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Abstract

A classical result in optimal search shows that A* with an
admissible and consistent heuristic expands every state whose
f -value is below the optimal solution cost and no state whose
f -value is above the optimal solution cost. For satisficing
search algorithms, a similarly clear understanding is currently
lacking. We examine the search behaviour of greedy best-
first search (GBFS) in order to make progress towards such
an understanding.
We introduce the concept of high-water mark benches, which
separate the search space into areas that are searched by a
GBFS algorithm in sequence. High-water mark benches al-
low us to exactly determine the set of states that are not ex-
panded under any GBFS tie-breaking strategy. For the re-
maining states, we show that some are expanded by all GBFS
searches, while others are expanded only if certain conditions
are met.

Introduction

Many classical algorithms for state-space search, such as
greedy best-first search (Doran and Michie 1966), A∗ (Hart,
Nilsson, and Raphael 1968), Weighted A∗ (Pohl 1970) and
IDA∗ (Korf 1985), are representatives of a general family
of uni-directional, expansion-based heuristic search algo-
rithms. Such algorithms are largely agnostic to the state
space to be searched, only requiring two pieces of informa-
tion to be applicable in a given domain:

• a generative model of the state space, defined in terms
of black-box functions producing the initial state, testing
whether a given state is a goal state, and producing the
successor states of a given state along with the costs of
the outgoing transition towards each successor, and

• a black-box heuristic function which estimates the cost-
to-go or distance-to-go from a given state.

An important characteristic of such search algorithms is
whether they guarantee that the solutions they produce are
optimal (i.e., have minimal total cost among all solutions).

Optimal search algorithms in this family have a fairly
well-developed theory (e.g., Dechter and Pearl 1985). For
example, we know that the A∗ algorithm (Hart, Nilsson,
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and Raphael 1968) is optimal when used with an admissi-
ble heuristic and that it never needs to reexpand states when
using a consistent heuristic. Moreover, for admissible and
consistent heuristics there is a well-known and easy to un-
derstand criterion that allows us to reason about the states
expanded by A∗:

Proposition 1. Consider the A∗ algorithm used with an ad-
missible and consistent heuristic h in a solvable state space.
Let c∗ be the optimal solution cost, and let s be a state. Then:

• A∗ will expand s if f(s) < c∗, and
• A∗ will not expand s if f(s) > c∗,

where f(s) = g(s)+h(s) and g(s) is the shortest-path cost
from the initial state to s.

While this criterion is not perfect – it does not predict
whether or not states s with f(s) = c∗ are expanded – it
goes a large way towards explaining the search behaviour of
A∗. Theoretical results of this kind are very useful to un-
derstand and explain cases where A∗ performs poorly (e.g.,
Helmert and Röger 2008). They can also shed light on how
to improve the performance of A∗-style search algorithms,
for example by emphasizing the importance of tie-breaking
behaviour, which greatly influences which states with an f -
value that is equal to the optimal solution cost are expanded
(Asai and Fukunaga 2017).

For satisficing (non-optimal) algorithms in the family, a
comparably deep understanding is currently lacking. Many
new algorithms for satisficing search have been proposed in
recent years (e.g., Imai and Kishimoto 2011; Xie et al. 2014;
Xie, Müller, and Holte 2014; Valenzano et al. 2014), yet our
understanding of the behaviour of such algorithms is still
quite limited.

For example, a recent study by Wilt and Ruml (2015)
demonstrated that (and why) improving the accuracy of an
admissible heuristic can be highly detrimental for greedy
search, while being extremely beneficial for A∗, an insight
that clearly shows how “conventional wisdom” for optimal
search algorithms fails to apply to the satisficing case.

In this paper, we attempt to reduce this gap in knowledge
by developing similar results to Proposition 1 for the most
basic and most commonly considered satisficing search al-
gorithm, greedy best-first search (GBFS). Specifically, we
consider the following questions:
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• Which states is GBFS guaranteed to expand?

• Which states is GBFS guaranteed not to expand?

• Which states may GBFS potentially expand?

We will consider these questions theoretically, by study-
ing the effect of state space topology on the expansions per-
formed by GBFS. While we can only provide partial an-
swers, we hope that our study can provide some further in-
sight into the inner workings of GBFS as well as motivate
the usefulness of asking questions of this kind in order to
improve our understanding of satisficing search algorithms
in general.

Background

State Space Topology We consider search algorithms that
operate on a state space S = 〈sI , S�, succ, cost〉, where
sI is the initial state, S� is the set of goal states, succ is a
successor function that maps each state to a finite (possible
empty) set of successor states, and cost(s, s′) gives the cost
of the transition from s to s′ ∈ succ(s). With S, we denote
the set of states of S , which for the purposes of this work
can be defined as the smallest set satisfying sI ∈ S, S� ⊆ S
and succ(s) ⊆ S for all s ∈ S.

A sequence of pairwise distinct states ρ = 〈s0, . . . , sn〉
is a (cycle-free) path from s0 to sn in S if si ∈ succ(si−1)
for i = 1, . . . , n. With P (s, s′), we denote the set of (cycle-
free) paths from s to s′. A path 〈s0, . . . , sn〉 is an s-plan if
s0 = s and sn ∈ S�. With P (s), we denote the set of s-
plans for s. We say that state s′ is reachable from s if there
is a path from s to s′.

A state space topology T = 〈S, h〉 is a state space S
combined with a heuristic function h, i.e., any function h :
S → R

+
0 . Typically, h(s) estimates the cost of a cheapest s-

plan. In this work, it suffices to regard the heuristic function
as an arbitrary black-box function that assigns some non-
negative real number to each state.1

Example 1. As a running example for this paper, consider
the search space topology 〈〈A, {T, Z}, succ, cost〉, h〉 with
unit cost function cost and where succ is given by the arcs
and h(s) by the shaded regions of state s in Figure 1.

Greedy Best-First Search The input to GBFS is a state
space topology, and the output is an sI -plan if one exists and
“unsolvable” otherwise. GBFS is driven by the assumption
that states with lower heuristic values are on a cheaper path
to the closest goal state. In each step, it expands a state that
has the lowest heuristic value among all states that have been
generated before but have not been expanded yet, until a goal
state is generated. Because of its greediness, it provides no
guarantee of optimality (or any other quality guarantee) of
the computed sI -plan. Due to heuristic inaccuracy, most
challenging search problems contain (possibly prohibitively
large) heuristic plateaus or local minima where the guidance

1In this work, we ignore states that are recognized as unsolvable
by the heuristic, i.e., with h(s) = ∞. For the purposes of state
space topology, these can be treated as if they were not part of the
state space at all.
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Figure 1: State space topology of our running example.

provided by the heuristic fails. Then, GBFS often faces sit-
uations where it has to decide which state to expand next
among a set of states with identical heuristic value.

GBFS is actually not a well-defined algorithm but rather
a family of algorithms that differ in a single parameter, the
tie-breaking strategy. Formally, a GBFS tie-breaking strat-
egy τ for a state space topology 〈S, h〉 with states S maps
all possible non-empty sets Sk ⊆ {s ∈ S | h(s) = k} to a
state s ∈ Sk. We will refer to GBFS coupled with a specific
tie-breaking strategy as an instance of GBFS. In every itera-
tion of GBFS where generated but unexpanded states (open
states) still exist and no solution has yet been found, GBFS
with tie-breaking strategy τ expands the state τ(Smin) where
Smin is the set of all open states with minimal h-value. The
tie-breaking strategy is the only parameter that sets different
instances of GBFS apart. Given a state space topology and a
tie-breaking strategy, GBFS performs a uniquely determined
sequence of successive state expansions. The search real-
ization of a GBFS search with tie-breaking strategy τ is a
sequence of states rτ = 〈s1, . . . , sn〉, where s1 = sI , si is
the i-th expanded state following τ , and sn is either a goal
state, or {s1, . . . , sn} is the set of all reachable states in case
no solution exists.
Example 2. Let τ1 and τ2 be two tie-breaking strategies
for our example topology from Figure 1. Then, rτ1 =
〈A,C,D,G, P, J,K, I,N, T 〉 and rτ2 = 〈A,C, F, I,N, T 〉
are the corresponding search realizations for τ1 and τ2.

High-Water Marks and Apex
A first attempt to explain the behaviour of GBFS is due to
Wilt and Ruml (2014), who base their analysis on the high-
water mark of a state. As high-water marks are a central
concept for this paper as well, we briefly recap their results.
Definition 1 (High water mark). Let 〈S, h〉 be a state space
topology, and let s ∈ S be a state. The high-water mark of s
is defined as

hwh(s) :=

{
minρ∈P (s)(maxs′∈ρ h(s

′)) if P (s) �= ∅
∞ otherwise.

We define the high-water mark of a set of states S′ ⊆ S as
hwh(S

′) := min
s∈S′

hwh(s).
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Intuitively, the high-water mark of a state s measures how
high the heuristic values of expanded states must climb be-
fore a solution can be found in a search starting from s. Wilt
and Ruml define high-water marks for individual states. We
extend this definition to sets of states S′ by selecting the
minimum high-water mark of any of the states in S′. This
reflects the intuition that if search begins with a set of can-
didate states S′, then search will eventually follow the “path
of least resistance” among the states in S′.
Example 3. In our example topology, the set of K-plans
is P (K) = {〈K,G, J, I,N, T 〉, 〈K,G, J, I, U,N, T 〉}, and
the set of Q-plans is P (Q) = {〈Q,R, S,M,N, T 〉}. Then,
hwh(K) = 4, hwh(Q) = 3, and hwh({K,Q}) = 3.

Wilt and Ruml use the high-water mark of the initial state
to identify a set of states that is never expanded by GBFS,
regardless of the used tie-breaking criterion.

Theorem 1 (due to Wilt and Ruml, 2014). Let T = 〈S, h〉
be a state space topology. For all tie-breaking strategies τ
and all s ∈ S with h(s) > hwh(sI), it holds that s /∈ rτ .

Proof: Shown by Wilt and Ruml (2014). �
This result separates the states of a state space into two

categories: states that are certainly not expanded by any
GBFS instance on the one hand, and the remaining states,
for which we do not know if they are expanded or not, on
the other. It is our aim in the following to further refine the
result to obtain a clear classification for a larger number of
states.

Our first result in this direction is based on the following
observation: as no state with a higher heuristic value than
hwh(sI) is expanded by GBFS under any tie-breaking strat-
egy, no state that can be reached from the initial state only
via a state with higher heuristic value than hwh(sI) can be
expanded by GBFS.

Example 4. In our running example, hwh(A) = 5, and
hence the only state ruled out for expansion by the high-
water mark criterion is X since h(X) = 6 > hwh(A).

Consider state Y of the running example. Even though we
have h(Y ) = 3 < hwh(A), GBFS will not expand Y regard-
less of the used tie-breaking strategy as both paths from A
to Y , 〈A,X, Y 〉 and 〈A,B,X, Y 〉, contain the state X with
hwh(X) = 6. As X is not expanded, Y is not expanded.

We formalize this insight by defining the apex of a state
s, which is the lowest h threshold that must necessarily be
reached before s can be expanded.

Definition 2. Let 〈S, h〉 be a state space topology, and let
s ∈ S be a state. The apex of s is defined as

apexh(s) :=

{
min

ρ∈P (sI ,s)
max
s′∈ρ

h(s′) if P (sI , s) �= ∅

∞ otherwise.

We can prove a similar result to Theorem 1 based on the
apex of states.

Theorem 2. Let T = 〈S, h〉 be a state space topology. For
all tie-breaking strategies τ and all s ∈ S with apexh(s) >
hwh(sI), it holds that s /∈ rτ .

Proof: Let s be a state with apexh(s) > hwh(sI). Then,
with Definition 2, every path ρ = 〈sI , . . . , s〉 from sI to s
contains a state s′ with h(s′) ≥ apexh(s) > hwh(sI). With
Theorem 1, we know that s′ is not expanded by a GBFS
search. This means that it is impossible that the complete
sequence of states ρ is expanded. Since this holds for every
path leading to s, s is never expanded. �

It is easy to see that apexh(s) ≥ h(s) for all states s: if s is
unreachable (i.e., P (sI , s) = ∅), this holds trivially because
apexh(s) = ∞, and otherwise it holds because every path
ρ to s must include s, and hence maxs′∈ρ h(s

′) ≥ h(s).
Therefore, Theorem 2 is a proper generalization of Theo-
rem 1.

Example 5. In the running example, X is not expanded by
any GBFS instance due to Theorem 1, and X , Y , and Z are
not expanded by any GBFS instance due to Theorem 2.

GBFS Progress and Benches

In A∗ searches with admissible heuristics, expanding a state
with a higher f -value than any previously expanded state
is a meaningful event because every time it happens, a new
lower bound for the optimal solution cost has been proven.
Consequently, such an occurrence is often interpreted as a
measure of progress of the search.

In GBFS-style searches, somewhat analogously, an event
that is often considered meaningful is when the search ex-
pands a state with a lower heuristic value than the minimal
heuristic value of all previously expanded states. For exam-
ple, the boosted dual-queue search algorithm by Richter and
Helmert (2009) uses such an occurrence to further prioritize
expansions based on preferred operators, and the GBFS-LE
family of algorithms by Xie, Müller, and Holte (2014) uses
it to determine when a GBFS search has become stalled.

Although it is intuitively appealing, reaching a new lowest
h-value in GBFS does not necessarily translate into mean-
ingful, quantifiable progress in finding a solution.

Example 6. The heuristic and high-water mark val-
ues of all states in the search realization rτ1 =
〈A,C,D,G, P, J,K, I,N, T 〉 of our running example are
as follows (bold values indicate new all-time lows):

s A C D G P J K I N T
h(s) 5 4 4 4 1 3 3 3 1 0
hwh(s) 5 4 5 4 4 3 4 3 1 0

In the search realization rτ1 of our running example, we
can see that P is the first state with a heuristic value of 1
that is expanded. Even if we have not yet defined formally
what it means to make progress in greedy-best first search,
the expansion of P does certainly not bring search closer to
finding a plan. In contrast, N is only the second state with
a heuristic value of 1 that is expanded, but expanding N is a
crucial step for finding a plan as all paths from A to a goal
state that GBFS will consider (taking into account that it will
not consider Z due to Theorem 2) pass through N .

However, it can also be seen that high-water marks offer
a better way of describing when actual search progress has
been made: the expansions of C, J , and N are certainly
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among the steps where intuitive progress is made (and all of
these states are part of the sI -plan that is eventually found
with tie-breaking strategy τ1), while expanding P does not
bring the search closer to finding a plan.

Whenever a state is expanded with a lower high-water
mark k than any state expanded before, this is a meaning-
ful event because it means that after this point, no state with
a heuristic value larger than k will be expanded. (Of course,
the disadvantage of high-water mark values is that they are
not known during the search, so they can only be used in
hindsight or when adopting an omniscient view of the state
space topology.)

To develop these ideas further, we now introduce high-
water mark benches (or simply benches). Benches are the
main structural element of a state space topology that we
will use in the following to provide a more refined analysis
of GBFS behaviour. Intuitively, GBFS expands states on a
given bench until it finds a way to exit the bench towards a
lower bench. Once a bench has been left, it is never entered
again.
Definition 3. Let 〈S, h〉 be a state space topology with set
of states S, and let S′ ⊆ S. The high-water mark bench
Bh(S

′) of S′ is a 3-tuple 〈I, B,E〉 with B ⊆ S, I ⊆ B, and
E ⊆ B. We define Bh(S

′) as follows: if S′ contains a goal
state, then Bh(S

′) = 〈∅, ∅, ∅〉.
Otherwise, let all states s ∈ S with h(s) ≤ hwh(S

′),
hwh(s) ≥ hwh(S

′), and s /∈ S� be the bench state candidate
set, and define the bench states B as the set of all states that
can be reached from some state in S′ on some path that only
includes states from the candidate set; the set of bench entry
states as I = S′∩B; and the set of bench exit states as E =
{s ∈ B | hwh(succ(s)) < hwh(S

′) or succ(s) ∩ S� �= ∅}.
We abbreviate the high-water mark of the bench states B of
a bench Bh with hwh(Bh), and write s ∈ Bh for s ∈ B(Bh).

Example 7. In our running example, consider the set of
states that contains only the initial state A. We have
Bh({A}) = 〈{A}, {A,B,D,E}, {A,E}〉. State X and all
states that are reachable from A only via X are no candi-
dates for Bh({A}) as h(X) > hwh({A}), and state C and
all states that are reachable from A only via C are no can-
didates as hwh(C) < hwh({A}).

The key property of benches is that they structure a GBFS
search into episodes: whenever a GBFS search expands an
exit state s of a bench, all further state expansions will be
of descendants of s. We call this observation the bench
exit property. It implies that the behaviour of GBFS search
would not change if, every time a bench exit state s is about
to be expanded, all other states in the open list of the search
are discarded. (Of course, to make this property practically
exploitable, we would need to know during search which
states are bench exit states, which requires global knowledge
of the state space topology.)

To see that the bench exit property holds, consider a situ-
ation where bench exit state s on the bench Bh is about to be
expanded. We can make the following observations:
• Because s is an exit state, it has a successor s′ which is a

goal state or a successor s′ with hwh(s
′) < hwh(Bh). If

it has a goal-state successor, search is about to terminate
and the bench exit property obviously holds. Hence, in
the following, let s′ be a successor of s with hwh(s

′) <
hwh(Bh).

• Let S′ be the set of states that induces Bh, i.e., Bh :=
Bh(S

′). Because s ∈ Bh, its high-water mark satisfies
hwh(s) ≥ hwh(S

′) (one of the defining properties of can-
didate states). As that property holds for all bench states
and as at least one state from S′ is a bench state (other-
wise, there cannot be a path that consists only of states
in the candidate set), we have hwh(S

′) = hwh(Bh), and
therefore also hwh(s) ≥ hwh(Bh).

• By the definition of high-water marks, we must have
hwh(s) ≤ max{h(s), hwh(s

′)} because this maximum
accounts for the high-water mark of all paths from s
via s′ to the goal, a subset of all paths from s to the
goal. Combined with the inequality from the previous bul-
let point, we get hwh(Bh) ≤ max{h(s), hwh(s

′)}, i.e.,
hwh(Bh) ≤ h(s) or hwh(Bh) ≤ hwh(s

′). From the first
bullet point, we can rule out the second option, and hence
the first option must hold: hwh(Bh) ≤ h(s).

• Because s is on the bench, it also satisfies h(s) ≤
hwh(Bh) (another defining property of candidate states).
Combining this with hwh(Bh) ≤ h(s), we get h(s) =
hwh(Bh).

• Let S̃ be the set of states that are currently candidates for
expansion, i.e., the generated but not yet expanded states.
Because s is about to be expanded and GBFS prefers low
h-values, h(s) = hwh(Bh) implies that all states s̃ ∈ S̃
must satisfy h(s̃) ≥ hwh(Bh). Because the successor s′
of s has a high-water mark strictly less than hwh(Bh), for
the rest of the search after expanding s, there will always
be a candidate for expansion with heuristic value strictly
less than hwh(Bh) until a solution is found. Hence, after
s, no state from S̃ will ever be expanded, concluding the
argument.

In summary, once a GBFS reaches a bench, i.e., generates
the entry states of the bench, it remains on the bench until
it expands an exit state (which, in turn, creates entry states
to a successor bench). Each time a GBFS search moves on
to a new bench, it has made progress towards finding a goal,
as subsequent benches have strictly decreasing high-water
marks. This also means that the search never returns to a
bench after it has left it.

To illustrate the underlying idea of benches, we define the
bench path of a given search realization rτ . It contains all
benches that are “traversed” (i.e., entered and exited) by a
GBFS search with tie-breaking strategy τ .

Definition 4. Let rτ = 〈s1, . . . , sn〉 be a search realiza-
tion of a GBFS search with tie-breaking strategy τ . The
bench path of rτ is the sequence of benches Bh(r

τ ) =
〈Bh({s1}),Bh(succ(s

′
1)), . . . ,Bh(succ(s

′
k))〉, where s′1 is

the first state in rτ that is also in E(Bh({s1})), and for
all 1 < i ≤ k, s′i is the first state in the subsequence
〈s′i−1, . . . , sn〉 of rτ that is also in E(Bh(succ(si−1))).
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Figure 2: Bench path of the search realizations rτ1 of Exam-
ple 2. Arcs between states within a bench indicate expansion
dependencies, and dashed arcs between benches show possi-
ble bench transitions. Bench entry states are annotated with
arrows, and double lined circles indicate bench exit states.

Example 8. The bench path of the search realization rτ1

of Example 2 is depicted in Figure 2. The initial bench
Bh({A}) has already been discussed in Example 7.

The next bench that is traversed by rτ1

is Bh(succ(A)) = Bh({B,C,D,X}) =
〈{C,D}, {C,D, F,G,H}, {F,G,H}〉. State E is not
on this bench as h(E) > hwh(succ(A)), while state D is
part of the bench again, this time as an entry state.

The further benches are Bh(succ(G)) = Bh({J, P}) =
〈{J, P}, {I, J,K, P}, {I}〉 and Bh(succ(I)) =
Bh({N,U}) = 〈{N}, {N}, {N}〉. State U is not on
the latter bench as h(U) > hwh(succ(I)). Finally, the goal
state T is by definition not part of any bench and depicted
only to indicate that a GBFS search terminates successfully
when state N has been expanded.2

Hoffmann (2001; 2002) also introduces a type of bench
– a so-called heuristic bench – to analyze state space topol-
ogy. In contrast to his work, we do not restrict high-water
mark benches to strongly connected components of the state
space. Instead, a high-water mark bench is defined relative
to a set of states (the entry states, which correspond to the
successor states of an exit state of the previous bench), it can
share states with other benches, and states on a single bench
can be disconnected.

The bench transition system of a state space topology al-
lows for a deeper structural analysis of GBFS behaviour.
Definition 5. Let T = 〈S, h〉 be a state space topology.
The bench transition system Bh(T ) of T is a directed graph
〈V,E〉 whose vertices are benches. The vertex set V and
directed edges E are inductively defined as follows:
1. Bh({sI}) ∈ V

2. If Bh ∈ V , s ∈ E(Bh) and Bh(succ(s)) �= 〈∅, ∅, ∅〉, then
Bh(succ(s)) ∈ V and 〈Bh,Bh(succ(s))〉 ∈ E.

2We assume that a goal check is performed upon state genera-
tion, which is adequate for a greedy search.
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Figure 3: Bench transition system of our running example.
Arcs between states within a bench indicate expansion de-
pendencies, and dashed arcs between benches show possi-
ble bench transitions. Bench entry states are annotated with
arrows, and double lined circles indicate bench exit states.

In words, the bench transition system can be constructed
by starting from the bench defined by the initial state and
then iteratively adding all further benches reached by ex-
panding an exit state of a previously generated bench.
Example 9. The bench transition system of our running ex-
ample T is depicted in Figure 3. Starting from the initial
bench Bh({A}), which is as described in Example 7, we iter-
atively select an exit state s and create Bh(succ(s)). For the
two exit states of the initial bench, A, and E, this leads to the
same successor bench Bh({B,C,D,X}) = Bh({C,D}) =
〈{C,D}, {C,D, F,G,H}, {F,G,H}〉. This is also the
case for the three predecessor benches of the bench that con-
tains only state N .

In our running example, the bench transition system is a
directed acyclic graph. As we show next, this observation
holds for all state space topology.
Theorem 3. The bench transition system Bh(T ) of a state
space topology T is a directed acyclic graph.
Proof: Let Bh(T ) = 〈V,E〉 be a bench transition system of
a state space topology T , and let Bh and B′

h be two benches
from V with 〈Bh,B′

h〉 ∈ E. Due to Definition 5, there is a
s ∈ E(Bh) such that B′

h = Bh(succ(s)). From Definition 3,
we know that hwh(succ(s)) < hwh(Bh) (since B(B′

h) must
be non-empty), and therefore hwh(Bh) > hwh(B′

h). This
shows that arcs can only lead from one bench to another
with a lower high-water mark, and hence there cannot be a
cycle in Bh(T ). �

Next, we observe that all states expanded by any instance
of GBFS must be contained in a bench of the bench transi-
tion system.
Theorem 4. Let T = 〈S, h〉 be a state space topology with
bench transition system 〈V,E〉. Let Sbench =

⋃
〈I,B,E〉∈V B

be the set of all states included in some bench of the bench
transition system. Then for all tie-breaking strategies τ and
all states in rτ , it holds that s ∈ Sbench.
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Proof: Clearly, all states expanded initially in rτ are part of
the initial bench Bh({sI}) until the first time an exit state of
Bh({sI}) is expanded. By the bench exit property (see dis-
cussion after Definition 3), every time a bench exit state s is
expanded, the search then proceeds as if s were the only state
on the open list, generating S′ = succ(s) and continuing the
search from Bh(S

′), only expanding states from this bench
until one of its exit states is reached. This process repeats
until the search terminates. By Definition 5, the bench tran-
sition systems contains all benches that can be encountered
in this process, and hence the search only expands states in
Sbench. �

By contraposition, of course this means that all states that
are not part of the bench transition system are never ex-
panded by a GBFS search. In the following section, we will
refine this result further to exactly characterize the states
expanded by any instance of GBFS. In the meantime, the
following result relates the preceding theorem to our earlier
bounds based on high-water marks and apexes.
Theorem 5. Let T = 〈S, h〉 be a state space topology with
bench transition system 〈V,E〉. Let Sbench =

⋃
〈I,B,E〉∈V B

be the set of all states included in some bench of the bench
transition system. Furthermore, let

S̄hwh
:= {s ∈ S | h(s) > hwh(sI)},

S̄apexh := {s ∈ S | apexh(s) > hwh(sI)}, and

S̄bench := {s ∈ S | s /∈ Sbench}.

Then S̄hwh
⊆ S̄apexh ⊆ S̄bench.

Proof: We have already discussed that Theorem 2 is a
proper generalization of Theorem 1 and hence S̄hwh

⊆
S̄apexh . Furthermore, Example 5 shows that there are cases
where S̄hwh

is a proper subset of S̄apexh .
We now compare S̄apexh and S̄bench. For unsolvable state

spaces, all sets trivialize, so we assume that a solution exists.
Unreachable states have an infinite apex value and are not
included in any bench, so they belong to both S̄apexh and
S̄bench.

Let s be a state in S̄apexh . Then apexh(s) > hwh(sI) and,
due to Definition 2, there is a state s′ on each path from
sI to s with h(s′) ≥ apexh(s) > hwh(sI). Because the
high-water marks of benches decrease as we follow arcs in
the bench transition system, hwh(Bh) ≤ hwh(sI) for all
benches Bh ∈ V , and from the definition of benches, this
implies h(s) ≤ hwh(sI) for all s ∈ Bh, and hence s �= s′.
Thus no bench contains the state s, proving S̄apexh ⊆ S̄bench.

Finally, our running example shows that there are cases
where S̄apexh �= S̄bench: from Figure 3, we can see that
state U is not part of any bench, and hence U ∈ S̄bench, but
apexh(U) = 5 = hwh(sI) and therefore U /∈ S̄apexh . �

Structural Analysis of Benches

Up to here, we have only discussed how a state space topol-
ogy induces a set of benches that are connected in a way that
allows to split a GBFS search to phases. From here on, we
are also interested in the inner structure of benches, which
defines the sub-search space that is induced by a bench. We

have already discussed the bench exit property, which states
that a GBFS search never returns to a bench once it has left
it, i.e., it only expands states from the current bench and
from benches it reaches in the future, but not from benches
it has traversed in the past.

The sub-search space of a bench therefore consists only
of states from that bench, and all GBFS instances expand
states from that bench until an exit state is expanded. GBFS
keeps track of all states that have been generated (i.e., all
successors of states that have been expanded) but not ex-
panded, and selects one of the states with minimal heuristic
value according to its tie-breaking strategy. A GBFS bench
sub-search hence

• starts with all entry states of the bench as candidates for
expansion;

• selects among the candidates a state with minimal heuris-
tic value according to its tie-breaking strategy;

• adds all successors of the selected state to the set of can-
didates;

• ends as soon as the first exit state is expanded.

A GBFS bench sub-search ends with the first expanded
exit state because it is “forced” to proceed to the next bench
as the exit state must have a successor with a lower heuristic
value than all remaining candidates. The fact that a GBFS
algorithm cannot choose to stay on a bench once an exit state
is reached has consequences for the set of states that is po-
tentially expanded: all states on a bench that are reachable
from the set of entry states only on paths via an exit state can
never be expanded, and therefore do not need to be consid-
ered in the bench transition system.

Definition 6. Let T = 〈S, h〉 be a state space topology, and
let S′ ⊆ S. The reduced bench B∗

h(S
′) = 〈I∗, B∗, E∗〉 of S′

is defined via the same set of candidate states as the bench
of S′ (see Definition 3). Then, the set of bench states B∗
is defined as the set of all states that can be reached from
some state in S′ on some path that only includes non-exit
states from the candidate set, while I∗ and E∗ are defined in
the same way as I and E in Definition 3 but relative to B∗
rather than B.

Reduced bench paths B∗
h(r

τ ) and reduced bench transi-
tion systems B∗

h(T ) are defined analogously to the original
definitions for reduced benches.

Example 10. Consider the bench transition system of our
running example in Figure 3. As A is both entry and exit
state, all GBFS searches have to continue search on the
lower bench Bh(succ({A})) as there is a successor that has
both a lower heuristic value and high-water mark than the
current high-water mark of the current bench. This excludes
states B, D, and, in turn, E on bench Bh({A}) from being
expanded by any GBFS instance.

However, note that state D, which has a lower heuristic
value than B and E, is also part of the successor bench
Bh(succ(A)), and can hence still be selected for expansion
in the sub-search on the next bench. The path to state E,
however, is forever blocked, as E is only part of Bh({A}).
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Figure 4: Reduced bench transition system of our running
example. Arcs between states within a bench indicate ex-
pansion dependencies, and dashed arcs between benches
show possible bench transitions. Bench entry states are an-
notated with arrows, and double lined circles indicate bench
exit states.

A similar situation arises for state H on bench
Bh(succ(A)): the only path to H is via exit state F , and ev-
ery GBFS search that expands the exit state F has to proceed
to bench Bh(succ(F )). Therefore, H can never be expanded
(on bench Bh(succ(A))) by any GBFS search. This not
only excludes state H from the search, but the whole bench
Bh(succ(H)) will never be expanded by a GBFS search, re-
gardless of the tie-breaking strategy.

The resulting reduced bench transition system of our run-
ning example is depicted in Figure 4.

A generalization of Theorem 5 with the set of states that
are included in some bench of the reduced bench transition
system would be straightforward (as that set is clearly a sub-
set of the set of states that are included in some bench of the
bench transition system). However, an even stronger result
(and one of our main results) is that a reduced bench tran-
sition system contains exactly the states that are expanded
by at least one possible GBFS search. It therefore provides
the answer to the second and third question we raised in the
introduction: the reduced bench transition system separates
the set of states into one part that each GBFS search is guar-
anteed not to expand (those states that are not on any reduced
bench), and one part that each GBFS may potentially expand
(those states that are on at least one reduced bench).
Theorem 6. Let T = 〈S, h〉 be a state space topology
with set of states S and reduced bench transition system
〈V ∗, E∗〉. For each state s ∈ S, it holds that s ∈ Bh for
some Bh ∈ V ∗ iff there is a GBFS search realization rτ that
expands s.
Proof: From the discussion at the start of this section, it is
obvious that if a state is expanded by some realization, then
it is included in the reduced bench transition system: the
only states excluded by moving from the bench transition
system to the reduced bench transition systems are ones that
cannot possibly be expanded.

It remains to show that for each state s of each bench of
the reduced bench transition system, it is possible to find a
GBFS realization that expands s. Due to the inductive def-
inition of the reduced bench transition system as benches
reached from the initial bench and due to the way that
GBFS realizations fall into episodes that perform expansions
within a given bench, for this it is sufficient to show that for
every reduced bench B∗

h, a GBFS search that begins with
the entry states in I(B∗

h) as candidates for expansion can po-
tentially expand any given state in B(B∗

h) before exiting the
bench by expanding a state from E(B∗

h).
All states on B∗

h are reachable from the entry states with-
out passing through an exit state. Moreover, the search on
the bench only ends when an exit state has been expanded.
Hence, the only situation in which no tie-breaking strategy
might expand a state s′ ∈ B∗

h is if the GBFS search or-
der forces the expansion of an exit state s′′ before s′ be-
cause s′′ has a low heuristic value. However, this cannot
happen because exit states always have the highest h-values
among all states on the bench: all states on a bench satisfy
h(s) ≤ hwh(B∗

h) by definition, and exit states s′′ satisfy
h(s′′) = hwh(B∗

h) as shown in the discussion of the bench
exit property (after Definition 3). Hence, we can devise a
tie-breaking strategy that first expands all non-exit states and
then any desired exit state. �

Theorem 6 indicates that there are no further states that
can be excluded from the set of states that are potentially ex-
panded. We therefore turn our attention to a finer categoriza-
tion of the states that are potentially expanded. In particular,
we determine criteria for states that are expanded by every
GBFS instance, regardless of the used tie-breaking strategy,
and derive conditions under which some states must be ex-
panded.

Bottleneck States The first concept for this categorization
are bottleneck states. A state is a bottleneck state of a bench
if all paths from any entry state of the bench to any exit state
of the bench are via that state. Such a state cannot be avoided
by a GBFS search that reaches the bench.

Definition 7. Let T = 〈S, h〉 be a state space topology with
reduced bench transition system 〈V ∗, E∗〉, and let Bh ∈ V ∗
be a bench. A state s is a bottleneck state of bench Bh iff all
paths from all s′ ∈ I(Bh) to all s′′ ∈ E(Bh) are via s, i.e.,
of the form 〈s′, . . . , s, . . . , s′′〉.
Example 11. In our running example, there are several bot-
tleneck states: the initial state A is a bottleneck state of its
bench (unless sI ∈ S�, this is trivially always true for an
initial state), and so are C (since there is no path to an exit
state from D), I (on both benches that contain I), and N .

The existence of an isolated bottleneck state here and
there does not affect the search behaviour of GBFS signif-
icantly. However, there are cases where bottleneck states
have additional properties that make the fact that they have
to be expanded important.

Crater States A phenomenon of GBFS that has drawn
plenty of interest in the planning community (e.g., Hoff-
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mann 2005; Nakhost and Müller 2009; Lipovetzky and
Geffner 2011; Xie, Müller, and Holte 2014) is what is of-
ten called an uninformed heuristic region, local minimum,
or heuristic plateau. Even though all of these differ slightly
in definition, they have in common that they are causing se-
rious problems for GBFS search as they represent (poten-
tially large) parts of the search space where the heuristic
does not offer guidance or, in the worst case, even misguides
the search. While benches already refine what is typically
understood as a heuristic plateau, our framework also allows
us to provide a more accurate definition of local minima in
the form of craters.

Definition 8. Let T = 〈S, h〉 be a state space topology with
reduced bench transition system 〈V ∗, E∗〉, and let Bh ∈ V ∗
be a bench. We call a state s ∈ Bh \ E(Bh) a crater entry
state iff h(s) = hwh(Bh) and there is a state s′ ∈ succ(s)
with h(s′) < hwh(Bh).

The crater of a crater entry state s is the largest set
of states Ch(s) that is such that s′ ∈ Ch(s) if h(s′) <
hwh(Bh) and if there is a path 〈s, s1, . . . , sn, s′〉 such that
s1, . . . , sn ∈ Ch(s).

Craters are interesting for our analysis as each GBFS
search is such that all states from a crater Ch(s) must be
expanded once the crater entry state s has been expanded,
as all states in the crater have in common that their heuristic
value is lower than their (and the current benches’) high-
water mark. This means that they are prioritized in search,
but all paths to a goal state have to "get out" of the crater
“back to” the top of the bench (due to the larger high-water
mark) before a path to a goal state can be found.

Example 12. Consider the bench transition system of our
running example in Figure 3. It contains a crater that is
part of the bench Bh := Bh(succ(H)). Even though Bh is
not part of the reduced bench transition system (which we
used to define craters) in Figure 4, this kind of crater could
occur in a reduced bench transition system as well.

The crater entry state is L, as L has a successor (Q)
with h(Q) < hwh(Bh). Following Definition 8, we get
Ch(L) = {Q,R, S}. All GBFS searches that decide to ex-
pand L have to expand Q, R, and S before they may ex-
pand a state outside of the crater (in this case, only M is
left on the bench). Apparently, a search with a tie-breaking
strategy that prefers M over L avoids the expansion of the
whole crater. However, if L were a bottleneck state, each
GBFS search that reaches the bench would have to expand
the crater entry state and then also all states from the crater.

In our running example, there is another state that resem-
bles the concept of a crater, but isn’t one according to our
definition of crater states: on the bench Bh(succ(G)), each
GBFS algorithm that searches Bh(succ(G)) has to expand
state P first. As this kind of crater has no crater entry state
on its bench and cannot be avoided by any GBFS search that
enters its bench, we call it a bench crater.

Definition 9. Let T = 〈S, h〉 be a state space topology with
reduced bench transition system 〈V ∗, E∗〉, and let Bh ∈ V ∗
be a bench. Let CI

h(Bh) := {s ∈ I(Bh) | h(s) < hwh(Bh)}
be the set of bench crater entry states. The bench crater of

a bench Bh is the largest set of states Ch(Bh) that is such
that s′ ∈ Ch(Bh) if s′ ∈ CI

h(Bh), or if h(s′) < hwh(Bh) and
there is a path 〈s, s1, . . . , sn, s′〉 such that s ∈ CI

h(Bh) and
s1, . . . , sn ∈ Ch.

Note that crater entry states and bench crater entry states
differ in the fact that the latter are part of the crater while
the former are not. This is because each crater entry state
on bench Bh has a heuristic value that is equal to hwh(Bh),
while bench crater entry states have a heuristic value that is
lower than hwh(Bh). Crater entry states are interesting as
they describe a “point of no return” – once expanded, each
GBFS search is forced to expand the whole crater.

Bottleneck Benches Finally, there are not only states on
benches that are expanded by all GBFS searches that enter
a bench, but also benches that are reached independently of
the used tie-breaking strategy.

Definition 10. Let T = 〈S, h〉 be a state space topology
with reduced bench transition system 〈V ∗, E∗〉. A bench
Bh ∈ V ∗ is a bottleneck bench if each bench path in
〈V ∗, E∗〉 is via Bh.

Example 13. Our running example contains several bot-
tleneck benches, namely Bh({A}), Bh({C,D}), and
Bh({N}). We can therefore observe that:

• states A, C, and N are expanded by all GBFS searches;
• if bench Bh(succ(G)) is searched, state P is expanded

(due to being part of a bench crater), and J and I are
expanded (both are bottleneck states);

Our insights on bottleneck states, craters, and bottleneck
benches allow us to conclude that a state s on bench Bh is
expanded by a GBFS search with tie-breaking strategy τ if

1. i) s is a bottleneck state and ii) Bh is a bottleneck bench
or Bh is searched under τ ;

2. i) s is part of a bench crater and ii) Bh is a bottleneck
bench or Bh is searched under τ ;

3. i) s is part of a crater Ch(s′) and ii) Bh is a bottleneck
bench or Bh is searched under τ and iii) s′ is a bottleneck
state or s′ is expanded under τ

Discussion and Conclusion

We started our GBFS search analysis by extending the re-
sults of Wilt and Ruml (2014), who introduce the high-water
mark of a state, to the apex of a state, which allows us to
more accurately separate the state space of a search problem
into a part that is guaranteed not to be expanded and a part
for which we have no further information.

We introduced the concept of high-water mark benches,
and showed that they can be used to describe an even more
accurate separation of the state space. Refining this concept
further by excluding states from benches that are reachable
only via exit states allows us to exactly partition the state
space into states that are guaranteed not to be expanded by
any GBFS tie-breaking strategy and ones that are expanded
by at least one GBFS tie-breaking strategy. Moreover, we
describe two properties of states – bottlenecks and craters –
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that allow us to determine conditions under which states are
guaranteed to be expanded.

First and foremost, our paper provides a theoretical study
of GBFS search behaviour. However, we believe that this
analysis also suggests promising possibilities for practical
applications. One such opportunity is to use the notions of
benches, bottleneck states and craters to learn useful proper-
ties of a heuristic in small state spaces in a given domain of
search problems, and then use this information to improve
the heuristic for other (possibly larger) state spaces in the
same domain. An analysis of craters of popular heuristic
functions in search domains of interest might also suggest
ways in which such heuristics could be improved in general.

Another possible avenue is to use the concepts of our anal-
ysis to explicitly design state spaces with varying structural
properties, which could then help develop a better under-
standing of the advantages and (possible disadvantages) of
alternatives to GBFS that have recently been proposed.

In current work, we are aiming to use our framework
for a best- and worst-case analysis of GBFS tie-breaking
strategies by performing a meta-search in the reduced bench
transition system. Information on benches, bottlenecks and
craters speeds up this otherwise intractable meta-search sig-
nificantly and allows us to quantify precisely how important
tie-breaking in GBFS is and how close currently used tie-
breaking strategies are to the best- or worst-case behaviour.
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