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Abstract In an open, bounded domain D ⊂ Rn with smooth boundary ∂D or on a
smooth, closed and compact, Riemannian n-manifold M⊂ Rn+1, we consider the
linear operator equation Au = f where A is a boundedly invertible, strongly elliptic
pseudodifferential operator of order r ∈ R with analytic coefficients, covering all
linear, second order elliptic PDEs as well as their boundary reductions. Here,
f ∈ L2(Ω;Ht) is an Ht-valued random field with finite second moments, with Ht

denoting the (isotropic) Sobolev space of (not necessarily integer) order t modelled
on the domain D or manifoldM, respectively. We prove that the random solution’s
covariance kernelKu = (A−1⊗A−1)Kf on D×D (resp.M×M) is an asymptotically
smooth function provided that the covariance function Kf of the random data
is a Schwartz distributional kernel of an elliptic pseudodifferential operator. As
a consequence, numerical H-matrix calculus allows deterministic approximation
of singular covariances Ku of the random solution u = A−1f ∈ L2(Ω;Ht−r) in
D × D with work versus accuracy essentially equal to that for the mean field
approximation in D, overcoming the curse of dimensionality in this case.

Keywords Operator Equations · Covariance Kernels · H-matrices · Tensor-
Operators
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1 Introduction

A key task in computational uncertainty quantification is the efficient numerical
solution of partial differential equations (PDEs) and integral equations with ran-
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dom input data. Specific instances are elliptic diffusion equations with random
forcing and boundary data, random diffusion coefficients and random domains. In
the latter of these cases, the random solution is, in general, a nonlinear transfor-
mation of the random input data. If the fluctuations of the random input data
around the statistical mean are large, stochastic Galerkin methods are the meth-
ods of choice, which has lead in recent years to a sizeable body of literature on
these methods and their numerical analysis. We mention only [9,32,33] and the
references there.

For random forcing, and deterministic, linear operators and deterministic do-
mains, the random solution is a linear transformation of the random input data.
Statistical moments of the random solution are then deterministic multilinear maps
(tensors) for which direct, ie. deterministic, approximations can be designed, see
eg. [2,25,38,39]. In cases when the random solution depends nonlinearly on the
random input as, for example, in case of random diffusion coefficients or random
domains, with small amplitude fluctuations, related moment equations can be de-
rived by perturbation theory. Then, statistical moments are obtained to leading
order in the magnitude of the random input data fluctuations about the nominal
value; we refer to [6,19,20,22,25] for details.

In the present article, we focus on linear, deterministic operator equations with
random loading which take the general form

Au(ω) = f(ω) in D, (1.1)

where the deterministic operator A ∈ OPSrcl(D), A : V → V ?, is a boundedly
invertible, strongly elliptic, classical pseudodifferential operator of order r ∈ R.

We assume V to be (a closed subspace of) the (Hilbert) Sobolev space Hr/2(D)
and V ? its dual, accounting for homogeneous, essential boundary conditions and/or
possibly factoring out nontrivial (but finite-dimensional) kernels (strong ellipticity
implies that A is, in particular, Fredholm).

For a separable Hilbert space H and a probability space (Ω,Σ,P), we denote
by L2(Ω,P;H) the Bochner-space of strongly measurable maps v : Ω 7→ H whose
norm is square (Bochner) integrable with respect to P. The linearity of (1.1) and
the bounded invertibility of the (deterministic) operator A ∈ OPSrcl(D) of order
r ∈ R implies then that for every f ∈ L2(Ω,P;V ?), (1.1) admits a unique solu-
tion u ∈ L2(Ω,P;V ). If, in particular, P is a Gaussian measure on V ?, ie. if f is
a Gaussian random field on V ?, then u is a Gaussian random field on V . This
is a consequence of linear transformations of Gaussian random fields being again
Gaussian (cp. [7, Prop. 1.2.3]). In this case, u being again a Gaussian random
field it is completely characterized by its mean E[u] ∈ V and by its second moment
E[u⊗u] ∈ V ⊗V (cp. [7, Thm. 1.2.1]). Deterministic computational approximations
of the second order statistics of the random field u are, therefore, of some interest,
in particular in the Gaussian case, but also in linearizations, cp. eg. [6,8,25] and
the references there. Once the second order statistics of the Gaussian random field
solution u in (1.1) have been determined, by its gaussianity all higher moments
are determined. Given the second order statistics, tensor-structured linear algebra
techniques for the efficient deterministic numerical evaluation of these higher mo-
ments are available; see, for example, [30]. In the present work, we therefore focus
on the computation of the second order statistics of the Gaussian random field
solution u in (1.1).
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Two issues arise in the design of efficient algorithms. First, the issue of di-
mensionality: as indicated above, for (pseudo-) differential equations defined on
domains D ⊂ Rn, the spatial two-point covariance is a function of 2n variables
in D ×D ⊂ R2n which renders standard approximation schemes prohibitively ex-
pensive. Therefore, in [5,13,38,39], sparse tensor product approximations have been
proposed and have been shown to reduce the computational complexity (ie. computa-

tional work and memory vs. accuracy) to essentially that of a multilevel approximation

of one sample of (1.1) under sufficient smoothness (so-called “mix” regularity) of the

covariance function of interest.
This leads to the second issue, the nonlocality of the covariance operator and

the (possible) singularity of the corresponding covariance kernel function Ku,
which is the topic of the present article: since the equation (1.1) is linear and
since A is deterministic, taking expectations on both sides of (1.1) immediately
yields the deterministic equation

AE[u] = E[f ] in V ? . (1.2)

In a similar manner, deterministic equations for the covariance of u ∈ L2(Ω,P;V )
can be derived. Denote by Ku = E[(u − E[u]) ⊗ (u − E[u])] the centered second
moment of u ∈ L2(Ω,P;V ), and analogously by Kf the centered second moment
(two-point covariance function) for the random forcing f . Then, formally, it holds
(cp. [37] for example)

(A⊗A)Ku = Kf in (V ⊗ V )? ' V ? ⊗ V ?. (1.3)

It was shown in [37–39] that (hypo-) elliptic regularity of A and smoothness of Kf
imply corresponding smoothness of Ku which, in turn, facilitates efficient sparse
tensor product (Galerkin) approximations of the deterministic covariance equation
(1.3) (eg. [37–39] for details and further references). Equations such as (1.3) also
arise from a first-order, second-moment perturbation analysis of nonlinear operator
equations with random operators, cp. [6,24] and the references there.

In several applications, however, physical modelling mandates low pathwise
regularity of the Gaussian random fields f (cp. eg. [31]). Then, the corresponding
regularity of their two-point covariance functions Kf (which, as we shall show here,
are closely related to the Schwartz kernel functions of their covariance operators)
is low in a vicinity of the diagonal, and the sparse tensor product approximations
of [13,38,39] perform poorly. The covariance operators which give rise to such ran-
dom fields are often a negative power of a strongly elliptic, self-adjoint differential
operator, the so-called “precision operator”. Pseudodifferential operators and their
(distributional) kernels thus naturally arise in the regularity analysis of covariance
kernels: the corresponding two-point covariance kernels Kf (x, y) of the random
data have singular support on the diagonal set ∆ = {(x, y) ∈ D × D : x = y} ob-
structing high approximation rates by sparse tensor approximations (cp. eg. [13,
38,39]). The main point of the present article is to prove that, for large classes of

differential or integral operators A in (1.1), H-matrix formatted covariance approxima-

tions (cp. eg. [3,16]) afford approximate representation of singular covariance kernels

in D × D with log-linear complexity with respect to N , the number of degrees of free-

dom in D (resp. on M). Let us also indicate that in bounded domains D with
nonsmooth boundary ∂D (such as, eg., a polygon or polyhedron), there may arise
additional boundary singularities in the covariance function which are concentrated
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on ∂D × D ∪ D × ∂D, due to the interaction of the singular support of Kf on ∆

with the boundary singularities in ∂D. We refer to [34,35] for a detailed discussion
of a simple (the domain D ⊂ R1) special case. From these references, we note in
particular the local analyticity of Ku(x, y) and the exponential convergence of lo-
calized low-rank approximations away from the diagonal ∆ as key ingredients for
overcoming the increase in complexity due to the doubling of the dimension in this
case. To generalize [34,35] for the covariance equation (1.3) corresponding to (1.1),
with general linear (pseudo-) differential operator A, and on general domains D
(resp. on n-Manifolds M) is the purpose of the present arcticle.

This article is organized as follows. In the next section, pseudodifferential oper-
ators are introduced and their properties relevant for us collected. Then, in Section
3, the regularity results for covariance function Ku are derived. In Section 4, we
show how H-matrices can be used to efficiently compute the unknown covariance
Ku given by (1.3). Numerical results are presented in Section 5 to validate and
quantify the theory. Conclusions and extensions are indicated in Section 6.

2 Preliminaries

We recapitulate several technical tools from the theory of distributions and pseu-
dodifferential calculus and set notation for the proof of the main results in the
next sections.

2.1 Schwartz Kernel Theorem

As the solution of the second moment equations are covariances of random fields,
we shall draw extensively on the equivalence of covariance operators and covari-

ance kernels. The major result here is the (classical) Schwartz Kernel Theorem. We
present a version of [26, Chap. 5] suitable for our purposes.

We prepare its statement with some definitions. Every continuous function on
the cartesian product of two open, nonempty sets X1 and X2, K ∈ C(X1 × X2),
defines an integral operator from C(X2) to C(X1) by the formula

(Kφ)(x1) =

∫
K(x1, x2)φ(x2)dx2. (2.1)

For kernel functions K ∈ C(X1 ×X2), we have (cp. [26, Eq. (5.2.1)])

〈Kφ, ψ〉 = K(ψ ⊗ φ) for all ψ ∈ C∞0 (X1), φ ∈ C∞0 (X2). (2.2)

The definition (2.2) can be extended to distributions K ∈ D′(X1 × X2) if Kφ is
allowed to be a distribution.

Proposition 1 (Schwartz Kernel Theorem [26, Thm. 5.2.1]) Every distribu-

tional kernel K ∈ D′(X1 × X2) induces, via (2.2), a continuous, linear map from

C∞0 (X2) to D′(X1). Conversely, for every linear map K exists a unique distribution

K such that (2.2) holds. The distribution K is called (distributional) kernel of K.
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2.2 Pseudodifferential Operators

We present basic definitions and terminology from the theory of pseudodifferential
operators, in particular elements of the calculus of pseudodifferential operators,
going back to R.T. Seeley, and its analytic extension due to L. Boutet de Monvel
and P. Kree [4,29]. We refer to [36] for a comprehensive account of this theory,
including subsequent developments. We adopt the notation for the statements of
results on pseudodifferential operators from the monographs of M.E. Taylor [43],
L. Hörmander [27] and, in the analytic case, from [36], indicating precise references
and, where applicable, the particular assumptions under which we shall access the
(more general than required here) results in these references. The extensions to
analytic and Gevrey-class pseudodifferential operators are based on the Gevrey
extension of the symbolic calculus for classical pseudodifferential operators devel-
oped in [4,29,36].

2.2.1 Symbols

For an order r ∈ R and an open and bounded domain D ⊂ Rn with smooth
boundary, the symbol class Sr(D×Rn) consists of functions a ∈ C∞(D×Rn) such
that, for any K b D and for every α, β ∈ Nn0 , there exist constants Cαβ(K ) > 0
such that

∀x ∈ K , ξ ∈ Rn :
∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ ≤ Cαβ(K )〈ξ〉r−|β|, (2.3)

where 〈ξ〉 = (1 + |ξ|2)1/2. The class Sr(D × Rn) is contained in the Hörmander
class Sr1,0(D×Rn); we shall not require the general classes Srρ,δ(D×Rn) (cp. [27])
and, therefore, omit the fine indices. A function ar ∈ C∞(D × Rn\{0}) is called
positively homogeneous of degree r if

∀t > 0, 0 6= ξ ∈ Rn : ar(x, tξ) = trar(x, ξ).

Note that then χ(ξ)ar(x, ξ) ∈ Sr(D × Rn) for any smooth, nonnegative cut-off
function χ which vanishes identically for |ξ| < 1/2 and χ(ξ) ≡ 1 for |ξ| ≥ 1. For a
symbol a ∈ Sr(D×Rn), the corresponding pseudodifferential operator A is defined
for u ∈ C∞0 (D) via the oscillatory integral (cp. [26])

A(x,−i∂x)u(x) = (2π)−n/2
∫
ξ∈Rn

eix·ξa(x, ξ)û(ξ)dξ, x ∈ D. (2.4)

The set of all pseudodifferential operators A generated via (2.4) from a symbol
a ∈ Sr(D×Rn) is denoted by OPSr(D).

A symbol a ∈ Sr(D×Rn) is called classical symbol of order r ∈ R if for every k ∈
N0 there exist functions ar−k(x, ξ) ∈ Sr−k(D×Rn) such that a ∼

∑
k ar−k (in the

sense of asymptotic expansions of symbols, cp. [27]), where ar−k is homogeneous
of degree r − k, ie. it holds that ar−k(x, tξ) = tr−kar−k(x, ξ) for every t > 0 and
for every ξ ∈ Rn with |ξ| > 1. As a consequence of the asymptotic expansion of
a ∈ Srcl(D × Rn), for every α, β ∈ Nn0 and for every K b D exists a constant
cαβ(K ) > 0 such that for every N ∈ N holds

∀x ∈ K , ξ ∈ Rn :

∣∣∣∣∣∂αx ∂βξ
(
a(x, ξ)−

N∑
k=0

ar−k(x, ξ)

)∣∣∣∣∣ ≤ cαβ(K )〈ξ〉r−N−|β|−1.

(2.5)
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The symbolic calculus in Srcl(D× Rn) is based on equivalences modulo C∞, ie. in
the class of smooth functions. For exponential convergence of separable polynomial
approximations, analyticity or at least Gevrey class regularity is required. To verify
this for covariance kernels, we consider another subclass of symbols, the so-called
symbols of class s ≥ 1 introduced by L. Boutet de Monvel and P. Kree in [4]. It is
based on tighter control of dependence of cαβ(K ) in (2.5) on the differentiation
orders; the following definition is [4, Def. 1.1] (see also [36, Chap. III.3]).

Definition 1 We say that a ∼
∑
k ar−k ∈ Srcl(D × Rn) is a (Gevrey) symbol of

class s ≥ 1 if for every K b D exist constants c,A > 0 such that for all α, β ∈ Nn0

∀x ∈ K , ξ ∈ Rn :
∣∣∣∂αx ∂βξ ar−k(x, ξ)

∣∣∣ ≤ cA k+|α+β||ξ|r−k−|β|(k + |α|)!sβ!. (2.6)

We note that Definition 1 implies that, for x ∈ K , ar−k(x, ξ) is holomorphic
with respect to ξ and that for every K b D exists ε > 0 such that for every x ∈ K
and every ξ ∈ Cε := {ξ ∈ Cn : | Im ξ| < ε|Re ξ|} as in [4, Chap. 0.4] the bound∣∣∂αx ar−k(x, ξ)

∣∣ ≤ cA k+|α||ξ|r−k(k + |α|)!s (2.7)

holds. The subclass of Srcl(D × Rn) which satisfies (2.6) or, equivalently, (2.7) is
denoted by Srcl,s(D× Rn). It is a subset of the Gevrey symbol class Sr,sρ,δ(D× Rn)

(with ρ = 1 and δ = 0) introduced in [36, Def. III.3.1]. Notice finally that symbols
in Srcl,s(D×Rn) with s = 1 depend analytically on x ∈ D.

2.2.2 Calculus

Pseudodifferential operators admit calculi which are crucial in proving regularity
of covariance functions for random field solutions of (1.1). We collect properties
of the calculi in Srcl and in Srcl,s that will be required ahead.

Proposition 2 1. For invertible, elliptic A ∈ OPSrcl it holds A−1 ∈ OPS−rcl .

2. A ∈ OPSrcl (resp. A ∈ OPSrcl,s) implies A? ∈ OPSrcl (resp. A? ∈ OPSrcl,s).

3. A ∈ OPSrcl and B ∈ OPStcl implies AB ∈ OPSr+tcl .

4. A ∈ OPSrcl,s and B ∈ OPStcl,s with at least one of A,B properly supported implies

AB ∈ OPSr+tcl,s .

5. For any elliptic A ∈ OPSrcl,s with s ≥ 1 exists E ∈ OPS−rcl,s such that the operator

AE − id has a Schwartz kernel of Gevrey class s ≥ 1 (analytic if s = 1).

Proof The asserted properties for OPSrcl are standard properties for this algebra.
The properties for the analytic and Gevrey class operators are a consequence of
[4, Props. 2.11, 2.12, and 2.14].

2.2.3 Kernels

Via the Schwartz Kernel Theorem (Proposition 1), every classical pseudodifferen-
tial operator A ∈ OPSrcl(D) with symbol a ∈ Srcl(D×Rn) can be written as a (dis-
tributional) integral operator with (distributional) Schwartz kernel KA. Early on,
development of pseudodifferential operator calculi was based on Fourier analysis.
For the analysis of covariances in the present article, the perspective of (distri-
butional) kernel functions associated with pseudodifferential operators is central:
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Schwartz kernels model two-point covariance functions of random fields with low
sample-path regularity in Sobolev and Besov scales, whose covariance operators
are compact, self-adjoint on L2(D).

It was noted early in the development of the calculus of pseudodifferential
operators that Schwartz kernels KA for A ∈ OPSrcl(D) can be completely char-
acterized in terms of so-called pseudohomogeneous functions (Ψhf for short). The
ensuing results date back to R.T. Seeley’s work [40,41]; we recapitulate here the
main statements, following the presentation in [28, Chap. 7.1].

Definition 2 A distributional kernel function kq(x, z) ∈ C∞(D × Rn\{0}) is a
pseudohomogeneous kernel (with respect to z) of degree q ∈ R if

∀t > 0, 0 6= z ∈ Rn : kq(x, tz) = tqkq(x, z) if q ∈ R\N0,

kq(x, z) = fq(x, z) + log(|z|)pq(x, z) otherwise,
(2.8)

where pq(x, z) denotes a homogeneous polynomial in z of degree at most q with
C∞(D)-coefficients and the function fq(x, z) satisfies

∀t > 0, 0 6= z ∈ Rn : fq(x, tz) = tqfq(x, z).

The class of all pseudohomogeneous functions of degree q ∈ R is denoted by
Ψhfq(D).

We say that a Schwartz kernel k(x, x − y), x, y ∈ D, x 6= y, admits a pseudoho-

mogeneous expansion of degree q if for every j ∈ N0 exist kq+j ∈ Ψhfq+j(D) and a
constant 0 < δ < 1 such that

∀J ∈ N : k(x, x− y)−
J∑
j=0

kq+j(x, x− y) ∈ Cq+J−δ(D×D). (2.9)

Note that the partial sums in (2.9) do not converge in general. By Ψhkq(D) we
denote the class of all Schwartz kernels k(x, x− y), x, y ∈ D, x 6= y, which admit a
pseudohomogeneous expansion (2.9) of degree q in D.

The relevance of the class Ψhf−q−n(D) lies in its close connection to the oper-
ator class OPSqcl(D). The following result is [28, Thm. 7.1.1, 7.1.6, 7.1.7], see also
[40, p. 279].

Proposition 3 Let r ∈ R\N0 and let D ⊂ Rn denote a bounded domain with smooth

boundary ∂D. Then A ∈ OPSrcl(D) iff its Schwartz kernel KA(x, x−y) ∈ Ψhk−r−n(D).

Moreover, for r ∈ N0 and for n ≥ 2, fµ ∈ Ψhfµ(D) with µ = −r − n defines the dis-

tributional Schwartz kernel KA of A ∈ OPSrcl(D) iff it satisfies the compatibility
conditions ∫

|Θ|=1

Θαfµ(x,Θ)dσΘ = 0 for all |α| = r. (2.10)

We remark that, from the preceding result, it follows for A ∈ OPSrcl(D) that
the associated Schwartz kernel KA is absolutely integrable if r < −n ≤ −1; in this
case, the compatibility conditions (2.10) are not required.

In the particular case of analytic symbols a ∈ Srcl,1(D×Rn), KA(x, z) is analytic
in D×Rn\{0}. The following result is [4, Prop. 2.5].
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Proposition 4 Let a ∈ Srcl,1(D× Rn) be an analytic symbol with associated analytic

pseudodifferential operator A ∈ OPSrcl,1(D). Then, its Schwartz kernel, KA(x, x− y),

x, y ∈ D, differs from the sum
∑
j≥0 kr+j(x, x−y) only by a function which is analytic

in a neighborhood of the diagonal ∆ ⊂ D×D.

We note in particular that, in the analytic class Srcl,1(D×Rn), the partial sums in
the pseudohomogeneous expansions (2.9) converge.

2.3 Matérn Covariances

In the framework of spatially inhomogeneous random fields, it is quite common
to assume that the covariance kernels of random fields are isotropic, ie. K(x, y)
depends only on the distance r = |x− y|. Hence, for illustration, we shall present
here the Matérn class of kernels as an important example for covariance functions
of this kind [31]. They are given by

Kν(r) :=
21−ν

Γ (ν)

(√
2νr

`

)ν
Kν
(√

2νr

`

)
(2.11)

with smoothness parameter ν > 0 and correlation length ` > 0, see [31]. Here, Kν
denotes the modified Bessel function of the second kind. For half integer values of
ν, ie. for ν = p+ 1/2 with p ∈ N0, expression (2.11) simplifies to

Kp+1/2(r) = exp

(
−
√

2νr

`

)
p!

(2p)!

p∑
q=0

(p+ q)!

q!(p− q)!

(√
8νr

`

)p−q
.

The limit case ν →∞ formally corresponds to the Gaussian kernel:

K∞(r) = exp

(
−r2

2`2

)
.

An illustration of the Matérn kernels for ` = 1 and for ν = 1/2, 3/2, 5/2 and ν =∞
is given in Figure 1.

The Fourier transform of the Matérn kernel in Rn has also been computed in
[31]. Since the corresponding Gaussian random fields are stationary, it does not
depend on the spatial variable x and is given by

aν(ξ) = α

(
1 +

`2

2ν
|ξ|2
)−ν−n/2

(2.12)

where α is a scaling factor which depends on ν, ` and n. Expanding (2.12) asymp-
totically, as |ξ| → ∞, and comparing with (2.5), we infer readily that the associated
covariance kernel function Kν ∈ OPS−2ν−n

cl and, being independent of x, also that

Kν ∈ OPS−2ν−n
cl,1 . This also follows from the symbolic calculus in Proposition 2

upon noting that the symbol (2.12) coincides with the symbol of the inverse to the

differential operator Aν = α−1(id − `2

2ν∆)ν+n/2 which is of order 2ν + n and thus
Aν ∈ OPS2ν+n

cl,1 .
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Fig. 1 Matérn kernels Kν(|x|) for the correlation length ` = 1 and different values of the
smoothness parameter ν for ν = 1/2, 3/2, 5/2 and ν = ∞.

3 Covariance Regularity

We first consider the case when the domain D ⊂ Rn is a bounded, connected
subdomain of the euclidean space Rn, n ≥ 2. We then present two extensions:
first, to strongly elliptic pseudodifferential operators on smooth, closed, compact
n-manifolds M ⊂ Rn+1 and second, to classical pseudodifferential operators with
Gevrey-class symbols. “Asymptotic smoothness” of covariance functions, in the
sense of [3, Chap. 4.3], which is required for log-linear with respect to N H-matrix
formatted covariance approximations, is obtained only for the analytic class in
Section 3.3 ahead. With a straightforward generalization of the approximation
arguments in [3, Chap. 4], analogous results with slightly larger complexity (higher
powers of logN) hold also for Gevrey regular covariances Ku.

The outline of this section is as follows: we first present a basic regularity
result in a bounded domain D ⊂ Rn in Section 3.1. We then generalize it to
pseudodifferential operators A on smooth, Riemannian n-manifolds M, using the
calculus of (classical) pseudodifferential operators onM in Section 3.2. Finally, in
Section 3.3 we generalize both types of result to the Gevrey and the analytic class,
using essentially the same arguments in the calculi of [4] and [36, Chap. III].

3.1 Euclidean Domains

We consider the equation (1.1) in a bounded domain D with smooth boundary
∂D, and with the operator A in (1.1) being a linear, strongly elliptic (pseudo-)
differential operator with smooth coefficients.

Theorem 1 Consider the tensorized equation (1.3) with boundedly invertible and prop-

erly supported A ∈ OPSrcl(D), r ∈ R, in the smooth, bounded domain D ⊂ Rn. Assume

further that the covariance kernel Kf of the random field f ∈ L2(Ω,P;V ?) in (1.1) be-

longs to Ψhf−θ−n(D) for some θ < −n. Then, the covariance kernel Ku of the random

solution u ∈ L2(Ω,P;V ) of (1.3) belongs to Ψhf−θ+2r−n(D).

Moreover, the kernel Ku(x, y) of the covariance operator Ku is smooth in D × D
outside of the diagonal ∆ := {(x, y) ∈ D × D : x = y} and there hold the pointwise
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estimates

∀α, β ∈ Nn0 : ∃Cαβ :

|∂αx ∂βyKu(x, y)| ≤ Cαβ |x− y|−(θ−2r)−n−|α|−|β|, (x, y) ∈ (D×D)\∆.
(3.1)

In particular, Ku = K?u and Ku ∈ OPSθ−2r
cl (D).

Proof By the Schwartz Kernel Theorem (Proposition 1), we may identify the kernel
Ku in a one-to-one fashion with an operator Ku as follows: since V is a separable
Hilbert space, finite linear combinations of dyads ϕx⊗ϕy with components tracing
a countable orthonormal basis of V are dense in V ⊗ V . We may therefore write
(1.3) in weak form as

((A⊗A)Ku)(ϕx ⊗ ϕy) = Kf (ϕx ⊗ ϕy).

Using Proposition 3, it holds Kf ∈ OPSθcl(D) for the operator corresponding to Kf .
Both, Ku and Kf , satisfy (we omit tagging ϕ and ψ with their argument variables)

〈Kuψ,ϕ〉 = Ku(ϕ⊗ ψ), 〈Kfψ,ϕ〉 = Kf (ϕ⊗ ψ), ϕ, ψ ∈ C∞0 (D).

Hence, for every ϕ,ψ ∈ C∞0 (D) we may write (1.3) in the form

Ku((A⊗A)?(ϕ⊗ψ)) = Ku((A?ϕ)⊗(A?ψ)) = 〈Ku(A?ψ), A?ϕ〉 = 〈(A◦Ku◦A?)ψ,ϕ〉 .

Since ϕ and ψ were arbitrary, this implies the composition equation

A ◦ Ku ◦A? = Kf in OPSθcl(D). (3.2)

The bounded invertibility of A ∈ OPSrcl(D) and the algebra of classical pseudo-
differential operators in Proposition 2 imply that A−1, (A?)−1 ∈ OPS−rcl (D). The

assertion Ku ∈ OPSθ−2r(D) then follows from this algebra and from the identity

Ku = A−1 ◦ Kf ◦ (A?)−1 in OPSθ−2r
cl (D). (3.3)

Since the covariance kernel satisfies Kf ∈ Ψhf−θ−n(D), it holds Kf ∈ OPSθcl(D) by
Proposition 3. Since A ∈ OPSrcl(D) was assumed to be boundedly invertible, the
algebra of (classical) pseudodifferential operators (precisely, items (1),(2) and (3)
of Proposition 2) then implies that expression (3.3) holds in OPSθ−2r

cl (D).

The kernel-to-operator correspondence between Ψhf−θ−n(D) and OPSθcl(D)
implies Ku ∈ Ψhf−θ+2r−n(D) from where we obtain (3.1) with Proposition 3.

The self-adjointness of Ku follows from the assumption that Kf = K?f by trans-
posing (3.3). �

Remark 1 The assertion on self-adjointness of Ku does not require that A is self-
adjoint, as is immediately clear from the structure of the composition equation
(3.2).

Remark 2 The assumption that A shall be properly supported is not restrictive:
each A ∈ OPSr(D) can be decomposed at A = A0+R with A0 ∈ OPSr(D) properly
supported and a smoothing operator R (cp. [27, Prop. 18.1.22]).
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Remark 3 In Theorem 1, we assumed that ∂D is smooth. In the case when ∂D
is only piecewise smooth, ie. when the domain D exhibits corners (in dimensions
n = 2, 3) and edges (in dimension n = 3), additional singularities may arise.
For example, the inverse A−1 of elliptic differential operators A is well-known to
introduce singularities in the solution u which are concentrated at the geometric
“singularity set” S ⊆ ∂D (see, eg., [14]). Such geometric singularities introduced
by the solution operator A−1 imply correspondingly larger singular supports for
Ku. This is evident from the following argument where we assume that A is a
second order, boundedly invertible elliptic differential operator with corresponding
Dirichlet or Neumann boundary conditions. We denote by GA(x, ξ) the Green’s
function for the corresponding boundary value problem in D, so that in (1.1) the
random solution can be represented formally, for x ∈ D and for ω ∈ Ω, by the
convolution (in the sense of distributions) u(ω, x) = GA(x, ξ) ∗ξ f(ω, ξ). Here, the
notation ∗ξ denotes convolution with respect to the variable ξ. Denote by G?A(ξ′, x′)
the Green’s function for the corresponding boundary value problem for the adjoint
A? of A. Then, given a distributional covariance kernel Kf (ξ, x′), we obtain from
the composition equation (3.3) the identity

Ku(x, x′) = G?A(x, ξ) ∗ξ Kf (ξ, ξ′) ∗ξ′ GA(ξ′, x′) (3.4)

which holds in the sense of distributions. The theorem on singular supports for
convolutions of distributions [26, Thm. 4.2.5] then implies

sing supp(Ku) ⊆ ∆ ∪ (S×D) ∪ (D× S) ∪ (S× S). (3.5)

Remark 4 The tools from the calculus of pseudodifferential operators in Section 2
were stated for scalar pseudodifferential operators A in equation (1.1). Inspection
of the proof of Theorem 1 reveals, however, that the composition equation (3.2)
also holds in the case that the operator A in (1.1) corresponds to a strongly elliptic
system of PDEs such as, for example, the system of linearized elastostatics in a
bounded domain D ⊂ Rn.

3.2 Operators on Manifolds

We consider next the case that the operator A in (1.1) is a classical pseudodifferen-
tial operator on a smooth, closed and compact Riemannian n-manifoldM⊂ Rn+1.
Since M is assumed closed, ∂M = ∅ and in particular S = ∅ in Remark 3. This
case arises in boundary reduction of elliptic boundary value problems in smooth,
bounded domains in Rn+1 in which caseM denotes the smooth, compact and Rie-
mannian boundary n-manifold. It is also relevant in first-order second-moment cal-
culus in shape uncertainty quantification of second order, elliptic boundary value
problems (cp. [6,25]), where such boundary reduction is, generically, possible (cp.
[28]). As function spaces and operators on M are defined via local coordinates in
a suitable atlas of coordinate charts, the precise regularity of kernels of pseudod-
ifferential operators on M will depend on whether M is C∞, Gevrey or analytic.

To state the analog of Theorem 1 for equation (1.1) onM, we invoke definition
and calculus of pseudodifferential operators on M as exposed, eg. in [43, Chap.
II.5] or in [27, Chap. 18]. The assumed compactness ofM implies that there exists
a finite atlas of (Mi, κi) with smooth coordinate charts κi which parametrize M.
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By κ, we denote a generic chart. Pseudodifferential operators on M are defined
locally on M via charts κ with (generic) common compact parameter domain
D ⊂ Rn.

Definition 3 ([27, Def. 18.1.20]) On the smooth n-manifoldM⊂ Rn+1, a linear
operator A : C∞(M)→ C∞(M) is a pseudodifferential operator of order r on M
if for every chart κ the transported operator Aκ := (κ−1)?Aκ? ∈ OPSr(D). We
write A ∈ OPSr(M).

We require M to be Riemannian in order to avoid technicalities when we identify
functions and distributions with their densities via the Schwartz kernel theorem.
We call A ∈ OPSr(M) classical if for each coordinate chart κ holds Aκ ∈ OPSrcl(D).
In this case, we write A ∈ OPSrcl(M).

Theorem 2 Consider the tensorized equation (1.3) with boundedly invertible and prop-

erly supported A ∈ OPSrcl(M), r ∈ R, in the smooth, compact Riemannian n-manifold

M⊂ Rn+1. Assume further that, for every chart κ, the covariance kernel (κ−1)?Kfκ
?

of the random field f ∈ L2(Ω,P;V ?) in (1.1) belongs to Ψhf−θ−n(D) for some θ < −n.

Then, for every chart κ, the covariance kernel (κ−1)?Kuκ
? of the random solution u ∈

L2(Ω,P;V ) of (1.3) belongs to Ψhf−θ+2r−n(D). Moreover, in the parameter domain

D ⊂ Rn, the kernels (κ−1)?Kuκ
? of the covariance operator Ku in local coordinates are

smooth in D×D outside of the diagonal ∆ := {(x, y) ∈ D×D : x = y} and there hold the

pointwise estimates (3.1). In particular, Ku = K?u and (κ−1)?Kuκ? ∈ OPSθ−2r
cl (D).

Remark 5 The assertion (3.3) on the covariance kernels remains valid then upon
observing that the calculus of pseudodifferential operators covers operators A :
C∞0 (M;E) → C∞(M;F ) of order r on vector bundles E and F , where M may
be a smooth manifold (cp. [27, Def. 18.1.32]): for every open Y ⊂ M where E

and F are trivialized by φE : E|Y → E × CnE and φF : F |Y → F × CnF , there
exists an nE×nF matrix of pseudodifferential operators Aij ∈ OPSr(Y ) such that,
for every u ∈ C∞0 (Y ;E), (φF (Au)|Y )i =

∑
Aij(φEu)j . For a general manifold X,

one covers X ×X by coordinate patches Y × Y . Then, in each patch Y × Y , the
component operator Aij is expressed (in local coordinates and modulo C∞) as
element of OPSr(D) where D denotes the parameter domain of chart Y . In the
particular case of linear elasticity, nE = nF = n.

3.3 Analytic Regularity of Ku

The preceding results made strong use of pseudodifferential calculus which is based
on statements modulo smooth (ie. C∞) functions. On the one hand, this allows
to use localization arguments via smooth partitions of unity, for example, on the
other hand necessarily entails a certain loss of quantitative control of derivatives;
in particular, in (3.1) the dependence of the constants Cαβ on the differentation
orders α, β remains unspecific. It is well known, however, that to obtain exponential

convergence bounds for locally piecewise polynomial approximations of Ku(x, y),
analytic or at least Gevrey regularity of covariance functions is necessary. We refer
to [34,35] for a complete discussion of such approximations, albeit in a rather
special setting. There, estimates (3.1) were established with explicit control of
the dependence of Cαβ in α and β. It turns out that an analogous result can be
established using an analytic calculus of pseudodifferential operators, from [4], see
also [36].
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Theorem 3 In either the euclidean domain D with analytic boundary ∂D or on a

compact, analytic n-manifoldM⊂ Rn+1, assume that the covariance kernel Kf of the

second order random field f in (1.1) gives rise to an operator Kf ∈ OPSθcl,s, ie. to a

classical pseudodifferential operator with symbol af (x, ξ) of order θ and of Gevrey class

s ≥ 1 in the sense of [4, Def. 1.1]. Assume further that the operator A ∈ OPSrcl,s is

properly supported. Then, the covariance kernel Ku of the random field solution u of

(1.1) is the Schwartz kernel of an operator Ku ∈ OPSθ−2r
cl,s . In particular, the constants

Cαβ which appear in (3.1) can be bounded by

∀α, β ∈ Nn0 : Cαβ ≤ cA |α+β|(|α|!)sβ! (3.6)

for some constants c, A depending only on D, M, and on af .

Proof In either case, the proof is analogous to that of Theorem 1 in the C∞

case. We start from the composition equation (3.3) and use the corresponding
pseudodifferential calculus. Specifically, for Gevrey class regular surfaces, there
holds s > 1 and items (2), (4) and (5) of Proposition 2 imply the result, by
(Gevrey-regular) partitions of unity and by transporting (1.1) to an euclidean
reference domain via Gevrey-regular coordinate charts. The assertion then follows
from the “euclidean” version of the result, Theorem 1.

In the analytic class, ie. when s = 1, localization and partitions of unity are
not available. Here, we assume a global analytic parametrization, and again rely
on items (2), (4) and (5) of Proposition 2; to conclude, we must invoke, however,
Proposition 4, whose use entails the requirement that A is properly supported on
M which, by Remark 2 is not restrictive, at least in the smooth class. �

We remark that the preceding result, although formulated and proved for the
scalar case, carries over to elliptic systems of equations (1.1), upon localization
and applying the calculus “component-wise” to the Aij in Remarks 4 and 5.

3.4 Spectral Asymptotics

In several applications (polynomial chaos expansions, N-term approximation rates,
error analysis of approximate Cholesky factorizations of covariance matrices) spec-
tral asymptotics of Ku are of interest. This is due to the computational cost of
the rank-truncated approximate Cholesky decomposition of discretizations of Ku
is determined by the decay of its eigenvalues, see eg. [21,23] and the references
therein. Since Ku = K?u and Kf = K?f , general spectral asymptotics for elliptic,
self-adjoint pseudodifferential operators (eg. [42]) apply.

Theorem 4 Assume Kf ∈ OPSθcl and A ∈ OPSrcl with θ < 2r. Then, either on a

smooth and closed, compact n-manifold M ⊂ Rn+1 or on a bounded domain D ⊂ Rn
with smooth boundary ∂D, the covariance operator Ku of the random field solution u

of (1.1) has a discrete spectrum with at most countably many real eigenvalues λ1 ≥
λ2 ≥ · · · ≥ 0, enumerated in decreasing order, which may only accumulate at zero.

Moreover, there holds the spectral asymptotics

λk ∼ k(θ−2r)/n as k →∞. (3.7)
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Proof Consider the case of an operator in the bounded domain D and set m :=
θ− 2r. By assumption, m < 0. We already showed in the proof of Theorem 1 that
Ku ∈ OPSmcl (D) and that Ku is self-adjoint. The mapping properties of OPSmcl
imply Ku : L2(D) → H−m(D) continuously. Since D is smooth and bounded,
the condition m < 0 implies in view of Rellich’s theorem that the injection ι :
H−m(D) ↪→ L2(D) is compact, and therefore the composition ι ◦ Ku : L2(D) →
L2(D) is a compact, self-adjoint operator. The spectral theorem for such operators
implies the existence of a countable family (λk, ϕk)k≥1 of eigenpairs with real
eigenvalues accumulating only at zero, and with the eigenfunctions {ϕk}k≥1 ⊂
H−m(D) forming an orthonormal basis of L2(D). The spectral asymptotics (3.7)
then follows from the Weyl calculus for pseudodifferential operators (cp. eg. [42,
Thm. 15.2]). The argument for a smooth, closed and compact Riemannian n-
manifold M⊂ Rn+1 is analogous. �

4 H-matrix Accelerated Solution of Second Moment Equations

4.1 Galerkin Discretization of the Covariance Equation

We discuss the efficient numerical solution of (1.3) by means of a Galerkin scheme.
To that end, we introduce a finite element space VN = span{ϕ1, . . . , ϕN} ⊂ V . It is
assumed that the mesh which underlies this finite element space is quasi-uniform.
The basis functions {ϕi} are assumed to be locally and isotropically supported,
so that diam(suppϕi) ∼ N−1/n. In particular, we can assign to each degree of
freedom i ∈ {1, . . . , N} a suitable point xi ∈ D or xi ∈ M, eg. the barycenter of
the support of the corresponding basis function or the corresponding Lagrangian
interpolation point if nodal finite element shape functions are used.

The set of tensor product basis functions {ϕi⊗ϕj}i,j forms a basis of the tensor
product finite element space VN ⊗ VN ⊂ V ⊗ V . Thus, making the ansatz

Ku(x, y) ≈
∑
i,j

[Ku]i,j(ϕi ⊗ ϕj)(x, y) ∈ VN ⊗ VN ,

the Galerkin system for (1.3) reads

(A⊗A) vec(Ku) = vec(Kf ) ⇐⇒ AKuA? = Kf , (4.1)

where

A :=

[∫
D

(Aϕj)(x)ϕi(x)dx

]
i,j

, Kf :=

[∫
D

∫
D

Kf (x, y)ϕi(x)ϕj(y)dxdy

]
i,j

.

(4.1) is a linear system of equations for N2 unknowns and thus not directly solvable
if N is large due to memory and time consumption.
H-matrices (eg. [3,16]) rely on local low-rank approximations of a given matrix

X ∈ RN×N . For suitable index sets ν, ν′ ⊂ {1, . . . , N}, a matrix block X|ν×ν′ can
be approximated by a rank-k matrix. This approximation can be represented in
factorized form X|ν×ν′ ≈ YZ? with factors Y ∈ R#ν×k and Z ∈ R#ν′×k. Hence, if
k � min{#ν,#ν′}, the complexity for storing the block is considerably reduced.
The construction of the index sets is based on the cluster tree.
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4.2 Cluster Tree

A cluster σ is defined as the nonempty union of indices σ = {i1, . . . , ik} ⊂ {1, 2, . . . , N}.
It is called the father cluster of σ′, which will be denoted by σ′ ≺ σ, if σ′ ( σ and
no further cluster σ′′ exists with σ′ ( σ′′ ( σ. The cluster σ′ is then called a
son cluster of σ. If we order these clusters hierarchically concerning the father-son
relation “≺” we arrive at a tree structure, the so-called cluster tree T .

We shall specify some properties of the cluster tree T in more detail:

– The set {1, . . . , N} is the root of T .
– If the cluster σ is a leaf, then #σ ≤ Cleaf, ie. the leaves consist of a relatively

small number of indices.
– If the cluster σ is not a leaf, then it is the disjoint union of its two son clusters.
– The cluster σ belongs to the level j if there exist j clusters {σi}j−1

i=0 such that

σ ≺ σj−1 ≺ · · · ≺ σ0 = {1, . . . , N}.

The root {1, . . . , N} of the cluster tree is of the level 0 and J is the maximal
level. We denote the k-th cluster of the level j by σj,k.

The construction of the cluster tree is based on the support of the clusters. The
support Υσ of a cluster σ is defined as the union of the supports of the basis
functions corresponding to its elements, that is

Υσ =
⋃
i∈σ

Υi where Υi := suppϕi for all i ∈ {1, . . . , N}.

For computing complexity bounds, the cluster tree should match the following
additional requirements, uniformly as N goes to ∞:

– The cluster tree is a balanced binary tree in the sense that the maximal level
satisfies J ∼ log2N and the number of sons of the clusters σj,k is two whenever
the cluster is not a leaf.

– The diameter of the support Υσj,k is local with respect to the level j, ie.

diamΥσj,k ∼ 2−j/n. Moreover, the number #σj,k of indices contained in a

cluster σj,k on level j scales approximately like 2J−j , ie. #σj,k ∼ 2J−j .

The cluster tree T with the indicated terms should be given for our further con-
siderations. A common algorithm for its construction is based on a hierarchical
subdivision of the point set which is associated with the basis functions, cf., eg., [3,
Chap. 3.3] and [16, Chap. 5.4]. We begin by embedding the point set {x1, . . . , xN}
in a top-level cuboid. This cuboid is subsequently subdivided into two cuboids
which contain the same number of points and this process is iterated until a
cuboid encloses less than a predetermined number of points.

4.3 H-Matrix Approximation

H-matrices have been invented in [15,18] and are a generalization of cluster tech-
niques for the rapid solution of boundary integral equations such as the fast mul-
tipole method [12], the mosaic skeleton approximation [44], or the adaptive cross
approximation [1]. H-matrix techniques apply to discretized operators whenever
the underlying kernel functions are asymptotically smooth (cp. [3, Def. 4.5]).
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Definition 4 A kernel function K is called asymptotically smooth if there exists
C > 0 such that for every (x, y) ∈ (D×D)\∆ and for every α, β ∈ Nn0 holds∣∣∣∂αx ∂βyKu(x, y)

∣∣∣ ≤ C |α|!|β|!
r|α|+|β|

|x− y|−|α|−|β||K(x, y)| . (4.2)

As an immediate consequence of Theorems 1 to 3, we obtain

Proposition 5 If B ∈ OPSrcl,1(D) for some r ∈ R, then the Schwartz kernel of the

operator B is asymptotically smooth in the sense of Definition 4.

For the discretization of a pseudodifferential operator with asymptotically
smooth kernel, we introduce a partition of its domain of definition which sepa-
rates smooth and non-smooth areas of the kernel function. This is based on the
following

Definition 5 Two clusters σ and σ′ are called η-admissible if

max{diam(Υσ),diam(Υσ′)} ≤ η dist(Υσ, Υσ′) (4.3)

holds for some fixed η > 0.

We shall consider admissible blocks only for cluster-cluster combinations where
both clusters are of the same level and thus of similar size. Due to this reasoning,
we obtain the list of admissible blocks by means of a recursive algorithm: Starting
with the root (σ0,0, σ0,0), the current cluster pair is checked for admissibility and,
if admissible, added to the set F storing the operator’s farfield. Otherwise, the
admissibility check will be performed on all possible pairs of son clusters of the
two original clusters. When we arrive at a pair of inadmissible leaf clusters, it is
added to the set N storing the operator’s nearfield. This scheme provides us with
a so-called block cluster tree B = F ∪N , cp. [16].

With the definition of the block-cluster tree at hand, we are finally in the
position to introduce H-matrices.

Definition 6 The set H(B, k) of H-matrices of maximal block rank k is defined
according to

H(B, k) :=
{
X ∈ RN×N : rank(X|σ×σ′) ≤ k for all (σ, σ′) ∈ F

}
.

Note that all nearfield blocks X|σ×σ′ , (σ, σ′) ∈ N , are allowed to be full matrices.

In accordance with [16], the storage cost of an H-matrix X ∈ H(B, k) is
O(kN logN) where for asymptotically smooth kernel functions Ku(x, y) in the
sense of eg. [3, Chap. 4] the rank k depends logarithmically on the desired ap-
proximation accuracy ε (which in turn depends usually on the degrees of freedom
N). This implies in particular that H-matrix formatted approximations of Ku
belonging to either the analytic or the Gevrey class achieve accuracy vs. work
and memory which is log-linear in N , the number of degrees of freedom used in
the physical domain D, even in the presence of the singular support ∆. This,
in effect, settles the curse of dimensionality in the approximation of singular co-
variance kernel functions. These remarks pertain to covariance approximation of a
given, asymptotically smooth covariance kernel function K, such as Kf in (1.3).
A second, more delicate, issue is the covariance computation of an implicitly given
covariance kernel, such as Ku in (1.3). Approximate, numerical solutions of (1.3)
are necessary which account for the asymptotic smoothness of the data and solu-
tion at all stages of the computation. To this end, an H-formatted approximate
matrix calculus has been developed in [16] and the references there.
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4.4 H-Matrix Arithmetic

An important feature of H-matrices is that efficient algorithms for approximate
matrix arithmetic operations are available. The approximate matrix-matrix addi-
tion in H(B, k) can be performed in O(k2N logN) operations while the approxi-
mate matrix-matrix multiplication can be performed in O(k2N log2N) operations.
Moreover, employing the recursive block structure, the approximate inversion or
the approximate computation of the LU-decomposition within H(B, k) can also be
performed in only O(k2N log2N) operations. We refer the reader to [3,8,11,16,17]
for further results and implementation details.

4.5 Fast Solution of Second Moment Equations

Comparing (4.2) with (3.1) and (3.6), we see that verification of asymptotic
smoothness for the covariance kernel Ku requires asymptotic smoothness of Kf
and an analytic pseudodifferential calculus as reviewed in Section 3.3. More pre-
cisely, according to Theorem 3, it follows that Ku ∈ OPSθ−2r

cl,1 if Kf ∈ OPSθcl,1,
A ∈ OPSrcl,1, and provided that A is properly supported. In particular, it follows
from the analytic parametric construction given in [36, Chap. III] for analytic,
elliptic differential operators that strongly elliptic differential operators with con-
stant or analytic coefficients provide asymptotically smooth fundamental solutions
which is preserved under boundary reduction on analytic boundary manifolds M.
As a consequence, in that case, all matrices in (4.1) can be represented by H-
matrices. This reduces the memory consumption to O(kN logN) where k depends
logarithmically on the approximation accuracy ε. We refer to [8] for a detailed
description how A and Kf can directly be computed from A and Kf in the given
framework. Applying the H-matrix arithmetic, the solution Ku to (4.1) can thus
be computed within O(k2N log2N) operations.

A possible realization relies on the solution of the linear system of equations
(4.1) by iterative refinement, cp. [10,45]. To that end, let Â−1 denote an H-matrix

compressed approximate inverse to A. Starting with K
(0)
u = Â−1Kf (Â?)−1, we

approximate the solution to (4.1) in H-format via the matrix iteration

Θ(i) = Kf −AK
(i)
u A?, K

(i+1)
u = K

(i)
u + Â−1Θ(i)(Â?)−1, i = 0, 1, . . . . (4.4)

For details on the implementation and on the computational performance of the
iteration (4.4) in H-formatted matrix arithmetic we refer the reader to [8]. There,
this approach has been realized for the computation of potentials with random
boundary trace. Especially, at most two iterations have been needed to get an ac-
curacy of 10−6. For the complexity analysis of the elementary H-matrix formatted
matrix operations which appear in (4.4), we refer to [11,17].



18 J. Dölz et al.

5 Numerical Results

5.1 Problem Formulation

Given a bounded domain D ⊂ R3 with smooth boundary M := ∂D and a proba-
bility space (Ω,Σ,P), we consider the Dirichlet problem

∆u(ω, x) = 0 for x ∈ D

u(ω, x) = f(ω, x) for x ∈M

}
P-almost surely (5.1)

with random Dirichlet data f ∈ L2
P
(
Ω,H1/2(M)

) ∼= L2
P(Ω) ⊗ H1/2(M) where ⊗

denotes the Hilbertian tensor product. For given mean E[f ] and covariance Kf
of the Dirichlet data, we shall compute the solution’s mean and covariance which
satisfy

∆E[u] = 0 in D and E[u] = E[f ] on M (5.2)

and
(∆⊗∆)Ku = 0 in D×D,

(∆⊗ id)Ku = 0 on D×M,

(id⊗∆)Ku = 0 on M×D,

Ku = Kf on M×M.

(5.3)

Given a density ρ ∈ H−1/2(M), the single-layer potential

S̃ : H−1/2(M)→ H1(D), (S̃ρ)(x) :=

∫
M

ρ(y)

|x− y|dσy,

satisfies ∆(S̃ρ) = 0 in R3 \M. For given boundary data f ∈ H1/2(M), the solu-
tion to the corresponding Dirichlet problem is obtained by solving the boundary
integral equation

(Sρ)(x) :=Mint
0 (S̃ρ)(x) = f(x) for x ∈M.

Here, Mint
0 : H1(D)→ H1/2(M) denotes the (interior) trace operator. Hence, the

solution ρ ∈ L2
P(Ω)⊗H−1/2(M) of

(id⊗ S)ρ(ω, x) =

∫
M

ρ(ω, y)

|x− y| dσy = f(ω, x) (5.4)

leads to

u(ω, x) = (id⊗ S̃)ρ(ω, x) =

∫
M

ρ(ω, y)

|x− y| dσy,

satisfying (5.1). Integrating (5.4) with respect to the stochastic variable gives, in
view of Fubini’s theorem, that∫

Ω

(id⊗ S)ρ(ω, x)dP(ω) = (SE[ρ])(x) = E[f ](x) (5.5)

and E[u] = S̃E[ρ] is the solution to (5.2). Likewise, by tensorizing (5.4) and by
integrating with respect to the stochastic variable, we obtain∫

Ω

(id⊗ S)ρ(ω, x)(id⊗ S)ρ(ω, y)dP(ω) = (S ⊗ S)Kρ(x, y) = Kf (x, y) (5.6)

and Ku = (S̃ ⊗ S̃)Kρ is the solution to (5.3).
The boundary integral equation (5.6) is of the form (1.3) where A = S, Ku =

Kρ, and V = H−1/2(M). In particular, S ∈ OPS−1
cl,1(M), cp. eg. [28].
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5.2 Numerical Computations

Fig. 2 The surface meshes for the sphere (left) and for the cube (right).

We choose D as the unit ball {x ∈ R3 : |x| < 1} and also as the unit cube
(0, 1)3. To discretize functions on the sphere M = ∂D = S2, we use the space
VN = span{ϕ1, . . . , ϕN} ⊂ H−1/2(M) of piecewise constant approximations on a
regular partition of M. We employ here an exact representation of the particular
surface by parametrization via six four-sided patches and do not approximate it
by planar panels. The parametrization of the ball’s surface is obtained from that
of the cube’s surface by normalizing each point x by its norm |x|, leading again
to six patches. The covariance Kf of the Dirichlet data in (5.1) is assumed to
be given by the exponential kernel Kf (x, y) = exp(−|x− y|) which coincides with
Kν in (2.11) for ν = 1/2. In case of the unit ball, the involved operators are
all classical pseudodifferential operators. It holds S ∈ OPS−1

cl,1 and Kf ∈ OPS−3
cl,1

since −2ν − n = 3 due to ν = 1/2 and n = 2, cp. Section 2.3. Hence, we conclude
Kρ ∈ OPS−1

cl,1 in accordance with Theorem 3. Whereas, in case of the unit cube
D, the surface is only piecewise smooth and the regularity theory developed here
does not apply due to singularities concentrated at corners and edges of ∂D, as
indicated in Remark 3.

The boundary integral equation (5.6) for the unknown covariance Kρ is dis-
cretized for both surfaces by using N = 98 304 piecewise constant boundary el-
ements on regular, quasiuniform partitions of ∂D into quadrilateral meshes. The
mesh on the sphere is obtained from the mesh of the cube’s surface by moving a grid
point x to the grid point x/|x|, see also Figure 2. The Galerkin system (4.1) is solved
by the H-matrix arithmetic with very high accuracy as outlined in Section 4.3, ie.
we compute an H-matrix approximation of Kρ with the H-matrix arithmetic with
very low tolerances. For all the details of the current implementation, we refer the
reader to [8]. Since piecewise constant boundary elements are orthonormal, the
H-matrix Kρ is expected to coincide nearly with the directly discretized version
of the unknown covariance Kρ, ie. with [(Kρϕi, ϕj)]i,j . Next, the H-matrix Kρ is
recompressed with respect to the Frobenius norm ‖ · ‖F with different (relative)
accuracies ε in order to check its compressibility. This means that we determine an
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Fig. 3 Ranks of the H-matrix representations of the solution for different relative accuracies
for the sphere (left) and for the cube (right).
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H-matrix Kε
ρ with minimal block rank such that for all admissible matrix blocks

as well as for the complete matrix the inequality ‖Kρ−Kε
ρ‖F ≤ ε‖Kρ‖F holds. The

results can be found in Figure 3 for the unit ball on the left hand side and for the
unit cube on the right hand side. There, one finds a visualization of the respective
H-matrices for ε = 10−2 (top) until ε = 10−8 (bottom), where the rank of the ma-
trix blocks are indicated by color and by the numbers which are inscribed. Notice
that the largest blocks are of size 16 384× 16 384. The appearance of a self-similar
block pattern consisting of six blocks corresponds to the patch-patch interactions
of opposite patches of the ball’s surface and the cube’s surface, respectively. This is
clearly visible by the corresponding graph for a square screen, shown in Figure 4.
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Fig. 4 Ranks of the H-matrix representations of Kρ for different relative accuracies for the
square screen. Relative accuracy 10−4 (left) and 10−8 (right).

As expected, the block-ranks increase as ε decreases. Nevertheless, it turns
indeed out that Kρ can efficiently be approximated by an H-matrix. The memory
consumption of Kρ is tabulated in Table 1 in terms of the mean value of nonzero
matrix coefficients per degree of freedom for N = 6 · 4J boundary elements, J =
1, . . . , 7, and for the tolerances from Figure 3. The slightly larger singular support
of Kρ due to the corners and edges of the cube (cp. Remark 3) causes only a
marginal increase of the ranks and the memory consumption.

J N sphere cube
1 24 14 14 14 14 14 14 14 14
2 96 58 58 58 53 58 58 56 52
3 384 314 291 233 145 316 298 246 160
4 1536 907 704 478 244 999 786 544 299
5 6144 2070 1508 960 419 2216 1633 1048 499
6 24 576 3974 2777 1655 568 4154 2952 1793 687
7 98 304 6032 4148 2300 547 6211 4363 2496 679

ε 10−8 10−6 10−4 10−2 10−8 10−6 10−4 10−2

Table 1 Memory consumption for the sphere and the cube for different discretization levels
J and accuracies ε.

Finally, we visualize the spectra of theH-matrix approximations of the involved
operators. They are found for the unit ball on the left hand side of Figure 5 and
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Fig. 5 Spectral decay of the single layer operator, the input covariance operator and the
solution’s covariance operator for the sphere (left) and for the cube (right).

for the unit cube on the right hand side of Figure 5. We observe the expected be-
haviour λk ∼ k−1/2 for the spectrum of the single layer operator and the solution’s
covariance operator while we observe λk ∼ k−3/2 for the input covariance operator
Kf . This is validated by the dashed lines which indicate these asymptotics. For the
unit ball, the spectra behave thus in agreement with Theorem 4: S ∈ OPS−1

cl,1 and

Kf ∈ OPS−3
cl,1, and Theorem 3 implies Ku ∈ OPS−1

cl,1. Not covered by the present

theory, due to the nonsmoothness of ∂(0, 1)3 (cp. Remark 3), the spectra behave
nearly the same in this case, indicating that the present results may extend to
certain classes of (piecewise analytic) Lipschitz manifolds M.

6 Concluding Remarks

We analyzed H-matrix formatted, deterministic approximations of two-point spa-
tial covariance functions which describe second order statistics of random field
solutions of linear operator equations with random forcing, for classical strongly
elliptic pseudodifferential operators A, on bounded domains D and on smooth,
closed and compact Riemannian n-manifolds M ⊂ Rn+1 as they arise in bound-
ary reduction of strongly elliptic, linear boundary value problems.

Computational efficiency of the direct numerical solution of the deterministic
tensor equation (1.3) is hampered by doubling the dimension of the spatial vari-
ables. For smooth covariance functions, sparse tensor product approximations were
shown in [38,39] to recover log-linear complexity with respect to N , the number
of unknowns in D used to discretize A. In many applications, however, there arise
random fields with low spatial path regularity which, in turn, entail two-point co-
variance functions which are singular on the diagonal {x = y} of D × D (resp. of
M×M), but which are smooth (even Gevrey regular) on (D × D)\{x = y}. For
such functions, H-matrix formatted, deterministic approximations are known to
converge again in essentially linear complexity. We proved that two-point covari-
ance functions in second order statistics of random field solutions of pseudodiffer-
ential equations generically exhibit the same regularity. We also provide a sharp



Covariance regularity and H-matrix approximation for rough random fields 23

estimate on the singularity strength with respect to the order of the operator and
space dimension. The spectral asymptotics of the covariance operators of the im-
plicitly (via operator equation (1.1)) defined random field u was characterized in
Theorem 4 likewise in terms of these parameters; this result, apart from being
interesting in itself, is the basis for the numerical analysis of rank truncations
and approximate Cholesky covariance factorizations which arise in fast simulation
methods (see, eg., [21]). The use of pseudodifferential calculus implies that our
results apply to boundary value problems for all linear, elliptic systems of partial
differential equations with analytic data as well as to their boundary reductions,
as well as to more general, hypoelliptic operators A. The scope of our results is
more general: covariances with kernels which have only Gevrey class regularity are
covered since proofs of H-matrix rank bounds in [3, Chap. 4] extend to Gevrey
regular functions.

Numerical experiments with a strongly elliptic pseudodifferential operator of
order −1 confirmed the theoretical approximation results. The experiments indi-
cated, moreover, that the smoothness requirements imposed by the use of pseudod-
ifferential calculus are, most likely, excessive, and could be considerably weakened.
Detailed theoretical justification of these observations is beyond the scope of the
present article. A fully discrete algorithm for solving the Galerkin system (4.1) in
terms of H-matrices, whose complexity scales log-linearly, has been developed in
[8].
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