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Sputum DNA sequencing in cystic fibrosis:
non-invasive access to the lung
microbiome and to pathogen details
Rounak Feigelman1,2, Christian R. Kahlert4,5, Florent Baty3, Frank Rassouli3, Rebekka L. Kleiner3, Philipp Kohler3,5,
Martin H. Brutsche3 and Christian von Mering1,2*

Abstract

Background: Cystic fibrosis (CF) is a life-threatening genetic disorder, characterized by chronic microbial lung
infections due to abnormally viscous mucus secretions within airways. The clinical management of CF typically
involves regular respiratory-tract cultures in order to identify pathogens and to guide treatment. However,
culture-based methods can miss atypical or slow-growing microbes. Furthermore, the isolated microbes are
often not classified at the strain level due to limited taxonomic resolution.

Results: Here, we show that untargeted metagenomic sequencing of sputum DNA can provide valuable information
beyond the possibilities of culture-based diagnosis. We sequenced the sputum of six CF patients and eleven control
samples (including healthy subjects and chronic obstructive pulmonary disease patients) without prior depletion of
human DNA or cell size selection, thus obtaining the most unbiased and comprehensive characterization of CF
respiratory tract microbes to date. We present detailed descriptions of the CF and healthy lung microbiome,
reconstruct near complete pathogen genomes, and confirm that the CF lungs consistently exhibit reduced microbial
diversity. Crucially, the obtained genomic sequences enabled a detailed identification of the exact pathogen strain
types, when analyzed in conjunction with existing multi-locus sequence typing databases. We also detected putative
pathogenicity islands and indicators of antibiotic resistance, in good agreement with independent clinical tests.

Conclusions: Unbiased sputum metagenomics provides an in-depth profile of the lung pathogen microbiome, which
is complementary to and more detailed than standard culture-based reporting. Furthermore, functional and taxonomic
features of the dominant pathogens, including antibiotics resistances, can be deduced—supporting accurate and non-
invasive clinical diagnosis.

Keywords: WGS metagenomic sequencing, Cystic fibrosis, Sputum, COPD, Lung metagenome

Background
Cystic fibrosis (CF) is one of the most prevalent genetic
disorders in the Caucasian population, affecting about one
in 2500 newborns [1]. This autosomal recessive condition
affects mostly secretory organs, such as the pancreas, liver,
and lungs. CF is caused by mutations in the Cystic Fibrosis
Transmembrane conductance Regulator (CFTR) gene,
whose protein product is involved in the transport of
chloride ions across the apical membrane of epithelial and

blood cells. Loss of CFTR protein function causes thick-
ened extracellular mucus to accumulate, which impairs
mucociliary clearance in the airways [2]. CF prominently
leads to microbial pathogen colonization in the lung,
followed by recurrent pulmonary infection and chronic in-
flammation [3]. Treatment options exist, including mech-
anical and enzymatic mobilization of mucus, drug therapy
to improve residual CFTR function [4], antibiotic therapy
to reduce pathogen load, anti-inflammatory drugs, and
lung transplantations. Nevertheless, for the majority of
patients, the condition leads to progressive pulmonary
damage and eventually respiratory failure and death.
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The CF lungs are colonized by a number of pathogenic
bacteria, commonly including Staphylococcus aureus,
Pseudomonas aeruginosa, Haemophilus influenzae, and
Burkholderia cepacia [5]. While prompt and aggressive
antibiotic therapies can often control infections, pro-
longed antibiotic treatments may favor the emergence of
antibiotic resistances and can facilitate colonization by
multidrug-resistant pathogens such as Achromobacter
xylosoxidans and Stenotrophomonas maltophilia [6, 7].
Currently, culture-based techniques are routinely employed
to identify and classify lung pathogens, often using selective
culture media designed for specific groups of pathogens [8].
However, the culture conditions and procedures are
necessarily biased towards known, previously encountered
pathogens—whereas novel, slow-growing or rare microbes
might potentially be missed (e.g. atypical mycobacteria).
Meanwhile, the taxonomic identification of observed patho-
gens often has limited resolution, and the physiology and
resistance profiles of the colonies are not backed up using
genomic information. Lastly, the “background” communi-
ty—opportunistic or accidental members of the lung micro-
biome—is not routinely studied for clinical use [9, 10],
despite its potential to harbor antibiotic resistance genes
and to elicit or modulate immune responses.
Culture-independent, genomic sequencing techniques

offer potential alternatives for identifying pathogens and
opportunistic colonizers and for guiding therapeutic
decision-making. However, such methods are not rou-
tinely applied for CF management. In research settings
at least, what has been used most frequently are PCR-
based surveys of the 16S ribosomal RNA gene [11, 12],
which are however of limited taxonomic and functional
resolution.
Here, we develop a pragmatic approach that aims to

maximize molecular information, while minimizing pa-
tient discomfort and risk exposure. To achieve this, we
sequence DNA from non-invasive sputum samples,
without prior removal of host DNA and without com-
plex enrichment or depletion protocols. Forgoing host
DNA depletion yields a substantial fraction of sequence
reads that are of human origin, and there will be contri-
butions from the upper respiratory tract and oral cavity
[13], but the simplicity of the approach has the unique
advantage of providing an unbiased, comprehensive, and
reproducible set of reads from the lower respiratory tract
as well. There have been only few studies so far that
took a somewhat similar approach [14–18], each with
slight differences in sample processing, sequence ana-
lysis, and focus.
For the current study, we collected and sequenced

sputum samples from the following categories: adult and
pediatric CF patients (6 samples), chronic obstructive
pulmonary disease (COPD) patients (4 samples), and
healthy individuals (7 samples). Using whole-genome

shotgun sequencing, we observed several known pul-
monary pathogens whose genome coverage routinely
exceeded 95%, allowing us to type the strains with very
high precision using existing multi-locus sequence typ-
ing (MLST) databases. Patient-specific differences from
reference strains are noted and discussed. Using the
workflow we established, a detailed genomic profile can
be generated for any lung pathogen from which suffi-
cient DNA can be prepared, including also potentially
unknown pathogens.

Results and discussion
Sputum samples contain diagnostically useful DNA
We collected sputum samples from a total of 17 sub-
jects: 6 CF patients, 4 patients with COPD, and 7 healthy
controls (3 smokers, 4 non-smokers). CF patients were
able to expectorate sputum spontaneously; for others,
induction by hypertonic saline inhalation was used. The
sample amounts, dates, and pulmonary function param-
eters are summarized in Additional file 1: Table S4. We
extracted the total DNA from each sputum sample and
sequenced it without removal of the human DNA, using
the Illumina HiSeq 2000 platform (Fig. 1a). In total, the
average sequencing depth was around 30 million read
pairs per sample (Additional file 2: Figure S1). We then
separated and quantified human and non-human read
pairs; the latter were further assembled into contigs
(Additional file 3: Table S1) and annotated using
homology-based searches (see “Methods”).
The observed DNA concentrations in sputum varied

across subject groups, with CF and COPD patients pre-
senting on average higher DNA concentrations than the
healthy controls (Fig. 1b). In all samples, a large fraction
of sequenced DNA (>90%) was of human origin (Fig. 1c).
This agrees with previous studies, which suggested that
free human DNA in the lung stems from disintegrating
inflammatory cells such as neutrophils that release DNA
into sputum, particularly in the case of the diseased lung
tissue, leading to an increased sputum viscosity [19, 20].
Conversely, healthy subjects produced smaller volumes
of sputum with lower DNA concentrations, but their re-
sidual DNA was also mostly of human origin (Additional
file 2: Figure S2).

Lung microbiota composition varies strongly across
individuals
After a limited (conservative) assembly of the non-
human sequence fraction into contigs, approximately
half of the assembled nucleotides could be assigned a
taxonomic identity through homology searches, irre-
spective of subject groups (Fig. 1d). For healthy subjects,
we found an overall higher diversity (average Shannon
entropy of 3.07 in the healthy non-smoker lungs, versus
1.08 in the CF lungs, p < 0.038). Interestingly, the
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diversity was found to be reduced not only in the spu-
tum of CF and COPD patients but also to some extent
in smokers (Additional file 2: Figure S3). The most
abundant taxa in healthy subjects were Prevotella,
Streptococcus, Veilonella, Haemophilus, and Neisseria
(Fig. 1e). Previous studies have indicated that the healthy
lung does not harbor a stable and specific microbiome,
but rather a mixture of microbes from the upper respira-
tory tract and oral cavity [21–24]. In agreement, many of
the microbes we identified in healthy subjects corre-
sponded to known oral (and occasionally also gastro-
intestinal or vaginal) flora.
In contrast, the microbiome composition in CF sub-

jects was highly variable and distinct from standard oral
microbiomes. Each patient harbored a unique commu-
nity, often dominated by one or a few principle colo-
nizers/pathogens such as Pseudomonas, Staphylococcus,
Stenotrophomonas, or Achromobacter. (Fig. 1e, Add-
itional file 2: Figure S4). Compositionally, the CF flora
only marginally overlapped with those of the healthy and
smoker populations.

Observed microbiota in CF subjects match clinical
diagnosis
For five of the six CF subjects, all bacterial pathogens
identified in the clinical culture diagnosis were also

identified through the DNA sequencing, each with at
least 10,000 bp mapped to their genome (Additional file
4: Table S2). For example, we confirmed the presence of
the typical CF pathogens Achromobacter and Staphylo-
coccus in the sample CF-85 (for all subjects, see Add-
itional file 5: Table S3). In this particular patient, we also
observed multiple instances of antibiotic resistance
genes, including genes annotated to potentially diminish
effectiveness of the ongoing antibiotic treatment (see
below, “Prediction of antibiotic resistances and fitness-
conferring mutations”). We also observed Prevotella,
Neisseria, Streptococcus, Haemophilus, and others in
lower abundances. These latter genera are typically
viewed as commensals, but it cannot be ruled out that
they contribute to pathogenesis as well. In pediatric CF
patient CF-00, we detected Pseudomonas, a multidrug-
resistant (MDR) Stenotrophomonas, and several other
common microbial inhabitants. In contrast, the micro-
biomes of adult CF patients CF-82 and CF-76 were
primarily dominated each by a single pathogen,
Pseudomonas, with very low relative abundances of
others, such as Streptococcus. Here and in similar “con-
solidated” situations, competition between microbes may
have suppressed diversity [25].
Patients CF-99 and CF-94 exhibited a microbial

community largely dominated by Staphylococcus and

a

d

b

e

c

Fig. 1 Sputum metagenomics workflow. a Overview of the procedure. b Concentration of extractable DNA in sputum, across subject groups. c
Fraction of non-human DNA sequence reads across subject groups. d Fraction of DNA sequence reads of a representative healthy sample, further
broken down according to taxonomic assignability to the assembled nucleotides from non-human fraction. e Taxonomic composition of all taxo-
nomically assignable, non-human sequences, at genus level (for each of the control groups, only one representative sample is shown). All genera
constituting at least 4.5% of the annotated fraction in each sample are assigned with a color code
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Streptococcus, respectively. These were two of the pa-
tients for which antibiotic treatment was ongoing; use of
antibiotics is thought to correlate inversely with diversity
and to instigate significant changes in bacterial commu-
nity structure, especially in younger patients that harbor
a relatively rich and susceptible microbial community as
compared to older patients that often develop resilient
communities [26–30]. Hence, in patients CF-94 and CF-
99, lack of a diverse microbial community is consistent
with the ongoing treatment at the time of sample collec-
tion (Additional file 1: Table S4 and Additional file 3:
Table S5); in this case, no resistances against the admin-
istered antibiotics had been detected in clinical testing.

The samples from COPD patients reveal intermediate
microbial complexity
We analyzed the microbiome diversity for each COPD
patient and found that, of the four samples collected,
CD-47 had the largest and most diverse population,
closely resembling the composition of a healthy micro-
biome. Subject CD-34 was unique in that it was the sole
sample in which we detected significant amounts of a
virus, Herpes simplex virus. This virus was covered
deeply enough to be partially assembled and was seen
against a background of Streptococcus, Rothia, and Hae-
mophilus, with Fusobacterium and Prevotella greatly re-
duced (Additional file 2: Figure S4). Overall, the samples
from COPD patients were somewhat more difficult to
characterize. On several occasions, we failed to detect
eukaryotic genera that had been observed in the clinical
culture-based diagnostics. For example, in patient CD-
42, we were able to reliably detect the presence of
several bacterial community members (confirmed by
clinical microscopy results) but were unable to confirm
the presence of Candida. Since eukaryotic genomes tend
to be larger and more challenging to assemble, they may
sometimes fail to be detected in sufficient numbers in
our approach.

Entropy landscapes allow the detection of clonally
expanded pathogens
The microbial community in the sputum of CF patients
is expected to be heavily skewed—a small number of
entrenched, chronic pathogens stand out against a more
diverse background of contaminants and putatively
harmless colonizers [31, 32]. We devised a three-
dimensional binning strategy adapted to this situation, in
which each contig is assessed in terms of (i) GC-
content—as a proxy for broad taxonomic identity, (ii)
length—as a proxy for assembly depth, and (iii) sequence
homogeneity within the assembly—as a proxy for clonal-
ity. The latter measure is expressed as entropy, where a
small entropy value reflects a low number of mis-
matched sites in the assembly of a given contig. Low-

entropy contigs should reflect clonal or near-clonal mi-
crobial strains (within the limits set by sequencing ac-
curacy and depth). We used these three measures to
visualize the entire non-human sequencing result of any
patient of interest in a three-dimensional binning plot
(Fig. 2). For those contigs whose taxonomic identity
could be confidently inferred, we additionally used a
color code to highlight groups of sequences that might
putatively belong to the same genus.
In Fig. 2, entropy landscapes are used to visualize the

lung community composition of two CF patients with
distinct dominant pathogens, as well as one representa-
tive sample each from COPD, smoker, and non-smoker
groups. For CF-00, the plot shows two likely clonal over-
growths with distinct GC content (Fig. 2a), suggesting
chronic infections by two distinct pathogen species. In-
deed, annotation revealed these contig groups to consist
exclusively of members of the genera Stenotrophomonas
and Haemophilus, respectively (Fig. 2b).
These observed landscapes are characteristic of micro-

bial communities with one or a few dominant members
that have grown clonally to occupy a sizeable proportion
of their niche. In contrast, the healthy and smoker
groups generally were not dominated by few clonal spe-
cies, as reflected in the absence of clustered low-entropy
contigs (see Additional file 2: Figure S5 for plots of each
subject sampled).
The entropy landscapes allow the visual separation of

likely oral contaminants and low-abundance colonizers
from the clonal pathogen(s) growing chronically.
Furthermore, any non-annotated contigs that visually
cluster within the pathogen contigs may indicate un-
documented genomic regions, which would have been
recently introduced into the pathogen genome and may
not be known from reference strains in databases.
Hypothetically, even atypical pathogens that are not yet
annotated in any database would become discernable,
although we have not encountered such a case among
our samples.

Multi-locus sequence typing of pathogens using unbiased
sputum sequences
Multi-locus sequence typing (MLST) is a well-
established method to characterize isolates of a given
microbial species in the context of previously observed
strains of that species, via DNA sequencing of a limited,
pre-defined group of diagnostic genes [33]. Traditional
MLST requires the isolation and culture of microbes of
interest, followed by specific PCR assays targeting the
genes used for strain typing. In contrast, by using WGS
sequencing data, we omit these steps and directly
proceed to characterizing strains of interest from the
mixture. Importantly, there is no need to decide, ahead
of the experiment, which strains are to be typed since no
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specific PCR is required. As long as a species or genus
has been previously subjected to MLST genotyping (i.e.,
a well-populated MLST database with corresponding
marker genes is available), it can be characterized. In the
following, we describe two examples of MLST strain
genotyping in the sputum of CF patients—one yielding a
previously observed strain from a well-sampled strain
collection, the other yielding a more exotic strain for
which even the exact species designation remains un-
clear (it may belong to a new, as yet unnamed species).
We characterized a strain of S. maltophilia which we

had observed in the sputum of patient CF-00. S. malto-
philia is an intrinsically multidrug-resistant (MDR) op-
portunistic pathogen that has been isolated from several
water-associated environments inside and outside of
hospital premises [34]. Like many free-living opportunis-
tic pathogens, it possesses a large and versatile genome
that allows it to colonize diverse environments and de-
grade toxic compounds such as antibiotics, even using
them as food sources [35]. S. maltophilia exhibits high
levels of genetic diversity, making it hard to precisely
track the source of infections and distribution of isolates
in hospitals. We performed MLST using a standard set
of seven housekeeping genes [36], all of which were

found with 100% sequence coverage in our sample. We
observed that the patient harbored a single strain (likely
from a single infection event), which was 100% identical
to a strain encountered previously, in a CF case in the
UK. We placed this strain, together with other strains
observed previously, in a phylogenetic tree constructed
from the MLST alignment, see (Fig. 3a). The tree was
then annotated with the sampling origin of each strain:
clinical, environmental, hospital environment, or animal-
associated. The phylogenetic analysis revealed a clear
clustering of clinically obtained strains in a single clade,
suggestive of specialization, and frequent transfers from
patient to patient. Overall, we found this genome to be
very well recovered from the sputum, with an analysis
using CheckM [37] reporting it to be 97.2% complete.
Next, we observed and characterized a putative

Achromobacter strain from patient CF-85. Members of
the Achromobacter genus form a group of gram negative,
strictly aerobic, motile bacteria of which more than 10
species are currently known. The majority of strains
isolated from CF patients belong to the species A.
xylosoxidans, which is also an intrinsically multidrug-
resistant opportunistic pathogen [38]. Aside from the
patients, strains can also be found in a variety of aquatic

Fig. 2 Pathogen overgrowth can be separated from background diversity. Sequence contig feature plots (“entropy landscapes”), depicting at least
one sample from every subject group. Each data point represents an assembled contig, with colors corresponding to genus level taxonomy
annotations. The three axes show contig length (X-axis), contig sequence heterogeneity (entropy, Y-axis), and GC-content (Z-axis). a Magnified
view of the plot of patient CF-00 without taxonomic annotation. b The same plot (CF-00) but with taxonomic annotation. c Representative plots
of one subject from each group. Throughout, genera constituting less than 5% of the annotated fraction, as well as unannotated contigs are
shown in gray color
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environments ranging from moist soils to dialysis solu-
tions [39]. Achromobacter infections have been generally
observed in older patients with pulmonary diseases, but
their implication in deteriorating lung function has
remained unclear [40, 41]. Accurate identification and
discrimination of different Achromobacter species has
been a challenging task due to limited taxonomic delin-
eation. A recent study revealed that several commercial
test systems used in different diagnostic laboratories
were unable to distinguish different Achromobacter spe-
cies infecting CF patients and would often identify them
incorrectly as A. xylosoxidans [42].
Using the appropriate gene set for this genus, we again

performed MLST. In this case, we did not find any
matches to previously documented strains. Instead, we
placed our sequences on a phylogenetic tree encompass-
ing the entire genus, constructed using concatenated
housekeeping genes from all species and type strains avail-
able in the PubMLST database (http://pubmlst.org/achro-
mobacter/) [43] (Fig. 3b and see “Methods”). Our
observed strain did not cluster with other identified
strains, with the exception of a single unnamed and
uncharacterized isolate from another CF case. The closest
neighbors of these two strains in the tree were A. marpla-
tensis and A. pulmonis. Although routine clinical analysis
using microscopy had identified the strain as A.

xylosoxidans, our phylogenetic analysis suggested other-
wise; the two sequences were sufficiently removed from A.
xylosoxidans to suggest a novel but previously unidentified
clade. Independent studies [44] have also provided evi-
dence to support the presence of as-yet unnamed and
uncharacterized species in the Achromobacter genus, re-
sponsible for CF infections in patients. Further species di-
visions in this clinically relevant but undersampled genus
are needed, and patient-derived genomes such as ours
might provide valuable context.

Prediction of antibiotic resistances and fitness-conferring
mutations
Chronic colonizers can adapt to their host environment
to sustain themselves under varying selection pressures,
such as antibiotic treatments or the presence of poten-
tially competing co-infections. This is particularly prob-
lematic in the case of infections caused by antibiotic-
resistant bacteria in CF patients. For example, a five-fold
increase in MRSA infections has been observed in the
past 15 years [45], and 18.1% of P. aeruginosa infections
in a population of primarily young adult CF patients
were reported to be MDR [45]. These pathogens acquire
various resistance mechanisms to therapeutic agents in-
cluding altered membrane permeability, efflux pumps, or
induced enzymatic modifications. Isolates with identical

a b

Fig. 3 High-precision strain typing from sputum sequences. Multi-locus sequence typing for two selected pathogen strains from CF samples. Yel-
low color highlights the phylogenetic position of the strains observed in this study, relative to previously typed strains deposited in MLST data-
bases. a Patient CF-00 is colonized by a S. maltophilia strain that has close relatives in the database. Isolation sources of database strains are
shown color-coded. b Patient CF-85 has a strain from the genus Achromobacter, for which no close relatives have been observed before (the
strain likely does not belong to a named species). All monophyletic clades with 95% members from a single species have been collapsed
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resistance patterns sometimes exhibit different genetic
modifications, indicating that these bacteria can use dis-
tinct strategies to respond to similar environmental pres-
sures [46].
To test whether sputum sequencing might help to

guide antibiotic treatment, we screened for the presence
of putative resistance-conferring genes and alleles. We
compared all predicted open reading frames in each
sample against a database of known and annotated anti-
biotic resistance genes (see Methods), employing conser-
vative similarity cutoffs. For example, in the sputum of
CF-85, we identified genes encoding for class A beta lac-
tamases, which are classified as serine enzymes confer-
ring resistance to penicillin. In the same sample, we also
identified a 23S ribosomal RNA methyltransferase,
conferring varying degrees of resistance to macrolide,
lincosamide, and streptogramin B antibiotics (see Fig. 4a
and Additional file 3: Table S5).

The predictions were validated independently by
clinical resistance reports, where the majority of both
“resistant” as well as “non-resistant” calls were con-
firmed (Fig. 4b). False predictions were limited to false
negatives, i.e., clinically observed resistances which were
not predicted based on sequence analysis. Interestingly,
we additionally observed a virulence gene, mprF, anno-
tated as providing resistance against naturally secreted
antimicrobial peptides known as defensins. These cat-
ionic peptides are largely secreted by neutrophils and by
the airway epithelium in the CF lungs to protect the
epithelia against infections. S. aureus strains with resist-
ance to defensins show a greater pathogenic potential
[47]. Thus, the presence of such virulence factors is of
general relevance to clinicians when designing treat-
ments for CF patients.
Apart from antibiotic resistances, other phenotypes such

as biofilm formation or exo-polysaccharide secretion may

a

b

c

Fig. 4 Prediction of antibiotic resistances and other phenotypes. a The Achromobacter strain isolated from patient CF-85 underwent routine clin-
ical testing for antibiotic sensitivity; the compounds tested and the observed results are shown. This is contrasted with automated predictions
based on the gene content of the sputum sequence data. b Summary table for all CF subjects, indicating the overlap between the resistance pre-
dictions and the clinical test results. c Read alignment against a section of the mucA gene from P. aeruginosa, from patient CF-82. Eleven reads
show a wild-type sequence at this position, but 7 reads show a deletion event predicting a non-functional protein and a corresponding shift from
a non-mucoid to a mucoid phenotype in this strain
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also be actively adapting in chronic colonizers. Indeed, it
is known that chronic colonizers develop considerable
genomic heterogeneity, which is perhaps maintained by
specialization or balanced selection [48, 49]. We con-
ducted a systematic search for genomic heterogeneity
using the FreeBayes tool and observed varying levels of
sequence variation (see Additional file 6: Table S7 and
“Methods”). With our genomic read coverage often below
10×, we are somewhat limited in power, but a conservative
search shows that two of the pathogens are nearly clonal,
with less than 20 variants observed for each (Staphylococ-
cus in patient CF-85 and Pseudomonas in patient CF-76).
In contrast, the remaining nine pathogens tested show
considerable heterogeneity, with hundreds of sequence
variants observed in each strain (Additional file 6: Table
S7). In the case of P. aeruginosa, this kind of sequence
heterogeneity has been particularly well studied, and a set
of 52 genes has been shown to be likely adaptive inside
the lung [50]. Of these, we indeed found five with SNPs in
one of our patients, CF-82. As an example, we highlight
the mucA gene, which controls the mucoid/non-mucoid
phenotype. Initial isolates of P. aeruginosa from CF
patients are generally non-mucoid and responsive to anti-
biotics. However, during protracted infections, these path-
ogens start overproducing an exo-polysaccharide known
as alginate which is a polymer of α-D-manuronic acid and
L-glucuronic acid [51], eventually leading to their transi-
tion into a mucoid phenotype. Mucoid P. aeruginosa is
immune to several antibiotics and to phagocytosis [52].
Correspondingly, the mucoid phenotype is directly linked
with poor clinical outcome for patients. According to the
clinical laboratory report, the sputum of CF-82 harbored
both mucoid and non-mucoid P. aeruginosa strains. To
better understand the underlying genetic modifications
that lead to this phenotypic transition, we inspected the
mucA gene, which encodes for a trans-membrane σ-factor
responsible for limiting expression of the 12-gene alginate
operon (algA-algD). Loss of function mutations in the
mucA gene typically result in production of alginate, in
turn giving rise to a mucoid phenotype. In CF-82, we in-
deed identified 7 sequence reads showing a single-
nucleotide deletion at position 429 in the mucA gene
(Fig. 4c), leading to a truncated and presumably non-
functional protein. In contrast, 11 reads supported the
presence of a non-mutated, fully functional protein; in
combination, these reads confirm and explain the clinical
observation.

Genome comparisons reveal patient-specific pathogen
features
The MLST procedure allowed us to precisely characterize
the taxonomic identity of strains of interest but provided
little phenotypic information regarding pathogenicity or
metabolic characteristics. Moreover, this information is not

routinely available from culture-dependent techniques in
the clinic. To address this, we collected all contigs
assembled from CF-00 belonging to S. maltophilia and
aligned them against two closely related clinical database
strains, Sm K279a and Sm ISSMS3 [GenBank accession
NC_010943 and NZ_CP011010, respectively] (Additional
file 2: Figure S6). This identified seven large-scale homolo-
gous regions (see Fig. 5a). These regions were interspersed
by non-homologous intervals unique to each genome, in-
cluding some in the assembled genome from patient CF-
00. The assembled genome also exhibited some genomic
rearrangements with respect to the reference strains.
We next made gene predictions for all the unique gen-

omic regions of size 1 kb or greater present in the re-
constructed genome. Interestingly, we found a large
region of 23 genes (Fig. 5b), 14 of which were found to
code for a virulence-associated type VI secretion system
(T6SS). T6SS systems typically consist of a conserved
cluster of 13 core genes, 10 of which were observed in
our gene set together with 4 additional non-conserved
T6SS accessory genes (Fig. 5c) responsible for post
translational regulation based on orthology predictions.
T6SS secretion systems (Fig. 5d) were first described a
decade ago in Vibrio cholerae [53] and since then have
been studied in several gram-negative bacteria, including
P. aeruginosa [54]. They allow the secretion of a range
of substrates such as toxins, adhesins, hydrolytic en-
zymes, and effector proteins and have been classified
into four subtypes [55]. T6SS have been associated with
biofilm formation and antagonistic or bactericidal func-
tions towards competing bacterial species [54]. They are
frequently observed in genomic islands, and their
presence shows little correlation to bacterial taxonomy,
suggesting that they are frequently acquired through
horizontal gene transfer [56].
In the past decade, T6SS have repeatedly been re-

ported to be absent in all S. maltophilia isolates, both in
clinical and environmental isolates [57–59]. Its presence
in our clinical isolate thus highlights its outstanding abil-
ity to adapt to new hosts and surroundings. In addition
to our observation, recent observations in new S. malto-
philia strains [60] were also supportive of T6SS systems
(although the genomes are yet to be published).
The spread of such virulent secretory systems in

multidrug-resistant CF pathogens provides a unique
opportunity to identify new targets for designing in-
novative treatments. Anti-virulence drugs [61] that
target specific secretion systems to disarm the bac-
teria can be a likely alternative to conventional anti-
biotics. Thus, whole genome reconstruction of highly
abundant bacteria in the patient samples provides an
exclusive possibility to study idiosyncratic genomic
regions and to identify potential drug targets for tar-
geted treatments.
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Conclusions
In this study, we have introduced a culture-independent
technique for characterizing airway pathogens in the
chronically inflamed lung, using routine non-invasive
sputum sampling coupled to unbiased WGS sequencing.
We chose not to subject the sputum samples to any
particle-size selection or human host DNA depletion, al-
though protocols specifically suitable for sputum sam-
ples have been developed [16, 62]. This means that our
sequence reads will include not only a large number of
human genome-derived sequences but also extracellular
DNA from microbial cells that might no longer be vi-
able. On the other hand, the simplified processing means
that experimental biases are minimized, and most DNA-
containing pathogens should be accessible (particularly
given the ongoing increases in sequencing throughput).
Our approach should provide valuable information

complementing routine culture-based clinical microbiol-
ogy results in the future. This could help to design tai-
lored treatment regimes by reducing the risk of
ineffective treatment.
We find, firstly, that WGS sequencing can serve to de-

scribe the broad taxonomic composition of the lung
microbiome, particularly when combined with reference
databases. Reference information is still incomplete and
can bias the results, but for human-associated microbes,
it is growing at a remarkable pace [63, 64] and should
make WGS-based taxonomic classification ever more
accurate in the future.
Secondly, various binning approaches [65] can be used

to partially assemble genomes of interest from the WGS
data. In the case of chronic infections originating from
one or a few clonal invasions, we find that contig-by-
contig entropy is a good measure for isolating pathogens

Fig. 5 Pathogen genome comparisons reveal patient-specific additions. Two public reference genomes of S. maltophilia are compared against
assembled contigs from patient CF-00. a Genome-wide alignment showing blocks of colinearity, additions, and deletions. White stretches indicate
unalignable, unique regions in each genome. Vertical red lines separate individual assembled contigs. b Magnified view centered on a genomic
region that is unique to the strain in patient CF-00. Genes with homology to type six secretion system (T6SS) have been labeled with numerical
IDs (see panel c below). Genes marked with an asterisk showed no detectable homology in sequence databases. c The core gene cluster of T6SS
is depicted in yellow; additional accessory T6SS genes which are also observed in patient CF-00 are colored in gray. d Schematic model of the
T6SS protein structure based on present knowledge
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from contaminants and from the complex colonizing
background of microbes. Such an approach may help cli-
nicians to more precisely identify the disease-causing
pathogen.
Thirdly, for those pathogens that have already been

well studied in molecular terms, we demonstrated that
MLST can be applied directly using WGS data. This al-
lows the exact strain identity to be established, lever-
aging the power of MLST databases and cataloged strain
observations. Importantly, this can significantly simplify
the process of tracing infection outbreaks at clinics using
untargeted, retrospective data.
Lastly, the partially assembled genomes and the

remaining unassembled contigs could be informative with
regard to the expected efficacy of treatment options. Antibi-
otics susceptibility testing is an important part of clinical
management, although its efficacy has been questioned [66,
67]. We find that antibiotic resistances can be predicted
from the metagenome, but while this is substantially sup-
ported by confirmatory clinical tests, it is not yet entirely
error-free. This is likely to improve with better data cur-
ation in the resistance databases, but the most challenging
resistances to predict correctly will be those that arise from
specific mutations in normal, cellular genes [68]. Import-
antly, aside from predicting resistances, WGS data may
guide the decision as to which antibiotics to include in clin-
ical testing in the first place, particularly for the second-
generation antibiotics designed to counteract or circumvent
known resistances.
Overall, WGS sequencing of sputum may become one

of the building blocks supporting the advancement of a
more personalized medicine. It yields not only deep in-
sights into the lung microbiome by allowing an unbiased
metagenomic dissection of microbial pathogens but also
enables analysis of human genomic DNA for host geno-
typing (e.g., for host susceptibility to infection or for un-
expected treatment responses). For routine tracking,
deep WGS sequencing could be alternated with more
shallow survey sequencing or 16S sequencing; the latter
are likely sufficient to quantify changes in community
composition, with deep sequencing only necessary when
the new pathogens invade.

Methods
Sputum samples and DNA extraction
Sputum was either produced spontaneously (in the case
of CF and COPD patients) or after induction by hyper-
tonic saline nebulization (in the case of healthy control
subjects). The sampling was conducted at the Cantonal
Hospital St. Gallen and at the Children’s Hospital of
Eastern Switzerland. Healthy control subjects were free
of symptoms of respiratory discomfort and did not show
overt infections. All study participants provided in-
formed consent. The study was approved by the

Cantonal Ethics Committee, St. Gallen (EKSG 13/112).
The sputum samples were weighed and aliquoted into
sterile tubes. After dilution in Sputolysin (Calbiochem
Corp., San Diego, CA, USA), total DNA was extracted
using the High Pure PCR Template Preparation Kit
(Roche, Basel, Switzerland) according to manufacturer’s
instructions. DNA concentration was measured using
the ACTgene UV99 spectro-photometer at a wavelength
of 260 nm, and samples were stored at −20 °C. As the
starting material was not limiting, and sufficient
amounts of DNA were available, no extra amplification
step was deemed necessary and no extraction blanks for
PCR/sequencing contamination control were processed.

Whole-genome shotgun sequencing
The TruSeq DNA Sample Prep Kit v2 (Illumina Inc.,
California, USA) was used for library generation. The
quality and quantity of the enriched libraries were vali-
dated using a Qubit® (1.0) fluorometer and the Caliper
GX LabChip® GX (Caliper Life Sciences, Inc., USA). The
libraries were normalized to 10 nM in Tris-Cl 10 mM,
pH 8.5 with 0.1% Tween 20. The TruSeq PE Cluster Kit
v3-cBot-HS (Illumina, Inc., California, USA) was used
for cluster generation using 2 pM of pooled normalized
libraries on the cBOT. Paired-end sequencing was per-
formed on the Illumina HiSeq 2000 at 2 X101 bp using
the TruSeq SBS Kit v3-HS (Illumina, Inc., California,
USA). Reads were quality-checked with FastQC [69].

Removal of the host genome and assembly
We used Bowtie2 [70] to align the paired-end reads
against the human reference genome, assembly Hg19
[71]. Read pairs were omitted from any further down-
stream analysis if one or both mates from the pair
aligned to the human genome. We assembled contigs
from the remaining read pairs using the SPAdes assem-
bler [72] under the “only assembly” setting.

Taxonomic annotation and diversity estimation
We searched the contigs against the NCBI nucleotide
database (as of June 2014) using Blastn [73] with an e
value cutoff of e−15. The most common recent ancestor
of all genomic sequences that aligned to a given contig
with a bit score within 10% range of the highest scoring
alignment was used to taxonomically annotate the con-
tig. This procedure largely excluded the analysis of
phages and viruses because these tend to be poorly
represented in databases and taxonomies. We independ-
ently cross-checked our microbial assignments by run-
ning MiDAS, a strain-level taxonomy analysis tool based
on a large collection human-associated microbial patho-
gens [74]. As shown in Additional file 7: Table S6, there
is a good agreement between both approaches for the
more abundant genera, while some low-abundant genera
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are missed by MiDAS (which restricts its search space to
a set of suitable gene families). We discarded all contigs
with annotations belonging to the Metazoan kingdom,
to further remove host-genome sequences from further
downstream analysis. We used nucleotide counts from
assembled contigs with genus level taxonomic assign-
ments to calculate Shannon entropy as a measure of
diversity. We used Mann-Whitney U test for significance
testing and subsequently adjusted the p values using the
Bonferroni correction for multiple testing. To assess SNPs
in the extracted pathogens, the FreeBayes tool was used
(version 1.1.0, http://arxiv.org/abs/1207.3907). Fastq read
pairs used for contig assembly were mapped back to con-
tigs using bwa, version bwakit-0.7.12, under standard
paired-end setting. Next, FreeBayes was used to call vari-
ants. Ploidy was set to 10 to predict variants present at dif-
fering frequencies, and the minimum read count for
supporting alternate alleles was set to 3. The predicted
variants were further filtered with the help of VcfFilter
(available with the FreeBayes package), using a minimum
quality score of 30 and minimum total read depth of 6
reads per position.

Contig binning via “entropy landscapes”
We recruited all paired-end reads that had contributed
to the assembly process back against the non-human
contigs using Bowtie2. This recruitment was used to cal-
culate the average number of mismatches and gaps over
the length of the contig, per base pair (entropy). This
score was depicted on the z-axis of the plots, together
with contig length on the x-axis, and GC content on the
y-axis. The axes “entropy” and “GC content” are in-
trinsically normalized, i.e., largely independent of the
number of reads per sample (or per contig). In con-
trast, the axis “contig size” is not normalized. Contigs
from genera constituting more than 5% of the anno-
tated non-human contigs were color-coded according
to their annotation. We depicted the unannotated and
the remaining contigs from the low abundance genera
in a single color. The code for this analysis is
available at https://github.com/rfeigelman/Microbe-En-
tropy-Analysis.git.

MLST and phylogenetic placement of abundant clonal
species
We constructed a maximum likelihood tree for S. malto-
philia using RAxML [75] under the GTRCAT model,
with 1000 bootstraps, using the concatenated sequence
composed of the seven housekeeping genes atpD, gapA,
guaA, mutM, nuoD, ppsA, and recA. In patient CF-00,
these genes showed 100% identity over their entire
length to a previously observed strain. All the sequences
of the previously typed strains used for building the tree
were downloaded from http://pubmlst.org/smaltophilia/.

The tree was rooted using Xanthomonas Campestris
8004 [GenBank accession NC_007086.1] as an outgroup.
For the Achromobacter genus, we built another
phylogenetic tree using the concatenated sequences of
the seven housekeeping genes eno, gltB, lepA, nrdA,
nuoL, nusA, and rpoB. Full-length sequences of all the
seven genes were recovered from the assembled contigs
of the patient CF-85. There was no exact match found
to any previously documented strain. The sequences of
previously typed strains used for building the tree were
downloaded from http://pubmlst.org/achromobacter/.
The tree was rooted using Bordetella pertussis [GenBank
accession LN849008] as an outgroup.

Identification of antibiotic resistance genes and cassettes
We used the Comprehensive Antibiotic Resistance Data-
base [76] to search for resistance-conferring genes in
our samples. The results from the web server were fil-
tered to include only matches with over 90 amino acid
length and over 90% identity. We further compared
these findings with the clinical laboratory reports on ob-
served antibiotic resistances.

Genome alignment
We used Mauve [77] for ordering the assembled Steno-
trophomonas contigs from the patient sample CF-00 and
subsequently performing whole-genome alignments
against reference strains.
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