  Full  items must  not  be 

sold commercially  in  any format  or medium  without  formal  permission of the copyright  

holder.  The full  policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document  may differ  from the final,  published version of the research and has been 

made available online in  accordance with  publisher  policies. To read and/or cite from the  

published  version  of the  research,  please visit  the  publisher’s  website  (a subscription  

may be required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/9587515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


ar
X

iv
:0

80
4.

05
71

v2
  [

nl
in

.C
D

] 
 2

9 
Ju

l 2
00

8

Loschmidt echo for local perturbations:

non-monotonous cross-over from the

Fermi-golden-rule to the escape-rate regime

Arseni Goussev1,2, Daniel Waltner1, Klaus Richter1 and

Rodolfo A Jalabert1,3

1 Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg,

Germany
2 School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW,

United Kingdom‡
3 Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504

(CNRS-ULP), 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France§
E-mail: arseni.goussev@bristol.ac.uk

Abstract. We address the sensitivity of quantum mechanical time evolution by

considering the time decay of the Loschmidt echo (LE) (or fidelity) for local

perturbations of the Hamiltonian. Within a semiclassical approach we derive analytical

expressions for the LE decay for chaotic systems for the whole range from weak to

strong local perturbations and identify different decay regimes which complement

those known for the case of global perturbations. For weak perturbations a Fermi-

golden-rule (FGR) type behavior is recovered. For strong perturbations the escape-

rate regime is reached, where the LE decays exponentially with a rate independent of

the perturbation strength. The transition between the FGR regime and the escape-

rate regime is non-monotonic, i.e. the rate of the exponential time-decay of the LE

oscillates as a function of the perturbation strength. We further perform extensive

quantum mechanical calculations of the LE based on numerical wave packet evolution

which strongly support our semiclassical theory. Finally, we discuss in some detail

possible experimental realizations for observing the predicted behavior of the LE.
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1. Introduction

One of the most prominent manifestations of chaos in classical physics is the

hypersensitivity of the dynamics to perturbations in the initial conditions or

Hamiltonian. That is, two trajectories of a chaotic system launched from two

infinitesimally close phase-space points deviate exponentially from each other; so do

the trajectories starting from the same point in phase space, but evolving under slightly

different Hamiltonians. In a quantum system it is natural to consider |〈φ1|φ2〉|2 as a

measure of “separation” of two quantum states |φ1〉 and |φ2〉. The unitarity of quantum

propagators renders the overlap of any two states of the same system unchanged in

the course of time. Thus, quantum systems are said to be stable with respect to

perturbations of the initial state. However, a perturbation of the Hamiltonian can

(and usually does) result in a nontrivial time dependence of the wave function overlap,

suggesting a viable approach for describing instabilities and, therefore, for quantifying

chaos in quantum systems.

Peres [1] proposed to consider the overlap

O(t) = 〈φ0|eiH̃t/~e−iHt/~|φ0〉 (1)

of the state e−iHt/~|φ0〉, resulting from an initial state |φ0〉 after evolution for a time t

under the Hamiltonian H , with the state e−iH̃t/~|φ0〉 obtained from evolving the same

initial state through t, but under a slightly different (perturbed) Hamiltonian H̃ . He

showed that the long-time behavior of

M(t) = |O(t)|2 (2)

depends on whether the underlying classical dynamics is regular or chaotic.

In the field of quantum computing M(t) is an important concept, usually referred

to as fidelity [2]. Moreover, M(t) can be also interpreted as the squared overlap of the

initial state |φ0〉 and the state obtained by first propagating |φ0〉 through time t under

the Hamiltonian H , and then through time −t under the perturbed Hamiltonian H̃

(or −H̃ from t to 2t). This time-reversal interpretation constitutes a description of the

echo experiments that have been performed by nuclear magnetic resonance since the

fifties [3]. When the Hamiltonian H describes some complex (many-body or chaotic)

dynamics M(t) is referred to as Loschmidt echo (LE) [4], and this is the terminology we

will adopt.

By construction, the LE equals unity at t = 0, and typically decays further in

time. Most of the analytical studies so far addressed the quantity M(t) corresponding

to the LE averaged either over an ensemble of initial states, or over an ensemble

of different perturbed (and/or unperturbed) Hamiltonians. M(t) has been predicted

to follow different decay regimes in various chaotic systems with several Hamiltonian

perturbations [5, 6]. Depending on the nature and strength of the perturbation, H̃ −H ,

one recognizes the perturbative Gaussian [7, 8, 9], the non-diagonal or Fermi-golden-rule

(FGR) [5, 7, 8, 10] and the diagonal or Lyapunov [5, 11] regimes. Here, ‘diagonal’ and

‘non-diagonal’ refer to the underlying pairing of interfering paths in a semiclassical
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approach, see Sec. 2. The perturbative, FGR and Lyapunov regimes, listed above

in the order of the (properly defined) increasing perturbation strength, constitute the

framework for classification of LE decay regimes [6, 12]. It is important to mention that

the full variety of system- and perturbation-dependent decay regimes is rather rich, and

extends far beyond the above list: double-Lyapunov [13], super-exponential [14] and

power law [15] decay regimes serve as examples. We further note that analytical results

for the time decay of the unaveraged LE, M(t), are currently available only for very few

chaotic systems [16].

The discovery [5] of the Lyapunov regime for the decay of the averaged LE in

classically chaotic systems, M(t) ∼ exp(−λt) with λ being the average Lyapunov

exponent, provided a strong and appealing connection between classical and quantum

chaos: it related a measure of instability of the quantum dynamics, such as the LE,

to a quantity characterizing the instability of the corresponding classical dynamics, i.e.

the Lyapunov exponent. This result awoke the interest on the LE in the quantum

chaos community. The Lyapunov regime has been numerically observed in several two-

dimensional chaotic systems, i.e. in the Lorentz gas [11, 17], the Bunimovich stadium

[18], the smooth stadium billiard [19], a Josephson flux qubit device [20], as well as in

one-dimensional time-dependent Hamiltonian systems [7].

The theory of the Lyapunov decay of the LE mainly relies on the following two

assumptions: (i) the validity of the structural stability arguments (supported by the

shadowing theorem [21]), and (ii) the global nature of the Hamiltonian perturbation.

The first assumption guarantees a unique one-to-one mapping of trajectories of the

unperturbed system to those of the perturbed system. This mapping allows for efficient

pairing of the trajectories of the unperturbed and perturbed system in the diagonal

approximation [22]. The second assumption implies that the Hamiltonian perturbation

affects every trajectory of the system, and, therefore, all trajectories are responsible for

the decay of the LE. However, this is by no means the most general situation when we

consider possible experimental realizations of the LE.

In the present work we extend the semiclassical theory of the LE by lifting the

second of the two above-mentioned assumptions, i.e. we allow for a local perturbation

in coordinate space. In this context the LE decay was previously addressed in the

case of a strong local perturbation [23], i.e. for a billiard exposed to a local boundary

deformation much larger than the de Broglie wavelength. Analytical and numerical

calculations yielded a novel LE decay regime, for which M(t) ∼ exp(−2γt) with γ being

the probability (per unit time) of the corresponding classical particle to encounter the

boundary deformation. γ can also be viewed as a classical escape rate from a related

open billiard obtained from the original (closed) one by removing the deformation-

affected boundary segment. In this work we explore all possible strengths of a local

perturbation and describe the transition from the weak to the strong perturbation

regime that completes the previous picture. In particular we show that the rate of

the exponential decay of the LE oscillates as a function of the perturbation strength as

the escape-rate regime is approached.
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The paper is organized as follows: In Section 2 we develop a comprehensive

semiclassical approach of the LE decay due to local Hamiltonian perturbations of

increasing strength. We perform a systematic analysis of the different decay regimes

and establish their relation to the previously known decay regimes in the case of a

global perturbation. In Section 3 we validate our semiclassical theory by numerical

simulations. In Sec. 4 we outline possible experimental realizations and focus on the

possibility of introducing a local perturbation in microwave-cavities and ultra-cold atom-

optics billiards. We provide concluding remarks in Sec. 5 and point to the similarities

and differences with respect to another approach to the LE for local perturbations.

Technical aspects of the calculations are relegated to the appendices.

2. Semiclassical approach

2.1. Wave-function evolution

We address the time evolution of the wave function that describes a quantum

particle moving inside a classically chaotic two-dimensional billiard (corresponding to a

Hamiltonian H). We assume that initially (at time t = 0) the particle is in a coherent

state

φ0(r) =
1√
πσ

exp

[

i

~
p0 · (r − r0) −

(r − r0)
2

2σ2

]

. (3)

Here σ quantifies the extension of the Gaussian wave packet, while r0 and p0 are the

initial mean values of the position and momentum operators, respectively. We further

define the (rescaled [24]) de Broglie wavelength of the particle as λ = ~/p0.

In our description of the time evolution of the wave function we rely on the

semiclassical approximation [25] of the wave function at a time t,

φt(r) =

∫

dr′
∑

ŝ(r,r′,t)

Kŝ(r, r
′, t)φ0(r

′) . (4)

Here

Kŝ(r, r
′, t) =

√
Dŝ

2πi~
exp

[

i

~
Sŝ(r, r

′, t) − i
πνŝ

2

]

(5)

is the contribution to the Van Vleck propagator associated with the classical trajectory

ŝ(r, r′, t) leading from point r′ to point r in time t. Sŝ(r, r
′, t) denotes the classical

action integral (or the Hamilton principal function) along the path ŝ. In a hard-wall

billiard Sŝ(r, r
′, t) = (m/2t)L2

ŝ(r, r
′), where Lŝ(r, r

′) is the length of the trajectory ŝ,

and m is the mass of the particle. In Eq. (5), Dŝ = | det(−∂2Sŝ/∂r∂r′)|, and the Maslov

index νŝ equals the number of caustics along the trajectory ŝ plus twice the number of

particle-wall collisions (for the case of Dirichlet boundary conditions).

Since we assume that the initial wave packet is localized around r0 within σ, only

trajectories starting at points r′ close to r0 are relevant for our semiclassical description.
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Figure 1. Sketch of a typical trajectory ŝ (full line), connecting a point r′ (within

the circular extension of radius σ of the initial wave packet) to the point r, where the

evolved wave function is evaluated, together with the central trajectory s (dashed line)

that reaches the same final point, but starts at the center r0 of the wave packet (with

momentum ps). The linearization of Eq. (6), together with the conditions discussed in

the text, allow to represent all the trajectories ŝ contributing to Eq. (4) by the single

reference trajectory s.

Thus we can expand the action integral Sŝ(r, r
′, t) in a power series in (r′ − r0). In

Appendix A we show that the power series can be terminated at the linear term,

Sŝ(r, r
′, t) ≈ Ss(r, r0, t) − ps · (r′ − r0) , (6)

if the wave packet is narrow enough, so that the condition

σ ≪
√

lL
1/λ + 1/σ

(7)

is satisfied, where lL = p0/mλ is the Lyapunov length. In Eq. (6), s(r, r0, t) is the

central reference trajectory into which ŝ(r, r′, t) gets uniformly deformed as r′ → r0, and

ps = −∂Ss(r, r0, t)/∂r0 denotes the initial momentum of the trajectory s (see Fig. 1).

Substituting Eq. (6) into Eq. (5), and performing the integration in Eq. (4) we

obtain

φt(r) = 2π~

∑

s(r,r0,t)

Ks(r, r0, t) Φ0(ps) , (8)

with

Φ0(p) ≡
∫

dr

2π~
exp

[

− i

~
p · (r − r0)

]

φ0(r) (9)

=
σ√
π~

exp

[

− σ2

2~2
(p− p0)

2

]

the momentum representation of the initial wave packet.

We now consider a related billiard, corresponding to the perturbed Hamiltonian H̃ ,

that differs from the original (unperturbed) billiard by a deformation of the boundary

segment B1 of width w (see Fig. 2). The perturbation is thus local, and will be

characterized by its extent (depending on the ratio between w and the cavity perimeter

P ) and its strength (that will be quantified in the sequel). In view of Eq. (8), the wave
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Figure 2. Sketch of our model system of a particle moving inside a chaotic billiard

of area A. The perturbation consists of a deformation localized in a region B1 (of

width w) of the billiard boundary. The complementary set B0 of the boundary is

unaffected by the perturbation. The two trajectories s (red solid line) and ŝ (red

dashed line) starting from r0 with different momenta correspond, respectively, to

the unperturbed and perturbed Hamiltonian. The diagonal approximation entering

Eq. (12) identifies both of them and assigns an action difference given by Eq. (14).

The starting momentum of the solid red trajectory belongs to the set P1. The third

trajectory (blue solid line) hits the boundary only at B0 and therefore is the same

for both the unperturbed and perturbed systems. Hence the action difference of the

corresponding trajectory pair is zero. The starting momentum of the blue trajectory

belongs to the set P0.

function describing the evolution of the particle (starting from the same initial state φ0)

can be written as

φ̃t(r) = 2π~

∑

s̃(r,r0,t)

Ks̃(r, r0, t)Φ0(ps̃) . (10)

The sum now runs over all possible trajectories s̃(r, r0, t) of a classical particle that

travels from r0 to r in time t while bouncing off the boundary of the perturbed billiard.

2.2. Wave-function overlap for local perturbations

According to Eqs. (8)-(10) and the definition (1) of the LE amplitude, we have

O(t) =

∫

A

dr φ̃∗
t (r)φt(r) (11)

=

∫

A

dr
∑

s̃

∑

s

√

Ds̃Ds

× exp

[

i

~
(Ss − Ss̃) − i

π(νs − νs̃)

2

]

Φ∗
0(ps̃)Φ0(ps) ,

where A stands for the billiard area. The shadowing theorem [21] allows us to employ

the diagonal approximation (s ≃ s̃) in the case of a classically small perturbation [26],
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thus reducing Eq. (11) to

O(t) =

∫

A

dr
∑

s(r,r0,t)

Ds exp

[

i

~
∆Ss(r, r0, t)

]

W0(ps) , (12)

where

W0(p) ≡ |Φ0(p)|2 =
σ2

π~2
exp

[

−σ2

~2
(p− p0)

2

]

(13)

is the probability distribution of the particle momentum. In billiards the action

difference between the two trajectories traveling between the same initial and final points

in the same time t can be written, in terms of their length difference ∆Ls, as

∆Ss(r, r0, t) ≡ Ss − Ss̃ (14)

=
p2

s

2m
t − p2

s̃

2m
t ≈ ps

ps − ps̃

m
t = ps ∆Ls(r, r0, t) .

Using the Jacobian property of the Van Vleck determinant Ds, we can replace the

integral over final coordinates in Eq. (12) by an integral over the initial momenta and

obtain

O(t) =

∫

dpW0(p) exp

[

i

~
p ∆L(r0,pt)

]

. (15)

The dependence of ∆L on the product pt stems from the fact that in billiards, changing

the magnitude of the momentum only modifies the traveling time, but does not affect

the path.

We now introduce a sequence of momentum sets Pn(r0, t), with n = 0, 1, 2, . . ., such

that for any p ∈ Pn the classical trajectory, starting from the phase-space point (r0,p),

arrives at a coordinate-space point r ∈ A after time t while visiting the deformation-

affected boundary segment (B1 in Fig. 2) exactly n times. Thus, the trajectories with

the initial momentum in P0(r0, t) only undergo collisions with the part of the boundary

unaffected by the deformation (B0 in Fig. 2) rendering ∆L = 0, so that

O(t) =

∞
∑

n=0

On(t) , (16)

with

O0(t) =

∫

P0

dp W0(p) , (17)

On(t) =

∫

Pn

dp W0(p) eip∆L(r0,pt)/~ for n ≥ 1 . (18)

Since we are studying billiards, the integrations over momenta can be simplified by

working in polar coordinates (p, θ) and considering the sets Θn(r0, pt) of angles θ such

that p ≡ (p, θ) ∈ Pn(r0, t) iff θ ∈ Θn. For a classically chaotic dynamics the set Θ0

shrinks with increasing time t, and Θ0 becomes the fractal set defining the repeller of

the corresponding open (scattering) problem in the limit t → ∞. Eqs. (17) and (18)
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can, respectively, be written as

O0(t) =

∫ ∞

0

dpp

∫

Θ0

dθ W0(p) , (19)

On(t) =

∫ ∞

0

dpp

∫

Θn

dθ W0(p) eip∆L(r0,pt,θ)/~ for n ≥ 1 . (20)

For long times t, where many trajectories contribute to the semiclassical expansions,

the angular integrals over Θn can be replaced by integrals over all angles, weighted with

the measures ρn of the corresponding sets. Assuming ergodicity one readily obtains

an approximation for the probability for a trajectory of length l = pt/m to visit the

boundary region B1 exactly n times:

ρn(l) ≈ 1

n!

(

l

ld

)n

exp

(

− l

ld

)

, (21)

where ld is the average dwell length of paths in the related open chaotic billiard obtained

from the original (closed) one by removing the boundary region B1. This corresponds

to the classical escape rate of the open cavity that for particles with momentum p0 is

given by

γ =
p0

mld
. (22)

For a chaotic cavity with an opening w much smaller than its perimeter P we can

approximate [27] ld ≈ πA/w, and therefore

γ ≈ p0

m

w

πA . (23)

In our case the escape rate γ yields a measure of the perturbation extent. The classical

escape rate of an open cavity controls the fluctuations of the transmission coefficients,

and therefore approximations such as (23) have been thoroughly examined in the context

of quantum transport [28].

According to the previous discussion we can approximate On(t), with n = 0, 1, 2, . . .,

by the averages

Ō0(t) =

∫ ∞

0

dp p ρ0(pt/m)

∫ 2π

0

dθ W0(p) , (24)

Ōn(t) =

∫ ∞

0

dp p
〈

eip∆L(r0,pt,θ)/~
〉

Θn

ρn(pt/m)

∫ 2π

0

dθ W0(p) , n ≥ 1. (25)

The mean value 〈 . . . 〉Θn
should be taken over the set Θn(r0, pt). The chaotic nature of

the dynamics will enable us to treat the averages over Θn in a statistical way. In view

of Eq. (13), the θ-integral in Eqs. (24) and (25) yields
∫ 2π

0

dθW0(p) =
2σ2

~2
exp

[

−σ2

~2

(

p2 + p2
0

)

]

I0

(

2σ2

~2
p0p

)

, (26)

where I0 denotes the modified Bessel function.

As usually assumed in the Loschmidt echo studies, we restrict our analysis to

“semiclassical” initial wave packets φ0(r) with sizes much larger than the de Broglie

wave length,

λ ≪ σ . (27)
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This assumption, together with condition (7), defines the interval for the dispersion

σ, where the semiclassical approach is reliable, and hence yields restrictions to the

parameters of the billiard. Employing condition (27) enables us to use the asymptotic

form I0(x) ≈ ex/
√

2πx, valid for large x, in Eq. (26). Thus, the probability distribution

function for the magnitude of the initial momentum is given by

p

∫ 2π

0

dθW0(p) ≈ σ

~

√

p

πp0

exp

[

−σ2

~2
(p − p0)

2

]

. (28)

We note that Eq. (28) provides a good approximation to the exact distribution function

already for σ & 2λ. Under this assumption the p-integrals in Eqs. (24) and (25) are

dominated by the contributions around p0, and we can write (in view of Eq. (21))

Ō0(t) ≈ e−γt , (29)

Ōn(t) ≈
(γt)n

n!
e−γt

〈

eip0∆L(r0,p0t,θ)/~
〉

Θn

for n ≥ 1 . (30)

Since in Eq. (30) all classical quantities are evaluated for an initial momentum with

magnitude p0, the mean values 〈 . . . 〉Θn
should be taken over the sets Θn(r0, p0t).

However, for long times and a chaotic dynamics we do not expect these mean values

to depend on r0. In the next section we will further invoke the chaotic nature of the

underlying classical dynamics in order to estimate the mean values and therefore the

LE average amplitude.

2.3. Averages over trajectory distributions

For classically small perturbations the action, respectively, length difference (Eq. (14))

between a trajectory s (solid red segment in Fig. 2) and its perturbed partner s̃ (dashed

segment) is given only by the contributions accumulated along the n encounters with B1.

Differences in length arising from the free flights between collisions with the boundary

(B0 + B1) are of higher order in the perturbation strength and will not be considered.

We can then write

∆L =

n
∑

j=1

u(ϑj , ξj) , (31)

where the deformation function u(ϑj, ξj) is the length difference accumulated in the

j-th collision with B1, depending on the impinging angle ϑj ∈ (−π/2, π/2) and on the

coordinate ξj ∈ (0, w) of the hitting point. The number n of collisions with B1 is a

fraction of the total number of collisions p0t/mlf . The mean bouncing length lf can be

approximated by πA/P [29], and we suppose ld ≫ lf since P ≫ w. We note that for

small perturbations ∆L depends on p only through n.

Given the chaotic nature of the classical dynamics and the fact that the collisions

with B1 are typically separated by many collisions with B0 we assume {ϑj} and

{ξj} to be random variables. Furthermore, assuming a perfect randomization of the
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trajectories within the billiard the probability distribution functions for {ϑj} and {ξj}
are, respectively,

Pϑ(ϑ) =
cos ϑ

2
and Pξ(ξ) =

1

w
. (32)

Then, treating the random variables as uncorrelated we obtain
〈

eip0∆L(r0,p0t,θ)/~
〉

Θn

=
〈

eiu/λ
〉n

, (33)

where the average 〈. . .〉 is defined as

〈f〉 ≡
∫ π/2

−π/2

dϑPϑ(ϑ)

∫ w

0

dξPξ(ξ)f(ϑ, ξ) (34)

for a function f(ϑ, ξ). Once we specify the shape of the perturbation, the average in

the right-hand side of Eq. (33) is readily calculated from the probability distributions

of Eq. (32). For instance, for a piston-like deformation (see Appendix B),

u(ϑ, ξ) = 2h cos ϑ , (35)

so that the average reads
〈

eiu/λ
〉

= 1 − π

2
[H1(2h/λ) − iJ1(2h/λ)] , (36)

where H1 stands for the Struve H-function of the first order, and J1 is the first order

Bessel function of the first kind. Here we note that for the case of the piston-like

boundary deformation the ratio h/λ serves as a measure of the perturbation strength,

whereas w (and therefore γ) quantifies the extent of the perturbation.

At this stage, however, we will keep our discussion general and do not specify the

details of the local perturbation. The substitution of Eq. (33) into Eq. (30) yields

the average LE amplitude. The latter is usually not an observable quantity, however

it will be helpful towards our semiclassical calculation of the LE. The condition of a

classically small perturbation that we have adopted throughout our work, implies that
√

〈u2〉 ≪ w ≪ P (which for the case of the piston-like deformation is equivalent to

h ≪ w ≪ P ). Quantum mechanically the perturbation can be characterized by the

extent w and a deformation strength

χ ≡
√

〈u2〉
λ

. (37)

For χ ≪ 1 we will be in the quantum perturbative regime [7, 8, 9], which will not be

considered in this work. Increasing the deformation strength χ we anticipate a richer

variety of regimes than for the case of the LE under global perturbations [5, 6] since the

perturbation extent enters as another relevant parameter.

2.4. Loschmidt echo for local perturbations

According to Eqs. (2) and (11) the semiclassical expansion for the LE contains terms

involving four trajectories. The diagonal approximation, leading to Eq. (12) for the

LE amplitude, reduces the LE to a sum over pairs of trajectories. Consequently, the
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semiclassical form of the LE must take into account the different possibilities for each

trajectory of the pair to hit (or not) the region of the boundary where the perturbation

acts. We can therefore decompose the LE as

M(t) = Mnd(t) + Md(t) , (38)

where we have introduced the non-diagonal and diagonal contributions according to

Mnd(t) =

∫

dpW0(p)e−ip∆L(r0,pt)/~

∫

ε̄p

dp′W0(p
′)eip′∆L(r0,p′t)/~ (39)

and

Md(t) =

∫

dpW0(p)

∫

εp

dp′W0(p
′) (40)

× exp

{

i

~
[p′∆L(r0,p

′t) − p∆L(r0,pt)]

}

.

Here, the set εp of momenta p′ is defined such that two trajectories starting from the

phase space points (r0,p) and (r0,p
′), stay “close” to each other in phase space during

time t, and thus are “correlated” with respect to the perturbation; ε̄p is the momentum

set complementary to εp. We give a quantitative definition of εp below. Following

the standard notation introduced in Ref. [5], we call diagonal term the one resulting

from the identification of pairs of trajectories where the effect of the perturbation is

correlated, that is, when p′ ∈ εp. In the non-diagonal term we consider the pairs of

trajectories uncorrelated with respect to the perturbation, including the case where one

or both orbits are unperturbed. As noted at the beginning of this section, each of the

trajectories of the above pair already incorporates a diagonal approximation between a

perturbed and an unperturbed trajectories with the same extreme points.

2.5. Non-diagonal contribution to the Loschmidt echo

Calculating the LE as an average over trajectory distributions forces us to take into

account pairs of trajectories and the possible correlations among them. The correlations

are particularly important for Md(t), as we show in Sec. 2.6. On the other hand, in

our discussion of the last chapter we established that for the calculation of Mnd(t) the

two trajectories of the pair can be considered to be uncorrelated with respect to the

perturbation, and the averages can be performed independently. Assuming in addition

that the measure of the momentum set εp is small compared with that of the momentum

set effectively represented by the distribution W0(p) we write

Mnd(t) ≈
∣

∣

∣

∣

∣

∞
∑

n=0

Ōn(t)

∣

∣

∣

∣

∣

2

. (41)

Substituting Eqs. (29-30) and (33) into Eq. (41) and performing straightforward

algebraic operations we arrive at our central result for the non-diagonal contribution

to the LE:

Mnd(t) ≈ e−κγt , (42)
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where

κ ≡ 2
(

1 −ℜ
〈

eiu/λ
〉)

. (43)

Thus, for the case of the piston-like boundary deformation the average phase factor due

to a single visit of the perturbation region B1 by the particle is given by Eq. (36), so

that Eq. (43) reads

κ = πH1(2h/λ) . (44)

In subsection 2.7 we study the emergence of the Fermi-golden-rule and escape-

rate regimes of the decay of Mnd (as well as the transition between the two regimes)

depending on the strength of the perturbation. In sections 3 and 4 we discuss their

implications for numerical simulations and possible experimental observations.

2.6. Diagonal contribution to the Loschmidt echo

To proceed with the calculation of the diagonal contribution to the LE, Eq. (40), we first

need to specify the set εp such that two trajectories of time t, starting from the phase

space points (r0,p) and (r0,p
′ ∈ εp), stay “correlated” during time t. As in Sec. 2.2, it is

convenient to work with polar coordinates, p = (p, θ) and p′ = (p′, θ′), in which the set

εp can be defined as follows: for every p′ ∈ εp one has |p′−p| . ∆p and |θ′−θ| . ∆θ. In

turn, ∆p and ∆θ are subject to the requirement that the two trajectories stay “close” to

each other in phase space. Indeed, any two “correlated” trajectories must have the same

number of collisions with the billiard boundary. This condition leads to |p′−p|t/m . lf .

Moreover, the two trajectories must also have the same number of collisions with B1. The

spatial separation between the two trajectories at the first collision with the boundary

is approximately given by |θ′ − θ|lf . The condition that after time t this separation is

smaller that the size w of B1 is |θ′ − θ|lf exp(λt) . w. Here we have used the property

that for chaotic dynamics two arbitrary, initially close trajectories deviate exponentially

from each over with a rate given by the average Lyapunov exponent λ. Thus, we can

estimate the measure of the εp-set to be

∆p =
mlf
t

and ∆θ =
w

lf
exp(−λt) . (45)

Using this quantitative description of εp for the evaluation of Eq. (40) we obtain for the

diagonal contribution to the LE

Md(t) =

∫

dpW0(p)

∫ p+∆p

p−∆p

dp′p′
∫ θ+∆θ

θ−∆θ

dθ′W0(p
′) (46)

× exp

{

i

~
[p′∆L(r0, p

′t, θ′) − p∆L(r0, pt, θ)]

}

.

We now argue that for boundary deformations of moderate strength the exponent in

the integrand on the right hand side of Eq. (46) can be neglected. The argument of the
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exponent is given by the total differential of the function p∆L(r0, pt, θ), and therefore

its absolute value can be bounded by
∣

∣

∣

∣

(p′ − p)∆L

~
+

p(θ′ − θ)

~

∂∆L

∂θ

∣

∣

∣

∣

.

∣

∣

∣

∣

∆p∆L

~

∣

∣

∣

∣

+

∣

∣

∣

∣

p∆θ

~

∂∆L

∂θ

∣

∣

∣

∣

. (47)

Here we have used that, as discussed in Sec. 2.3, ∆L is independent of p for a fixed

number n (≈ γt) of collisions with B1. Then
∣

∣

∣

∣

∆p∆L

~

∣

∣

∣

∣

.
∆p

~

√

〈u2〉γt =
lf
ld

χ , (48)

and

p∆θ

~

∂∆L

∂θ
=

p∆θ

~

n
∑

j=1

(

∂u

∂ϑj

∂ϑj

∂θ
+

∂u

∂ξj

∂ξj

∂θ

)

∼ ∆θ Ceλt =
w

lf
C , (49)

where we have introduced the dimensionless quantity

C =
1

λ

〈

∂u

∂ϑ

〉

+
lf
λ

〈

∂u

∂ξ

〉

. (50)

This implies that the exponent in Eq. (46) is smaller than unity if χ . ld/lf and

C . lf/w. Since the ratios ld/lf and lf/w are assumed to be large, the above inequalities

hold for a wide range of deformations. (Note that for the piston-like deformation,

Eq. (35), χ = (8/3)1/2 h/λ and C = 0, and hence the exponent is small if h . λld/lf .)

Neglecting the exponent in Eq. (46) we obtain

Md(t) ≈
∫

dpW0(p)

∫ p+∆p

p−∆p

dp′p′
∫ θ+∆θ

θ−∆θ

dθ′W0(p
′) (51)

≈ 4∆p∆θ

∫

dppW 2
0 (p) .

In the second line of this equation we have taken into account that ∆p ≪ p and

∆θ ≪ 1 for times t much longer than the dwell time td. Under the assumption (27) of a

“semiclassical” initial wave packet, the integral over p in Eq. (51) is dominated by the

contribution around p0 and we find

Md(t) ≈ 2mw

πp0t

(σ

λ

)2

e−λt. (52)

We note that the exponential dependence of Md on λt does not contain the

perturbation and arises from a classical probability distribution, as in the standard

Lyapunov regime [5]. The dependence with respect to the perturbation extent, w,

appears in the prefactor.

2.7. Decay regimes of the Loschmidt echo

According to Eq. (38) the full LE M(t) is the sum of the non-diagonal and diagonal

contributions, Mnd(t) and Md(t), given by Eqs. (42) and (52) respectively. We first

argue that, unlike in the case of a global Hamiltonian perturbation, the non-diagonal

contribution will typically dominate over the diagonal term. The most favorable regime
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to observe the diagonal term would be that of perturbations satisfying λ < κγ.

Therefore, the necessary requirement for resolving the diagonal term is λ < 4γ. Since

λ−γ = hKS > 0 (with hKS the Kolmogorov-Sinai entropy of the chaotic repeller [30]) we

see that Md(t) can possibly prevail over Mnd(t) only if hKS < 3λ/4. Taking into account

that hKS = λ for a closed system, we see that only relatively open cavities would allow

to observe Md(t). Hence for further analysis of the LE decay we mainly focus on the

non-diagonal contribution Mnd(t).

According to Eq. (42) the LE displays different decay regimes depending on the

strength of the perturbation. Thus, for weak perturbations characterized by χ . 1 one

can expand the phase factor eiu/λ in the Taylor series to the second order in u/λ to

obtain ℜ〈eiu/λ〉 ≈ 1 − χ2/2 and, therefore,

Mnd(t) ≈ e−χ2γt for χ . 1 (FGR) . (53)

The rate of the exponential decay given by Eq. (53) depends on the perturbation

strength χ, in analogy to the Fermi-golden-rule regime found for global perturbations,

but is dressed with γ that provides a measure of the fraction of phase-space affected

by the boundary deformation. On the other hand, in the limit of strong perturbations,

χ ≫ 1, the LE decay rate is independent of the perturbation strength χ and is entirely

determined by the extent of the deformation quantified by γ. Indeed, 〈eiu/λ〉 → 0 as

χ → ∞ leading to

Mnd(t) ≈ e−2γt for χ ≫ 1 (escape-rate) . (54)

This is the escape-rate dominated decay regime previously reported in Ref. [23]. We

finally emphasize that Eq. (42), and therefore Eqs. (53) and (54), hold only if the

conditions (7) and (27) are satisfied, i.e.

λ ≪ σ ≪
√

λlL , (55)

where lL is the Lyapunov length.

As a particularly interesting feature, the transition between the FGR and escape-

rate regime is non-monotonic, i.e. the LE decay rate κγ, in general, oscillates as a

function of the perturbation strength χ while approaching the asymptotic value 2γ.

Figure 3 illustrates these distinct oscillations for the case of a chaotic billiard with

the Hamiltonian perturbation generated by a piston-like boundary deformation, see

Appendix B. In other words, for a fixed time t and starting in a minimum, the LE

can increase by orders of magnitude upon varying the perturbation strength χ. The

strength of the oscillations depends on the geometry of the boundary perturbation. The

oscillations are particularly pronounced for the piston-type geometry where they only

very slowly merge into the escape-rate limit.
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Figure 3. Decay rate (in units of γ) of the Loschmidt echo in a chaotic billiard

(Eq. (43)) as a function of the perturbation strength χ. We have chosen a piston-like

boundary deformation (see Appendix B) for which the LE decay follows Eq. (44) and

χ = (8/3)1/2 h/λ. The Fermi-golden-rule decay regime (Eq. (53)) is recovered for χ . 1

(red dashed line). As χ → ∞ the decay rate asymptotically approaches the value 2

(black dashed line) representing the escape-rate regime (Eq. (54)).

3. Numerics versus semiclassical predictions

3.1. Finite-size corrections to the semiclassical limit

In deriving our approximate expression for the non-diagonal contribution to the LE

(Eq. (42)) we made the following two important assumptions. Firstly, we restricted

our discussion only to those initial wave packets whose dispersion σ is much larger

than the de Broglie wavelength λ, see Eq. (27). In numerical simulations, however, one

can only address finite σ/λ ratios, so that the theory must be improved accordingly

to be capable of accounting for the results of the simulations. Secondly, in Sec. 2 we

used the simple expression, given by Eq. (21), for the probabilities ρn(l) for a classical

trajectory of length l to visit the deformation region n times. While this expression

well approximates ρn(l) for l ≫ ld an improved formula is needed to correctly treat the

numerically assessable range of lengths, l ∼ ld. In this subsection we address these two

important issues and present an expression for Mnd(t) appropriate for a quantitative

comparison with the results of the numerical simulations.

The non-diagonal contribution to the LE, as given by Eq. (41), is given by the

square of the absolute value of the sum of overlaps Ōn(t) (with n = 0, 1, 2, . . .) defined

according to Eqs. (24) and (25). Now instead of using the asymptotic form of the Bessel
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function I0 (like in Sec. 2.2) we keep the analysis general by writing Ōn(t) as an integral

over the dimensionless momentum variable z = p/p0:

Ō0(t) =
2σ2

λ2

∫ ∞

0

dz z ρ0(zp0t/m) exp

[

−σ2

λ2 (z2 + 1)

]

I0

(

2σ2

λ2 z

)

, (56)

and

Ōn(t) =
2σ2

λ2

∫ ∞

0

dz z
〈

eizu/λ
〉n

(57)

× ρn(zp0t/m) exp

[

−σ2

λ2 (z2 + 1)

]

I0

(

2σ2

λ2 z

)

, n ≥ 1 .

We now address the probability distributions ρn(l). The central building block

of our analysis here is the probability g(l)dl for a classical trajectory with the length

between (L + l) and (L + l + dl) to end on the boundary deformation region B1 subject

to the condition that the previous encounter with B1 took place at length L. Assuming

ergodicity for the billiard system under consideration we approximate g by the Heaviside

step function θ as

g(l) ≈ 1

ld
θ(l − l0) , (58)

where the length l0 is the (average) minimal length that a trajectory starting on B1 must

have to return to B1. In view of Eq. (58) one readily obtains the following approximation

for the survival probability:

ρ0(l) ≈ θ(l0 − l) + θ(l − l0) e−(l−l0)/ld . (59)

Then, the visit probabilities for n ≥ 1 are calculated as

ρn(l) =

∫ l

0

dln

∫ ln

0

dln−1 . . .

∫ l2

0

dl1 ρ0(l − ln) (60)

× g(ln − ln−1) ρ0(ln − ln−1) . . . g(l2 − l1) ρ0(l2 − l1) g(l1) ρ0(l1) ,

and can be shown to satisfy the following recursion relation for n ≥ 1,

ρn(l) = θ(l − nl0) θ((n + 1)l0 − l)

(

1 −
n−1
∑

k=0

ρk(l)

)

(61)

+ θ(l − (n + 1)l0)

[(

1 −
n−1
∑

k=0

ρk((n + 1)l0)

)

+

n−1
∑

k=0

ρk((k + 1)l0)

(n − k)!

(

l − (n + 1)l0
ld

)n−k
]

exp

(

− l − (n + 1)l0
ld

)

.

Note that Eq. (61) together with (59) simplifies to Eq. (21) if one puts l0 = 0. However,

for trajectories of lengths comparable to ld the minimal return length l0 can not be

neglected and Eqs. (59) and (61) must be used in Eqs. (56) and (57) to yield the LE.



Loschmidt echo for local perturbations 17

3.2. Numerical simulations

In order to support our semiclassical predictions we present in this section numerical

quantum mechanical calculations for a local perturbation. We use the Trotter-Suzuki

algorithm [31, 32] to simulate the dynamics of a Gaussian wave packet inside a

desymmetrized diamond billiard (DDB). The DDB is defined as a fundamental domain

of the area confined by four intersecting disks of radius R centered at the vertices of

a square. We denote the length of the largest straight segment of the DDB by L (see

Fig. 4). As proved in Ref. [33], the DDB is fully chaotic and thus has been previously

considered for studying aspects of quantum chaos [34].

Figure 4. Desymmetrized diamond billiard: (a) the fundamental domain of the four-

disk billiard, (b) the initial wave packet (with momentum enclosing an angle α with

the horizontal) in the case of a local piston-like boundary deformation (defined by a

width w and displacement h).

Our semiclassical analysis is valid for an arbitrarily shaped local perturbation acting

on a region B1 (of width w) of the boundary. A perturbation with the shape of a circular

segment was used in Ref. [23]. In our present numerical simulations we chose a piston-

like perturbation (Fig. 4b), for which analytical results can be readily obtained (see

Eqs. (35) and (44), and Appendix B).

In Fig. 5 we present the LE decay for a DDB with L = 1000, R = 1311 (in units of

the lattice spacing of the underlying tight-binding model) and a piston-like perturbation.
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Figure 5. The Loschmidt echo decay in the DDB for tree different values of the

piston-like deformation strength (see Fig. 4): (i) χ ≈ 1.63 (h = 3 and λ = 3), (ii)

χ ≈ 1.75 (h = 3 and λ = 2.8), and (iii) χ ≈ 5.44 (h = 10 and λ = 3). The solid-line

curves are obtained as the result of numerical simulations, whereas the dashed-line

curves show the semiclassical predictions (see text). The initial wave packet dispersion

is σ = 8, and the other system parameters are L = 1000, R = 1311 and w = 120. The

time is given in units of the dwell time 1/γ, with γ defined in Eq. (23).

For the present geometry the dwell length is ld = (P/w)lf ≈ 18.7 lf , with lf being the

mean free flight path. The initial wave packet has the dispersion σ = 8; its momentum

direction is chosen to be parallel to the longest straight segment of the DDB (α = 0

in Fig. 4.b), but we have verified that the LE decay rate is independent of α [35]. The

three numerical (solid-line) curves in Fig. 5 correspond to the following values of the

deformation strength: (i) χ ≈ 1.63 (h = 3 and λ = 3), (ii) χ ≈ 1.75 (h = 3 and λ = 2.8),

and (iii) χ ≈ 5.44 (h = 10 and λ = 3). These numerically obtained LE curves decay

almost exponentially for times up to γt ≈ 4 before turning over to a regime with strong

irregular fluctuations around a saturation value [1]. The three curves shown illustrate

the non-monotonous dependence of the decay rate with the perturbation strength.

The corresponding semiclassical LE decay curves – the three dashed-line curves in

Fig. 5 – were obtained by doing the integrals in the right-hand side of Eqs. (56) and

(57) numerically, with ρn(l) probability distributions determined in accordance with

Eqs. (59) and (61); the minimal return length was taken to be l0 = 0.16 ld. The infinite

sum in the right-hand side of Eq. (41) was terminated at n = 8.

The good agreement between the semiclassical predictions and the results of the
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full quantum-mechanical computation is evident in Fig. 5. The fact that the obtained

LE decay deviates from the purely exponential one is entirely due to the finiteness

of the σ/λ ratio: the analytical results of Sec. 2 are recovered in the limit given by

Eq. (55), which proves challenging in numerical simulations [36]. As we discuss in the

next section, however, this limit is naturally achievable in laboratory experiments with

ultra-cold atom-optics billiards, so that the latter provide a viable model system for

studying the LE from local Hamiltonian perturbations.

4. Experimental realizations of Loschmidt echo with a local perturbation

Experiments on the LE are of foremost importance since they render crucial information

about quantum dynamics of physical systems and their decoherence mechanisms [37].

While the examples discussed in the introduction show that the agreement between

the semiclassical theory of the LE and numerical simulations is quite successful, the

situation is less satisfactory concerning experiments.

LE experiments were first performed on nuclear spins of organic molecules using

NMR techniques [4, 38]. The decay of the polarization was found to be quite insensitive

to the coupling to external degrees of freedom or the precision of the reversal. The

Gaussian decay of the experimentally measured LE is at odds with the one-body

semiclassical theory, and many-body aspects of the problem have been pointed to be at

the origin of such a behavior [10, 39, 40].

In Ref. [23] a principle experimental scheme for measuring the LE for local boundary

perturbations was proposed based on a ballistic electron cavity with a small ferromagnet

attached acting as the local perturbation. Such a setting provides a link between

spin relaxation in a mesoscopic cavity and LE decay. Here we discuss two further

experimental settings which appear suitable for a measurement of the echo decay:

microwave and cold atom cavities.

Microwave experiments allow the independent measurement of individual scattering

matrix elements for the unperturbed and perturbed systems [41]. The cross-correlation

of these matrix elements can then be calculated, and going into the time domain,

the scattering fidelity is obtained. The latter is a good representation of the usual

average fidelity amplitude when appropriate ensemble and/or energy averages are taken.

Correspondingly, the LE can also be constructed from measurements of scattering matrix

elements. The observation of the Lyapunov decay regime for a global perturbation

in the microwave cavity can then be envisioned. However, reaching the required

long time scales remains as an experimental challenge. On the other hand, the

corresponding (escape-rate) decay regime for local perturbations might be easier to

reach experimentally. Moreover, microwave billiards appear to be rather suited to

investigate local boundary perturbations, since the piston-type deformation presented

in our work can be directly realized in a microwave billiard setup. The width of the

piston determines the exponent of the LE time decay. Furthermore, by moving the

piston the perturbation strength χ can be directly controlled and tuned. Hence, by
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devising sufficiently large microwave cavities to approach the semiclassical limit it seems

promising to experimentally reach both, the escape-rate regime for large χ and the non-

monotonic dependence of the decay rate of the LE on the perturbation strength (see

Fig. 3).

Studying quantum chaos in the laboratory by recreating a delta-kicked harmonic

oscillator in an ion trap was proposed a decade ago by Gardiner and collaborators [42],

and a number of fruitful approaches have since then been developed and successfully

realized using ultra-cold atoms confined to optical billiards [43]. For instance, the decay

of quantum correlations has been measured by echo spectroscopy on ultra-cold atoms

using the detuning of the trapping laser as a perturbation [44]. Below we focus on the

time evolution of clouds of ultra-cold atoms in optical billiards, and show that they

provide a viable system for experimental investigation of different perturbations and

various regimes of the LE decay. The perturbations can be global, such as in the cases

previously studied, but also local. Since the large-scale separation of system parameters,

given by the condition (55), is attainable in these experimental systems we expect that

a direct support for of the theoretical predictions of Sec. 2 can be obtained.

perturbation laser beam

atomic cloud

momentum kick

confining hollow laser beam

Figure 6. Atom-optics billiard: a sketch of the focal plane of the hollow laser beam.

In a typical microwave echo (or Ramsey) spectroscopy experiment [44] a cloud of

ultra-cold Rb atoms is loaded into an off-resonance optical trap. For the purpose of

our study the role of the trap can be played by a hollow laser beam with the cross

section corresponding to the geometry of a chaotic billiard of interest. The fabrication

of such hollow laser beams, as well as the manipulation of atoms inside them, can now be

performed with a high level of precision [45]. The atomic cloud, after being positioned

inside the hollow beam in its focal plane and accelerated (or “kicked”) as a whole to

a nonzero average momentum, is let to evolve freely in an effectively two-dimensional

billiard, see Fig. 6.

The Rb atoms used in echo experiments [44] are initially prepared in a quantum

state Ψ0 equal to a direct product of an internal atomic state |s〉 and a spatial state

described by a wave function φ0(r), i.e. Ψ0 = |s〉 ⊗ φ0(r). The internal state evolves

in a coherent superposition of the two hyperfine sub-states, denoted by |↓〉 and |↑〉, of

the ground state of rubidium. The |↓〉-component of the total wave function of an atom
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experiences a laser field potential V↓(r) which is, in general, different from the potential

V↑(r) exerted by the same laser on the |↑〉-component. The relative difference between

the two optical potentials is given by the ratio ωHF/∆L, where ~ωHF is the energy of the

hyperfine splitting of the ground state, and ∆L is the laser detuning from the frequency

of the transition between the ground state and the first allowed excited state of the Rb

atom. The application of a sequence of π/2 microwave pulses during the time evolution

of the atoms, followed by a measurement of the populations of the |↓〉- and |↑〉-sub-

states at the end of the evolution, allows one to determine the LE (corresponding to

the spatial wave function φ0(r)) due to the difference between the potentials V↓(r) and

V↑(r) as a function of the evolution time.

In order to measure the LE decay due to local perturbations two different lasers

have to be used. The first laser is to produce the confining hollow beam with the cross

section of a desired (billiard) geometry, and has to be tuned as to exert approximately

the same potential Vbill(r) on the both |↓〉- and |↑〉-sub-states. The beam of the second

laser plays a role of the local Hamiltonian perturbation. It has to be placed inside

(and aligned with) the hollow beam of the first confining laser, and its width should be

much smaller than the linear scale of the billiard (see Fig. 6). The frequency of this

second laser (and perhaps its position inside the billiard) determines the perturbation

strength χ. Altering this frequency changes the difference between the potentials δV↓(r)

and δV↑(r), produced by the second laser and acting differently on the |↓〉- and |↑〉-
substates, respectively. Thus, an echo spectroscopy experiment performed in such a

system would measure the LE decay due to the difference of the atomic potentials

V↓(r) = Vbill(r) + δV↓(r) and V↑(r) = Vbill(r) + δV↑(r); this difference is localized in an

area much smaller than that of the billiard.

To date one is typically able to experimentally prepare and manipulate clouds of

Rb atoms as cold as 1 µK. This temperature corresponds to the thermal speed of about

1.3 cm/s. At the same time, by first placing the atoms inside a far-off-resonance dipole

trap then moving the trap and finally switching it off one can accelerate the atomic

cloud as a whole up to 10 cm/s. Such a momentum kick can nowadays be easily realized

in a laboratory, and does not significantly increase the temperature of the atoms. As

a result one obtains a cloud of atoms moving as a whole with an average momentum

that corresponds to a rescaled de Broglie wave length λ ∼ 10 nm. The dispersion of the

atomic cloud can be shrunk to σ ≈ 1 µm. Under this conditions the number of Rb atoms

composing the cloud can reach 105 that is well sufficient for the Ramsey-spectroscopy-

type measurements. The hollow laser beam, producing the billiard confinement, can

reach L ≈ 1 cm in linear size. Assuming the Lyapunov scale lL of the billiard to be

of the same order of magnitude as L one arrives at the following estimate for the scale

separation of the system parameters:

λ : σ :
√

λlL ∼ 1 : 102 : 103, (62)

which well satisfies the restriction given by Eq. (55). Under the conditions specified

above one can control the atoms for up to 5 s before the cloud gets significantly elongated
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in the axial direction of the hollow laser beam. Such a time allows a single atom to

experience about 50 bounces with the billiard boundary, which according to our theory

is sufficient for observing the LE decay regimes predicted in this work.

The above considerations show that atom-optics billiards constitute promising

candidates for experimentally investigating different regimes of the LE decay due to

local perturbations of the Hamiltonian, and in particular put in evidence the escape-

rate regime and the predicted oscillations of the LE as a function of the perturbation

strength.

5. Conclusions

In this work we have studied the time decay of the Loschmidt echo in quantum systems

that are chaotic in the classical limit, due to Hamiltonian perturbations localized in

coordinate space. We have provided the corresponding semiclassical theory of the LE

for coherent initial states evolving in two-dimensional chaotic billiards.

In addition to the FGR decay regime, which is well-known for the case of

global Hamiltonian perturbations and is recovered in our theory for weak (χ . 1)

local perturbations, our analysis predicts a novel decay regime for strong (χ ≫ 1)

perturbations that stems entirely from the local nature of the Hamiltonian perturbation,

i.e. the escape-rate regime, and quantitatively describes the transition between the FGR

and escape-rate regimes as the perturbation strength is varied. In the escape-rate regime

the LE decays exponentially in time with a rate equal to twice the escape rate from an

open billiard with the “hole” at the place of the perturbation. Hence the LE allows

to mimic the decay behavior of a system without opening it. In this regime the LE

decay rate is independent of the deformation strength χ. The transition between the

FGR regime and the escape-rate regime turns out to be non-monotonic: the rate of the

exponential time-decay of the LE oscillates as a function of the perturbation strength.

We would like to point out that recently there has been another study [46] of the LE

decay due to local perturbations. It addresses a particle moving in a two-dimensional

array of point-like scatterers, and the perturbation of the Hamiltonian is achieved by

slightly displacing one of the scatterers. The theoretical and experimental analysis of

the system reveals a polynomial decay of the LE, namely M(t) ∼ t−2, for long times,

which cannot be compared with our findings: that work is in the perturbative regime,

where the eigenstates are not significatively modified by the perturbation.

We have also performed an extensive numerical study of the LE decay to support

our semiclassical theory. To this end we have simulated the time evolution of initially

coherent states in the DDB. The role of the local Hamiltonian perturbation was played

by a piston-like deformation of the billiard boundary. The results of our numerical

simulations exhibit strong quantitative agreement with the predictions of our theory

extended to cope with initial states given by Gaussian wave packets of a dispersion

comparable with the de Broglie wavelength.

While the scale separation given by Eq. (55) is rather challenging to be satisfied



Loschmidt echo for local perturbations 23

numerically it can be naturally achieved in laboratory experiments with ultra-cold atoms

confined to optical billiards. In this work we have proposed a laboratory set-up allowing

one to investigate the LE decay from local Hamiltonian perturbations for a wide range

of perturbation strengths, and to observe the predicted decay regimes. We believe

that the study of the LE decay due to local perturbations provides an example of

physical problems for which capabilities of laboratory experiments go beyond those

of numerical simulations. Such experiments may also reveal weak-localization-type

quantum corrections to the LE decay which are expected from an analysis [47] of loop

contributions [48] beyond the semiclassical diagonal approximation.
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Appendix A. Linearization of the action integral

Here we present the details of the expansion of the action integral (or the Hamilton

principal function) around the central trajectory of the wave packet. This approximation

is an important aspect of the semiclassical description of the LE (see Ref. [11] and Sec. 2

of the present work), and its limits require careful consideration. Thus, we devote this

appendix to the validity condition of the linear expansion. Higher order expansions have

been recently considered in the literature [13, 21, 49].

As shown in Fig. 1, we consider a wave packet centered at r0 and localized at a

small circular region of radius σ. The action integral Sŝ(r, r
′, t) along a trajectory ŝ

starting at a point r′ within this circular region at time 0 and leading to r in a time t

can be expanded as

Sŝ(r, r
′, t) = Ss(r, r0, t) + (r′ − r0) ·

[

∂Sŝ(r, r
′, t)

∂r′

]

r′=r0

(A.1)

+
1

2
(r′ − r0) ·

[

∂2Sŝ(r, r
′, t)

∂r′2

]

r′=r0

(r′ − r0) + . . . .

Here we assume that the trajectory ŝ(r, r′, t) converges to the central trajectory s(r, r0, t)

as r′ approaches r0. The dot denotes the scalar (as opposed to matrix) multiplication.

Using the identity ∂Sŝ/∂r′ = −pŝ, where pŝ denotes the initial momentum on the

trajectory ŝ(r, r′, t), we rewrite Eq. (A.1) as

Sŝ(r, r
′, t) = Ss(r, r0, t) − ps · (r′ − r0) (A.2)

− 1

2
(r′ − r0) ·

[

∂pŝ

∂r′

]

r′=r0

(r′ − r0) + . . . .
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Note that in our notation pŝ → ps as r′ → r0, see Fig. 1. In order to truncate the

expansion (A.2) at the term linear in r′−r0, and therefore recover Eq. (6), the condition
∣

∣

∣

∣

∣

(r′ − r0) ·
[

∂pŝ

∂r′

]

r′=r0

(r′ − r0)

∣

∣

∣

∣

∣

≪ ~ (A.3)

must be satisfied for all points r′ such that |r′ − r0| . σ.

To analyze Eq. (A.3) we introduce a system of relative coordinates moving along

the central trajectory s(r, r0, t). Thus, for any time τ ∈ [0, t] the distance between

the phase space points (q′
τ ,p

′
τ ) and (qτ ,pτ ), belonging to the trajectory ŝ(r, r′, t) and

s(r, r0, t) respectively, is given by q′
τ − qτ = (q

‖
τ , q⊥τ ) and p′

τ − pτ = (p
‖
τ , p⊥τ ), where the

superscripts ‖ and ⊥ refer to the vector components parallel and perpendicular to pτ .

(Note that in the current notation q0 ≡ r0, q′
0 ≡ r′, qt = q′

t ≡ r, p0 ≡ ps and p′
0 ≡ pŝ.)

Then
[

∂pŝ

∂r′

]

r′=r0

=

(

∂p
‖
0/∂q

‖
0 ∂p

‖
0/∂q⊥0

∂p⊥0 /∂q
‖
0 ∂p⊥0 /∂q⊥0

)

(q
‖
0
, q⊥

0
)=0

. (A.4)

For a billiard the off-diagonal partial derivatives can be neglected compared to the

diagonal ones, so that condition (A.3) can be replaced by

σ2

∣

∣

∣

∣

∣

∂p
‖
0

∂q
‖
0

+
∂p⊥0
∂q⊥0

∣

∣

∣

∣

∣

(q
‖
0
, q⊥

0
)=0

≪ ~ . (A.5)

The first of the two derivatives in Eq. (A.5) is ∂p
‖
0/∂q

‖
0 = −m/t for a particle of mass m

in a billiard. To evaluate the second derivative we first linearize the trajectory ŝ(r, r′, t)

around s(r, r0, t), so that q⊥τ ≈ q⊥τ (q⊥0 , p⊥0 , τ). Therefore,

0 ≡ dq⊥t =

(

∂q⊥t
∂q⊥0

)

p⊥
0

dq⊥0 +

(

∂q⊥t
∂p⊥0

)

q⊥
0

dp⊥0 , (A.6)

which leads to
(

∂p⊥0
∂q⊥0

)

q⊥
t

= −
(

∂q⊥t /∂q⊥0
)

p⊥
0

(

∂q⊥t /∂p⊥0
)

q⊥
0

. (A.7)

The right hand side of Eq. (A.7) is given by the ratio of the two monodromy matrix

elements. To facilitate our analytical presentation, we use here the monodromy matrix

of the dynamics on Riemann surfaces of constant negative curvature [50],
(

∂q⊥t /∂q⊥0 ∂q⊥t /∂p⊥0
∂p⊥t /∂q⊥0 ∂p⊥t /∂p⊥0

)

=

(

cosh(λt) (mλ)−1 sinh(λt)

mλ sinh(λt) cosh(λt)

)

, (A.8)

with λ the Lyapunov exponent. For times longer than the Lyapunov time, t ≫ 1/λ, we

have ∂p⊥0 /∂q⊥0 ≈ −mλ, so that Eq. (A.5) can be replaced by

σ2mλ ≪ ~ . (A.9)
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In terms of the Lyapunov length lL = (p/m)(1/λ), conveniently used for billiards,

Eq. (A.9) then reads

σ ≪
√

~lL
p

. (A.10)

The momentum uncertainty of a Gaussian wave packet of dispersion σ is ~/σ, so that

p . ~/λ + ~/σ, with λ being the rescaled de Broglie wavelength. Therefore, condition

(A.10) holds for every trajectory relevant for the wave packet propagation only if

σ ≪
√

lL
1/λ + 1/σ

. (A.11)

The action integral expansion (6) requires condition (A.11) to be satisfied. We finally

note that in the limit λ ≪ σ, which we utilize in Sec. 2, Eq. (A.11) simplifies to

σ ≪
√

λlL.

Appendix B. Piston-like boundary deformation

Figure B1. Piston-like boundary deformation.

In this appendix we explicitly compute as an example the length-difference function

u(ϑ, ξ) of Eq. (31) for a piston-like local boundary deformation, see Fig. B1, which is

also used in our numerics. We assume that the boundary of the unperturbed billiard

possesses a straight segment of length w that gets “lifted” by the perturbation as if an

imaginary “piston” was pulled out. We denote the piston displacement by h. Assuming

h much smaller than the free flight path lf of the trajectory hitting the deformation,

we treat the unperturbed and perturbed trajectories to be parallel. Then the length

difference u(ϑ, ξ) accumulated due to a single collision with the deformation-affected

segment of the boundary is given by an expression analogous to Bragg’s diffraction

formula,

u(ϑ, ξ) ≈ 2h cosϑ . (B.1)

Here ϑ represents the collision angle as shown in Fig. B1. The length difference u can be

considered independent of the collision coordinate ξ for deformations such that h ≪ w.
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Taking into account the probability distribution function of collision angles,

Eq. (32), we have 〈cos ϑ〉 = π/4 and 〈cos2 ϑ〉 = 2/3. Consequently, the first two moments

of the deformation function read

〈u〉 =
π

2
h and 〈u2〉 =

8

3
h2. (B.2)

Similarly, the average phase factor due to a single collision of the particle with the piston

is given by Eq. (36).
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