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Huygens-Fresnel-Kirchhoff construction for quantum propagators with application to

diffraction in space and time

Arseni Goussev
Max Planck Institute for the Physics of Complex Systems,

Nöthnitzer Straße 38, D-01187 Dresden, Germany

(Dated: January 9, 2012)

We address the phenomenon of diffraction of non-relativistic matter waves on openings in absorb-
ing screens. To this end, we expand the full quantum propagator, connecting two points on the
opposite sides of the screen, in terms of the free particle propagator and spatio-temporal properties
of the opening. Our construction, based on the Huygens-Fresnel principle, describes the quantum
phenomena of diffraction in space and diffraction in time, as well as the interplay between the
two. We illustrate the method by calculating diffraction patterns for localized wave packets passing
through various time-dependent openings in one and two spatial dimensions.

PACS numbers: 03.65.Nk, 03.75.-b, 42.25.Fx

I. INTRODUCTION

Diffraction and interference of matter are among the
most fascinating and controversial aspects of quantum
theory. It is not surprising that laboratory exploration
of these phenomena with subatomic, atomic, and molec-
ular particles has been at the heart of experimental re-
search since early days of quantum mechanics [1]. As of
today, a wave-like behavior of matter has been success-
fully demonstrated for a number of elementary particles,
atoms, simple molecules (see Ref. [1] for a comprehen-
sive review), and, most notably, for some heavy organic
compounds including C60 [2], C70 [3], and C60F48 [4]. A
majority of these experiments involve sending a mono-
energetic beam of particles through a screen with open-
ings (apertures) such as slits, diffraction gratings, or Fres-
nel zone plates. Mathematically, the problem of quan-
tum diffraction on stationary spatial apertures can be
described by the Poisson equation and treated by meth-
ods originally developed in the context of diffraction and
interference of light [5, 6].
A diffraction phenomenon of a different kind – “diffrac-

tion in time” – was introduced by Moshinsky six decades
ago [7] and subsequently studied by many researchers,
both experimentally [8] and theoretically (see Refs. [9, 10]
for reviews). The phenomenon has to do with time evolu-
tion (more precisely, with non-uniform spreading) of ini-
tially sharp wave fronts in quantum systems, and mani-
fests itself already in one dimension. Thus, in the original
set-up proposed by Moshinsky [7], a perfectly absorbing
shutter is placed in the way of a mono-energetic beam of
non-relativistic quantum particles. Then, a sudden re-
moval of the shutter creates a “chopped” particle beam
with a sharp wave front. As shown by Moshinsky, such a
wave front disperses non-uniformly in the course of time
and, most interestingly, develops a sequence of diffrac-
tion fringes. Mathematically, these fringes appear to be
analogous to the ones observed in diffraction of light on
the edge of a semi-infinite plane.
There are several ways of treating quantum diffrac-

tion theoretically. One commonly used, physically moti-

vated method for evaluating the wave function of a quan-
tum particle passing through an opening in a diffraction
screen is the “truncation” approximation, which is based
on the composition property of quantum propagators. In
this approximation, transmission of a spatially localized
wave packet through the diffraction screen is treated as
a three stage process: (i) the wave packet is propagated
freely during the time that it takes the corresponding
classical particle to reach the screen, then (ii) the wave
function is reshaped (or truncated) in accordance with
the geometry of the aperture, and, finally, (iii) the resul-
tant wave function is propagated freely for the remaining
time interval. The reader is referred to Refs. [11–14] for
details and implementation examples of the truncation
approximation.

One drawback of the truncation approximation is that
it does not account for diffraction in time. Brukner and
Zeilinger [15] proposed another, more versatile method
for solving the problem of quantum diffraction. The
central assumption of their method is that the time-
dependent wave function in question satisfies certain ex-
plicitly known, inhomogeneous time-dependent Dirich-
let boundary conditions at the surface of the diffraction
screen. More specifically, two assumptions are made: (i)
the value of the wave function at a point inside the aper-
ture is assumed to equal the value that the wave func-
tion would have at this point if the diffraction screen
was absent, and (ii) the wave function vanishes at every
point of the diffraction screen outside the aperture. The
first assumption is commonly referred to as the Kirch-
hoff approximation, while the second corresponds to the
physical assumption of perfect reflectivity of the screen.
The method of Brukner and Zeilinger has since been suc-
cessfully used by several researchers to study quantum
diffraction in both space and time [16–18].

In this paper, we present another approach to quan-
tum diffraction in space and time. Our method is based
on the Huygens-Fresnel principle and Kirchhoff theory
of diffraction, and allows one to calculate the time-
dependent quantum propagator for the problem of parti-
cle diffraction on spatio-temporal openings in otherwise
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perfectly absorbing screens. Our expression for the prop-
agator is especially adaptable for calculating diffraction
patterns in situations in which the initial wave function
is given by a spatially localized wave packet or by a su-
perposition of several localized wave packets. Similar to
the method of Brukner and Zeilinger, our construction
provides a unified framework that treats the phenom-
ena of diffraction in space and diffraction in time on the
same footage. The main difference between the method
of Brukner and Zeilinger and our method is that the
former is designed to treat perfectly reflecting screens,
while the latter is only applicable to perfectly absorb-
ing ones. Finally, our approach allows for calculation of
quantum diffraction patterns produced by openings in
spatially curved screens.
The paper is organized as follows. In Sec. II we

develop an expansion of the propagator for a non-
relativistic quantum particle passing through a time-
dependent opening in an absorbing screen. In Sec. III
we demonstrate utility of the expansion by applying it to
some example systems in one and two spatial dimensions.
In Sec. IV we discuss our results and make concluding re-
marks. Some technicalities are deferred to an Appendix.

II. HUYGENS-FRESNEL-KIRCHHOFF
CONSTRUCTION FOR QUANTUM

PROPAGATORS

In this section, we address two quantum-mechanical
phenomena – diffraction in time, pioneered by Moshinsky
[7, 9, 10], and diffraction in space, as described by Kirch-
hoff theory [5, 6]. We recast standard descriptions of
both phenomena in a way analogous to a time-dependent
formulation of the Huygens-Fresnel principle. Expressed
in this way, the two diffraction processes appear to be
closely related and can be straightforwardly unified into
a single model of diffraction in space and time.

A. Notation

In order to facilitate the clarity of the following presen-
tation, we begin by introducing central physical quanti-
ties and fixing notation.
The focus of this paper is on the quantum propagator

K(q,q′; t) that describes the motion of a quantum par-
ticle in the f -dimensional coordinate space by relating a
particle’s wave function Ψ(q; t) at time t to that at time
t = 0 through

Ψ(q; t) =

∫

Rf

dfq′ K(q,q′; t)Ψ(q′; 0) . (1)

The propagator is the solution of the time-dependent
Schrödinger equation

i~
∂K

∂t
= HqK (2)

with the initial condition

lim
t→0

K(q,q′; t) = δ(q− q′) , (3)

where Hq denotes the Hamilton operator in the position
representation. (The propagator is also subject to certain
absorbing boundary conditions that we do not discuss at
this point.) In the case of a free particle of mass m we

have Hq = − ~
2

2m∇
2
q
and K = K0(q− q′; t) with

K0(q− q′; t) =
( m

2πi~t

) f
2

exp

(
−m|q− q′|2

2i~t

)
. (4)

Hereinafter, the subscript “0” indicates that the corre-
sponding quantity refers to the case of a free particle.
We also consider the energy-domain Green function

defined as the Laplace transform of the propagator,

G(q,q′;E) =

∫
∞

0

dt e−stK(q,q′; t)

≡ L[K](q,q′; s) with s =
E

i~
. (5)

Consequently, the propagator is obtained from the Green
function by means of the inverse Laplace transform,
K = L−1[G]. In the free particle case, Eqs. (4) and (5)
define the free-particle Green function G0(q − q′;E) =
L[K0](q− q′; s) that satisfies

∇
2
q
G0+k2G0 = −2m

i~
δ(q−q′) with k2 =

2mE

~2
. (6)

B. Diffraction in time

We now address the phenomenon of diffraction in time,
first considered by Moshinsky [7] and later explored by
many researchers (see Refs. [9, 10] for reviews). In its
one-dimensional formulation, the Moshinsky problem is
concerned with time evolution of a quantum particle,
whose wave function Ψ(ξ; t) is localized to the semi-
infinite interval (−∞, x1) at time t = 0, i.e., Ψ(ξ; 0) = 0
for ξ > x1. Over time, an absorbing wall (shutter)
is switched “on” and “off” at the point x1, according
to a protocol defined by a characteristic function χ(t).
The latter is allowed to take values between 0 and 1,
with 0 representing the case of perfect absorption (shut-
ter “on”) and 1 corresponding to perfect transmission
(shutter “off”). The open interval 0 < χ < 1 repre-
sents the case of partially absorbing and partially trans-
mitting (but reflection-free) shutter. One is then inter-
ested in the wave function Ψ(ξ; t) of the particle to the
right of the shutter, ξ > x1, at t > 0. Moshinsky [7]
analyzed this problem for a “monochromatic” incident
wave Ψ(ξ; 0) = Θ(x1 − ξ)eikξ , where k > 0 and Θ is
the Heaviside step function, and a perfectly absorbing
shutter that gets suddenly removed at an instant t0, i.e.,
χ(t) = Θ(t−t0). His analysis showed that at times t > t0,
the front of the probability density wave exhibits patterns
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identical to those observed in the Fresnel diffraction of
light from the edge of a semi-infinite plane, thus giving
rise to the term “diffraction in time”.
Our objective is to devise an expression for the propa-

gator K(x, x′; t) that describes Moshinsky diffraction by
a shutter positioned at a point x1, such that

x′ < x1 < x , (7)

and controlled (opened and closed) in accordance with
the characteristic function χ(t) of an arbitrary functional
form. Our construction relies on the Huygens-Fresnel
principle, which, for the purpose of the current problem,
can be formulated as follows: The disturbance at the
point x produced by a source O′, located at some other
point x′, can be viewed as produced by a fictitious source
O1, located at a point x1 in between x′ and x, cf. Eq. (7).
The strength of the fictitious source O1 is determined by
the disturbance at the point x1 produced by the original
source O′. When a (partially) absorbing shutter is placed
at the point x1, the strength of the fictitious source O1

is modulated by the characteristic function χ(t) taking
values between 0 and 1. Mathematically, this can be
summarized as

K(x, x′; t) =

∫ t

0

dt1 u(x− x1, x1 − x′; t, t1)

×K0(x− x1; t− t1)χ(t1)K0(x1 − x′; t1) . (8)

where u, having dimensions of speed, is a yet-to-be-
determined function of the distances x− x1 and x1 − x′

and times t and t1.
The physical meaning of Eq. (8) is transparent: The

probability amplitude of an event in which the particle
goes from x′ to x in time t can be expressed as a sum of
probability amplitudes over all composite events in which
the particle first goes from x′ to an intermediate point x1

in a time t1 and then reaches x from x1 in the remaining
time t − t1. Because of their simple physical interpreta-
tion, propagator expansions similar to Eq. (8) are often
used for qualitative description of quantum interference
phenomena (e.g., see [9] for a qualitative discussion of
a two-slit interference experiment), however the explicit
functional form of u is usually neither specified nor taken
into account.

1. Free particle, χ(t) = 1

Interested in determining the functional form of u =
u(x − x1, x1 − x′; t, t1), we first direct our attention to
the simplest possible scenario, in which the shutter stays
open throughout the entire time interval from 0 to t, i.e.,
χ(t1) = 1 for 0 ≤ t1 ≤ t. In this case, the propagator in
the left-hand side of Eq. (8) is given by the free particle
propagator, K = K0, requiring u to satisfy

K0(x− x′; t) =

∫ t

0

dt1 uK0(x− x1; t− t1)K0(x1 − x′; t1) .

(9)

It is interesting to observe that Eq. (9) does not specify
the function u uniquely. In fact, Eq. (9) turns out to be
an identity satisfied exactly by infinitely many different
functions u, some examples being (see App. A)

u = η
x− x1

t− t1
+ (1− η)

x1 − x′

t1
, (10)

u =

√
2i~

πmt

exp(−ζ2)

erfc(ζ)
with ζ2 =

m(x − x′)2

2i~t
. (11)

Here, η is an arbitrary complex number, and “erfc” de-
notes the complementary error function.

2. Moshinsky shutter, χ(t) = Θ(t− t0)

We now show that the functional form of u can be
uniquely determined by comparing Eq. (8) with an ex-
act expression for the quantum propagator in the original
Moshinsky set-up [7], in which the absorbing shutter, lo-
cated at x1, is closed until a time t0 and open afterwards,
i.e., χ(t1) = Θ(t1 − t0) for 0 ≤ t0, t1 ≤ t.
On one hand, a direct construction of the propagator

K̃M(x, x′; t) for the original Moshinsky problem leads to

K̃M(x, x′; t) =

∫ x1

−∞

dx′′ K0(x− x′′; t− t0)K0(x
′′ − x′; t0)

= K0(x− x′; t)

[
1− 1

2
erfc

(
(x1 − x0)

√
mt

2i~t0(t− t0)

)]

(12)

with

x0 = x
t0
t
+ x′

t− t0
t

. (13)

The first equality in Eq. (12) combines the composition
property of quantum propagators and the fact that, at
time t0, all the probability density to the right of x1 has
been absorbed by the shutter. This leads to the trunca-
tion of the upper limit in the x′′ integral.
On the other hand, a substitution of χ(t1) = Θ(t1−t0)

into Eq. (8) yields

KM(x, x′; t) =

∫ t

t0

dt1 u(x− x1, x1 − x′; t, t1)

×K0(x− x1; t− t1)K0(x1 − x′; t1) . (14)

Equations (12) and (14) allow us to uniquely determine

the function form of u by requiring K̃M = KM. Indeed,
let us for the moment fix the values of x, x′, and t, and

treat the propagator K̃M as a function of the shutter

opening time t0 only, i.e., K̃M = K̃M(t0). First, we note

that limt0→t− K̃M = 0. Indeed, x0 → x as t0 → t−,
and the argument of the complementary error function
in Eq. (12) tends to ei3π/4∞, making the value of the
complementary error function approach 2. This limit, of
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course, corresponds to the trivial case of the absorbing
shutter being closed throughout the entire time interval
from 0 to t. Then, in view of this limit, we rewrite the
Moshinsky propagator as

K̃M(t0) = −
∫ t

t0

dt1
dK̃M(t1)

dt1
. (15)

A straightforward (but somewhat tedious) calculation
yields

dK̃M(t1)

dt1
=− 1

2

(
x− x1

t− t1
+

x1 − x′

t1

)

×K0(x− x1; t− t1)K0(x1 − x′; t1) . (16)

It is now clear that the Moshinsky propagator K̃M, as ex-
pressed by Eqs. (15) and (16), is equivalent to the prop-
agator KM, given by Eq. (14) with

u =
1

2

(
x− x1

t− t1
+

x1 − x′

t1

)
. (17)

Note that Eq. (17) is equivalent to Eq. (10) with η =
1/2. Also, Eq. (17) provides the physical meaning of the
function u: The latter is a characteristic (mean) velocity
of the particle when it traverses the shutter.

3. Arbitrary χ(t)

A substitution of Eq. (17) into Eq. (8) yields

K(x, x′; t) =
1

2

∫ t

0

dt1

(
x− x1

t− t1
+

x1 − x′

t1

)

×K0(x− x1; t− t1)χ(t1)K0(x1 − x′; t1) . (18)

Here, the spatial points x, x′, and x1 are subject to the
condition given by Eq. (7), and the characteristic func-
tion χ is allowed to take values between 0 (perfect ab-
sorption) and 1 (perfect transmission).
Equation (18) provides a formulation of the Huygens-

Fresnel principle for a one-dimensional particle in the
presence of a point-like absorbing obstacle, whose ab-
sorbing properties change in the course of time. At this
point, it is important to emphasize that the analysis pro-
vided in this section should not be regarded as a rigor-
ous mathematical proof of the propagator expansion (18).
Unavoidable difficulties in solving the problem from the
first principles stem from the lack of a proper unambigu-
ous definition of point-like, generally partial and time-
dependent, absorption. In our approach, however, we by-
pass this issue by modeling the absorption with the help
of a time-dependent characteristic function, χ(t), and re-
lying on the validity of the Huygens-Fresnel construction
in its most general form, Eq. (8). Consequently, we re-
move any arbitrariness in the Huygens-Fresnel construc-
tion by determining the function u, originally unknown in
Eq. (8), through analyzing the case of χ(t) corresponding

to the Moshinsky shutter problem, for which point-like
absorption can be defined unambiguously.
It is interesting to note a formal similarity between

Eq. (18) and the well-known Lippmann-Schwinger equa-
tion [9, 11, 19], which in the case of a point-like perturba-
tion, situated at x1 and described by a spatio-temporal
potential of the form V (ξ, τ) = δ(ξ − x1)U(τ), reads

Ksc(x, x
′; t) = K0(x− x′; t)

− i

~

∫ t

0

dt1 K0(x− x1; t− t1)U(t1)Ksc(x1, x
′; t1) . (19)

As before, K0 is the (free-particle) propagator in the ab-
sence of the perturbation potential, and Ksc is the propa-
gator corresponding to the full scattering problem. Equa-
tion (19) gives rise to a multiple collision representation
of the scattering propagator, known as the Dyson series
[11, 19].
Despite their superficial resemblance, Eqs. (18) and

(19) describe very different physical processes: The
Lippmann-Schwinger equation pertains to the phe-
nomenon of quantum scattering, whereas the Huygens-
Fresnel propagator expansion represents quantum mo-
tion in the presence of obstacles that (partially) absorb
matter waves without deflecting them. In fact, it is easy
to show that the Lippmann-Schwinger equation can not
be used to model perfect absorption, corresponding to
the trivial choice χ = 0 in Eq. (18). Indeed, the case
of a perfectly absorbing obstacle at x1 would require
Ksc(ξ, x

′; t) = Θ(x1 − ξ)K0(ξ − x′; t), which is clearly
incompatible with Eq. (19).
In order to avoid possible confusion, we emphasize

that it is the assumption of a point-like perturbation,
V (ξ, τ) = δ(ξ − x1)U(τ), that does not allow the
Lippmann-Schwinger equation to properly capture the
physics of absorption. On the opposite, the Lippmann-
Schwinger equation with a smooth, complex-valued po-
tential function V (ξ, τ), defined over an extended spa-
tial interval, is often the method of choice in modeling
absorbing boundaries (see Ref. [20] for a comprehensive
review).

4. Continuously opening shutter, χ(t) = e−τ/t

In order to demonstrate the usefulness of the Huygens-
Fresnel formulation of diffraction in time we apply the
propagator expansion (18) to a modified Moshinsky shut-
ter problem, in which the absorbing shutter is initially
closed, χ(t1) = 0 for t1 ≤ 0, and then opens continuously
in accordance with

χ(t1) = exp(−τ/t1) for t1 > 0 . (20)

Here, τ > 0 determines the rate at which the shutter
opens. Note that the shutter described by Eq. (20) is
completely removed only in the limit of infinitely long
times, lim

t1→+∞

χ(t1) = 1.
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Using the Huygens-Fresnel expansion (18), we now de-
rive an explicit expression for the propagator K(x, x′; t)
connecting a point x′ to the left of the shutter (x′ < x1)
at time 0 with another point x to the right of the shutter
(x1 < x) at time t. To this end, we rewrite Eq. (18), in
view of Eq. (4), as

K(x, x′; t) = − i~

2m

(
∂

∂x
− ∂

∂x′

)

∫ t

0

dt1K0(x− x1; t− t1)χ(t1)K0(x1 − x′; t1) . (21)

Then, taking into account Eq. (20), we write
χ(t1)K0(x1 − x′; t1) = K0(x1 − x̃; t1), where x̃ satisfies

(x1 − x̃)2 = (x1 − x′)2 +
2i~τ

m
. (22)

Solving Eq. (22) for x̃ and choosing the solution that
converges to x′ in the limit τ → 0+, we have

x̃ = x1 − ρeiθ , (23)

where

ρ =

[
(x1 − x′)4 +

(
2~τ

m

)2
] 1

4

, (24)

θ =
1

2
tan−1 2~τ

m(x1 − x′)2
. (25)

Equation (21) can now be rewritten as

K(x, x′; t) = − i~

2m

(
∂

∂x
− ∂x̃

∂x′

∂

∂x̃

)

∫ t

0

dt1K0(x− x1; t− t1)K0(x1 − x̃; t1) . (26)

The integral over t1 can now be evaluated explicitly:

∫ t

0

dt1K0(x− x1; t− t1)K0(x1 − x̃; t1)

=
m

2i~
erfc

(√
m

2i~t
(x− x̃)

)
. (27)

This identity is derived in Appendix A for the case of
real-valued x̃ (see Eqs. (A2) and (A7)); the derivation
however can be extended to the case of Re x̃ < x1 < x
and Im x̃ ≤ 0 (cf. Eqs. (23-25)). Finally, substituting
Eq. (27), together with ∂x̃/∂x′ = (x1−x′)/(x1− x̃), into
Eq. (26) and taking the partial derivatives with respect
to x and x̃, we arrive at

K(x, x′; t) =
1

2

(
1 +

x1 − x′

x1 − x̃

)
K0(x− x̃; t) . (28)

Two quick remarks are in order. First, Eq. (28) guar-
anties that, as expected, K(x, x′; t) → K0(x − x′; t) as
τ → 0+. This limit corresponds to the standard Moshin-
sky set-up in which the shutter stays completely open at

t > 0. Second, it is clear from Eq. (28) that the propaga-
tor K(x, x′; t) is not symmetric in the coordinates x and
x′. The absence of such symmetry is typical for quantum
motion in the presence of time-dependent obstacles (e.g.,
see Sec. A.1 in Ref. [9]).

C. Diffraction in space

We now address Kirchhoff theory of diffraction in space
[5, 6]. In particular, we rewrite the Kirchhoff’s formula-
tion in its time-dependent form, in which it can be di-
rectly applied to diffraction of quantum wave packets.
To this end, we consider a smooth (f − 1)-dimensional

surface S that is defined as the zero set of a real-valued
function s : Rf → R,

S = {q1 ∈ R
f : s(q1) = 0} . (29)

The surface S is assumed to partition the position space
into two disjoint regions, such that the function s takes
different (and constant) signs in the two regions. We
also consider two spatial points, q and q′, that lie on
the opposite sides of the surface. For concreteness we
take s(q) > 0 and s(q′) < 0. The surface S gives
the location of a non-transparent, absorbing screen, in
which some transparent openings (apertures) may be
“cut out”. These openings and, more generally, the ab-
sorbing properties of the screen, can be described by a
spatially-dependent characteristic function χ(q1) taking
values between zero (perfect absorption) and one (per-
fect transmission) at a point q1 ∈ S. Kirchhoff theory of
diffraction [5, 6] allows one to express the Green function
G(q,q′;E), connecting the points q and q′ at an energy
E, as an integral along the screen:

G(q,q′;E) = − i~

2m

∫

Rf

dfq1 δ
(
s(q1)

)
χ(q1)

×∇s(q1) ·
(
G0(q− q1;E)∇q1

G0(q1 − q′;E)

−G0(q1 − q′;E)∇q1
G0(q− q1;E)

)
. (30)

It is important to emphasize that Kirchhoff method,
Eq. (30), is not applicable to diffraction on apertures
in transmission screens with reflecting (e.g., Dirichlet or
Neumann) boundary conditions. Instead, Kirchhoff the-
ory is known to be a good model for diffraction on per-
fectly absorbing, or “black”, infinitely thin obstacles [21–
23]. In fact, Eq. (30) provides an exact solution to the
time-independent diffraction problem with the boundary
conditions on the screen given by the so-called Kottler
discontinuity (see Refs. [22, 23] and references within):
The probability amplitude field has a discontinuity across
the screen equal to minus the value of the free-space field
at that point. A similar condition is imposed on the nor-
mal derivative of the field.
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For our purposes, it is important to construct a time-
dependent formulation of Kirchhoff diffraction. This is
straightforwardly achieved by first rewriting Eq. (30) as

G(q,q′;E) = − i~

2m

∫

Rf

dfq1 δ
(
s(q1)

)
χ(q1)

×∇s(q1) · (∇q −∇q′)G0(q− q1;E)G0(q1 − q′;E) ,
(31)

and then performing the inverse Laplace transform from
energy-dependent Green functions to time-dependent
propagators, yielding

K(q,q′; t) =
1

2

∫ t

0

dt1

∫

Rf

dfq1 δ
(
s(q1)

)

×
(
q− q1

t− t1
+

q1 − q′

t1

)
·∇s(q1)

×K0(q− q1; t− t1)χ(q1)K0(q1 − q′; t1) . (32)

Here, an important remark is in order. The energy-
domain formulation of Kirchhoff diffraction, Eq. (30),
only assumes the validity of the Helmholtz equation for
a field in question, and is therefore applicable to a wide
range of wave phenomena encountered, for instance, in
acoustics, optics, and non-relativistic quantum mechan-
ics. Equation (32) however relies on the particular re-
lation, given by Eq. (5), between the energy-dependent
Green function and time-dependent propagator, and is
restricted to non-relativistic quantum mechanics only.
Also, we note that the physical picture implied by

Eq. (32) is that of a particle traveling freely from q′

to a point q1 in the aperture, and then from q1 to q.
It is therefore implicitly assumed that the aperture and
points q and q′ are chosen in such a way that every path
q′ → q1 → q′ has no intersection with the screen other
than at q1. In other words, Eq. (32) is only applicable
to configurations in which apertures are not “shadowed”
by S and are directly “visible” from the points q and q′.

D. Diffraction in space and time

We now note a striking similarity between (i) the
Huygens-Fresnel expansion of the propagator for the
problem of diffraction in time, Eq. (18), and (ii) the time-
dependent formulation of Kirchhoff theory, Eq. (32).
This leads us to a conjecture that both expressions are
particular cases of a more general propagator expan-
sion, describing quantum diffraction on apertures which
themselves may vary in the course of time. Such time-
dependent apertures are represented by a characteristic
function χ that depends on both the position q1 along the
dividing surface S and the instant t1 of the time interval
(0, t). As before, χ = χ(q1; t1) is allowed to take values
between 0 (perfect absorption) and 1 (perfect transmis-
sion). In this case, we conjecture that the propagator,
connecting two points q and q′ on the opposite sides of

the screen (such that s(q′) < 0 and s(q) > 0) in time t,
is given by

K(q,q′; t) =
1

2

∫ t

0

dt1

∫

Rf

dfq1 δ
(
s(q1)

)

×
(
q− q1

t− t1
+

q1 − q′

t1

)
·∇s(q1)

×K0(q− q1; t− t1)χ(q1; t1)K0(q1 − q′; t1) . (33)

Equation (33), which from now on we will refer as to
Huygens-Fresnel-Kirchhoff (HFK) construction, consti-
tutes the main result of the present paper.
Our arguments supporting the conjecture, given by

Eq. (33), are as follows. First, the propagator expansion
is in accord with the Huygens-Fresnel principle. Second,
the HFK construction correctly captures the physics of
diffraction in time: In the special case that χ is indepen-
dent of q1 and that the surface S is given by an (f − 1)-
dimensional plane, s(q1) = n·(q1−q0) with a unit vector
n and some fixed vector q0, Eq. (33) becomes equivalent
to Eq. (18) with x, x′, and x1 replaced, respectively, by
n · q, n ·q′, and n · q1. Third, in the case that χ is inde-
pendent of t1, Eq. (33) is nothing but a time-dependent
formulation of Kirchhoff diffraction.

III. DIFFRACTION OF SPATIALLY
LOCALIZED WAVE PACKETS

In this section, we apply the HFK construction,
Eq. (33), to wave functions that are initially localized in
position space. We direct out attention to some example
systems in one and two spatial dimensions.
As before, we consider an absorbing screen that is de-

fined by a surface S, Eq. (29), and a characteristic func-
tion χ. The latter, in general, is a function both of the
position on S and of time. We further consider a quan-
tum particle described at time t = 0 by a wave function
Ψ(q′; 0), which is localized in a small neighborhood of a
linear size σ around a spatial point Q, i.e., Ψ(q′; 0) ≃ 0
for |q′ −Q| ≫ σ. Here, we consider the case of σ being
small compared to the distance L between the point Q

and the surface S. For concreteness, we take s(Q) < 0.
Then, in accordance with Eqs. (1) and (33), the wave
function Ψ at a point q, such that s(q) > 0, and time
t > 0 can be approximately written as

Ψ(q; t) ≃ 1

2

∫ t

0

dt1

∫

Rf

dfq1 δ
(
s(q1)

)

×
(
q− q1

t− t1
+

q1 −Q

t1

)
·∇s(q1)

×K0(q− q1; t− t1)χ(q1; t1)Ψ0(q1; t1) , (34)

where

Ψ0(q1; t1) =

∫

Rf

dfq′ K0(q1 − q′; t1)Ψ(q′; 0) (35)
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is the wave function of the corresponding free particle.
Equation (34) holds to the leading order in the small
parameter σ/L.

A. One dimension

As our first example we consider the Moshinksy prob-
lem in one dimension (f = 1) for a quantum particles
initially described by the Gaussian wave packet

Ψ(x′; 0) =

(
1

πσ2

) 1

4

exp

(
i

~
P (x′ −Q)− (x′ −Q)2

2σ2

)
.

(36)
Here, Q and P represent, respectively, the average posi-
tion and momentum of the particle, and σ characterizes
the wave packet dispersion in the position space. In our
set-up, an absorbing shutter is placed at a point d, such
that Q < d and σ ≪ L = d−Q. We are interested in the
wave function Ψ(x; t) at x > d and t > 0.
A substitution of Eq. (36), along with s(x1) = x1 − d

and χ = χ(t1), into Eqs. (34) and (35) yields

Ψ(x; t) ≃ 1

2

∫ t

0

dt1

(
x− d

t− t1
+

d−Q

t1

)

×K0(x− d; t− t1)χ(t1)Ψ0(d; t1) (37)

with

Ψ0(x; t) =

(
1

πγ2
t σ

2

) 1

4

× exp

(
i

~

P 2

2m
t+

i

~
P (x−Qt)−

(x−Qt)
2

2γtσ2

)
(38)

and

Qt = Q+
P

m
t and γt = 1 + i

~t

mσ2
. (39)

Evaluating the integral in the right-hand side of Eq. (37)
numerically on obtains the wave function Ψ(x, t) at x > d
and t > 0.
Figure 1 shows the diffraction patterns calculated in

accordance with Eq. (37) for different shutter protocols,
χ(t1). The initial wave packet, Eq. (36), is centered
around Q = 0 and has the average momentum P = 200
and the position dispersion σ = 0.1. Hereinafter, we use
the atomic units, m = ~ = 1, in all numerical examples.
The absorbing shutter is positioned at d = 8. Figure 1
shows the probability density |Ψ(x, t)|2 as a function of
x for a fixed time, t = 0.05. Note that, for our choice
of parameters, the position at the time t of the corre-
sponding free classical particle is Qt = Q + Pt/m = 10.
The figure shows four probability density distributions
for (i) χ(t1) = 1, representing the free-particle case, (ii)
χ(t1) = Θ(t1 − t0), corresponding to the perfectly ab-
sorbing shutter first being in place and then suddenly
removed at time t0, (iii) χ(t1) = Θ(t0 − t1), correspond-
ing to the shutter closed instantaneously at t0, and (iv)

9 9.5 10 10.5 11
0

0.5

1

1.5

x

|Ψ
|2

χ = 1

χ = Θ(t1 −− t0) χ = Θ(t0 −− t1)

χ = Θ

(

1−−
|t1 −− t0|

ǫ

)

FIG. 1: (Color online) The probability density |Ψ(x, t)|2, cal-
culated in accordance with Eq. (37) for various characteristic
functions χ(t1), as a function of the position x. The initial
wave packet is characterized by its position Q = 0, average
momentum P = 200, and dispersion σ = 0.1. The position
of the shutter is given by d = 8, and the propagation time is
t = 0.05. The shutter switching time t0 = 0.04 and the time
window ǫ = 5 × 10−4. All quantities are given in the atomic
units, m = ~ = 1.

χ(t1) = Θ(1−|t1−t0|/ǫ), representing a scenario in which
the shutter is open only during a time interval of half-
width ǫ centered around t0. Here we take t0 = 0.04 and
ǫ = 5 × 10−4. Note that the position at time t0 of the
corresponding free classical particle is Q + Pt0/m = 8
and coincides with the position of the shutter.
Oscillations in the spatial dependence of the probabil-

ity density, seen distinctly in Fig. 1, are introduced by an
instantaneous process of switching the shutter, and are,
in fact, a manifestation of the diffraction-in-time phe-
nomenon. It is well known that these oscillations become
less pronounced and eventually disappear as one switches
the shutter “continuously” over longer and longer time
intervals [10, 18]. Here we note that the HFK construc-
tion provides a convenient framework for analyzing the
disappearance (also known as apodization) of the diffrac-
tion pattern for initial states that are localized in the
position space. The phenomenon of the apodization of
atomic beams, which correspond to initial states localized
in the momentum space, has been previously addressed
by different methods [17, 18].

B. Two dimensions

We now address diffraction of quantum wave packets
in two dimensions on a (generally curved) shutter whose
absorption properties may both depend on position and
vary in time. We consider a quantum particle with the
initial state given by

Ψ(x, y; 0) = φ1(x, 0)φ2(y, 0) , (40)
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where

φj(ζ, 0) =

(
1

πσ2
j

) 1

4

exp

(
i

~
Pj(ζ −Qj)−

(ζ −Qj)
2

2σ2
j

)

(41)
for j = 1 and 2. Here, Q = (Q1, Q2) is the average po-
sition and P = (P1, P2) average momentum of the par-
ticle, and σ1 and σ2 characterize respectively the x- and
y-component of the wave packet dispersion in the posi-
tion space. As in the one-dimensional case, the initial
distance between the particle and the shutter is assumed
to be large compared to the spatial extent of the wave
packet.
Analogously to Eqs. (38) and (39), the time evolution

of a free particle is described by the wave function

Ψ0(x, y; t) = φ1(x, t)φ2(y, t) , (42)

where

φj(ζ, t) =

(
1

πγ2
j,tσ

2
j

) 1

4

exp

[
i

~

P 2
j

2m
t

+
i

~
Pj(ζ −Qj,t)−

(ζ −Qj,t)
2

2γj,tσ2
j

]
(43)

and

Qj,t = Qj +
Pj

m
t and γj,t = 1 + i

~t

mσ2
j

, (44)

for j = 1 and 2. Then, using this expression for Ψ0 in
Eq. (34) and evaluating numerically the two-dimensional
integral (over time and along a one-dimensional curve
accommodating the shutter), we obtain the wave function
Ψ(x, y; t) at t > 0 and at a point (x, y) on the side of the
shutter opposite to Q.
Figure 2 illustrates the effect of shutter curvature on

the diffraction pattern. The set-up is schematically pre-
sented in Fig. 2a. The initial state of the particle is given
by a Gaussian wave packet, Eqs. (40) and (41), with the
average position Q = (0, 0), average momentum P =
(200, 0), and dispersion σ1 = σ2 = 0.1. The wave packet
is incident upon a shutter, whose spatial geometry is de-
fined by the curve s(x1, y1) = x1−d−αy21 = 0 with d = 8.
Depending on the sign of the parameter α, the shutter is
concave (α < 0), flat (α = 0), or convex (α > 0). The
time dependence of the shutter is given by the character-
istic function χ(q1; t1) = Θ(1−|t1− t0|/ǫ) with t0 = 0.04
and ǫ = 5× 10−4. This corresponds to the case of a per-
fectly absorbing shutter that is open only during a time
interval of half-width ǫ centered around t0 (cf. solid red
curve in Fig. 1). The propagation time is set to t = 0.05,
and the wave function is investigated inside a spatial re-
gion defined by 8.9 < x < 11.1 and −1.6 < y < 1.6,
shown schematically as a (light blue) rectangle in Fig. 2a.
Note that the position of the corresponding classical par-
ticle at time t equals Qt = Q + Pt/m = (10, 0) and

 

 

−9 −8 −7 −6 −5 −4 −3 −2 −1

FIG. 2: (Color online) Diffraction in time on a curved shutter.
Part (a) of the figure illustrates the set-up. The initial wave
packet is characterized by its average position Q = (0, 0),
average momentum P = (200, 0), and dispersion σ1 = σ2 =
0.1. The shutter is positioned along the curve s(x1, y1) = x1−
d− αy2

1 = 0 with d = 8, and its time dependence is specified
by χ(t1) = Θ(1− |t1 − t0|/ǫ) with t0 = 0.04 and ǫ = 5× 10−4.
The propagation time is t = 0.05. The (light blue) rectangle,
covering 8.9 < x < 11.1 and −1.6 < y < 1.6, outlines the
spatial region, in which the probability density is computed.
Parts (b), (c), and (d) of the figure show ln |Ψ(x, y; t)|2 for
α = −0.3, 0, and 0.3 respectively. All quantities are given in
the atomic units, m = ~ = 1.

coincides with the center of the rectangle. Then, the log-
arithm of the probability density, ln |Ψ(x, y; t)|2, inside
the rectangular region is shown for three different values
of the parameter α: Fig. 2b corresponds to α = −0.3
(concave shutter), Fig. 2c to α = 0 (flat shutter), and
Fig. 2d to α = 0.3 (convex shutter). While the mean po-
sition of the quantum particle coincides with that of the
corresponding classical particle, the diffraction patterns
are clearly different for the three choices of α. Compared
to the diffraction pattern produced by the flat shutter,
the concave shutter gives rise to a “divergent” pattern,
while the convex shutter produces a “convergent” diffrac-
tion pattern.

Figure 3 addresses diffraction on a flat screen whose
absorbing properties depend on time as well as vary in
space. The set-up, schematically illustrated in Fig. 3a.
As before, the initial wave packet is described by Q =
(0, 0), P = (200, 0), σ1 = σ2 = 0.1, and the propaga-
tion time is t = 0.05. Here we consider a flat screen,
given by s(x1, y1) = x1−d with d = 8, and study diffrac-
tion patterns for three different characteristic functions
χ. As in Fig. 2, we present the logarithm of the prob-
ability density, ln |Ψ(x, y; t)|2, inside a spatial region de-
fined by 8.9 < x < 11.1 and −1.6 < y < 1.6, and illus-
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−10 −9 −8 −7 −6 −5 −4 −3 −2

FIG. 3: (Color online) Diffraction on a flat absorbing screen
with a time-dependent aperture. Part (a) of the figure il-
lustrates the set-up. Parameters of the initial wave packet
are the same as in Fig. 2: Q = (0, 0), P = (200, 0), and
σ1 = σ2 = 0.1. The propagation time is t = 0.05. The plane
of the absorbing screen is defined by s(x1, y1) = x1 − d with
d = 8. The (light blue) rectangle, covering 8.9 < x < 11.1
and −1.6 < y < 1.6, outlines the spatial region, in which
the probability density is computed. Parts (b), (c), and (d)
of the figure show ln |Ψ(x, y; t)|2 for χ(q1; t1) equal, respec-
tively, to Θ(1 − |y1|/δ), Θ(1 − |y1|/δ)Θ(1 − |t1 − t0|/ǫ), and
(

1 − y2

1/δ
2 − (t1 − t0)

2/ǫ2
)

with δ = 0.05, t0 = 0.04, and

ǫ = 5 × 10−4. All quantities are given in the atomic units,
m = ~ = 1.

trated by a (light blue) rectangle. Figure 3b shows the
diffraction pattern produced by a slit in the absorbing
screen and corresponds to χ(q1; t1) = Θ(1− |y1|/δ) with
δ = 0.05. Figure 3c represents a scenario, in which the
slit of spatial half-width δ is open only during a time in-
terval of half-width ǫ = 5 × 10−4 centered around time
t0 = 0.04. The corresponding characteristic function is
χ(q1; t1) = Θ(1 − |y1|/δ)Θ(1 − |t1 − t0|/ǫ). Figure 3d
shows the diffraction pattern obtained for the character-
istic function χ(q1; t1) = Θ

(
1 − y21/δ

2 − (t1 − t0)
2/ǫ2

)
.

In this case, the width of the slit continuously increases
from 0 to 2δ during the time interval t0 − ǫ < t1 < t0,
and then shrinks back to 0 during t0 < t1 < t0 + ǫ.

It is interesting to observe some similarity of, on
one hand, the diffraction patterns of Figs. 3c and 3d,
and, on the other hand, patterns of Fraunhofer diffrac-
tion of light on, respectively, rectangular and elliptic
apertures in opaque two-dimensional screens (e.g., see
Figs. 8.10 and 8.12 in Ref. [6]). The similarity becomes
even stronger when one takes into account the space-
time, (y1, t1) representation of the apertures leading to
the diffraction patterns shown in Figs. 3c and 3d. In-
deed, the aperture defined by the characteristic function

χ(q1; t1) = Θ(1 − |y1|/δ)Θ(1 − |t1 − t0|/ǫ) can be rep-
resented as a rectangular opening in the (y1, t1) coordi-
nates, while the aperture corresponding to χ(q1; t1) =
Θ
(
1−y21/δ

2− (t1− t0)
2/ǫ2

)
has the shape of an ellipse in

the same coordinates. This observation suggests that f -
dimensional quantum dynamics in the presence of time-
dependent diffracting obstacles may be used for modeling
diffraction in (f + 1)-dimensional systems with station-
ary, time-independent obstacles.

IV. CONCLUSIONS

In this paper we have revisited the phenomenon of
diffraction in non-relativistic quantum mechanics. More
specifically, we have considered the problem of a quantum
particle passing through an opening (or a set of openings)
in a perfectly absorbing screen. Having assumed the
validity of the Huygens-Fresnel principle, we have con-
structed an expansion of the quantum propagator that
connects two spatial points lying on the opposite sides of
the screen. The expansion represents the full propagator
as a sum of products of two free particle propagators, one
connecting the initial point and the other connecting the
final point to a point in the opening. The construction
holds in the cases of curved (convex or concave) screens
and for openings whose shape changes in time. Conse-
quently, our approach allows one to analyze the quantum
phenomena of diffraction in space and diffraction in time,
as well as the interplay between the two.

In order to illustrate the method, we have used our
propagator expansion to calculate diffraction patterns for
an initially localized wave packet passing through vari-
ous spatio-temporal diffraction screens in one and two di-
mensions. Thus, in two dimensions, we have investigated
the effect of screen curvature on the diffraction pattern
by analyzing diffraction in time produced by absorbing
parabolic shutters and demonstrating how a convex (con-
cave) shutter gives rise to effective focusing (defocusing)
of the wave function. We have also studied diffraction of
spatially localized wave packets passing through holes of
time-dependent size. We have shown that the shape of
a diffracted wave function is largely determined by the
space-time geometry of the hole, suggesting the use of
time-dependent obstacles in f -dimensional systems for
modeling quantum diffraction on stationary obstacles in
(f + 1)-dimensional systems.

The approach, developed in this paper, is applicable
to quantum diffraction on perfectly absorbing screens,
and, therefore, complements the method of Brukner and
Zeilinger [15] valid for perfectly reflecting screens. In
laboratory experiments, however, diffraction screens are
typically neither perfectly absorbing nor perfectly reflect-
ing, and the two methods have to be used in combination.
It would interesting to develop such a unified approach
and to test its predictions against results of experimental
measurements.
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Appendix A: Derivation of Eqs. (10) and (11)

In one dimension the free-particle Green function,
G0(l;E) with l > 0, is given by

G0(l;E) = L[K0](l; s) =

∫
∞

0

dt e−stK0(l; t)

=

√
m

2πi~

∫
∞

0

dt√
t
exp

(
−ml2

2i~t
− st

)

=

√
m

2i~s
exp

(
−l

√
2ms

i~

)
. (A1)

Here, s = E/(i~) is implied, cf. Eq. (5), and the reader
is referred to the formula 3.471.15 of Ref. [24] for the last
integral.
We now consider the integral

I ≡
∫ t

0

dt1 K0(x− x1; t− t1)K0(x1 − x′; t1) , (A2)

where x, x′, and x1 satisfy Eq. (7). The Laplace trans-
form of I is given by

L[I] = L[K0](x− x1; s)L[K0](x1 − x′; s)

=
m

2i~s
exp

(
−(x− x′)

√
2ms

i~

)

=

√
m

2i~s
L[K0](x− x′; s) . (A3)

Then, using the fact that 1/
√
s = L[1/

√
πt] and perform-

ing the inverse Laplace transform, we obtain

I =

√
m

2πi~

∫ t

0

dt1√
t− t1

K0(x− x′; t1)

=
m

2πi~

∫ t

0

dt1√
t1(t− t1)

exp

(
−m(x− x′)2

2i~t1

)
. (A4)

The integral in the last line of Eq. (A4) is given by the
formula 3.471.2 of Ref. [24],

∫ t

0

dt1√
t1(t− t1)

exp

(
− β

t1

)

=
√
π

(
t

β

) 1

4

exp

(
− β

2t

)
W

−
1

4
, 1
4

(
β

t

)
, (A5)

where W stands for the Whittaker function. The latter
can be written as (see page 341 in Ref. [25], or section
13.18(ii) of Ref. [26])

W
−

1

4
, 1
4

(ζ2) =
√
πz exp(ζ2/2) erfc(ζ) (A6)

with “erfc” denoting the complementary error function.

Substituting Eqs. (A5) and (A6) into (A4) we obtain

I =
m

2i~
erfc

(√
m

2i~t
(x− x′)

)
. (A7)

A comparison of the right-hand sides of Eqs. (A2) and
(A7) completes the proof of the identity (9) with the
function u chosen in accordance with Eq. (11).

In order to prove that Eq. (10) offers an alternative
choice for the function u we consider

I ′ ≡
(
η1

∂

∂x
+ η2

∂

∂x′

)
I , (A8)

where I is given by Eq. (A2), and η1 and η2 are two
arbitrary, generally complex numbers. On one hand, I ′

can be evaluated by a direct substitution of Eq. (A2) into
Eq. (A8) which leads to

I ′ =
im

~

∫ t

0

dt1

(
η1

x− x1

t− t1
− η2

x1 − x′

t1

)

×K0(x− x1; t− t1)K0(x1 − x′; t1) . (A9)

On the other hand, using Eqs. (A8), (A3), and (A1), we
have

L[I ′] =

(
η1

∂

∂x
+ η2

∂

∂x′

)
L[I](x − x′; s)

=

√
m

2i~s

(
η1

∂

∂x
+ η2

∂

∂x′

)
L[K0](x− x′; s)

=
im

~
(η1 − η2)L[K0](x− x′; s) , (A10)

and therefore

I ′ =
im

~
(η1 − η2)K0(x− x′; t) . (A11)

Finally, comparing Eqs. (A9) and (A11), and introducing
a complex number η = η1/(η1 − η2), we arrive at the
identity (9) with the function u given by Eq. (10).



11

[1] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard,
Rev. Mod. Phys. 81, 1051 (2009).

[2] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van
der Zouw, and A. Zeilinger, Nature 401, 680 (1999).

[3] B. Brezger, L. Hackermüller, S. Uttenthaler,
J. Petschinka, M. Arndt, and A. Zeilinger, Phys.
Rev. Lett. 88, 100404 (2002).

[4] L. Hackermüller, S. Uttenthaler, K. Hornberger,
E. Reiger, B. Brezger, A. Zeilinger, and M. Arndt, Phys.
Rev. Lett. 91, 090408 (2003).

[5] B. B. Baker and E. T. Copson, The mathematical theory

of Huygen’s principle (Clarendon Press, Oxford, 1950),
2nd ed.

[6] M. Born and E. Wolf, Principles of optics (Cambridge
University Press, 1999), 7th ed.

[7] M. Moshinsky, Phys. Rev. 88, 625 (1952).
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