


Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Thomas Vetter,
Universität Basel, Dissertationsleiter, Fakultätsverantwortlicher
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Abstract

Fully automatic analysis of faces is important for automatic access control, hu-
man computer interaction or for automatically evaluate surveillance videos. For
humans it is easy to look at and interpret faces. Assigning attributes, moods or
even intentions to the depicted person seem to happen without any difficulty. In
contrast computers struggle even for simple questions and still fail to answer more
demanding questions like: “Are these two persons looking at each other?”

The interpretation of an image depicting a face is facilitated using a generative
model for faces. Modeling the variability between persons, illumination, view angle
or occlusions lead to a rich abstract representation. The model state encodes
comprehensive information reducing the effort needed to solve a wide variety of
tasks. However, to use a generative model, first the model needs to be built and
secondly the model has to be adapted to a particular image. There exist many
highly tuned algorithms for either of these steps. Most algorithms require more or
less user input. These algorithms often lack robustness, full automation or wide
applicability to different objects or data modalities.

Our main contribution in this PhD-thesis is the presentation of a general, prob-
abilistic framework to build and adapt generative models. Using the framework, we
exploit information probabilistically in the domain it originates from, independent
of the problem domain. The framework combines Gaussian processes and Data-
Driven MCMC sampling. The generative models are built using the Gaussian
process formulation. To adapt a model we use the Metropolis Hastings algorithm
based on a propose-and-verify strategy. The framework consists of different well
separated parts. Model building is separated from the adaptation. The adaptation
is further separated into update proposals and a verification layer. This allows to
adapt, exchange, remove or integrate individual parts without changes to other
parts.

The framework is presented in the context of facial data analysis. We in-
troduce a new kernel exploiting the symmetry of faces and augment a learned
generative model with additional flexibility. We show how a generative model
is rigidly aligned, non-rigidly registered or adapted to 2d images with the same
basic algorithm. We exploit information from 2d images to constrain 3d registra-
tion. We integrate directed proposal into sampling shifting the algorithm towards
stochastic optimization. We show how to handle missing data by adapting the
used likelihood model. We integrate a discriminative appearance model into the
image likelihood model to handle occlusions. We demonstrate the wide applicabil-
ity of our framework by solving also medical image analysis problems reusing the
parts introduced for faces.
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Chapter 1

Introduction

“Who sees the human face correctly: the photographer, the mirror, or

the painter?”

Pablo Picasso

Faces are omnipresent. They are the most prominent and accessible feature
in human interaction. We look out for feedback in the face of conversational
partners. Watching a photograph taken of a scene containing a human face, we
know instantaneously what the depicted person is looking at and have a rough
idea which attributes like age, sex, ethnicity, personality traits or emotions to
assign to the person. Even though the process of analyzing such an image does
not demand any effort of a human, computers are still only capable to answer very
basic questions about faces and more complex questions in strongly restricted
scenarios only.

Processing images or videos of faces fully automatically is not only beneficial for
security purposes like surveillance, access control or identification but also for the
production of movies or games in the entertainment industry. Further the safety
of a person in the reach of intelligent cars and robots can be increased provided
the machines can determine if the person is aware of their location and movement.

During the past decades different approaches have emerged how to analyze
images of faces. One main axis of distinction is the direction of their work-flow.
On the one hand there are discriminative approaches, bottom-up methods [12,
47, 89, 99], which aim to directly calculate some attributes from the image values.
These methods extract only specific knowledge about the faces to handle one
particular task but lack a high level representation. A high level representation is
useful to answer multiple questions or to reason about the scene as a whole. On the
other hand there are the approaches based on generative models [16,26,95]. These
models are used in a top-down manner to synthesize an image looking as similar as
possible to the observed image. The models are mostly parametric models. After
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CHAPTER 1. INTRODUCTION

the adaption to an image the internal model state, also called model fit or model
explanation, can be queried to answer questions about the face. Depending on the
complexity of the generative model some models allow even to reason about the
scene. For example knowing the position and orientation of the face together with
the eye gaze we can determine where in the environment the focus of the person
is.

We belief that a high level semantic description, as for example the 3D Mor-
phable Model (3DMM) [16], is beneficial to develop a system that is not restricted
to a particular question. The high level abstraction is crucial to handle versatile
requests and is one step towards reasoning not only about the object itself but
also about the interaction with the scene context. The strict prior encoded in the
model helps to solve various ill-posed problems. For example the 3d shape of a
face can be predicted from a 2d image using the 3DMM as demonstrated in [17]
by Blanz et al. or by Schönborn et al. in [79]. The use of a generative model
further opens possibilities to manipulate images in an elaborated way. In [100] for
example Walker et al. manipulated face portraits using a 3DMM to change the
perceived personality traits.

One reason why such generative models are not as widely used as discriminative
approaches is that the model building is complex. The build process needs 3d
scans as training data. While images used to train bottom-up methods are easily
available, 3d scans are more cumbersome to gather. High-resolution 3d scanners
are not yet on the consumer market in contrast to traditional 2d cameras. In
addition the training data for a 3DMM are required to be in dense correspondence.
A step called registration is used to bring different faces into correspondence, i.e.
the same parametrization. Further the model adaptation is difficult. Adapting the
model to an image is a very high-dimensional, non-linear and ill-posed estimation
problem.

Registration is the process of reparameterizing different object surfaces in a
semantically consistent way. For shapes in correspondence a semantical point on
the object’s surface is represented with the same point in all example shapes. To
establish correspondence is difficult as it is an ill-posed problem with many pos-
sible solutions. For faces the correspondence of well defined points such as the
corner of the eyes is obvious. But an open question is how to determine a corre-
sponding point on the cheek? A common approach is to use the surrounding points
to constrain the search for the corresponding point. Active Appearance Models
(AAM) [26] interpolate linearly between few reference points in the 2d image plane.
In 3d-3d registration different methods can be applied: Following feature matching
correspondence can be determined based on similarity of local shape descriptors
(see [85]). Another approach is to deform a high-resolution template to match
a target scan. Regularizing the deformations and enforcing smoothness helps to
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spread the correspondence from a few semantical points over a larger area. The
regularization is often integrated directly into the optimization functional as ad-
ditional term. Regularization favors some deformations over others establishing
a prior over deformations. The induced prior of admissible deformation can not
be checked in advance. Building explicitly a probabilistic, parametric deformation
model offers the possibility to look at the innate deformation prior by deforming
a single example. Samples can be drawn from the model before using the model
to register data.

Using Gaussian processes as introduced in [53] by Lüthi et al. a probabilistic,
parametric deformation model can be built. The flexibility of a model is specified
through kernels. Kernels can be specified using analytically defined functions or
learned from data. A powerful concept is to combine kernels to form new kernels
specifying admissible deformations. Models can therefore be built whether there
are training examples available or not. The deformation model is then used to
deform a template to match a target. Replacing the target with the deformed
model maps the parametrization of the template to the target. This solves the
registration problem with the constraints built into the model.

When using Gaussian process to build generic or learned deformation models
registration can be seen as model fitting. In registration the model is adapted to
data in order to reparameterize the data in terms of a model reference. While in
model fitting we are interested in describing the data in terms of the best model
parameters. Both problems assume that we can represent the data closely using a
model and that we are able to find a good model explanation for the data.

Different algorithms were proposed in the past to adapt a model to images. In
most of the past work the problem is formulated to minimize a cost function using
locally calculated updates. Gradient based algorithms to find a solution were used
in [66], [15] and [50] to mention only a few. An alternative method, supervised
descent, makes use of update steps learned using machine learning techniques
to find a solution [103]. While the former suffer often from local optima the
latter is not applicable for high dimensional models. A further weakness is that
the integration of additional information, as for example from existing bottom-up
detections, is difficult using all former mentioned approaches.

Recently a Data-Driven MCMC sampling scheme was used by Schönborn et
al. in [78] to estimate the posterior of model parameters given an observation.
The algorithm can make use of information stemming from different dimensional
domains. The sampling based algorithm offers the possibility to integrate bottom-
up methods and strategies to handle occlusions and missing data into model fitting.
The inference method does not rely on gradients. Furthermore sampling based
methods proved to overcome some local optima leading to better solutions than
purely gradient based approaches.
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CHAPTER 1. INTRODUCTION

We propose to use the Gaussian process formulation for expressing the model
and use DD-MCMC based sampling to adapt the model to data. While this
framework is very generic it uses two mathematical frameworks how to integrate
information to constrain model based data analysis.

1.1 Contribution

In this thesis we introduce a framework for generative data analysis. The frame-
work uses a clear probabilistic concept to integrate additional information. We use
the generative property of our model to exploit the information in the domain it
originates from. The information does not need to be mapped to the domain of the
tackled problem. The framework further separates the model building and model
adaptation steps. A deformation model is built using Gaussian processes. The
model is used to analyze data through inference based on DD-MCMC sampling.
We demonstrate how the framework guides the integration of different levels of
information about the problem to be solved.

Our main contributions aside from the framework combining Gaussian pro-
cesses and DD-MCMC sampling are

• a newly proposed kernel exploiting an object classes mirror-symmetry,

• the integration of information from 2d images into 3d registration,

• the analysis of a Gaussian mixture likelihood to handle missing data,

• an approach to reuse parts of existing algorithms as proposals in model
adaptation,

• the integration of a discriminative appearance model into generative image
explanation,

• the application of the proposed framework to different datasets such as faces,
skulls or MRI images.

In more details we show how to integrate a priori knowledge about the class
of deformations into the prior of the deformation model. For face model building
a generic prior is introduced encoding the near symmetry of faces. This leads
to a better generic face model regarding specificity and generalization. Further
a learned deformation prior is augmented with additional flexibility reducing the
bias towards the training data. We demonstrate a concept how to augment a
statistical face model prior with additional generic flexibility to represent unseen
faces better.
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1.2. OVERVIEW

Following the integration guidelines of the framework we exploit different bottom-
up information for model based registration. We show how to integrate discrim-
inative information from 2d images into 3d rigid alignment. The coupling of the
extracted 2d information using a 3d shape template leads to a robust and fully
automatic alignment. Manual annotations in 3d and 2d are integrated into non-
rigid model based registration to increase the registration quality. In addition
we demonstrate how to use a random forest detector as discriminant appearance
model. Using the random forest to explain part of the image allow occlusions
to be handled when interpreting images using a generative model. Changing the
image likelihood can therefore be used to extend the generative model with a
discriminative part.

Changing the likelihood in the registration setting missing data can be handled.
We demonstrate that changing the surface noise model from a single Gaussian
distribution to a mixture of Gaussian is sufficient to complete artificially removed
noses in face scans while establishing correspondence.

Further we demonstrate how to integrate parts of existing deterministic algo-
rithms into our framework. This can help to speed up the sampling based inference.
We use ICP-based update steps to reach faster convergence towards a possible
MAP-solution. This trades the probabilistic interpretable inference against speed.

We demonstrate the versatility of the framework by applying it also to medical
data. We analyze the task of completing partial skulls. We use a generative model
based on fully generic deformations and a single example. We then establish
correspondence by model fitting while also completing the skulls. Furthermore
we use the framework to transfer labels between MRI scans of images. Again we
follow the framework building and adapting a generic deformation model. The
labels marked on the atlas are then transfered successfully when correspondence
is established.

1.2 Overview

The reminder of the thesis is organized as follows. Next we give an overview
over the most important and related work. We introduce in chapter 3 how to
build models exploiting symmetries and how to augment existing models with
additional flexibility. We analyze the models with respect to their capability to
represent novel faces. In chapter 4 we demonstrate how to align a template rigidly
before introducing model based registration in section 4.2. To constraint the rigid
and non-rigid registration of the 3d model we exploit information given in 2d im-
ages. In section 4.3 we demonstrate how to handle missing data while establishing
correspondence. Model based image analysis in the presence of occlusion is dis-
cussed in chapter 5. The chapter 6 indicates that our method is also applicable in
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CHAPTER 1. INTRODUCTION

the field of medical data analysis. We conclude the thesis with a critical discussion
and an outlook to future work in chapter 7.
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Chapter 2

Generative Model based Data

Analysis

We will first introduce the basic concept of our face analysis framework. In the
following sections we explain the different parts in more details while presenting
also the related work.

We interpret facial data analysis as model fitting. To analyze observed data D
of a face we use a generative, parametric model. A model instance is described by
a set of parameters θ. We explain observed data D by the maximum-a-posteriori
(MAP) solution

θ′ = argmax
θ
p(θ|D) . (2.1)

To find the parameter θ′ we use a MCMC sampling based approach. We refer to
these optimal parameters also as the fit. Using Bayes’ rule we get

p(θ|D) ∝ p(θ)ℓ(D; θ) . (2.2)

The solution θ′ is a trade-off between the likelihood ℓ(D; θ) and the model prior
p(θ).

The prior p(θ) encodes the knowledge about the space of admissible solutions.
Following Occam’s razor the prior usually prefers simple solutions over more com-
plex ones. This concept relates the prior directly to regularization in traditional
optimization. The prior always influences the solution we will find and therefore
has to be chosen carefully.

The likelihood ℓ(D; θ) defines how well our model instance θ matches the ob-
served data. An unwanted systematic mismatch between the generated data and
the observed data should be penalized and force the solution to match the data
more closely. On the other side a mismatch caused by noise of an imperfect scan-
ning device should not change the solution.
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CHAPTER 2. GENERATIVE MODEL BASED DATA ANALYSIS

To explain facial data in either 3d or 2d we use among other things a shape
model as our generative model. A shape model consists of a representative example
ΓR and a deformation model U . Depending on the community the representative
example is sometimes called reference, template or atlas. Each object is repre-
sented by the reference ΓR warped with a deformation ũ

Γ̃ = {x+ ũ(x)|x ∈ ΓR} . (2.3)

We use a deformation model U

ũ = U(θU) . (2.4)

with a prior over the parameters p(θU). The deformation model then defines a
prior p(ũ) over all possible deformations and therefore also a prior p(Γ̃) over all
shapes. We use the framework of Gaussian processes to express our deformation
models.

Depending on the data to be analyzed the full generative model can also include
other parameters. To explain 2d images for example the pose of the model in 3d
space, the camera projection, the light and the albedo is modeled.

In the reminder of the chapter we will discuss how to build the deformation
prior using Gaussian processes. We review the Basel Face Model [63] and how
it fits into the framework of Gaussian processes. Then we discuss how we can
use sampling to adapt the generative model and infer the MAP solution while
integrating several information.

2.1 Modeling deformation priors

Reconstructing the 3d facial geometry from a 2d image is an ill-posed problem.
One image can be explained by many combinations of shape, albedo and light
parameters. Also registering two shapes of a face is an ill-posed problem. The
corner of the eyes have a semantical well defined correspondence. But a point on
the cheeks has a lot of possible correspondences. To uniquely solve both problems
we need a way to rank possible solutions. Then we can apply Occam’s razor to
select the best from all possible solutions.

A strong prior about how faces can look like helps rate possible ambiguous
solutions. We model this prior knowledge using a template face and a deformation
model. The deformation model describes likely deformations for the class of faces.
We create new faces by deforming the template according to likely deformations of
our deformation model. To ensure the faces look reasonable one needs to specify
how such deformations should look like. There are several ways to express such
prior knowledge.

8



2.1. MODELING DEFORMATION PRIORS

When formulating registration as an optimization problem the considered class
of deformations and the regularization are used to express constraints. Either they
enforce smoothness or more physically motivated constraints such as minimizing
bending energies. An overview about different deformation models and regular-
izations is given by Tam et al. in [90]. In [6] Amberg et al. for example penalizes
the magnitude of the second order derivative of affine transformations on each
triangle. Additionally they enforce that the transformed normals are again nor-
mal to the triangle. Such constraints are defined before hand, integrated into the
optimization and often approximated in order to get fast algorithms. The result-
ing modeled assumptions are enforced during the optimization when calculating
a specific registration. It is hard to reason if these modeled assumptions are well
suited before actually registering data. Using Gaussian processes to specify our
deformation prior we can draw likely shapes and so check the prior visually.

2.1.1 Gaussian processes for Shape modeling

Following [65] we introduce Gaussian processes as the generalization of a Gaussian
distribution. A Gaussian processes can be seen as a distribution over functions
f : Ω → R

N defined over a domain Ω.
We will first restrict the functions to be scalar valued function. Then we discuss

the extension to vector valued functions used to model deformations. A Gaussian
process GP

f ∼ GP(µ, k) , (2.5)

is uniquely defined through the mean function µ : Ω → R and the covariance
function k : Ω × Ω → R. The mean function µ is often chosen as zero func-
tion. Choosing a covariance or kernel function k(x,x′) defines the prior over the
functions.

The marginalization property of a Gaussian process states that a Gaussian
process considered at any finite set of locations X = {x1, x2, ...xn}, xi ∈ Ω give
raise to a multivariate Gaussian distribution







f(x1)
...

f(xn)






∼ N













µ(x1)
...

µ(xn)






,







k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)












. (2.6)

For most practical applications the model is only approximated at a discrete
set of locations. Hence we need to consider the Gaussian process only at the
finite number of points. We work essentially with a multivariate Gaussian distri-
bution. However given the more involved concept of Gaussian processes we can
start to model our prior without considering a specific discretization. In our thesis
the discretization originates from the chosen representation of the face surface as
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CHAPTER 2. GENERATIVE MODEL BASED DATA ANALYSIS

triangular mesh. We evaluate the Gaussian process only at the vertices of the ref-
erence mesh. While separating the modeling from the discretization we are free to
replace the reference mesh without changing our assumptions about the deforma-
tion. The model is changed by approximating the Gaussian process at a different
set of locations.

As indicated in [65] by Rasmussen one can sample from the Gaussian process.
The Cholesky decomposition of the covariance matrix can be used to transform
samples from a multivariate Gaussian distribution to samples from a Gaussian
process. That we can check our models by sampling from the prior is a main
advantage over regularization based approaches to model shape priors.

2.1.2 Low-Rank approximation

We model the face surface with a large number of vertices making the full Gaussian
process model resource demanding to compute. But when adapting the model
to data we are interested in smooth deformations only. This strong smoothness
assumption motivates that an adequate approximation is sufficient.

Using the Karhunen-Loeve expansion of a kernel k(x,x′) [48] we can rewrite a
Gaussian process as an infinite sum over an orthonormal basis

f(x) = µ(x) +
∞
∑

i=1

θi
√

λiφi(x), θi ∈ N(0, 1) . (2.7)

The pairs (λi, φi) are the eigenvalues and eigenfunctions of the Mercer expansion
(see Appendix B). Lüthi et al discussed in [50] that given that the eigenvalues
λi decay sufficiently fast we loose only little flexibility. The kernel function can
be approximated using a sum over the r terms with largest eigenvalues. We can
therefore approximate a Gaussian process using the parametric from

f(x) ∼ µ(x) +
r
∑

i=1

θi
√

λiφi(x), θi ∈ N(0, 1) . (2.8)

In [48] a random SVD is used to compute the first r eigenfunctions and eigenvalues
efficiently. The method is based on the idea of the Nyström method [102]. The
Nyström method is used to speed up support vector machines as well as Gaussian
processes by approximating the covariance matrix using a low dimensional basis.
The approximation can be efficiently calculated using only a few columns of the
covariance matrix induced by the kernel k.

2.1.3 Kernels

Given that we have a representative example as reference a zero-mean Gaussian
process is a reasonable assumption. The more influential part is the choice of the

10



2.1. MODELING DEFORMATION PRIORS

kernel. A kernel expresses the covariance of the values at two locations of the
domain as a positive-definite function f : Ω× Ω → R.

A powerful concept to build new valid kernels is to combine kernels using a rich
algebra. So the addition or multiplication of two kernels form a new valid kernel
as well as the multiplication of a kernel with a scalar value in R

+. We refer the
reader to [80] Shawe-Taylor et al. ( Section 3.4 Kernel construction ) who provides
a thorough discussion how to combine positive definite kernels.

Kernels that use only the difference of the arguments are called stationary
kernels. Stationary kernels are invariant to translations. Non-stationary kernels
as introduced for example in [34] by Gerig et al. can be used to model a spatial
varying smoothness prior.

Gaussian Kernel

The Gaussian kernel, also known as the squared exponential (SE) kernel is one of
the most common kernels used in the machine learning community, and is defined
as:

kSE (x, x′) = s exp

(

−
||x− x′||2

σ2

)

. (2.9)

The kernel belongs to the exponential family and has two parameters. The smooth-
ness is determined by the length-scale σ and the scaling s ∈ R

+ determines the
variance of the deformations. The kernel has global support but the influence de-
cays exponentially with increasing distance. The Gaussian kernel is an example of
a stationary kernel.

In figure 2.1 we show sample deformations of a Gaussian kernel applied to a
regular two dimensional grid. We discuss in section 2.1.4 how to extend the real
valued kernels to higher dimensions and the relation to deformations fields.

Multi-Scale Bspline Kernel

To account for different levels of details in the deformations a multi-scale B-spline
kernel can be used. In [59] Opfer et al. define the multi-scale kernel as

kBSP (x, x
′) =

lmax
∑

j=lmin

γjκj(x, x
′) , (2.10)

where j defines the level of detail and the γ is a scaling depending on the level.
The used single scale kernel is defined as

κj(x, x
′) =

∑

p

ψ(2jx− p)ψ(2jx′ − p) , (2.11)
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CHAPTER 2. GENERATIVE MODEL BASED DATA ANALYSIS

(a) (b) (c) (d)

Figure 2.1: The figure shows a zero mean Gaussian process used to warp a
regular grid. The grid goes from -1 to 1 in both dimensions. The correlation
strength defined by the Gaussian kernel of the point (0, 0.25) to all other grid
points is shown in (a). In (b), (c) and (d) we show sample deformations applied
to the grid using σ = 0.2 and s = 0.02.

with the function ψ as a B-spline function of order n defined at the knot sequence
p. To restrict the likely deformations a minimum (lmin) and a maximum (lmax)
scale level is defined for the multi-scale B-spline kernel.

Sample Covariance Kernel

The sample covariance kernel is estimated from examples. The correlations are
modeled as a linear combination of samples from a training set. The kernel is
defined as:

kSC(x, x
′) =

1

n

n
∑

i=1

ui(x)⊗ ui(x
′) . (2.12)

Where ui denotes the i
th mean free training example. The example mean is used

as mean function when defining the Gaussian process induced from the training
data.

2.1.4 Gaussian Processes Morphable Models

The above introduced kernels lead to Gaussian processes defining a distribution
over scalar-valued functions. However deformations in 3d are vector valued func-
tions of the surface. We can define a vector valued Gaussian process using a matrix
valued kernel. To construct a matrix valued kernel we can multiply a scalar kernel
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2.1.6 Gaussian Process Regression

When working with PDMs often partial correspondences are known. For 3d face
registration often some landmarks are given by manual annotating them on the 3d
surface. So we have a partial observation of the Gaussian process used to model
the shape deformation. A closed form solution for the posterior Gaussian process
exists given the observations Y at locations X assuming additive Gaussian noise
on Y. Following [65] the posterior distribution given i.i.d. Gaussian noise is given
by

f∗(x)|X,Y ∼ N (̄f∗, k∗(x,x
′)) (2.18)

with

f̄∗(x) = k(x,X)[K(X,X) + σ2
nI]

−1Y , (2.19)

k∗(x,x
′) = k(x,x′)− k(x,X)[K(X,X) + σ2

nI]
−1k(X,x′) . (2.20)

Closed form solutions for the posterior exists also for other noise assumptions (see
for example [10]).

2.1.7 Conclusion

We introduced the concept of Gaussian processes as probability distribution of
functions evaluated at a finite number of points. The mean function and the ker-
nel function fully specifies a Gaussian process. The mean function is often chosen
as zero function. The probability distribution of functions follows the smooth-
ness properties of the kernel function. To model deformations we introduced the
extension from real valued kernels to matrix valued kernels. Using the Karhunen-
Loeve transform we can express a kernel function as a linear combination of basis
functions. A low-rank approximation of a kernel function is used in the Gaussian
Process Morphable Model formulation. The low-rank models are sufficiently accu-
rate for modeling smooth deformations found within an object class. The math-
ematical concept of vector-valued Gaussian processes is reduced to a multivariate
Gaussian distribution when using a discrete reference. Hence the mathematical
concepts that apply to multivariate Gaussian distribution apply also to Gaussian
Process Morphable Models keeping calculations manageable.

We can now choose a kernel for the Gaussian processes to define a distribution
of deformations. This leads directly to a probabilistic generative model for shapes.
The generative shape model is the core of our generative model that we use to
explain data. In the simplest case the generative model is only extended by a rigid
transformation in 3d space. Using a translation and a rotation in addition to the
deformation model we can explain 3d surfaces of faces. We will review the Basel
Face Model and its training data before we discuss how to adapt a generative
model using MCMC sampling to observed data.
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2.2 Basel Face Model

We use the BFM as strong prior how faces look like. Additionally we use data
collected along with the training data of the BFM to test our methods. Next we
introduce the data, the annotations and the registration used to build the BFM.
Then we show how the BFM represented the information given by the training
examples. We then make the connection back to Gaussian processes over the
extension to probabilistic face models. Indicating what is needed to render 2d
images of faces in addition to a face model completes the section.

2.2.1 Data and Annotations

Based on the seminal work of Blanz and Vetter [16] introducing the 3DMM Paysan
et al. published the public available Basel Face Model (BFM) [63]. The model
represents the statistic of 200 faces. The training faces stem from mostly European
persons in the age range of 20 to 30. The scans originate from real peoples faces. A
3d scanner is used to capture the surface information. The scanner is a structured
light scanner [2] taking color pictures and sensing the 3d surface. The setup is
shown in figure 2.4. Each scan consists of four shells represented as triangular
meshes that are calculated from corresponding sub-systems of the scanner. One
shell has about 100’000 vertices and 200’000 triangles. An example surface is
shown in figure 2.5.

Despite the overall good quality of the scans some holes are present in the
data. Additionally in regions covered by hair the surface is distorted and more
often completely missing. Due to the reflection property of the eyes the sensed
surface of the eyeball is misleading if at all a reconstruction is given.

The scans are manually cleaned to reduce the influence of scanning artifacts
and from unwanted parts during registration. In a preprocessing step artifacts
such as hair, parts belonging to the upper torso or accessories are removed from
the scanned surface. Additionally point and line correspondences are manually
marked to guide the registration. A set of eleven landmarks are placed on the
cleaned 3d shell or marked as missing if the surface was not captured at their
location. In the color images a set of lines are marked, indicating the contour of
the eyes, the lips and the ears. The annotated features of a scan are illustrated in
figure 2.6.

2.2.2 Registration

The raw scans have an arbitrary parametrization and sometimes holes. Before the
scans are used to build the BFM they need to be registered first. In other words
they need to be brought into dense correspondence. The process of registration
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examples. Further an orthogonal basis can be calculated using an singular value
decomposition (SVD) on S

S = UWV T (2.21)

Here W is a diagonal matrix and U is a column orthonormal matrix. We can
now reduce the representation by shortening the parameter vector representing
faces to length k < n. This reduces the face space to the subspace formed by the
columns ui, i ∈ 1..k with the largest associated values wii as new basis. The basis
is equivalent to solving an eigenvalue problem using the covariance matrix

1

n− 1
XTXui = λiui . (2.22)

It holds the relation λi = w2
ii/(n− 1).

The basis is optimal in the sense that the reconstructions

s′k = UΛ
1

2 θS + s̄ (2.23)

of a sample sk in the subspace of the reduced basis leads to the smallest residuals
regarding the least-squares metric. Here s̄ denotes the column mean of S. The
projections are given by

θS = Λ− 1

2UT (sk − s̄) . (2.24)

2.2.4 Probabilistic Face Model

As shown above Principle Component Analysis (PCA) can be used to determine
a subspace with maximal variance for a fixed number of components. We can
project a representative set of faces into the low dimensional subspace. Each face
is represented using a parameter vector θS. A common assumption is that the
distribution of the parameter vectors follow a multivariate normal distribution if
we scale the basis composed of the eigenvectors by the square root of the associated
eigenvalues. Thus the BFM defines a shape prior using the parameters

θS ∼ N (0, I) . (2.25)

However this distribution is singular in R
3N and does not associate a probability

to a face lying outside the subspace.
Explaining faces deviating from the face space using an additional noise term

leads to an extension of the 3DMM already used in [3,17,49,78]. This corresponds
to modeling faces using a PPCA [92]. The combination of the shape model with
a Gaussian noise assumption is given by

P (s|θS) = N (s|̄s+ UΛ
1

2θS, σ
2I)

P (θS) = N (θS|0, I) .
(2.26)
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Here s̄ denotes the mean face, U are the principle components an Λ is the scal-
ing of the components so that θS follows a standard Gaussian distribution. The
parameters θS fully describes a single face surface.

In [3] Albrecht et al. showed that given partial observation the posterior PPCA
model has a closed form solution. Further they showed that the solution is equiv-
alent to Gaussian process regression. Expressing the probabilistic face model as
GPMM we can use Gaussian process regression to condition the GPMM on the
provided correspondences given as for example observed landmarks. The result is
again a GPMM.

2.2.5 Generating Images

To interpret images depicting faces we need to extend the generative face model
so that we can synthesize images. We use computer graphics to generate images
from a 3d model. A standard rendering process is used to transform a shape and
color model to an image depicting a face. The model is posed in 3d by a rotation
R and a translation T . Points are projected into the image using a pinhole camera
P . A single point x3d is mapped to the image using

x2d = P(Rx3d + T ) . (2.27)

To determine the color in the image for a point a global illumination model
introduced in [64] is used. The model uses a low dimensional approximation of
the incoming irradiance based on Spherical Harmonics in the reflectance function
introduced in [11]. For a pixel i in the image the radiance ri is then given by

ri = ai

2
∑

l=0

l
∑

m=−l

Ylm(ni)Llmkl (2.28)

with Ylm as the Spherical Harmonics basis functions, kl the parameters of the ex-
pansion of the Lambert reflectance kernel and Llm as the coefficient describing the
incoming light. The albedo ai and normal ni are interpolated using the properties
of the vertices of the triangle visible at this pixel i.

2.3 Model adaptation

To explain data with a generative model the model needs to be adapted to the
data. The adaptation is often stated as minimization problem of the form

θ∗ = argmin
θ

L
(

Γ̃(θ),ΓT

)

+R(θ) . (2.29)
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The models parameters θ are sought such that the generated instance Γ̃ matches
best the target data ΓT . The quality of a match is measured by a predefined loss
function L. A regularization term R is often introduced in order to favor simpler
model explanations.

A common way to find a solution to the above minimization problem is to start
off at an initial estimate and search iteratively for an update until convergence.
Most methods differ only in the way they calculate the updates. The updates can
be calculated based on heuristics, first order derivatives or consider also second
order derivatives.

Many algorithms for fitting a model to 3d data use a variant of the ICP-
method [13]. In [4] Amberg et al. adapt a 3DMM for expressions using an ICP
based optimization. The update steps are based on a gauss-newton least square
optimization adapting the 3DMM to the predicted correspondences. Schneider et
al. presented in [74] another algorithm based on ICP. Their algorithm is based
on a local linear approximation of the error function leading to a linear system of
equations. ICP based algorithms have in common that they increase the degree of
fit in every iteration. There is no inherent handling of local minimum and therefore
they need a initialization close to the global minimum.

For 2d computer vision [55] Matthews et al. proposed a highly tuned algorithm
to incrementally adapt an active appearance model to an image. In [67] Romdhani
et al. and in [45] Knothe proposed an algorithm to adapt a 3DMM to explain an
image. These algorithms calculate deterministic updates given the actual estimate
based on gradients. Methods based on local gradients tend to get trapped in local
optima. Local optima are especially a problem when the target data is noisy or
the models does not model details necessary to explain real world observations.

In [16] Blanz et al. proposed a robust algorithm based on stochastic gradients.
The gradients are calculated only on a subset of the data. More recently in [107]
Zhu et al. proposed an algorithm to adapt a model to an image iteratively using
updates predicted based on machine learning techniques instead of gradients. Ad-
ditionally the influence of noisy observations is reduced by using HOG features to
describe the local image instead of pixel wise color values.

While the minimization formulation targets a single best solution it does not
make any statement about the confidence of the obtained solution. In contrast the
probabilistic data fitting formulation of equation 2.2 rates all possible solutions.
The MAP-solution of the probabilistic formulation is directly relate to the solution
of the minimization problem. They are equal if we choose the regularizer R(θ)
as the negative logarithm of the prior and the loss function L as the negative
logarithm of the likelihood.

In [78] Schönborn et al. propose a method based on MCMC sampling to es-
timate the posterior of a probabilistic face model given an image. The method is
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based on the data driven MCMC (DD-MCMC) sampling proposed in [94]. The
propose-and-verify strategy of the used Metropolis-Hastings algorithm can handle
misleading update proposals by simply rejecting them. Further unreliable infor-
mation from bottom-up detectors can be integrated. The robust integration of
bottom-up detection leads to a fully automatic face recognition system.

We use data-driven MCMC sampling as it provides a clear setting for the in-
tegration of different sources of information. Existing detectors can be integrated
into model adaptation as well as heuristic update proposals. Further as the method
does not rely on gradients we can integrate also information for which local gra-
dients do not exist or are uninformative. Due to its inherent stochasticity the
sampling based approach is less prone to local optima and can deal with mis-
leading update proposals. We will review the sampling based method for model
adaptation in the remainder of this section.

2.3.1 MCMC for Model adaptation

We introduce the basic ideas behind MCMC sampling for model based data inter-
pretation introduced in [78] by Schönborn et al.. The probabilistic data interpre-
tation formulation (2.2) is used to explain an image IT with a parametric model

P (θ|IT ) ∝ P (θ)P (IT |θ) . (2.30)

The posterior is analytically intractable for the generative face model introduced in
section 2.2.5. We can resort to approximate inference. Sampling based methods try
to approximate the posterior numerically. The idea is to generate random samples
from the desired posterior distribution. We use the Metropolis Hastings (MH)
algorithm, a Markov Chain Monte Carlo (MCMC) method to generate samples
from the posterior. An introduction to MCMC methods and sampling is given in
many books, for example in [35] to mention only one.

Monte Carlo methods are used to estimate some numerical properties based
on random samples. Some Monte Carlo methods as for example rejection sam-
pling use a global proposal distribution. It is however difficult to design a useful
global proposal distribution for model based image analysis. We work in a high di-
mensional parameter space where only a small part contains reasonable solutions.
Further the global proposal distribution would need to adapt to the image that
we want to analyze. In contrast MCMC methods rely on local updated. They are
well suited to solve our problem assuming that the posterior distribution is rather
smooth and the local neighborhood of the actual position contains a next useful
candidate location.

A Markov chain is a random process modeling the evolution of a system over
time. The next state of the system depends only on the current state. The states
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of the Markov chain are also called samples. We want to construct a Markov
chain that generates samples from our posterior distribution. A way to simulate
a Markov Chain that produces samples from a user specified distribution is the
Metropolis-Hastings (MH) algorithm.

2.3.2 Metropolis Hastings

Using the Metropolis-Hastings algorithm [38] random samples following the pos-
terior are generated by developing a Markov chain over time. The next state is
generated following two steps: First a new sample is proposed based on the current
state. Then a verification step decides weather the new sample is accepted or to
remain in the old state.

The propose-and-verify scheme makes the MH algorithm well suited to in-
tegrate also unreliable information into the model adaptation process. We can
integrate unreliable proposals in combination with basic random walk proposals.
Using bottom-up methods predicting some of the parameter values can help to
jump to a better solution in the parameter space over long distances. While
having the generative model as verifying instance also unreliable and misleading
proposals can be integrated. The verification step is always free to reject them
and hence ignore their information.

A proposal distribution q is used to generate a new sample θ′ based on the cur-
rent state θ. The choice of the proposal distribution q(θ′|θ) is a crucial point when
using the MH algorithm. When the proposal distribution is not chosen carefully
either most samples will get rejected or only samples similar to the actual state are
proposed. A high rejection rate leads to a slow exploration of the parameter space.
Hence to get an independent sample of the current state much more evolutionary
steps are needed. This is known as slow mixing-rate in the MCMC community.
We are interested in chains with a fast mixing-rate as we need to draw less samples
from the chain to get an good estimate of the posterior distribution.

The MH algorithm accepts a proposed sample θ′ as new state with probability

α (θ, θ′) = min

{

p (θ′|IT ) q (θ|θ
′)

p (θ|IT ) q (θ′|θ)
, 1

}

. (2.31)

If the generated sample is not accepted the new state of the chain remains the old
state θ. The evaluation of the MH acceptance step (2.31) is based on the ratio of
point wise posterior evaluations. Hence it is sufficient to evaluate the unnormalized
posterior point wise as the normalization would cancel itself in the fraction. This
is a desired property as the normalization of the posterior is often intractable in a
Bayesian setting.

The initial mixing is often called burn-in phase. This is the time the chain
needs until it produces samples following the posterior distribution starting from
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an arbitrary initial state. During the burn-in phase the samples depend on the
starting position and do not follow the posterior distribution. The samples from
the burn-in phase need to be discarded estimating the posterior from the samples.
In practice it is often difficult to detect when the chain has reached its equilibrium
state.

2.3.3 Proposal distribution

The MH algorithm turns samples from a proposal distribution into samples from
a desired target distribution given the proposal distribution fulfills some mild con-
ditions. Any distribution can be used as proposal distribution as long as it is
irreducible and aperiodic (see for example [82]). Intuitively speaking this means
that all possible states of the posterior must be visitable from any other state and
that revisiting a state does not follow a regular interval.

A general and simple proposal distribution exploring the neighborhood is a
multivariate Gaussian diffusion move. A new sample is drawn from a multivariate
Gaussian distribution centered at the current state

q(θ′|θ) = N (θ, σI) . (2.32)

The generative model has parameters blocks with fairly different scaling. Fur-
ther updating the parameters for the camera, the light, the rigid transformation
and the model would introduce a considerable change in the image. Using a single
Gaussian distribution over all parameters is hence not a good choice. So we do not
alter all parameters at once. Instead the parameter vector θ is divided into sepa-
rate blocks for shape, color, light, camera, pose and color transformation. When
proposing a new sample first a block is chosen before the block is changed using
Gaussian diffusion move. This strategy is known as ”block-at-a-time” strategy
(see for example [22]).

When we use only small Gaussian diffusion moves many samples are needed
to explore the parameter space. Using only large update proposals lead to a high
rejection rate as the introduced changes are larger and only a minority will be in
a rewarding direction. Hence we combine different scaled proposals for each of the
parameter blocks in a large mixture distribution

q(θ′|θ) =
∑

i

ciqi(θ
′|θ) ,

∑

i

ci = 1 , (2.33)

leading to a reasonable acceptance rate. The different scaled proposals help to
explore local modes while also allowing for long ranged jumps in the burn-in phase.
The increased convergence speed of block-wise proposals is investigated in [76].
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2.3.4 Probabilistic Integrating

Additional information extracted from the image can help to adapt a generative
model as demonstrated in [67] and [45]. Both methods use additional extracted
information from the image. Integrating additional information comes with the
potential danger that the provided information may be noisy or even not correct.
Using the DD-MCMC sampling framework we can integrate information in two
ways. We can use the additional extracted information as part of the proposal
distribution. Alternatively we can use the additional information in a Bayesian
conditioning step.

The integration of additional information into the proposal distribution can be
seen as generating hints. These hints can point the algorithm to better solutions.
However the algorithm is free to reject the proposed solution by the verification
step. Using this type of integration we can integrate also noisy or unreliable
information. As long as a part of the proposal distribution generates also useful
samples the misleading proposals do not break the algorithm as they are simply
discarded.

In [78] Schönborn et al. introduced a way to integrate many sources of knowl-
edge in a step-wise Bayesian inference manner. Samples following a prior distribu-
tion can be conditioned on additional information D using a MH acceptance step
considering only the ratio of likelihoods

α(θ, θ′) = min

{

ℓ(θ′|D)

ℓ(θ|D)
, 1

}

. (2.34)

The resulting posterior distribution p(θ|D) still contains the information of the
prior. The so obtained posterior can then be used again as prior distribution for
another MH acceptance steps conditioning on further information.

A example chain of conditioning steps including the prior, some information D
and the image is given by

q(θ′|θ)
P (θ)
−−→ P (θ)

ℓ(θ|D)
−−−→ P (θ|D)

ℓ(θ|IT )
−−−−→ P (θ|D, IT ) . (2.35)

The conditioning steps are represented as arrows. The left side of the arrow show
the proposing distribution and on the right side the distribution is indicated the
samples will follow after filtering. As we do not want that the result depends on
the initial proposal distribution q the first acceptance step corrects the transition
probability of the proposal distribution. Hence samples following the proposal
distribution q are transformed first using a standard MH acceptance step using
equation 2.31. The so generated samples follow the prior distribution p(θ). The
following steps add further information without discarding the information already
contained in the prior distribution. We use always a dependent Metropolis chain
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Using the filtering approach samples can be rejected early. As soon as one step
rejects the proposal we can start over again with the next proposed sample. This is
beneficial as we can order the filtering steps based on the computational complexity
of evaluating the likelihood. When interpreting images for example it is costly to
render the image and compare it to the target image in contrast to the look-up
of some values in detection maps at a few projected point locations. This is why
usually we condition first on the landmarks and use the image comparison as final
verification step.

2.3.6 Likelihoods

The posterior (2.30) incorporates the prior and the likelihood. While the prior
encodes our assumptions about the space of admissible solutions the likelihoods
encodes what we think is a good explanation of some information. A likelihood
is a function ℓ(θ|D) rating how well the parameters θ and the observation D fit
together. As in the filtering steps only ratios of likelihoods are considered they do
not need to be normalized. Each likelihood has a clear probabilistic interpretation.
No ad-hoc weighting of different terms is needed. This makes the approach very
well suited to integrate information of different domains as for example a sensed 3d
surfaces and information from 2d images. In the reminder of this section we discuss
likelihoods used to adapt a model to a 2d image. The likelihoods are evaluated
in the domain of the target image. The likelihoods were introduced in [76] by
Schönborn et al. where also a more detailed discussion is provided.

Image Likelihood We want to find parameters so that the model generated
image looks as similar as possible to the observed image. The image likelihood
measures rates the generated image similarity to the observed image. The gener-
ative model provides only values for the region depicting the face. Schönborn et
al. showed in [77] that it is essential to use an additional background model to
explain the full image. The background model is used outside of the rendered face.
The similarity of two images is broken up into similarity between individual pixel
values at corresponding locations in the rendered image Ĩ(θ) and the target image
IT . The correspondence is given by the pixel grid of the two images. We assume
conditional independence of the individual pixels given the parameters leading to
the total image likelihood

ℓ(θ; IT ) =
∏

i∈FG

ℓFG(Ĩ
i(θ); I iT )

∏

i∈BG

ℓBG(I
i
T ) . (2.38)

Color Likelihoods The likelihood of the generated image is therefore split into
two parts using different individual likelihoods rating color pairs for similarity.

28



2.3. MODEL ADAPTATION

The foreground likelihood ℓFG rates the similarity of colors at all pixel locations
where we have a generated color and a target color. The background likelihood
ℓBG rates all other pixels. The foreground likelihood needs to account for model
deficiencies, the misalignment during the model adaptation and image noise. A
common choice to model noise is the Gaussian distribution which corresponds
roughly to a squared error function in the cost function formulation. We use the
foreground pixel likelihood

ℓFG(Ĩ
i(θ); I iT ) =

1

N
exp

(

−
||I iT − Ĩ i(θ)||2

2σ2
FG

)

, (2.39)

with standard deviation σFG. Using the standard Gaussian normalization for N is
not exact for the limited domain of color values. In practice however this is a good
enough approximation. For the background a general constant color likelihood
model is assumed

ℓBG(Ĩ
i(θ); I iT ) =

1

N
exp

(

−
||k ∗ σFG||

2

2σ2
FG

)

(2.40)

The likelihood defines a constant value which corresponds to a color difference of
k times the standard deviation σFG of the foreground model.

Landmark Likelihoods Model fitting is simplified when the position of land-
marks are available. The landmarks can be used to initialize or to guide the model
adaptation. Landmark positions {xi

T}
NLM

i=1 provided by an experienced user are
reliable up to some noise introduced trough the annotation process. Assuming in-
dependence between the landmarks given the parameters the landmark likelihood
is defined as

ℓC(
{

x̃i(θ);xi
T

}NLM

i=1
) =

NLM
∏

i

N (xi
T |x̃

i(θ), σ2
LMI2) . (2.41)

With I2 as the two-by-two identity matrix.
Bottom-up detection are inherently noisy in contrast to landmarks provided by

an expert. The reliability suffer especially in unrestricted scenarios. Integrating the
single best detection of a landmark detector under tough conditions is unlikely to
work. Instead we integrate the full probabilistic output D of a landmark detector.
We combine the detection with a Gaussian noise model. Due to the limited model
expressiveness the generated face shape represent the depicted face’s shape only
approximatively. Hence the generated landmark positions will not match perfectly.
Further the detector response is also noisy due to imperfect annotated training data
among other things. The maximal detector response may not lie at the location
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Chapter 3

Model building

Shape models are a powerful tool to model prior assumption about a shape class.
Different algorithms can make use of a deformation prior. A learned model cap-
tures the statistic of gathered training data as distribution over deformations of
a template. Albeit 2d models are already popular 3d models are less frequently
used. One reason is because learning a statistical model from data is tedious. To
build a face model from data one has to scan different peoples faces. In addition
the scans need to be registered. Scanning only people in a specific age range or
only people from a specific ethnic group introduce a bias in the statistic of the
learned model. We address two problems that occur when using models for regis-
tration. To enable model based registration a model need to be built also in the
case when no training data is available. We show how to build a specific model
exploiting symmetry. Further we show how to add flexibility when using a biased
model learned from a restricted training set.

We use Gaussian Processes to analytically define and augment a learned shape
model. A model is specified trough the kernel function among other things. We can
build shape models when no training data is available by using an analytical kernel
function. Domain knowledge can be encoded in the model by choosing the kernel
function. Using data we can construct kernel functions encoding the covariance of
the data. Kernel functions can also be combined. The bias of an existing model
can be reduced by augmenting the model with additional flexibility. Additional
flexibility can be introduced to the model by modifying the kernel function. From
a Gaussian process we can draw samples to validate the prior of a built model. The
properties that we can combine analytically defined and learned kernels and that
we can sample from the model makes Gaussian processes a good tool to explore
fast a variety of possible priors.
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3.1 Analytically defined Models

When building deformation models using Gaussian processes the choice of the
kernel is the most influential part. The kernel determines the properties of the
likely deformations under the model. This can help to encode domain knowledge
in the model. Without training data we can specifying an analytical kernel. We
demonstrate how to build an analytical kernel function exploiting symmetry. The
kernel reflects which deformations of a template face result in natural looking
faces. We use that faces exhibit a near reflection symmetry about the sagital
plane. Further the deformations should be smooth. To encode the smoothness we
use the former introduced B-spline kernel. We then modify the kernel so that it
encodes the symmetry of faces. To evaluate the kernel we compare it to different
analytically defined and learned kernels.

Face-symmetric kernel Faces have a special characteristic. They exhibit a
near mirror symmetry over the centered sagital plane. In this section we will
show how to encode the facial symmetry to form a stronger prior. We can use a
combination of kernels to express this symmetry leading to a stronger and therefore
better prior about how faces look like. To simplify the mathematical notation we
assume that the faces are aligned so that the sagital plane corresponds to the
plane with the first coordinate x1 equal to zero. So we can change the sign of the
coordinate x1 to mirror a point on the sagital plane. Hence we can couple the
points on both sides with the symmetric kernel:

kS(x, x
′) = κ(x, x′) + κ(x, x̄′) , x̄ = [−x1, x2, x3]

T . (3.1)

Using equation 2.13 to build a matrix valued kernel leads to an unsatisfying result.
The kernel specifies the unwanted behavior that symmetric points move in the same
direction, therefore moving for example both eyes to the left. Defining instead the
face-symmetric kernel as:

kFS(x, x
′) = I3×3κ(x, x

′) + Ī3×3κ(x, x̄
′) (3.2)

with Ī denoting the identity matrix but with a flipped sign for the first element
on the diagonal. This leads to the facial symmetry we expect. Using this face-
symmetric kernel it holds that if one eye moves away from the nose also the other
eye is forced away from the nose. The facial symmetry is constructed independent
of the used scalar kernel.

The perfect symmetry specified by this kernel is not natural for faces. For
natural faces both sides show minor deviation from a perfect symmetry. To counter
the effect of perfect symmetry we add the kernel used to build the face symmetric
kernel. The near face-symmetric kernel is then given by

kNFS(x, x
′) = κFS(x, x

′) + κ(x, x′) . (3.3)
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A discussion under which conditions the face-symmetric kernel and also the near
face-symmetric kernel is positive definite is given in appendix C.

Model selection Given the framework of Gaussian processes using kernels as
building blocks leads to an infinite number of possible models. Bayesian model
selection is computationally too demanding in the context of face models. We
therefore compare models built using selected common kernels. We use the Gaus-
sian kernel introduced in section 2.1.3 and the B-spline kernel from section 2.1.3.
They share the parameters scaling and length-scale. We choose the length-scale
based on domain knowledge.

The scaling has no direct influence on the spanned model space. But the
model induced probability distribution over the spanned sample space changes
with the scaling. To make sampling from the models comparable we determine
the scaling parameter for each kernel. We scale the kernels so that their total
variance corresponds to the estimated variance form the face space. We estimate
the variance of the face space from the samples used to train the BFM. Using the
training samples {Γi}

N

i=1 the variance in the face space is given by:

varS =
1

N

N
∑

i=1

∫

Γi

||x− µ||2dx. (3.4)

We calculate the total variance for a kernel as given by Lüthi in [53]:

vark =

∫

Ω

k (x, x) dx . (3.5)

Scaling a kernel with varS/vark leads then to a kernel with the desired total
variance.

Evaluation When using a deformation model as prior for an object class, the
model should be strict in the sense that only valid objects can be generated.
Nonetheless a good model can represent all objects from within the object class.
We evaluate performance of a model using two sets of registered scans. We use the
two model metrics generalization and specificity introduced by Styner et al. in [87].
The metrics define shape similarity based on the surface-to-surface distance. Using
face scans in dense correspondence we evaluate the surface-to-surface distance as
rooted-mean-squared (RMS) distance of all point-to-point correspondences.

The specificity measures if a model creates only valid objects. Samples gener-
ated using a learned model are expected to be similar to the examples contained
in the training set. We draw samples from each model. The obtained shapes are
compared to all examples in the training set of the BFM. We retain the minimum
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kernel scaling parameters
Gaussian 10.7977 σ = 40mm

bspline 10.1176 lmin = −3, lmax = −5, γ(j) := 2−
j

2

face 10.4960 lmin = −3, lmax = −5, γ(j) := 2−
j

2

asym-face 4.9806 lmin = −3, lmax = −5, γ(j) := 2−
j

2

Table 3.1: This table lists the parameters for the used analytically defined models.

shape-to-shape distance for each sample comparing it with all training examples.
The specificity is then the averaged minimal shape-to-shape distances for all sam-
ples.

The generalization evaluates the model using a test set differing from the used
training set. The measure rates the coverage of the object class variability. The
model should be able to represent examples which are different from the used train-
ing examples. All test examples are projected into the model. The generalization
calculates the RMS residual between the projection and the original example. We
use examples aligned with the model. In [3] Albrecht et al. described how to find
the best model reconstruction for an example.

Experiments We compare four different analytically defined models. Addition-
ally we evaluate also the performance of the BFM and the mean of the BFM with
no variation. We use these two models as reference marks.

The analytically defined model we build use a Gaussian kernel (see section
2.1.3), a multi-scale B-spline kernel (see section 2.1.3), a face-symmetric kernel
based on the multi-scale B-spline kernel and a near face-symmetric kernel given
as the addition of the last two. The scaling for each kernel is chosen based on
the training data of the BFM as described in section 3.1. The table 3.1 shows an
overview over the kernels and the used parameters. All analytically defined models
are approximated using 200 basis functions.

To qualitatively judge the models we draw samples from each model and com-
pare them visually. The visual inspection is useful to check the model prior early.
We further evaluate all models quantitatively by their specificity and generaliza-
tion.

We use the BFM training set containing 200 scans from different persons to
evaluate the specificity. As we have chosen the length-scale of the analytically
defined models based on this training set. Hence the training set should represents
well our assumption about the face space encoded in the models.

Additionally we use a test set containing the ten publicly available face scans
distributed with the BFM and an internal dataset of 40 women. The age variation
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in the internal dataset is larger than in the training set of the BFM. We use this
test set to evaluate the generalization. We use the internal scans to enlarge the
set of scans distributed with the BFM and to stress testing the model due to the
larger age variation.

Results Figure 3.1 shows samples from the models. The learned BFM model
generates natural looking samples. While the Gaussian model produces smooth
samples the B-spline model produces locally stronger deformations. Both models
couple the two sides of the face too loosely. They raise the impression that a
rubber template face is deformed. The face-symmetric kernel model produces
too symmetric deformations. In contrast the near face-symmetric kernel produce
more natural looking faces breaking this strict symmetry. While also this near
face-symmetric kernel produces weird faces they do show less strong peculiarities
than the other models. This shows that sampling from the model can already help
us to discard or even elect a model among others.

In figure 3.2 a plot of the generalization and specificity is shown. We evaluated
the analytically defined models, the mean of the BFM training data and the BFM.
All analytically defined models show a slightly better generalization as the BFM
but are less specific. The wrong prior of a perfect symmetry in the face-symmetric
kernel leads to worse performance compared to the B-spline kernel. The best
specificity and generalization of the analytically defined models reports the near
face-symmetric kernel combining a symmetric and an anti-symmetric part. This
supports our assumptions that encoding more prior knowledge helps to improve
the model. Faces exhibit a near mirror symmetry along the sagital plane hence we
should model it and using our kernel we can model it.

Discussion We have shown a way to build analytically defined models exploiting
domain knowledge. We introduced our kernel that restricts existing kernels to
follow symmetries. Encoding the near facial symmetry in a kernel leads to a model
with better generalization and specificity. The additional information incorporated
into the kernel helps the model to be more specific than other kernels. The stronger
prior can help to ease model based registration. Data is crucial to get a even
better specificity as shown by the BFM. But all analytically defined models show
a better generalization than the BFM. This indicates that the BFM lacks flexibility
to represent faces better. While we directly specified a symmetry an open point is
to find near symmetries automatically from data.
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3.2 Augmenting models

Learned models often show a bias towards their training set. The BFM model is
built with mostly faces from people in the age range between 20 and 30. Therefore
the model lack flexibility to represent older faces. We augment the statistical
model with analytically defined kernels to overcome the model’s bias by increasing
the model span. We present two methods to add flexibility to a model using that
we can combine kernels using the rich kernel algebra. The first method reduces
the long ranged correlations to relax the constraints of a learned model prior. The
second method augment the model by adding specific flexibility. We compare and
evaluate the different models using registered faces from an internal dataset. These
faces show a larger age variation as the used training set.

Localized Models When using insufficient samples to learn a model artificial
long ranged correlations can show up. This can cause that adapting to a specific
mouth shape influences strongly the eye region. We therefore aim to reduce the
long ranged correlation of the model while keeping the short ranged ones.

We build a localized model by damping the long ranged correlations using a
localization kernel. The localization kernel defines a weight for the correlation of
two points based on their distance d. We define a stationary kernel specifying
these weights using a bounded polynomial kernel κL(r) (see for example chapter 4
in [65]). We change the range of the localization by specifying a scale factor for the
input distance r = d/l. In figure 3.3 we show the used covariance function with
parameters q = 2 and D = 3. We then use that the multiplication of two valid
kernels is again a kernel. We use the polynomial kernel to weight the correlations
of another kernel. This results in a localized version of a kernel. The localized
version of the BFM is then given by:

kSL(x, x
′) = κSC(x, x

′) · I3×3κL(x, x
′) (3.6)

Here · means element wise multiplication of the matrix valued kernels. The aug-
mented model has globally more flexibility while still locally being restricted to
the learned deformations.

Combined Models As a second method to overcome a models bias we augment
the model with analytically defined kernels. We propose to add two different
scaled analytically defined deformations in two consecutive steps. First long ranged
correlations are reduced by adding smooth deformations with a large length-scale
and second high frequent deformations are added in specific local regions.

We try to decorrelate the shape of facial features from their position and a
specific head shape by adding a kernel with a large length-scale κL. This adds
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Figure 3.3: The correlation of the bounded polynomial kernel used to localize
correlations of a learned model.

global deformations to a learned model κSC . The model

κ(x, x′) = κSC(x, x
′) + κL(x, x

′) (3.7)

can deform the face shape using the analytically defined kernel while using the
learned deformations to deform the facial features.

In the second step we enhance the model only in local regions where the model
lacks flexibility to explain unseen faces. We calculate the mean reconstruction
error per vertex of a test set of faces. A binary mask is calculated thresholding the
error distribution over the surface. The mask is made symmetric and smoothed.
We interpret the mask as weighting function w : Ω → R

+ to specify where to
add additional flexibility. We define a localization κl(x, x

′) = w(x)w(x′) using the
weighting function w(x). We localize small deformations from a B-spline kernel
κBSP by multiplying the two kernels.

The final model which contains both analytically defined flexibilities is then
given by:

κSA(x, x
′) = κSC(x, x

′) + κSE(x, x
′) + κl(x, x

′)κBSP (x, x
′) (3.8)

Experiments We compare the BFM, a localized version of the BFM and an
augmented BFM with added long and short length-scale kernels. To compare
the models we calculate the mean per vertex error when projecting examples not
contained in the training set of the BFM into each model. We use the internal
data set of 40 women with a large age variation. To represent this data set is
challenging for the BFM as the training data show a smaller age variation.

The generalization report the averaged RMS reconstruction error but we are
interested in the localized error. The localized error shows which part of the face
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Chapter 4

Model registration

In this chapter we discuss how to use a shape model to explain an observed shape.
We state the registration problem probabilistically. Given an observed shape ΓT

and a model with parameters θ we apply Bayes theorem:

P (θ|ΓT ) ∝ P (θ) ℓ (ΓT ; θ) . (4.1)

We restrict the model to be a linear model. The parameters θ specify a complete
generative process leading to synthetically generated shapes Γ̃ using the parametric
model:

Γ̃ = T (θT ,R (θR,ΓR + θMU)) (4.2)

Here U are the basis deformations and θM are the model parameters. The gen-
erative process places the model instance in the 3d space. A translation and a
rotation are used defined by parameters θT and θR. We will omit the basis defor-
mations U and the template ΓR in the reminder of the thesis to keep the focus on
the essential parts of the equations.

When fitting a parametric model to data using equation 4.2 two problems are
interwoven. We need to estimate the pose parameters θT and θR and the models
parameters θM to explain observed data. A common way to solve the problem is
to divide the problem apart. First the model mean is aligned rigidly to the data.
Then the parameter of the shape model are optimized to register the template
non-rigidly to the data.

Aligning the model mean to observed data is difficult due to the severe mis-
match between the two shapes. The problem is often solved using user provided
landmarks. We integrate 2d landmark detections into rigid 3d alignment. The
probabilistic integration of the detection leads to a fully automatic and robust
alignment. Our alignment method works for any initial conditions and outper-
forms a well initialized ICP-based method.

Non-rigid registration is inherently ill-posed. Many possible correspondence
assignments are plausible. Aside of the deformation prior and facial landmarks
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we make use of lines annotated in 2d images to constrain the registration. Our
method is able to use the line features directly in the 2d image domain where they
are annotated. No projection onto the surface or into the 3d space is required.
With only a minor change to the algorithm we are able to register also partially
observed data.

As framework for the integration of the different information we use the for-
mer introduced DD-MCMC sampling scheme based on the Metropolis-Hastings
algorithm. We then use the sampling algorithm to infer the MAP-estimate of
the posterior 4.1 to solve the registration problem. To speed-up the inference we
integrate proposals motivated from an existing algorithm.

4.1 Fully Automatic Rigid Registration

Linear parametric models are built using aligned data. The dataset is aligned
to exclude translations and rotations from the data variability. Before adapting
a model to observed data initial estimates for the rotation and translation are
needed. In this section we describe how to align the BFM mean rigidly to scans
of faces.

Rigid alignment is the process of aligning two objects estimating a translation
and a rotation. The problem of rigid alignment can be formulated as minimization
problem. We want to align the model mean ΓR to the face scan ΓT such that a
metric M measuring the distance between the two is minimized. In order to
minimize the metric we estimate a rotation R and a translation T as:

argmin
R,T

M (RΓM + T ,ΓT ) . (4.3)

Prior Work For two sets of points xT ∈ ΓT and xM ∈ ΓR with known cor-
respondence and the least-squares metric the solution is known from Procrustes
analysis (PA). In [9] Arun et. al. have proposed a closed form solution to the
problem of aligning two 3d point sets.

However in our setting when aligning the model mean fully automatically to a
surface with arbitrary parameterization Procrustes analysis is not applicable. The
correspondence is not known and therefore we cannot use the closed form solution
for the alignment.

When correspondence is not known a mesh-to-mesh distance can be minimized
to align two meshes. A well known method for rigid alignment is the Iterative
Closest Point (ICP) [13] algorithm. The algorithm iterates two steps until conver-
gence:

1. Determine correspondence for each point xi ∈ ΓM as CP (xi; ΓT ).
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2. Align template using PA with pairs {xi, CP (xi)} leading to new x′i

Here CP is an operation that finds for a given point x the closest point on the
target. These steps are then iterated until convergence. A lot of variants of
the basic algorithm have been published in order to make ICP more robust or
increasing the range of convergence. A classification of early variants is given by
Rusinkiewicz et al. in [71]. A recent variant of ICP handling also noisy data and
missing parts using a sparsity constraint is proposed by Bouaziz et al. in [18].

In [93] Tsin et al. reformulated the problem of rigid alignment as finding the
maximum kernel correlation of two points sets. A similar idea by Myronenko et
al. is proposed in [57]. They maximize the likelihood of a Gaussian mixture model
(GMM) with the centroids at the template points given the target point set. In [42]
Jian et al. transform both point set to GMM and minimize their L2 distance.

In contrast to the former methods we have to deal with severe mismatch be-
tween the template and the scanned face due to the different identities. Further
ICP guarantees only to find a local optimum but not a global one. Also the meth-
ods [42,57,93] require a good initial estimate of the pose to lower the risk of ending
in a local optimum.

Method In contrast to the prior work we exploit the additionally captured 2d
images (see section 2.4) to reach a fully automatic alignment. Algorithms for 2d
detection of feature points and training data are readily available. However pure
bottom-up detection with limited context is inherently error prone. They cannot
handle large poses, strong illuminations, beards or expressions. Therefore we do
not rely on a single best prediction of the position for the landmarks. Instead we
make use of a probabilistic interpretable response map of the detectors (see figure
2.8). An exemplar detection map can be seen in figure 4.1(a).

It is well known that gradient based approaches are susceptible to local optima.
Given the noisy detection maps with many local optima we discarded to use a
gradient based approach to find the pose given the detection outputs and the
scanned 3d surface. Instead we use the MH-sampling scheme as introduced in 2.3.1.
The MH-sampling scheme is well suited to integrate information from different
domains. The sampling algorithm can also help to overcome some local optima.
In addition it does not rely on gradients. The algorithm needs only point wise
evaluation of the likelihood to transform samples from a proposal distribution into
samples of the posterior.

To solve the alignment problem we formulate the optimization of equation 4.3
probabilistically. In addition to the sensed 3d surface we use the additionally cap-
tured color images. We transform the information from the 2d color images with
the help of feature point detectors to detection maps D. To resolve ambiguities
we additionally use the information L that people are scanned upright. We infer
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not coincide with the landmark locations t. Following [79] we search the best
combination

ℓLM (x;D) = max
t

N
(

x|t, σ2
LM

)

D (t) , (4.7)

for each position x given all detection D(t) combined with the noise model.
The used decision forests produce many false positive detections leading to

high likelihoods for wrong poses. This occurs as many false positive appear in a
systematic way. The two sides are often confused. The left mouth corner detector
fires also at right corner and vice versa. Further the mouth corner fires also on
the eye corner and vice versa. To resolve these ambiguities we introduce a third
likelihood. We encode a rough orientation prior. We use the expected orientation
L in the images specified using two directions wi for mouth-to-eye and right-to-
left. As we expect people to be scanned upright this coincides with the upward
and right direction in the image. We use the likelihood

ℓO (v;w) = N

(

arcsin

(

v × w

‖v‖ ‖w‖

)

| 0, 1

)

, (4.8)

to rate generated directions v. We calculate the direction v(θ) using the projected
feature points from the eyes and the mouth. We do not assume any specific prior
over the pose parameters in 3d treating all parameters as equally likely.

We generate pose samples θ specifying the rotation R(θ) and translation T (θ)
of the optimization problem (4.3). To generate samples we use a block-wise random
walk in parameter space. To get a new sample either the translation or one of the
three rotation angles is updated by a Gaussian diffusion move.

Evaluation We use the Procrustes method to estimate a ground truth align-
ment based on landmark points. The landmarks are manually annotated by an
experienced user. They are annotated on the template as well as on the surface of
the scanned faces. We use the four corner points of the eyes and the two corners
of the mouth.

To evaluate the methods we report the average L2-error of these landmark
pairs. As we align a template that might not fit the scan perfectly the error
can not be reduced to zero. The Procrustes alignment based on the manually
annotated landmarks indicates a lower bound for the error.

As second measure we report the total angular deviation of the estimated head
pose compared with the ground truth. We use again the Procrustes alignment as
ground truth. The reported error is the total rotation angle around the optimal
axis needed to align the head from the estimated pose to the pose of the ground
truth.
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Experiments We compare our method with the standard ICP method [13]. We
use 15 scans stemming from the BFM scanner system. We estimate the alignment
of the BFM mean as template to the 15 scans. Initially the template is not aligned
with the scans. While the template is at the origin of the coordinate system the
scans are not. The origin is several head diameters away from the scans and
the template is rotated by 90 degrees compared to the scans. The nine detected
landmarks (see figure A.4) are annotated manually on the template.

To align the template using our method we first draw 5’000 samples using only
the landmark proximity likelihood and up-right likelihood. Then 20’000 samples
are drawn using also the landmark map likelihood as final likelihood. Our method
(Maps) uses the nine landmark maps generated using the detectors described in
section A.3. As a second method we drop the up-right prior. We refer to this
second method as wo-Prior.

For the ICP method we use 1’000 iterations to guarantee convergence. Further
we discard all corresponding point pairs where the point on the target lies on a
boarder of the mesh. This reduces the influence of holes and missing parts of the
surface. We start the ICP method from the bad initial alignment given through
the data. As an alternative experiment we start the ICP method from a good
initialization. We start the ICP from the result of our method Maps. We refer to
this method as ICP-init.

Results The results in figure 4.2 and 4.3 show that ICP without initialization is
not suited to align the model mean to the scans. With a good initialization ICP is
still attracted in some of the test cases to an undesired optimum. This can be seen
from the outliers in the box plots in the figures for ICP-init. Two of the wrong
poses are depicted in figure 4.4.

Without the upright prior the algorithm find some optima with wrong poses.
This is mainly due to the false positives of the detector. The detector confuses
the outer eye and lip corner on the particular side. This results in wrong local
optima. The wrong poses are depicted in figure 4.4 showing mainly rotations of
approximately 90 and 180 degrees.

Our proposed method including the upright prior does converge in all cases
to a good solution. The model is successfully aligned to all scans. The up-right
prior influences however some of the results where the method without the prior
converged to a slightly better result regarding the head pose.

In figure 4.1 the posterior of the landmark positions for the two outer eye
corner are shown. The peak of the posterior are at good positions. The perfect
positions can not be reached due to the shape deviation of the model mean from
the depicted face. To calculate the posterior map we used a long run with 100k
samples.
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Figure 4.2: The plot shows the residuals of the user clicked landmarks after
aligning the model mean with different methods. As the template does not match
the scan a small error will never vanish. The Procrustes alignment can be inter-
preted as the lower bound that can be reached. Our method using the detection
maps among others is better than using ICP whether we provide a close initializ-
ing based on our result or not. The ICP without initialization fails in most cases.
Dropping the upright prior leads to worse results.
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Figure 4.3: The plot shows the total angular error of the head pose with respect
to the Procrustes result which we use here as ground truth. The ICP without
initialization ends in bad local minima. Using ICP starting from our result as
initialization can improve some of the results but breaks others indicated by the
outliers of the box-plot. Dropping the upright prior leads in nearly half of the cases
to worse alignments. The gray background indicates the larger y-scale marked on
the right side of the plot.
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Figure 4.6: The images shows a close-up view of the eye. The image on the left
depicts the noisy and incomplete scanned surface around the eye. This makes an
exact annotation of the outline difficult. In the additional captured 2d image the
full contour can be seen and annotated.

We propose to integrate information from the additionally captured 2d images
into 3d registration. Using our generative framework we can integrate additional
information directly in the domain where it originates from. Hence we can use the
information from the additional images directly in 2d. We do not need to bring the
information to the 3d space where we tackle the surface registration. We formulate
the problem as model based registration with a deformation prior built using the
Gaussian processes introduced in 2.1.1. The model is adapted to the data using
the MCMC sampling framework introduced in 2.3.1. The annotated outlines of the
facial features are taken as exemplary information. We demonstrate the improved
lateral registration quality when integrating the 2d lines. As deformation models
we use the specific prior of the BFM as well as analytically defined models.

The sampling algorithm is open to integrate the 2d line information directly into
the registration as likelihood evaluated in the 2d image space. Therefore it is not
required to project the annotated lines back to the 3d space nor to calculate a rude
approximation of the contours using a discrete number of points as landmarks with
fix correspondence. Our likelihood formulation leaves the correspondence along the
line open as it is not determined by the annotations of the expert. Further the
probabilistic integration of the lines is open to replace the manual annotations with
a contour extraction algorithm. Similar to the landmarks in the former section 4.1
we can integrate the lines either as single best prediction with assigned uncertainty
or as a probability map.

For the estimation of a MAP solution we integrate deterministic proposals for
faster convergence. We mix ICP-based proposals with block-wise random walk
proposals. This shifts the algorithm target from the posterior estimation towards
stochastic optimization. In practice this leads to faster convergence towards the
MAP solution.
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Prior Work Registration is widely used in different fields from medical image
analysis [84] to statistical object modeling [90, 97]. Our focus lies on registering
different objects of the same class. More precisely we want to register faces from
different persons.

In the seminal work [16] of Blanz and Vetter an optical flow algorithm account-
ing for depth and color information is used to register faces. Their approach could
not cope with too unusual faces. Schölkopf et al. proposed in [75] to use machine
learning to solve the problem of dense correspondence between two objects. While
they show visually pleasing results it is unclear if the detailed registration is good
enough for model building. Recently in [61] Pan et al. proposed a registration
method based on a patch-based sparse representation. The dictionary based rep-
resentation guides the registration. They use the assumption that corresponding
points have a common sparse representation using a learned dictionary. Further
terms in their cost function are a data representation error and a regularization
penalizing non-smooth deformations. The dictionary learning needs however a
large set of faces in correspondence which renders their approach unsuited if no
data in correspondence is available.

A shape model based registration approach based on a linearized ICP algorithm
was proposed by Schneider et al. in [74]. They use a linearization of the rotation
which is only a good approximation for small angles. In [6] Amberg proposed an
extended version of the Optimal Step Nonrigid ICP algorithm. They use a shape
model for regularization. However the time varying parameters used in their algo-
rithm are hard to tune. Lüthi et al. [50] presented recently a registration method
based on Gaussian Processes. They transform the target shape to a distance image
and register the shape model using a gradient based optimization scheme.

We propose to use the Gaussian Process framework introduced in [50] to build
generative models. Using the framework there is no longer a distinction between
a analytically defined or a learned deformation model. Instead of using a gradient
based optimization scheme we propose to use the MCMC based sampling approach
of [78] to get a MAP estimate. The sampling based method opens the possibility
to integrate different information in a probabilistic way. We use a probabilistic
version of the BFM introduced for 2d image interpretation in [78] as well as two
analytically defined deformation models introduced in section 3. We establish
dense correspondence for each model with the 3d sensed surface and the captured
2d images of the scanner to evaluate our method.

Method We use data from the scanning system also used to capture the train-
ing data for the BFM. The scanner senses the 3d surface of the face and takes
additionally three 2d color images (see figure 2.4). The projections from 3d space
into the 2d images are known from a calibration step of the scanner system.
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We propose to register new scans using a generative model. For that the model
is adapted to the data. The best model explanation can then be used as registered
version of the data. To guide the model adaptation we involve two types of manual
annotations. First 3d landmark points are directly annotated on the 3d surface or
marked as missing in case of an incomplete surface. In the 2d images the outline
of facial features are annotated as curves to get an accurate lateral registration.

The parameters θ used to generate a model instance according to (4.2) specify
the shape of the face and the 3d position. To describe the shape space we use
a linear, parametric model with a known prior distribution over the parameters.
Using the model we generate data in two different domains, the 2d image domain
and the 3d domain of the scanned surface.

Γ3d (θ) = R(θ)(ΓΩ + θMU) + T (θ)

Γ2d (θ) = PΓ3d (θ)
(4.9)

The generative process uses parameters θM to specify the shape of the face. The
model is specified through the mean ΓΩ and the linear basis U . The pose is
described as a translation vector θT in 3d and a rotation described by three Euler
angles θR. The projection P known from the calibration projects the points Γ3d

from 3d to points Γ2d in the 2d image planes.
The probabilistic formulated registration problem posed as a posterior estima-

tion can be written as

p (θ|ΓT , L, C) ∝ p (θ) ℓ (θ; ΓT , L, C) . (4.10)

Here L are the annotated landmarks in 3d and C are the contours of the features
marked in 2d. As prior about the parameter we assume a uniform distribution for
the translation vector and the three Euler angles. The prior distribution over the
model parameters θM is induced by the model building process.

We want that the generated shape explains the observed surface and the manual
annotations. To rate a model state θ we use three likelihoods in conjunction. We
treat the different available informations as conditionally independent given the
parameters. We use a surface, a 3d landmark and a 2d line likelihood to rate a
model instance. This leads to the posterior

p (θ|ΓT , L, C) ∝ p (θ) ℓ (θ; ΓT ) ℓ (θ;L) ℓ (θ;C) . (4.11)

We formulate the quality of the match between the model instance ΓG(θ) and
the given target surface ΓT as surface likelihood. The surface likelihood is approx-
imated by a number of discrete points v given on the model instance ΓG. We use
the vertices of the mesh. The corresponding point u on the target ΓT for a vertex
v is determined by a correspondence function CP . Assuming independence of all
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points the surface matching likelihood becomes

ℓ (ΓG(θ)|ΓT ) =
∏

v∈ΓG

N (u|v, σ2
SI3) , u = CP (v,ΓT ) . (4.12)

We use the closest-point-on-surface function to find the corresponding point on
the target.

The annotated 3d landmarks {x̃i}, i ∈ 0, 1, ...NL are used in a distance like-
lihood in the 3d domain. The correspondence is given. We can directly use the
landmarks xi defined on the model and the annotated landmarks x̃i of the tar-
get. We assume independent isotropic Gaussian noise for the landmarks due to
imperfect labeling. This leads to the landmark likelihood

ℓ({xi(θ); x̃i}
NL

i=1) =

NL
∏

i

N (x̃i|xi(θ), σ
2
LI3), (4.13)

where I3 denotes the three-by-three identity matrix.
We use a contour likelihood to measure how well the models parameters de-

scribe the annotated outlines of the facial features in the 2d image domain. On
the model’s reference the contours are represented by the vertices vi lying on the
corresponding outline. The position of the vertices in the 2d images are then ren-
dered using the known projection P and the estimated parameters for rotation θR
and translation θT using

di = P (R(θR)vi + T (θT )) . (4.14)

Given the image coordinates di of a point representing the curve the closest point ci
on the corresponding annotated curve C is searched. The point ci is then assumed
as correspondence for the point di and a Gaussian distance likelihood is used to
rate the correspondence in 2d

ℓ(ci; di) =
∏

i

N (ci|di, σ
2
CI2) . (4.15)

To solve the registration problem we estimate the MAP solution. We use the
sampling based approach introduced in 2.3.1. We use the MH filtering strategy
to integrate the information. To lower the computational burden we order the
filtering steps due to their computational complexity. Our basic method (sampling
w.o. directed proposals) therefore filters with

q(θ′|θ)
P (θ)
−−→ P (θ)

ℓ(θ;L)
−−−→ P (θ|L)

ℓ(θ;C)
−−−→ P (θ|L,C)

ℓ(θ;ΓT )
−−−−→ P (θ|L,C,ΓT ) (4.16)

As proposals q(θ′|θ) we use a block wise random walk. In contrast to the rigid
alignment problem of section 4.1 additionally the model parameters need to be
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estimated as well. The block proposal distribution for the models parameters is
chosen as a mixture of different scaled Gaussian diffusion moves.

We soften the strict interpretation of the MH algorithm to estimate the exact
posterior. We integrate deterministic proposals as long ranged informed proposals.
Deterministic proposals break the detailed balance assumed in the MH algorithm.
As we can not correct for the asymmetric transition probability the estimated
posterior will be biased. In the experiments we are only interested in the MAP
estimate only. We experienced good results for the estimated MAP solution in our
experiments. To get an unbiased posterior the deterministic proposals could be
used only in the burn-in phase. After an initial convergence phase the deterministic
proposals could be discarded leading to an unbiased posterior estimate due to the
again strict MH conform proposal distribution.

The deterministic proposals we use are ICP-based projection proposals. We
use the idea of the ICP update step. The closest point for every vertex of the
actual model state is assumed as the corresponding point. For all landmarks
we use the given correspondences. We then reestimate the models rotation and
translation parameters using Procrustes analysis [9]. The remaining residuals are
projected into the model. The so predicted update for the model parameters is
then scaled by a factor sICP ∈ [0, 1]. This soften the influence of wrongly predicted
correspondences when the model is not yet adapted. The scaled model update is
then used in conjunction with the estimated translation and rotation as proposal.
The proposal distribution of the ICP-based proposal is non-symmetric. We assume
that the MAP estimate remains the same strengthened by the good experimental
results.

We integrate the ICP-based update proposals ICP (θ′|θ) using a mixture distri-
bution of proposals. We mix proposals from the chain sampling from the distribu-
tion P (θ|L,C) with ICP-based updates at a rate rICP . We define a new proposal
function

q̃(θ′|θ) = (1− rICP )P (θ|L,C) + rICPP (θ
′|θ) (4.17)

In our adaptation method sampling we filter these proposals with the additional
surface likelihood

q̃(θ′|θ)
ℓ(θ;ΓT )
−−−−→∼ P (θ|L,C,ΓT ) . (4.18)

This method integrates all introduced information but is biased as the ICP-based
proposals do not consider the annotated landmarks or lines.

We define a third adaptation algorithm (biased) integrating the ICP-based
proposals. We think of this method as an alternating optimization scheme of two
objective function. The proposal distribution q̃ optimizes either the surface match-
ing quality or the matching of the annotations while considering the prior. We
designed the algorithm with the assumption that neglecting parts of the posterior
will help to traverse the parameter space faster. We filter the proposals of the
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distribution with the posterior

q̃(θ′|θ)
ℓ(θ;L,C,ΓT )
−−−−−−→∼ P (θ|L,C,ΓT ) . (4.19)

Experiments We demonstrate the improvement of the registration quality when
using the contours of facial features as additional information. We use a specific
prior, the BFM but also less specific priors in the form of two analytically defined
models. As analytically defined models we use the Gaussian model and the anti-
symmetric face model introduced in section 3. Each model is approximated using
198 basis deformations.

For the experiments we reparametrize the BFM. The reparametrization dis-
tributes the vertices near equally over the surface compared to present clusters
in the BFM parametrization. Hence the surface-to-surface distance evaluated at
the vertices represents better the true surface-to-surface distance. Additionally we
reduced the data by a factor of ten to approximately 5’000 vertices and 10’000.
To generate the lower resolution meshes we use the quadratic edge collapse algo-
rithm [33] implemented in MeshLab [25].

The target scans are acquired with the same system as the training data of the
BFM. The scans stem from persons for which no scan is used in the training set
of the BFM. We use an index-structure to find the closest points on a target scan.
The method [52] provides a fast method to evaluate the correspondence function
for triangular meshes based on a search tree. This search tree need to be calculated
only once as the target surface never changes during the registration.

To initialize and guide the registration 11 landmarks are placed on the 3d
surface or marked as missing. The landmarks are depicted in figure 2.6a on the
reference of the models. To define the registration in the region of the facial
features nine curves are annotated by an human expert. The upper and lower
outline of the eyes, the ears and the outer lips contours as well as the touching line
between the lips are used as additional information (see figure 2.6c).

To align the shape model with the target scan we use the annotated 3d land-
marks of the target. We use partial Procrustes alignment using the corresponding
landmarks of the model mean to determine the initial translation and rotation
without scaling.

We compare our methods with a modified ICP algorithm keeping the landmarks
as fix correspondences. We use always the ICP-based proposals as update step and
never reject a sample. The reduced step size helps the algorithm to avoid getting
trapped early in a local optimum. The information of the landmarks is propagated
slowly over the mesh. Hence we use 10’000 update steps to guarantee convergence
of the method. We use the last sample as result for the modified ICP method.

We estimate a noise of σL = 2mm for the annotated landmarks and σC = 4px
for the 2d line likelihoods. This corresponds to approximately 0.5mm as estimated
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annotation uncertainty. For the surface likelihood we estimated σS = 1mm. This
value corresponds to the remaining RMS distance of the modified ICP algorithm.

We run each chain by drawing 20’000 samples. As MAP estimate we use the
sample with the highest posterior value from all samples. We then compare the
MAP-estimate for each model.

Evaluation We evaluate the registration with two quantitative measures. For a
good registration the model needs to represent the data well in 3d and the surface
should not shift laterally.

We use the rooted mean square (RMS) mesh distance to the target to evaluate
how close the found model instance represents the target surface. We approximate
the mesh distance using all model points and calculate the RMS distance to their
closest point on the target. This measure does not necessarily coincide with the
human perception. A not well matched nasolabial fold can generate a lower error
than too chubby cheeks but might be more distracting for a human observer.

The contour of the facial features is well suited to judge the lateral registration.
In contrast it is hard to determine the registration quality for a point somewhere on
the cheek. Therefore we use the human annotated lines to rate the lateral surface
registration. We assume that the smoothness prior of the models propagate the
established correspondence from the annotated features to the other regions. We
report the RMS error of the projected points representing the lines on the model
instance and their closest point on the annotated line. The error is averaged over
all lines.

To compare the convergence speed we analyze the unnormalized log likelihood
for the surface matching quality when using the BFM model. This shows how well
the surface has been approximated during the iterative processes. We compare the
ICP-based optimization, with the biased method and the sampling method with
and without directed proposals.

Results While we show the quantitative plots for all results we exclude one
target from the discussion. For this target the result incorporating the contour
likelihood show that the chain converged to an unsatisfying result. We believe that
the model has some problems to represent this face surface while also matching the
contours. Preliminary results using the localized version of the BFM introduced
in section 3 show an slightly improved registration result.

Comparing the results when adapting the three different deformation priors
with the ICP method the BFM model leads to the best lateral registration. The
stronger prior of the BFM helped to register the outlines of the facial features
better than using the analytically defined models without annotations.

All models adapt to the outlines of the facial features equally well using the
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Our template without a back head does not help to continue the face towards the
back of the head neither.

Discussion and Future Work We demonstrated how to incorporate informa-
tion from different dimensional domains into registration probabilistically. The
information can be used in the domain it originates from. Using Gaussian pro-
cess models in conjunction with sampling we perform model based registration.
We showed that line features help to increase the lateral registration for analyt-
ically defined and learned models. Information from data originating in domains
with different dimensionality are integrated in a general and concise way using
the generative model and the MH filtering approach. The integration scheme is
open for a transition from reliable manual annotated contours to unreliable ones
from bottom-up detection algorithms. Using deterministic proposals based on the
idea of the ICP algorithm helped to speed-up the convergence while breaking the
unbiased estimation of the posterior. In the experiments the MAP-solutions using
the biased sampling show a superior lateral registration quality.

In the future the stability of the estimated MAP solution when using directed
proposals should be investigated. An alternative would be to study different sam-
pling algorithm and their behavior when mixing directed proposals with Gaussian
diffusion moves. To get an unbiased posterior estimate the directed proposals can
be dropped after a burn-in phase. If the MAP estimate and not the full posterior
is needed the MH sampling scheme could be replaced by a stochastic optimization
algorithm as for example simulated annealing.

To get a fully automatic registration landmark detections as demonstrated
in section 4.1 can be used instead of user provided landmarks. Further a 3d
landmark detection as for example proposed by Schneider et al. in [74] can be
integrated. The automatic detection of the outlines of facial features is an open
point. Given a probabilistic detection the integration can be done in a similar way
to the landmark providing robustness to partially wrong detections. Integrating
more features could help to stabilize the registration as for example curvature or
the surface color can provide hints about which regions correspond to each other.
To broaden the applicability to uncalibrated scanner systems the assumed known
projections for each color images and the registration of partial shells could be
estimated as well. It remains open to analyze the stability of the solution when
estimating also the calibration.

A strong prior is useful in the beginning of the registration but hinders the
adaptation to fine grained details. A multi-resolution registration scheme could
help to get better registration results. Starting of by adapting the global shape
and finally matching more and more smaller details. First a smooth deformation
model could be adapted before using more flexible models. This could be combined
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with the registration of more and more local regions followed by a fusion of the
different registration results. Alternatively to the multi-resolution strategy the
refinable property of multi-scale kernels (see [59]) could be exploited to build more
flexible priors. To capture the variability of these models more basis deformations
need to be approximated increasing the computational burden.

To reduce the artifacts in the temple region a full head model could be used
in the future. The full head model should incorporate a template with a complete
head surface in combination with a deformation prior covering also the back of
the head. Such a model was already used by Amberg et al. in [6] built from MRI
scans. Using Gaussian processes a spatially varying model (see [34]) could be built
to force the back of the head to deform more smoothly than the face.

4.3 Missing Data

There are many situation where the surface of a face can not be observed com-
pletely. Either scanning artifacts or a limited view angle can cause holes in the
surface. In reconstructive surgery some parts of a face might be missing or de-
formed due to an accident or a disease. Also the scanning environment might not
be fully controllable and objects may occlude the face from the scanner’s perspec-
tive. We show that we can adapt our method in these situations to robustly handle
the missing parts of the surface.

Observing a surface only partially can cause problems during registration. The
assumption that the closest-point-on-surface is a good estimate for the correspond-
ing point does not hold any more. For all the points of the model with missing
counterparts in the target the closest point will most likely lie on the border of the
observed surface around the hole. The wrong estimated correspondences can cause
strong and unwanted deformations of the surface. The deformation is stronger if
a larger region of points gets a wrong estimated correspondence in a similar di-
rection. A strong prior can cope to some extent with missing data. But also a
statistical model as for example the BFM is influenced if a large connected region
is missing.

We investigate the influence of missing data when predicting the shape for a
missing nose. We adapt our model based registration. The registration result is
then used as completion for the nose. The former introduced face scans serve as
ground-truth. In an experiment we remove artificially the nose and predict the
complete shape.

We compare three ways of handling missing data for model based registration.
The first approach is to ignore that a larger region of the target surface is not
observed. This shows the capability of the model prior to handle missing data.
As a second approach we change the Gaussian noise assumption of the surface
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likelihood. We account for missing data using a mixture of Gaussians to model
the deviation of corresponding point pairs. We compare our sampling based ap-
proaches with a variant of the gradient based registration approach proposed by
Lüthi et al. in [50]. To handle partially observed data with their approach we
replace the mean squared distance metric with the robust error function of Geman
and McClure introduced in [72].

Prior Work In [17] Blanz et al. proposed a way to predict a complete surface
from partial observations. The prediction is a MAP solution assuming isotropic
Gaussian noise for all observations using a mean square error metric. In [10] Baka
et al. provided a solution when individual noise variances for each observation are
assumed. In addition they compute a new model for each reconstruction using an
individual alignment step based on the observed parts. Albrecht et al. proposed
in [3] a method to compute an explicit posterior model given partial observations.

While all former approaches assume known correspondence Blanc et al. pro-
posed in [14] a method to estimate confidence regions for the reconstruction while
solving also the correspondence problem. They assume that only parts from the
modeled surface are observed.

Method We tackle the completion task without known correspondence and not
assuming that only modeled parts of the shape are observed. Our method is based
on the non-rigid registration method introduced in the preceding section 4.2. We
use the BFM as statistical model prior. The strong prior of the BFM can help
to cope with missing data to some extend. We use the MAP estimate in our
experiments as reconstruction.

A Gaussian noise model for the estimated correspondences in the surface like-
lihood is not suited for robustly handling missing data. The assumption is reason-
able only for overlapping and closely matching surfaces. It is clearly not adequate
when a considerable portion of the surface is missing. We use the next simplest
model to handle missing data in the likelihood and replace the Gaussian distance
likelihood for corresponding points xi and x̃i with a mixture of Gaussians

ℓ({xi(θ), x̃i}) =
J
∑

j

πjN (x̃i|xi(θ), σ
2
j I3) ,

J
∑

j

πj = 1 . (4.20)

Here I3 denotes the three-by-three identity matrix. Setting J = 2 leads to clear
interpretation of the mixture. The weights πj specify how much of the data we
expect to be missing. The two variances σ2

j specify the distribution for the true
correspondences and the correspondences where data is missing separately.

To use the ICP-based proposals we need to adapt the correspondence function.
The ICP-based proposal uses the closest-point-on-surface function to estimate the
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correspondence. But points of the reference with their ground-truth correspon-
dence in the region of a hole get their corresponding point predicted far away.
The point will mostly lie somewhere on the border of the hole. We separate out
all correspondences by dropping all doubtful correspondences where the estimated
point lies on the border of the target mesh. As we have a very high resolution
target mesh and as we search for a point on the surface and not only among the
vertices we lose only little information.

We use the pruning of correspondences only for the ICP-based proposals. The
surface likelihood involves all estimated correspondences. The robustness of the
likelihood stems from the changed noise model. Compared to the ICP-based pro-
posals we can use the robust likelihood in the adaptation of the model to different
data where the notion of a border does not exist.

Experiments In our experiments we remove the noses from complete face scans
simulating pathological cases. We use the manually annotated lines and landmarks
to guide the registration. We discard the landmark where the philtrum joins the
columella as it would provide additional information to complete the nose. As
deformation prior for the registration we use the reduced version of the BFM with
5’000 vertices introduced in the former section 4.2. We compare three different
methods to register the face scans with missing noses.

As reference algorithm we use the modified version of the method proposed
by Lüthi et al. in [50] with the outlier tolerant Geman-McClure [72] metric. The
face model is first aligned to the scan rigidly using the landmarks. Then a poste-
rior model based on the annotated landmarks is built using the Gaussian process
regression introduced in section 2.1.6. The model parameters are then adapted
using a standard LBFGS optimization algorithm. We will refer to this method as
gradient based method. All other approaches use sampling for the adaptation and
do not rely on the posterior model.

We compare the gradient based method with our registration method intro-
duced in the last section. Only the strong prior of the generative model helps to
handle missing data. Neither the likelihood is changed nor the border condition is
used. We will refer to this model as prior method.

To account for missing data we change the surface likelihood of the former
method to use a mixture of two Gaussians. We set π1 = 0.8 and σ1 = 1mm for
the inlier distribution. We model the outliers in the mixture with π2 = 0.2 and
σ2 = 50mm. We refer to this method as mixture method.

To adapt the model using the prior and mixture method we use the biased
method from the last section. ICP based projection proposals are mixed into
the proposal distribution with probability 0.01. The correspondences with the
target points on the border of the scanned mesh are ignored for the ICP based
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projection proposal. The other 99 percent of the proposals stem from a Gaussian
random walk filtered with the manual annotations. The landmarks and lines are
integrated through separate filtering steps. The full posterior is then used to filter
the combined proposal distribution.

We run the optimization of the gradient method until convergence. For the
sampling based method we draw 10’000 samples and use the sample with highest
posterior as MAP estimate.

Results To evaluate the registration results we use the root mean squared (RMS)
distance to the ground-truth surface with the nose. We expect that if the hole is
influencing the registration the RMS distance will increase in the region around
the missing nose. We show different registration results in Figure 4.13.

In Figure 4.14 a quantitative result is presented. Similar registration residuals
can be observed among the approaches that handle missing data. Our proposed
mixture method performs best. As we can readily integrate the line features the
ears are much better registered compared to the gradient based method.

Discussion We have shown different methods to register meshes where a part of
the data is missing. The registration quality is better for methods handling missing
data explicitly. The prior method ignores the fact the there is missing data. Only
the model prior is used to handle missing data. The method underestimates the
length of the nose systematically. The completed meshes have the tip of the nose
shifted towards the back of the head.

Our framework can easily integrate different types of informations as shown
in the former chapters. This lead to the better registration especially in the re-
gion of the ears. Further an adaptation of the surface likelihood is sufficient to
handle missing data. We demonstrated that using a mixture of Gaussians in the
surface likelihood accounts successfully for missing data. The parameters of the
mixture have a clear interpretation and are intuitively adaptable to different set-
tings of missing data. The method shows the best performance among the tested
registration methods.
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Chapter 5

Occlusion-Robust Fitting of

Face-Portraits

Analyzing real world photographs of faces is often difficult due to occlusions. We
propose a way to handle occlusions explicitly when analyzing a face in a 2d image.
We demonstrate our model based image analysis method for face occluded with
hair.

Generative models proved useful for different applications in 2d computer vi-
sion. In face recognition the modeling and therefore inherent handling of pose and
lighting lead to state of the art performance as demonstrated by Schönborn et al.
in [79]. In the cooperative recognition setting however no strong occlusions are
present. Often the adaptation of a generative model to an image fails when the
modeled object is partially occluded.

The Basel Face Model (BFM) [63] does not model hair. Variations due to hair
strands are explicitly excluded from the model. Therefore images depicting hair
strands covering a part of the face can not be explained by the BFM itself. Those
images pose a major problem leading to bad fitting results.

With outliers present in the image the model would ideally adapt only to
those image regions where the face can be seen. During fitting all parts of the
image where hair is depicted or an unknown object occludes the face should be
ignored. In our approach we explain the full image using three competing models.
A background model explains everything outside the face. The BFM explains
the visible parts of the face. An additional model explains occlusions in the face
region. In Figure 5.1 a rough segmentation into background, occlusions and face
is depicted.

We integrate occlusion masking into the used image likelihood when adapting
the model. We present two different ways how to determine an occlusion mask
and compare the fitting results to a baseline with no explicit occlusion treatment.
The first mask is a dynamic face and outlier segmentation based on the actual
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scheme. They used a laplacian distribution to model inliers. The laplacian distri-
bution is a rather strict assumption suited for near baseline stereo but inappropri-
ate in an early phase when adapting a generative model to an image. Additionally
they reported that large near uniform colored areas are adverse. For close-up face
images a larger area on the cheek or the forehead is covered with near uniform
colors.

In [86] Storer et al. proposed to first reconstruct an outlier free image based on
a robust PCA before processing the image further. The PCA based model used
for the reconstruction is similar to the Eigenfaces approach introduced in [95] by
Turk and Pentland. The approach is known to work best for aligned frontal faces.
This limits the variability of images that can be handled by this approach.

Yang et al. proposed in [105] to estimate confidence weights for image regions
when predicting facial alignment. The weights are based on the consistency of
predictions from local regression forests. Their method could be integrated into our
method as bottom-up proposal for the facial feature locations and as an additional
face visibility prediction.

Other approaches related to ours target explicit hair segmentation. In [101]
Wang et al. introduced a method for an exemplar-based segmentation based on
patches with local similar appearance. The segmentation for the patches are known
and fused to a segmentation prediction. In [104] Yang et al. use the fit of an AAM
to get initial strokes for hair, face and background. The strokes are refined and used
as seeds for a trimap segmentation. In [43] Julian et al. use an active shape model
fitted to the hair region to extract the hair color and texture. This information is
then used to calculate a pixel wise hair classification as a final result.

These approaches assume already established correspondence to initialize the
segmentation while we aim to tackle the correspondence problem. However these
approaches could be used to get a hair prediction given an model state. This could
be used to improve our dynamic occlusion prediction approach.

We develop our method based on the work of Schönborn et al. presented
in [77]. They showed the importance of a background model competing with the
face model. Ignoring the part of the image not explained by the face model leads
to an implicit model assumption. An explicit background model is introduced
competing with the face model for the explanation of the full image. We propose
to go a step further and use an additional model for occlusions competing with the
face model in the face region. The model used to explain a pixel in the foreground
is selected using a mask.

We compare two methods to predict this mask. One mask is determined dy-
namically trough the model state and the image only. The dynamic mask can
therefore be used for masking everything that cannot be explained by the model.
The second mask uses a bottom-up pixel-wise predicting for hair and non-hair. A
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learned decision forest is used for the prediction. Only the face size is assumed to
be known approximately.

Method Our method is based on the image interpretation scheme introduced
in [78] by Schönborn et al. (see Section 2.3.1). As generative model, the BFM [63]
(see Section 2.1.5) is used to produce an image I(θ) given a parameter vector θ.
The complete image is explained by the face model and an additional background
model. Recall the total image likelihood model is

ℓ(θ; Ĩ) =
∏

i∈FG

ℓFG(θ; Ĩi)
∏

i∈BG

ℓBG(Ĩi) , (5.1)

where i denotes a pixel position. Each image pixel is therefore explained by either
the face model using ℓFG or the background model using ℓBG. The assignment
is a hard decision and given trough the model state. Rendering the face predicts
only a part of the image. This image interpretation model is strongly affected by
occluded face regions. Occlusions as for example hair strands are not part of the
appearance part of the BFM and hence can not be represented using the model.

We propose to separate the face region into two regions. One region where the
face is visible and an other region where the face is occluded. We use an additional
binary mask f indicating where the face is visible (f = 1) and where it is occluded
(f = 0). We change the total image likelihood model (5.1) using a face likelihood
ℓF and an occlusion likelihood ℓO to

ℓ(θ; Ĩ , fi) =
∏

i∈FG

ℓF (θ; Ĩi)
fiℓO(θ; Ĩi)

(1−fi)
∏

i∈BG

ℓBG(Ĩi) . (5.2)

The foreground background segmentation is given by the rendering process and
the model state. There is no uncertainty about this segmentation. We omit the
background part for the reminder of the discussion. For a single pixel i from the
foreground the likelihood is given by

ℓ(θ; Ĩi, fi) = ℓF (θ; Ĩi)
fiℓO(θ; Ĩi)

(1−fi) . (5.3)

The occlusion mask is not known a priori. We assume that a probabilistic
prediction can be inferred. Then we need to handle the uncertainty. We use the
Bayesian approach an marginalize over the states of the mask f . As the expected
likelihood for the foreground we get

E
[

ℓ(θ; Ĩi)
]

= ℓF (θ; Ĩi)pi(f = 1) + ℓO(θ; Ĩi)pi(f = 0) . (5.4)

An open point is how to determine the mask, so to speak the certainty of
pi(f = 1). We compare two methods to find a suitable mask. First we use an
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idea inspired by the constant background model assumption introduced in [77].
This leads to a prediction for occlusions independent of which object occludes the
face. Occlusions are assumed where ever the face model can not explain the image
sufficiently. A dynamic foreground mask can be calculated as the ratio of a face
likelihood ℓF and an occlusion likelihood ℓO:

pi(f = 1) =
ℓF (θ; Ĩi)

ℓF (θ; Ĩi) + ℓO(Ĩi)
(5.5)

We use (2.39) as face likelihood ℓF based on a Gaussian noise assumption and
a chosen value σF . The likelihood for the occlusion is modeled as a constant
likelihood according to (2.40). We use the value corresponding to the likelihood
of a color difference of kσF under the face likelihood. The noise model should not
be too strict as neither the texture, the shape nor the light but only the pose is
adapted. Otherwise the hole face would be masked as occlusion when the model
adaptation is initialized. We reestimate the mask for each sample during the model
adaptation.

The second method provides a mask tailored to occlusions stemming from hair
strands. A decision forest is trained to rate each pixel i with a likelihood h(i)
of depicting hair covering the face. The features used are Gabor filters and HOG
features extracted from a patch centered at the pixel. These features are well suited
to distinguish the structure of hair and skin in high resolution images. More details
on the decision forest are given in the Appendix A.4. The output of the decision
forest is a probability map h(i). The map encodes the believe of the detector that
a pixel at position i depicts hair.

The hair probability map h(i) is then combined with a model prior g(i). The
prior express our prior assumption that hair does not cover the location of the eyes,
the nose and the mouth. These face areas containing facial features are crucial for
concise fits. But in exactly these regions the decision forest produces many false
positives predictions for hair(see Section A.4).

We use a mask (see figure 5.2) annotated on the model for the regions of the
facial features. The mask is then rendered into the image domain. The final weight
mask pi(f = 1) for a pixel i is then calculated as:

pi(f = 1) = 1− h(i)g(i) . (5.6)

Both masks, the dynamic and the static mask contain false predictions. But
often the masks tend to be close to binary decision. This depicts an exaggerated
confidence. We correct the too high confidence by assuming fp false positives and
fn false negatives for the masks by applying the transformation

p̄i(f = 1) = pi(f = 1)(1− (fn+ fp)) + fn (5.7)

to each mask.
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Figure 5.2: The green area depicts the non-hair mask prior. The mask is rendered
to the image using the actual model state. The generated mask is used to lower the
influence of frequently false positive hair predictions in the facial feature regions.

Experiments We test our extended foreground model when interpreting images
of faces with occlusions stemming from hair. All images are taken from the AFLW
database [46]. As the detector is trained mainly to respond to scalp hair we selected
the images with focus on hair strands covering the face. We use the BFM with 50
components for the shape and the texture. For the experiments the standard nine
landmarks are annotated by an experienced user.

The landmarks are used to initialize and guide the model adaptation. They
are integrated through a MH filtering step introduced in Section 2.3.4. We assume
a isotropic Gaussian noise for the annotation process with σ = 2px. The basic
proposals are block-wise random walk proposals in the parameter space. For each
block of parameters we use a mixture of proposals distributions with different
ranges. We draw 10’000 samples from the Markov Chain and use the sample with
the highest posterior value as MAP estimate.

The used noise model for the face likelihood is set to the empirical determined
value of σF = 0.059. For the background and occlusion models a constant likeli-
hood is used. For the occlusion model we set k = 3 and k = 2 for the background
model. We correct the used masks for a possible too confident estimation and
possible errors using false positive and false negative rates of 0.05.

We then compare three models. The simplest model is to not account for
occlusion at all and therefore use only a foreground and a background model. This
corresponds to the total likelihood proposed by Schönborn in [77]. We refer to this
model as baseline model. The second model uses the dynamic occlusion mask
determined by the ratio of the face likelihood over the occlusion likelihood. The
face likelihood competes with constant occlusion model. We refer to this model
as dynamic model because the mask is determined for each sample individually.
The third model uses the predicted hair mask from the detector. We combine the
mask with a dynamic foreground prior. The foreground prior in the facial feature
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regions (see Figure 5.2) is set to 0.8. We refer to this model as static model.
We assume a loose noise model for the face likelihood with σF = 0.1 when

determining the dynamic mask. We do not adapt the occlusion model during
the sampling run. The dynamic model needs to be balanced according to the
discrepancy of fitting quality at the beginning and at the end of the adaptation.

Results The results in Figure 5.3 show as expected the superior performance
when using our proposed static method. As for the baseline method not handling
occlusions leads to distorted fitting results.

At the beginning of the adaptation the model does not explain the image so
well. Nevertheless the dynamic foreground mask is often close to a good seg-
mentation (see Figure 5.5). But the dynamic model excludes too often the facial
features and hence does not adapt them. These features are needed to produce
more authentic reconstructions. Further as we update the model mask for every
sample the mask can drift away ending in a state where the hole image is explained
as occlusion. Updating the mask less often could help to overcome this problem.
Otherwise a prior that only a certain fraction of the face is occluded could reduce
these error cases.

Even that the hair detector is not perfect the static segmentation of the occlu-
sions leads to more characteristic fitting results than using the two other methods.
But also the results using the static method show some shortfalls (see Figure 5.4).
Red lips or other facial features lack color in some results. For some images the
model tend to grow into the background region where colors similar to the face
are depicted. This leads to too corpulent reconstructions while still placing the
facial features at the right location. For the id 02846 the hair strands are not
detected completely. This causes a miss alignment of the cheek. Overall out of 34
images with hair strands occluding the face 19 show visually pleasing reconstruc-
tions. Twelve image show corpulent reconstruction as the model grows into the
background. Two results show bad registration of the cheek and one image depicts
a young girl with high weight which we assume has no likely representation under
the used face model.

We found empirically that using 2σF for the occlusion and the background
model leads to an stronger, unwanted growing of the face region using our static
model. The reason for this behavior can be seen if we look at plots of our proposed
likelihood when using the static model. We plot the likelihood for different values
in Figure 5.6.

In 5.6a 2σF are used for the occlusion model and the background model. The
curves correspond to different values of the certainty that a pixel depicts the face.
The plot of the likelihood over the color difference shows that given a difference
smaller than 2σF the foreground model is always at least as good as the background
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Figure 5.5: The figure compares the initial and final masks of the dynamic and
the final mask of the static model. After initialization the mask of the dynamic
model is not completely wrong. But during the adaptation the mask drifts of-
ten away predicting a too large occluded area. The static model shows a better
prediction for the occlusion mask.
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model. This completely ignores the mask. Setting the occlusion model to 3σF
leads to a situation where it depends on the predicted mask when it is beneficial
to explain a pixel with the foreground model and when as background.

Looking at 5.6d we can see why the model tends to explain the background for
similar colors also for 3σ. We plot the likelihood for different color distance over
the probability of a pixel being part of the face. When the model can explain a
pixel (red) then the model does better by explaining the pixel even for a low face
probability of the mask. This explains why we observe often that the model grows
over the face border when hair or hands with similar color lie next to the face.
This shows that the three models for face, occlusion and background need to be
balanced carefully.

Conclusion We showed the better fitting results when integrating a face mask
into the foreground likelihood to handle occlusions. We showed that a dynamic
mask changing with every sample is often too unstable in the early model adap-
tation phase. The experiments showed that a static mask leads to good fitting
results. We used a bottom-up hair prediction for the static mask. We are able to
handle images with hair strands occluding the face. Further we showed that the
three models explaining an image need to be well balanced in order to prevent too
corpulent reconstructions.

A weakness of our dynamic method is the pixel-wise evaluated image likelihood
in contrast to the rather smooth color model. The assumed pixel wise correspon-
dence is at least in the region of facial features not an good choice. When the
model is off only a few pixels the sclera is compared quickly with possible dark
face painting. The small shift can hence cause the masking of the feature region.
Comparing regions instead of single pixel values could soften this effect. A regional
comparison could also lead to a likelihood corresponding better to the human per-
ception about the relative quality of to two possible model explanations. A further
alternative is to determine corresponding points instead of using the pixel posi-
tions. Then the model state is rated based on the found distances similar to the
idea of ICP. To rate the model explanation Romdhani et al. considered in [67] the
distance between edges predicted from the model and edges extracted from the
image among other cost terms. This helped to find better model explanations.

In a future extension both occlusion handling schemes could be combined.
When the model is not yet adapted the static masking based on hair or other
occlusion detections should be preferred. The dynamic foreground masking may
show useful in a later stage when the face model is already partially adapted. The
dynamic mask could then be set more strict as we used it. A transition from the
static to the dynamic masking model during the model adaptation would also offer
a mechanism to correct possible wrong detections using the model as a verification
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step. The dynamic model could further be extended with a region dependent
occlusion masking. This could be used to account locally for different different
average fitting errors. So we could achieve a stricter outlier masking in the cheek
region while using a more forgiving masking scheme in the region of facial features.
Alternatively to the dynamic mask also one of the methods [44,101,104] discussed
in the section 5 could be used.

We integrated only a bottom-up prediction for occlusions in the face region.
As a future extension a full segmentation of the image should be integrated. Using
a segmentation of the image we can introduce additional constraints. We can
force the model to either explain a segmented region completely or to not consider
the region. The model tends to explain nearby pixels with colors similar to the
face. The model leaks into the background. With the integrated segmentation
the model would be forced to explain or ignore the full region. The model could
ignore the pixels with similar color next to the face more easily. This could help
to prevent the model leaking into the background. Integrating the model state
into the computation for the segmentation would then lead to a simultaneous
registration and segmentation algorithm.
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Chapter 6

Medical Data Analysis

Face analysis is not the only domain we could apply our method to. We show in
this chapter two examples where we apply our method to medical data analysis
problems. In medical data analysis deformation models are useful to predict the
complete shapes of pathological observations. Further deformation models can be
used when registering volumetric data. The registration result can then be used
to transfer labels from one volume to another.

In both examples we build a parametric deformation model using Gaussian
Processes based on analytically specified kernels and a single example as reference.
Given the probabilistic formulated registration problem we then draw samples from
the posterior using the sampling based approach. We use the samples with the
highest posterior value as MAP-estimate to solve the problem.

The first problem we tackle is to complete the cranium of a skull with an
artificial hole. The problem is different from the already seen nose completion
example in two ways. First the used deformation model is less specific as we use a
analytically defined and not a learned model. Second the data is more challenging.
The skull bone is defined by an inner and outer surface. Further, in the region of
the teeth the shapes contain artifacts.

In the second example we transfer labels from one MRI image to another. We
use our framework to solve the image-to-image registration problem. We use the
sampling method to find the volume deformation that best maps the atlas onto
the target. The resulting deformation is then used to transfer the labels.
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Figure 6.2: The colored points mark the seven landmarks which are annotated
manually. The landmarks are placed only in the jaw and eye region and not
close to the artificially introduced holes in the cranium. The landmarks guide the
registration in the complex areas only.

us a mixture of Gaussians with different standard deviations for the observed
and missing parts of the skull. The weights of the mixture correspond to our
assumption of the expected amount of missing and observed data.

To guide the adaptation in the region around the mouth we use seven land-
marks. The used landmarks are shown in figure 6.2 all of them can be placed easily
by an experienced user. None of the landmarks are close to the missing part. We
integrate the landmarks through filtering with the correspondence likelihood from
equation (2.41).

We assume that the observed landmarks are independent of the observed sur-
face given the parameters θ. This leads to the posterior

p(θ|ΓT , LM) ∝ p(θ)ℓ(θ|LM)ℓ(θ|ΓT ) (6.1)

assuming independence. We then use the integration through filtering scheme to
integrate the landmarks and the surface. As basic proposal a Gaussian random
walk is used.

In figure 6.3 a problem caused by the inner and outer surface of the cranium
is illustrated. When during the registration process the moving bone slides over
the target bone two local optima can appear. The optima appear when the target
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square exponential kernel with a standard deviation of 50mm and 20mm and a
scaling of 50 respectively 20. We approximate the model with 50 basis function.

During the adaptation we use the landmarks in the landmark likelihood assum-
ing a standard deviation of 1mm for all landmarks. In the mixture of Gaussians for
the surface likelihood we have chosen the standard deviations as 1mm and 50mm.
We expect up to 30 percent of missing data so we have chosen the weights as 0.7
for the small Gaussian and 0.3 for the large Gaussian.

The skulls are aligned rigidly using the seven landmarks as initialization. Start-
ing from the aligned state 2000 samples are drawn from the sampling chain. We
use a mixture proposal distributions with Gaussian diffusion moves scaled by 0.1
and 0.01.

We use the sample with the highest posterior value as MAP-estimate. The
sample is then taken as completion result. We compare the ground truth with the
completion using the RMS mesh distance. We evalute the mesh distance using all
model points and the closest points on the complete target.

We compare our proposed method (SCPN ) with a version where the surface
likelihood is replaced to use a single Gaussian with a standard deviation of 5mm.
The comparison to the method refered to as Gaussian shows the importance of
the mixture distribution.

As a third version of our method we modify the ICP-based proposals. We do
not include the normal information but use the standard euclidean closest point.
We refer to this method as SCP.

We compare our method also against an ICP-based method. We use the ICP-
based proposals only. We use the version of the ICP-based proposals where we drop
correspondences falling onto a border of the target mesh. Further the annotated
landmarks are kept as fix correspondences for the projection step.

Results The quantitative results show clearly that not treating missing data
in the surface likelihood leads to poor results. The Gaussian method performs
significantly worse than our method (SCPN ). Ignoring the normals (SCP) in the
directed ICP-based update proposals lead to slightly worse result than using our
proposed method. The modified ICP method show an average L2-distance between
our proposed method SCPN and the SCP method. Our method performs best
for completing these four skulls with a generic deformation model using a single
complete skull as a template.

Comparing the results shown in figure 6.5 and 6.6 qualitatively we can see
that our method SCPN and the modified ICP method reach similar results for
the targets 10 and 15. The reconstruction of the upper cranium of the target
10 matches the ground-truth closely. The strong bump on the back head is not
matched accurately by either method. The reconstruction of the rear part of the
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cient for smaller holes. A data based deformation prior would help to improve the
prediction also for larger missing parts. We further demonstrated that incorporat-
ing the normals helped to adapt the model when the target shows a more complex
structure than a single surface as for faces.
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Figure 6.7: The figure depicts a sagital slice through the MRI image of the
subject na04 from the NIREP database [23] and the associated label map.

6.2 Image-to-Image Registration

In medical image analysis it is often tedious to process 3d data manually. As a
showcase we look at the task of labeling functional structures in 3d MRI images of
brains. In figure 6.7 an exemplar MRI slice with associated labels from the NIREP
database [23] is depicted. When marking the structures manually the regions need
to be segmented slice by slice with often no or only little computer assistance.
When labeling a series of MRI images from the same species the labels can be
transfered from one brain to another. To do so the MRI of one brain is registered
onto the MRI of another brain. We search a warp-field transforming one MRI in
such a way that it looks like the other MRI. The labels can then be transfered using
the estimated warp-field. Transferring the labels could easing or even automating
the labeling process.

We use Gaussian processes to build a deformation model and sampling to adapt
the model. We then formulate the task of registering two MRI images of brains
(see Figure 6.8) of different persons as a MAP estimation problem. We search
model parameters that generate a warp-field so that the deformed MRI matches
the target MRI. We transfer the region labels from one brain to the other using
the estimated deformation. Comparing the transfered label with a ground truth
gives us an idea of how well we registered the brains to each other. The work [23]
by Christensen et al. introduced the NIREP database which aims to make brain
registrations comparable. To evaluate the registration quality we use the relative
overlap metric of the transfered and the ground truth labels.

Model We want to find a deformation u that maps the labeled regions from an
atlas to a target. To estimate the deformation u we register the atlas MRI image
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(a) floating (b) target (c) result (d) difference

Figure 6.8: The atlas image (na04 ) in (a) is registered onto the target (na08 )
(b). The result is depicted in (c). Fine structures are not matched exactly due to
the used deformation model. This can be seen in the resulting difference image
in (d). Depicted are always the traversal slices of the entire volume through the
120th voxel.

ΓA to the target MRI ΓT . We expect the transformed atlas to look similar to
the target and maximize therefore the likelihood of the target ΓT given the atlas
ΓA and the deformation u. Assuming a deformation prior over u we define the
registration problem as MAP estimation problem

argmax
u

p(u)p(ΓT |ΓA, u) .

We use a Gaussian process model as deformation prior. The domain Ω of the
Gaussian process is the voxel grid. The deformations are a vector field u : R3 → R

3

as already known from the face examples but this time the deformations are used
not only on a surface but through out a complete volume. We assume that smooth
deformations can map one brain to another and use the square exponential kernel
(2.1.3) to specify the prior over the deformations. To get a parametric model we
calculate a low-rank approximation with a fixed number of basis functions. A
deformation field is then a function of the model’s parameters θ. The induced
prior over the deformation is given as

p (u(θ)) = p(θ) ∼ N (0, I) (6.3)

To estimate the MAP solution we use a MH-sampling scheme. We use diffusion
move proposals, i.e. a random walk in parameter space. As proposal distribution
we use a mixture of Gaussians. The mixture accounts for the different phases
during adaptation. In the beginning larger step helps to traverse the parameter
space quickly while smaller steps help to explore also local modes.

We filter the proposals first with the prior so that they follow the standard
Gaussian distribution, thus obeying the model we designed. To force the model
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to explain the data we further filter the samples with a likelihood over the image
domain assuming independence between all voxels. The brains of two persons will
show the same global structures but they will always depict some differences in
small scale structures. Using our smooth deformation model will therefore show
minor differences also for well registered brains. To account for these differences
we use a mixture of two Gaussians as color likelihood:

p (ΓT |ΓA, u) ∝ ℓ (θ; ΓT ,ΓA) =
∏

x

ℓ (ΓT (x); ΓA,θ(x)) , x ∈ Φ (6.4)

with
ℓ (ΓT (x); ΓA,θ(x)) =

∏

j

N (ΓT (x)|ΓA,θ(x), σj) , j ∈ {1, 2} . (6.5)

Here ΓA,θ is the warped atlas image ΓA with the deformation u(θ). Φ is the discrete
domain of the MRI image.

Experiments The MRI images have a resolution of of 256 × 256 × 300 voxels.
Each voxel is a cube of 0.7mm side-length. For the experiment we use a kernel with
length-scale σ = 20mm and scale s = 20mm. The model is approximated using
200 basis functions at a four times coarser resolution of 2.8mm. We interpolate
the deformations linearly in-between to get the full resolution deformation field.

We compare a 400 dimensional deformation model with half the length-scale,
σ = 10mm to see if smaller deformation allow to increase the relative overlap
measure.

As proposal we use Gaussian diffusion moves. To allow local exploration as well
as larger jumps we use a mixture of five Gaussians as update proposal distribution.
We select one of the five Gaussians with the standard deviations of 0.1, 0.05, 0.01,
0.005 and 0.001 with equal probability.

We estimated the standard color deviation for pixels in correspondence from
the color distribution in near uniform areas in a randomly chosen slice. We used
different homogeneous regions of 32 × 32 pixels resulting in a average standard
deviation of 0.02 given the colors are in the unit range [0..1]. To estimate the color
standard deviation of non-matching structures we selected regions of 64×64 pixels
with high contrast. The resulting average standard deviation found was 0.2.

To rate the resulting registration we report the relative overlap measure for
33 manually annotated functional brain regions. The relative overlap measure lies
always between zero and one. One means perfect overlapping areas while zero
means no overlap at all.

We register the subject na01 onto the other 15 subjects. We draw 20’000
samples for the registration. We evaluate the relative overlap of the transferred
labels and the annotated labels. We report the value once before registering and
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once after the registration. We compare the values with the numbers reported
in [23] for the SICLE [24] algorithm. They used only 12 out of 16 subjects but
performed a complete pair-wise registration.

Further we register subject na08 to subject na14. To analyze the convergence
behavior we draw 100’000 samples for this exemplar pairwise registration and
report the unnormalized log p-value. As long as the value increases the sampling is
not yet converged. For this setting the relative overlap measure for the Demons [91]
and the SICLE algorithm are reported in [83]. We use the result of the long run
with 100’000 samples as comparison.

Results An example registration for the brains na04 and na08 can be seen in
Figure 6.8. Even though the brains initially have a different outline the final result
looks similar. The residual error is small and only small details are not matched
well.

The long run example (see Figure 6.9) with 100’000 drawn samples show an
initial fast convergence of the unnormalized negative log posterior value (p-value)
suggesting that 20’000 samples already suffice for a coarse registration. However
the p-value increases for the full sampling run. This indicates that the global
updates are not well suited to register also the smaller details. Due to very strong
correlations between the global parameters most updates are rejected. During the
first 10’000 samples around 25% of the samples got accepted. For the last 10’000
samples the rate dropped to under 6%.

The mapping of the functional regions to the label numbers used in the NIREP
database for further results is given in table 6.1.

The experiment comparing the two models with different length-scale show that
neither of the models dominates the other clearly when comparing the relative
overlap values. The values plotted in figure 6.10 show the similar performance
when looking at all regions. However the performance for 19 out of 32 regions
increases slightly using the more flexible model. This indicates that the model
with smaller length-scale did lead to a better registration. As 100’000 samples
were not enough to reach convergence for the smoother model the full capability
of the flexibler model is not used. For a longer sampling run the model with smaller
length-scale could reach even a better registration.

In figure 6.11 the relative overlap measures are plotted when using the na01
MRI as an atlas and the remaining 15 as targets. For comparison the values before
the registration are given. After the registration the relative overlap measure is
increased a lot. Further the mean relative overlap measure for the SICLE algorithm
reported in [24] are plotted. They selected twelve out of sixteen MRI images an
registered all to all leading to 132 pairwise registrations. For the six reported
regions we get better results for three regions. Overall we perform on a par.
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Table 6.1: This tables shows the mapping between label numbers used to anno-
tate the NIREP database [23] and the functional brain areas.

left right functional region

0 background
1 2 occipital lobe
3 4 cingulate gyrus
5 6 insula gyrus
7 8 temporal pole
9 10 superior temporal gyrus
11 12 infero temporal region
13 14 parahippocampal gyrus
15 16 frontal pole
17 18 superior frontal gyrus
19 20 middle frontal gyrus
21 22 inferior gyrus
23 24 orbital frontal gyrus
25 26 precentral gyrus
27 28 superior parietal lobule
29 30 inferior parietal lobule
31 32 postcentral gyrus

shown. This is the region with the lowest average relative overlap measure.
At the beginning the sampling quickly improves the global correspondence. If

only small scale details are not yet matched the acceptance rate drops rapidly.
This is due to the random walk proposals acting globally. An increase in the
likelihood in one small region is outweighed by other regions where the likelihood
decreases. A multi-resolution approach or directed update proposals could help
also to speed-up the convergence towards the optimum.

In the future our method could be extended by incorporating detected or man-
ually annotated landmarks and a region segmentation. Detected landmarks or a
segmentation could be used as a fast to evaluate metropolis filter reducing the
amount of costly image-to-image likelihood evaluations. Reliable detections or
manually annotated landmarks could be used to calculate directly a posterior
deformation model according to [3] reducing the space of possible solutions dras-
tically. A segmentation could help to draw the attention to the boundary of the
functional regions. Forcing the border to match while ignoring the smaller errors
in uniform areas.
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Chapter 7

Conclusion

We introduced in this thesis our framework for building and adapting generative
models based on the fusion of GPMM and DD-MCMC sampling. The well sepa-
rated, probabilistic interpretable parts of the framework led to a clear concept how
to integrate additional information. We demonstrated how to integrate our prior
assumptions about an object classes mirror-symmetry. We exploited information
originating in a different domain than the tackled problem using the generative
property of our model. We could integrate parts of the well known ICP algorithm
to speed-up our inference. A discriminative appearance model for hair was inte-
grated into the generative image explanation to handle occlusions. The intuitive
adaptation of a likelihood rendered our framework robust to missing data. All
concepts used to analyze data of faces could be reused to analyze also medical
data.

The fusion of GPMM and DD-MCMC sampling led to a unifying framework
for explaining data using generative models. In the framework the different parts
are decoupled. It separates the model building from the inference. The inference
algorithm is further separated into proposals and likelihoods. A clear strength
of the framework is the explicit concept how to assemble the independent parts.
This made it easy to reuse most parts of the algorithms for different problems
through out the thesis. Further we could integrate pieces of other algorithms as
the ICP-proposal and made use of existing bottom-up detectors where we showed
the integration of random forests for feature point and hair detection. We demon-
strated the framework’s versatility solving a variety of tasks using the same basic
algorithm.

Reasonable models can be built from a single example using the Gaussian
process formulation. Generic deformations can be designed using an appropriate
kernel. Symmetries in the modeled object class can be exploited to get better
models. We showed how to build a kernel encoding the facial symmetry. This
additional constraint about the class of faces increased the specificity and gener-
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alization of the model. Learned statistical models fit into the framework using
the sample covariance kernel. The rich kernel algebra can be used to enhance a
learned model with additional flexibility. We augmented the BFM by damping the
long ranged correlation or by adding generic flexibility. The augmented models
then could represent faces more closely. Especially older people not contained in
the training data were better reconstructed using an enhanced model.

We stated the model adaptation as posterior estimation problem and used DD-
MCMC sampling to find a MAP-estimate. In its pure form the used MH sampling
algorithm led to an unbiased posterior estimate. We used the algorithm as setting
for the integration of different information in a consistent way. When integrating
directed proposals a shift from estimating the unbiased posterior towards stochastic
optimization can be made. We demonstrated the integration of ICP-based proposal
into sampling. The resulting algorithm can be understand as speeding up the
convergence towards the MAP-estimate or as extending the existing ICP algorithm
incorporating additional information. It might be possible to integrate the used
information in the ICP algorithm. However in our framework it is as simple as
defining a new proposal distribution.

We showed further the integration of existing 2d bottom-up detectors into a
3d estimation task. The output of the probabilistically interpretable noisy land-
mark detection was integrated through a filtering step. We showed that using the
noisy detectors led to a reliable, fully automatic 3d pose estimation. Further a
hair detection was used to handle occlusions during the model adaptation. The
information of the hair detector was used to extend the image likelihood model.
The resulting image interpretation could handle occlusion from hair strands lead-
ing to more robust fitting results. We used the idea of changing the likelihood
also to register the model to partial data. Using a mixture model in the corre-
spondence likelihood rendered the model adaptation robust to missing data. We
demonstrated the robust adaptation for a fully generic model as well as for the
strong prior of the BFM.

This clear concept of the probabilistic integration of information in the domain
it originates from and the inherent separation of parts in the framework made it
easy to adapt, exchange, remove or integrate individual parts. So we could apply
the same concepts of building deformation models by specifying kernels and explain
data using a generative model to tackle problems of medical data analysis. We
demonstrated this by building and adapting a deformation model for MRI images.
We successfully transfered labels from one brain to another. Due to the clear
decoupling of model building and inference in the framework only minor changes
were required to adapt the algorithm used for faces. This showed how easy it was
to come-up with and test many different variations of the basic framework. Using
our framework researchers can shift their focus to find the right combination of
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the model, possible update steps and likelihoods measuring the degree of fit. The
assembly is defined trough the framework and does not need to be redesigned when
one component is changed.

7.1 Future Work

While we have successfully applied our framework to different problems there re-
mains some open points for the future. To advance medical image analysis as well
as shape registration the framework should be extended to multi-scale models with
an adaptation scheme for them. In contrast generative image analysis would profit
greatly from integrating segmentation into the image explanation.

The extension of the framework to multi-scale models in a systematic way is
an important point. A face shows details on different levels. This inspires the
idea of adapting multiple models covering different level of details separately. This
concept is often applied in vision where first a reduced problem on a coarse scale is
solved. The solution of a coarser resolution is then refined on a higher resolution.
This scheme could be applied also to deformation models. After adapting a global
smoother deformation model local models with higher flexibility could be adapted
to represent finer details. For a successful application a method for building multi-
scale models as well as a multi-scale adaptation scheme has to be developed.

The integration of bottom-up information should be strengthened. We inte-
grated a discriminant appearance model to handle occlusions. We used the output
of our discriminant hair model only to weigh the evaluation in the foreground re-
gion. The part of the image that is explained by the model is determined only
through the model state. In future we should also integrate segmentation. Seg-
mentation could provide direct hints which part of the image should be explained
by the same model. Forcing the model to explain a segmented region fully or not
at all could feed information from segmentation back into the adaptation process.

A more thorough evaluation of the dynamic masking approach is also necessary.
The highly dynamic approach where we estimate the mask in each iteration is not
beneficial. A more conservative update scheme could lead to better results. The
dynamic masking approach introduced in the 2d image explanation setting could
also be used to determine the missing parts in 3d registration. This would make
a robust likelihood redundant which could lead to better explanations considering
only the observed parts.

We have exploited the dominant facial symmetry to get a better model. How-
ever it would be interesting to see if symmetries or near -symmetries can be learned
from sample covariances. Finding automatic near -symmetries could help to come-
up with better generic deformation models. The challenge is to analyze the corre-
lation in the domain of the reference. There for example also the used near-facial
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7.1. FUTURE WORK

symmtery is defined as mirror symmetry.
For the integration of directed proposals we were not able to provide any con-

dition under which the convergence to the true MAP-estimate is guaranteed. It
remains open to investigate if for any proposal distributions or a different sam-
pling scheme there exists some guarantees to find the global MAP-estimate. Until
theoretical properties can give hints for better algorithms we can mimic or even
combine existing stochastic optimization algorithms in our framework to analyze
their properties.

While the framework is general by design integrating problem specific parts
will be necessary also in future to find good algorithms. But researchers from
different partially overlapping problem domains can potentially exchange parts
of their work easier as the framework reduces dependencies between the different
parts. We envision an increased collaboration between researchers from different
fields in future when using our framework.
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Appendix A

Detection

Even there are many detection algorithms none of them is free of errors in uncon-
strained settings. Therefore we decided to discard approaches providing only a
single best location as for example in [103] from Xiong et al. even that they pro-
vide a clear advantage in raw speed. Instead we aim to integrate a probabilistic
output over the hole image using the generative model as validation. One popular
strategy to get a probabilistic estimate for each location is the sliding window ap-
proach introduced for face detection by Rowey et al. in [70]. For each position a
neural network is used to decide weather a face is depicted at that given location
or not.

The sliding window approach implies that only a part of the image is important.
This misleads often to the assumption that only the object is important without
any context. Bottom-up methods lacking context often show a much higher false
positive ratio. This can be compensated with a top-down verification process
incorporating a larger context. An example is the correlation between the facial
feature point locations exploited by the face model when coupling the landmark
detections in Section 4.1 to estimate the face pose.

Based on support vector machines [60, 98], deep neural networks [69, 88] or
random forest [32,56] many different algorithms evolved over time to predict for a
single location or patch about the presence of an object. We decided to use random
forests [20] due to their simplicity while still reporting high accuracy and versatility
(see [31] for a survey of classifiers). As feature representation of a image patch
we use block-structured features, HOG features or Gabor filter responses based on
the application.

We will wrap-up random forest predictors followed by a detailed description of
the features and data used for the face, facial feature and hair detection.
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A.1 Decision Forests

In the seminal work [19] Breiman et al. introduced classification and regression
trees. Learned trees were pruned to avoid overfitting. Amit and Geman proposed
in [7, 8] to combine an ensemble of trees to a single predictor. Later on the term
random forests was introduced in [20] by Breiman et al. raising the popularity. As
in random forests many trees are learned while randomizing the training process
the effect of overfitting is countered and therefore pruning is no longer needed.
Following tightly the book [28] by Criminisi et al. we will introduce the basic
concepts. The book provides a general overview on random forests and variants
for many applications under the name decision forests.

A decision forest is an ensemble of decision trees. A single decision tree can
be seen as a recursive partitioning function of the feature space into regions. A
good decision tree partitions the feature space into regions such that a simple,
often constant prediction model p(k|v) is sufficient to predict the output label k
based on the features v. The recursive partitioning maps directly to the structure
of the decision tree. Each inner node of the tree represents a specific split of one
region in the feature space dividing it into two1 regions. For every region r of the
final partitioning a specific prediction model pr(k|v) is learned and stored in the
associated leaf of the tree.

During the application phase (see Fig. A.1) a feature vector v is injected at the
root of every tree in the forest. The feature vector is then passed down each tree
according to the stored decisions h(v; f, θ). Each decision is based on threshold θ
and a real valued function f(v). Comparing the value of the function f(v) with
the threshold θ determines if the feature vector v is passed down left or down
right. The prediction stored in the reached leaf in every tree is then combined as
the prediction of the decision forest:

p (k|v) =
1

T

T
∑

t=1

pt (k|v) (A.1)

To train a forest each tree T t is learned with introduced randomness. A tree is
learned based on a randomly selected subset St of the available training data S.
The training data consists of pairs of feature vectors v with its associated label k.
Different strategies to select a subset of the training data exist. We use balanced
learning. The same number of samples are taken at random to balance the classes
in the training set. We focus here on discrete class labels k ∈ K for classification.
With only minor changes also real valued predictions, regression can be learned
(see chapter Regression Forest in [27] by Criminisi et al.).

1We restrict the tree cardinality to two. Most often only binary decision trees are used even

that in theory one could use n-ary trees.
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N1

N2

N4

L1 L2

N5

L3 L4

N3

L6 L7

v

Figure A.1: An example pathway of a feature vector v starting from the root
N1 node down to a leaf L4.

Ni

S

SL SR

fi, θi = argmin
f,θ

C (S, f, θ) , f ∈ Fi, θ ∈ Θ

Figure A.2: During training a function f and a threshold θ is selected based on
the set of samples S reaching a node Ni and a quality criterion C.

Each tree is learned recursively starting from the root node N1. A leaf is formed
if any stopping criterion is met. We estimate the class distribution p (k|v) for all
labels k given the samples reaching the leaf. If no stopping criteria is fulfilled a
random subset Fi of all possible decision functions F is taken into account as splits
at node Ni. Each function together with a threshold θ splits the data Si reaching
the node into two sets SL

i and SR
i . A quality criterion C(Si, f, θ) rates each split.

Then a function fi ∈ Fi is selected according to the quality measure C. We use
the best performing function according to the data reaching a leaf and the quality
criterion (see Fig. A.2). Randomization is introduced into the training by the
random selection of the training data and the subset of possible split functions.

As quality criterion we use the information gain known from probability theory
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or information theory. Information gain is defined as:

C(S, f, θ) = C(S,SL,SR) (A.2)

= H (S)−
∑

i∈{L,R}

|S i|

|S|
H
(

S i
)

. (A.3)

Here H is the entropy defined as:

H (S) = −
∑

k∈K

p (k) log (p (k)) . (A.4)

The entropy can be seen as a measure of uncertainty. The uncertainty of the pre-
diction when using a simple prediction model for a given set of labels is measured.
The information gain rates the reduction of uncertainty when using the simple
prediction model for the two sets SL and SR instead of the set S.

A.2 Face detection

We use the annotated faces from the AFLW database [46] as training data for
our face detector. We extract positive patches from all annotated faces of the
database. As potential negatives patches we use the leftover part of each image.
The negative patches are cut out with a minimal and a maximal distance to a
labeled face. The idea is to have a detector which is sensitive near to the object
but has potentially some false positives in the background. Additional negatives
are extracted using neighboring image scales to get a detector sensitive to the
size of the face. False positives of the detector can be sorted out by a top-down
verification step as introduced in [79] by Schönborn et al. using Data Driven
MCMC sampling.

We use block-features inspired by the seminal work [99] of Viola et al. with their
45 degrees rotated versions (see figure A.7). The upright and rotated versions can
be calculated efficient by a few additions and subtractions using integral images.
A separate integral image is used for each rotation. This makes it possible to pass
two integral image patches down the tree without explicitly calculating the full
feature vector. The complete feature vector would be much bigger.

We learn a decision forest consisting of binary classification trees. Each tree is
learned on a subset of the full training set. For each split a set of block-features is
generated. The rotation and the corner points of each block-feature are randomly
chosen to generate new candidate features. Thresholds are generated to split two
randomly selected samples. First the best threshold for each feature is determined
based on the information gain criterion. Then the best split is selected from all
pairs of generated block-features and thresholds. Splits are learned until either
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Table A.1: Parameters for the patch extraction and the decision forest learning
for the face detection. If nothing else is specified the size and distances are given
relative to the annotated face box.

ex
tr
a
ct
io
n

patch resolution 32× 32 px
patch size 1.5
shift width 2 px
scale factor 1.1
total positive samples 140k
total negative samples 765k
negative samples per face 100
minimal distance for negatives 0.3
maximal distance for negatives 1.0
minimal scaling factor for negatives 0.5
maximal scaling factor for negatives 2.5

le
a
rn
in
g

number of trees 256
maximal depth 24
minimal number of samples 10
data per tree 0.6
generated split functions 1000
generated thresholds 100

the maximal depth is reached, the class distribution is pure or a minimal number
of samples reaches a node. If any stopping criteria is met a leaf is formed. In the
leaf the proportion of faces reaching the leaf is stored as probabilistic prediction
model.

To detect faces a sliding window approach is used to generate candidate face
locations. Each patch is classified averaging the predictions of all trees. In a post
processing step an overlap elimination reduces the list of candidate face locations.
The most likely face of all candidate locations is selected as a face location. All
further patches with at bigger overlap than a specified threshold are discarded.
This process is repeated until a given number of face locations are found.

The parameters used for the face detection are shown in table A.1. Detection
results are shown in figure A.3.

A.3 Facial features detection

The data extraction as well as the learning of the facial feature decision forests is
the same as introduced for the face detection. The learned feature locations are
depicted in Figure A.4. The parameters that are changed for the extraction are
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Figure A.3: Some exemplary detection results of our face detector. The two
image all to the left show the top ten candidate face boxes after overlap elimination.
For the other images we depict the box with the highest face score only. The top
left and bottom right images can be considered failure cases. The first one has the
nose not in the center of the box while the second one is too small and also the
nose is off the center.

given in the Table A.2.
The detection process for the facial features is however different as for the face

detection. The output are not some candidate locations but a probability map.
Depending on the application either the hole image or only the region in a face
box is processed. On a determined scale a probability is assigned to each location.
The probability is the believe of the decision forest classifier that the facial feature
is at the given location. Exemplary detection maps are shown in Figure A.5.

Table A.2: All changed parameters for the feature detection are listed here. If
nothing else is specified the size and distances are given relative to the annotated
face box.

ex
tr
a
ct
io
n patch size 0.5
negative samples per face 50
minimal distance for negatives 0.15
maximal distance for negatives 0.5
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Figure A.4: The nine facial features learned based on the annotations of the
AFLW database [46].

A.4 Hair prediction

In real images faces are often partially occluded. Beside many obstacles that can
show up in front of a faces the most frequent are strands of hair. The haircut can
have long fringes covering the forehead down to the eyes or long hair strands can
cover any part of the face due to wind or head pose. Most approaches focus on
segmentation of hair given an initial location. To not require anything else than a
high enough resolution we use a purely bottom-up method to detect hair without
any positional information or model based initialization. We use a decision forest
learned using HOG and Gabor features.

In a first attempt we train hair against everything else in a close-up photograph
of a face. For that we labeled hair in portraits taken form the color FERET [96]
database (see Figure A.6). Based on the fact that the resulting detector had very
strong false positive responses at all facial features we decided to also label the
eyes, the tip of the nose and the mouth as hard positives. As we do not care
to distinguish between skin and background we omitted a separation of the two
regions.

We extract two different sets of features. We extract HOG-features introduced
in the pure form in [68] by Freeman et al. to recognize hand guestures. A decade
later Dalal et al. proposed to use a more sophisticated version in [29] to detect
human in images. As a second set of features we apply Gabor filters which were
already used in the mid eighties for texture classification in [51] by Turner et al.
Later Gabor features were used for object detection in [41] by Jain et al. or in

129



APPENDIX A. DETECTION

43757

46050

58780

64110

54524

57716

box nose tip r. nose wing r. outer eye c. right lips corner

Figure A.5: Some exemplary feature detection maps. The right outer eye corner
has often false positive at the right lips corner and vice versa.
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(a) images

(b) simple

(c) complex

Figure A.8: The figure depicts hair detections for a subset of the AFLW [46]
database. The first row shows the original images. Comparing the second and
third row reveals the improved performance when introducing hard negatives (see
Section A.4). The facial features, the eyes, the mouth and the nose show less
strong false positives with more hard negatives in the first two images. But the
high frequency details on the skin in the third image produce more false positives.
Further the beard in the fourth image show less true positives.
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Relation to RKHS

A related concept to Gaussian processes is the notion of a reproducing kernel
Hilbert spaces (RKHS). A RKHS is a space of functions g ∈ H. In machine
learning RKHS are used to restrict the set of functions considered during learning.
The RKHS defines an inner product and therefore a norm ||g||H. The induced
norm can be used to penalize complex solutions expressing a prior over the function
space.

The representer theorem states that a solution in the RKHS Hk induced by a
kernel k to a regularized problem of the form

min
g∈H

L(x,y, g(x)) + ν||g||2H (B.1)

where L is a loss function has a solution of the form

g(x) =
∑

i

cik(xi,x) . (B.2)

The solution to the problem in equation B.1 is regularized using the RKHS norm.
Following Mercer’s theorem a kernel k can be written using a set of eigenfunction
and eigenvalue pairs (φi, λi)

k(x,x′) =
∞
∑

i=1

λiφi(x)φi(x
′) (B.3)

The functions φi form a orthonormal basis.
As presented in [65] choosing a positive definite kernel k uniquely induces a

RKHS Hk. The RKHS is defined through considering only linear combinations of
the eigenfunctions φi. Then the norm is of the form

||g||2Hk
=

N
∑

i=1

g2i
λi

(B.4)
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This shows that regularizing with the squared norm in a RKHS penalizes coeffi-
cients of eigenvectors with smaller eigenvalues stronger. Eigenvectors with asso-
ciated smaller eigenvalues will therefore have a lower influence onto the solution.
The induced regularization given a kernel is one motivation to use a low-rank
approximation reducing the sum to a finite number of terms in equation B.3.
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Analysis of positive definiteness

We discussed in section 3.1 the construction of the face symmetric kernel. We left
the proof open that the kernel

κ(x, x′) = Ik(x, x′) + Īk(x̄, x′) ,with (C.1)

x̄ = [−x1, x2, x3]
T , and (C.2)

Ī =











−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1











(C.3)

is positive semi definite. We assume that the used kernel k is positive definite. The
full covariance matrix K̃ evaluated over the index set Ω is a sum of two Kronecker
products

K̃ = I ⊗K + Ī ⊗ K̄ . (C.4)

The matrices K and K̄ are constructed using the kernel k evaluated with the
index set Ω once with k(x, x′) and once with k(x̄, x′). We can use theorem 4.2.12
from [40] stating that the eigenvalues λK of the Kronecker product A⊗ B of two
matrices with eigenvalues λA and λB have the form λK = λAλB. While I has only
positive eigenvalues Ī has one negative eigenvalue.

As I and Ī are diagonal matrices we can rearrange the kernel matrix K̃ to
a block diagonal matrix. The eigenvalues and eigenvectors of a block diagonal
matrix are the same as the ones of the block matrices. It is therefore sufficient to
discuss if the two matrix sums K + K̄ and K + (−1)K̄ have positive eigenvalues.

Let us assume thatK and K̄ have the same eigenvectors. Then the eigenvectors
of the summed matrix K̃ are also the same. The eigenvalues of the sum are given
by adding the eigenvalues of the summands. K has only positive eigenvalues.
Given that not all eigenvalues are zero for K̄ we add negative eigenvalues in one
of the two sums we analyze as a result of the multiplication with minus one.
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Let us further assume that K and (−1)K̄ have eigenvalues with the same
absolute value. For K all eigenvalues are positive but some of the eigenvalues
for (−1)K̄ are negative. The eigenvalues of the sum are hence either doubled or
eliminated depending on the sign.

We will now first show that these two assumptions hold for the square expo-
nential kernel defined over R before we discuss the extension to the kernel over
the three dimensional space R

3. We assume that we evaluate the kernel on R in
regular intervals. We choose the positions such that they are symmetric about the
origin. Hence each entry of the kernel matrix Kij = k(xi, xj) depends only on the
difference of the indices i and j. Then K is a Toeplitz matrix. In [21] it was shown
that Toeplitz matrices have ⌈n

2
⌉ symmetric and ⌊n

2
⌋ skew symmetric eigenvectors.

Let J bet the backward identity matrix with ones on the anti-diagonal. Then a
vector v is called

symmetric ifJv = v , (C.5)

skew symmetric if Jv = −v . (C.6)

Constructing K̄ by negating xi results in the same matrix as calculating JK under
the assumption that we evaluate our kernel in regular intervals on R symmetric
around the origin.

Using that we can decompose the kernel matrix as K = UΛU ′ and that the
matrix is Toeplitz we see that we will get the same eigenvectors for K and K̄.
This corresponds to our first assumption. Further the eigenvalues associated to
skew symmetric eigenvectors will be negative in K̄. This was our second assump-
tion. Therefore the first sum K + K̄ has positive eigenvalues for the symmetric
eigenvectors and zero eigenvalues for skew symmetric eigenvectors. The additional
negation of the kernel in the sum K + (−1)K̄ results in positive eigenvalues for
skew symmetric eigenvectors and zero eigenvalues for the symmetric eigenvectors.
Both sums are hence positive semi-definite.

We verify the above findings in an experiment. We analyze the eigenvalues and
eigenvectors of the sum kernel and the two summands individually. The eigenvalue
spectrum and some eigenvectors of the first positive definite summand are shown
in green in figure C.1. In blue we show the second summand which is not positive
definite as can be seen in the plotted eigenvalue spectrum. In red the eigenvalues
and eigenvectors of the sum kernel are shown. The figure shows the eigenvectors
corresponding to the largest eigenvalues in the top row. The eigenvectors with
median eigenvalues are shown in the middle row. The eigenvectors corresponding
to the smallest eigenvalues are shown in the bottom row.

As given by the explanation above the eigenvectors are the same for both sum-
mands of the kernel. The eigenvalues have the same magnitude but different signs
for every second eigenvector. Adding the two summands every second eigenvalue
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adds up to zero and the eigenvectors are canceled. Those vectors that correspond
to large positive eigenvalues for the positive definite summand (green) but large
negative eigenvalues for the non-positive definite summand (blue) are canceled and
do not show up in the eigenvectors of the sum (red). All eigenvalues with a sig-
nificant absolute value of the sum kernel are positive. The values obtained by the
eigenvalue decomposition of the MATLAB [54] implementation that are negative
have an absolute value close to zero. We assume that this is due to numerical
inaccuracies. Also the associated eigenvectors contain only noise. The empirical
evaluation underpins our argumentation from above.

We extend the analysis of the kernel function from the domain R to the domain
R

3. In R
3 we reflect only the first axis and not the full domain. We can use the

fact that the square exponential kernel is a tensor product kernel. We follow the
argumentation from chapter 5 in [73]. There it is stated that if we evaluate the a
tensor product kernel at points on a regular multidimensional Cartesian grid we
can rewrite the kernel matrix K̄ from equation (C.4) as

K̄ = K̄1 ⊗K2 ⊗K3 . (C.7)

Hence the matrix K̄ can be decomposed using the matrices

U = ⊗3
d=1U

d (C.8)

Λ = ⊗3
d=1Λ

d . (C.9)

Forcing the regular grid to be equidistant and symmetric to the origin all matrices
Kd are again Toeplitz matrices. So we can reuse the fact that we get the same
eigenvectors in all matrices but for K̄1 we have half of the eigenvalues negated.
As both matrices K and K̄ are Kronecker products of matrices with the same
eigenvectors they have also the same eigenvectors. And the eigenvalues will also
have the same absolute values but different signs. Hence again some eigenvalues
and eigenvectors will cancel and therefore also in R

3 we have only zero or positive
eigenvalues.

For a positive semi-definite matrix holds that any principle submatrix is posi-
tive semi-definite. Therefore we can conclude that the face-symmetric kernel using
any set of points is also positive semi-definite. We can replace the square expo-
nential kernel for any tensor product kernel which in one dimension leads to a
Toeplitz matrix for equidistant points.

The above used deduction may not correspond to a strict mathematical proof.
A critical point is the assumption that we can always go to a regular multidimen-
sional Cartesian grid. However we see the it as strong indication that the kernel
is positive semi-definite. We have not spotted any problem in practice while using
the kernel assuming that it is positive semi-definite. All sampled shapes under the
approximated kernel look reasonable and satisfy our expectations.
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Figure C.1: This plot shows an empirical analysis of the face symmetric kernel
reduced to 1d. In (a) the eigenvalues are plotted and in (d) the eigenvectors. For
the discussion of the plots we refer to the appendix C.
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