Turning Privacy Constraints into Syslog Analysis
Advantage

Siavash Ghiasvand
Technische
Universitat Dresden, ZIH
01069 Dresden, Germany
siavash.ghiasvand@tu-
dresden.de

Nowadays, failures in high performance computers (HPC)
became the norm rather than the exception [10]. In the
near future, the mean time between failures (MTBF) of HPC
systems is expected to be too short, and that current failure
recovery mechanisms e.g., checkpoint-restart, will no longer
be able to recover the systems from failures [1]. Early fail-
ure detection is a new class of failure recovery methods that
can be beneficial for HPC systems with short MTBF. De-
tecting failures in their early stage can reduce their negative
effects by preventing their propagation to other parts of the
system [3].

Linux, with a share of 97%, is the dominant operating sys-
tem among world top 500 supercomputers [11]. All Linux-
based systems, support Syslog [4] as a basic service. By
default vital parts of the system send their activity log into
Syslog service. Therefore, Syslog entries (hereafter, syslogs)
are invaluable sources of information to monitor and an-
alyze system behavior. Because of Linux popularity, any
approach based on syslogs can be easily extended to be used
on other HPC systems. Also, syslog analysis is a passive
approach and, therefore, it has no influence on the system
performance. In [6] we proposed an approach to predict
failures. Later, in [5] we revealed the temporal and spatial
correlation of failures. And in [7] we introduced a prototype
to analyze system behavior. This body of research became
possible solely because of the existence of the HPC system
(Taurus') syslogs.

Syslogs contain very detailed information about all funda-
mental services and daemons. On one hand, this detailed
information helps understanding the system behavior bet-
ter. On the other hand, too much data makes it harder
to extract the required information. Apart from these pros
and cons, syslogs also contain sensitive data which might
be used to uniquely identify system users and to track their
activities.

"Mttps://doc.zih.tu-dresden.de/hpc-wiki/bin/view/
Compendium/SystemTaurus

Florina M. Ciorba
University of Basel,
Department of Mathematics
and Computer Science
4001 Basel, Switzerland
florina.ciorba@unibas.ch

Wolfgang E. Nagel
Technische
Universitat Dresden, ZIH
01069 Dresden, Germany
wolfgang.nagel@tu-
dresden.de

Even though there were some projects in the past [9, 8] to
publish syslogs, concern about users privacy prevents system
administrators to actively participate in such projects, and
publish their HPC system syslogs. Which consequentially
limits us to our local sources of syslogs, and prevents us from
proofing and generalizing our failure prediction approaches.
The goal of the current work is to contribute to the foun-
dation of failure detection techniques via sharing an ongo-
ing research with the community. Herein we consider user
privacy as the main priority, and then turning the applied
constraint for protecting users privacy into an advantage for
analyzing the system behavior. We use De-identification,
constantification, and hashing to reach this goal. Our ap-
proach also contributes to the reproducibility and openness
of future research in the field. Via this approach, system ad-
ministrators can unwarily share their syslogs with the public
domain.

This is how a typical syslog entry looks like:

1Session opened for user siavash by (uid=0)
2Received disconnect from 192.168.32.21: 10:
3Session opened for user florina by (uid=0)
1Session closed for user siavash

s Accepted key for siavash from 192.168.12.31
6Syslog—ng starting up; version="2.1.1"

In lines 1, 3, 4, and 5 username and in lines 2 and 5 IP
address of users are visible. Both are unique identifiers and
by tracking these identifiers along the syslogs we can moni-
tor the specified user’s activity. In line 1 and 3, except the
usename and wuid, the rest of entries are identical. Previ-
ous findings [5, 7, 6] indicate that even though the detailed
information is useful to traceback the root of system mis-
behaviors, for keeping track of syslog patterns, and failure
prediction, they do not yet have an added value. Therefore,
by removing sensitive information from the above mentioned
syslogs, we can safely eliminate the concerns about users pri-
vacy.

1Session opened for user USER by (uid=0)
2Received disconnect from IP: 10:

3 Session opened for user USER by (uid=0)
1+Session closed for user USER

s Accepted key for USER from IP
sSyslog—ng starting up; version="2.1.1"

So far, we de-identified the syslogs (hereafter, D-syslogs).
Now in favor of syslogs readability we can continue to re-
place variable parts with constant strings. Too much data



in this level for our purpose, only results in consuming more
resources and does not provide any added value.

1Session opened for user USER by (uid=UID)
2Received disconnect from IP: SESSION:
3Session opened for user USER by (uid=UID)
1+Session closed for user USER

s Accepted key for USER from IP

6 Syslog—ng starting up; version='VERSION’

After constantifying our D-syslog sample, line 1 and line 3
became identical. As a real test case, via full constantifi-
cation of Taurus D-syslogs, we observed that out of 750
million entries there are only less than 1000 unique entries.

We already saved a lot of space and processing time, via de-

identifying and constantifying syslogs (hereafter, DC-syslogs).

Hashing, brings us to the next level. Using the hashed en-
tries, rather that the raw text, significantly increases the
efficiency of pattern matching algorithms [2]. Hashing the
DC-syslog sample, gives us the below output:

14D78CB0D020FDE1D3062F953511C8ACD
20A94C7C3CC8B5551BC637031EAE4E91F
34D78CB0D020FDE1D3062F953511C8ACD
1+26B87F76CEC196EE0D355EEC47AF8216
5 A95DAD54FC6ATESDELIEF5D63D6C58DA0
6 A15ADB95404F0CF3875DCACA828A63FB

The complete set of hash codes on our HPC machine has
less than 1000 elements. Therefore using a 3 digit hash code
is sufficient, and we can save even more space. The final
pre-processed syslog sample looks like this:

1001
2002
3001
4003
5004
6005

Note that the first and third line were given the same 3-
digit hash code. For some pattern matching algorithms a
constant hash code length is more beneficial.

We ran the very same approach on Taurus. On average we
enjoyed from more than 90% disk space reduction. Using
the proposed approach, even though we have to perform a
pre-processing of syslogs, the overall performance is at least
3 times higher than processing the plain unaltered syslogs.

The big picture and conclusion

Analyzing syslogs, gives us a deep insight about system be-
havior. Our preliminary results indicate that there are pat-
terns in syslogs. Using these patterns we can detect failures
in their early stage, and ideally predict them. Beside nor-
mal information, syslogs contain sensitive data which can
potentially enable syslog analyzers to endanger users pri-
vacy. Because of these privacy concerns, there are very few
publicly accessible collection of syslogs. On the other hand,
too many details in syslogs, makes their storage expensive,
increases the analysis complexity, and hides the useful in-
formation. De-identifying, constantifying, and hashing sys-
logs (hereafter, DCH-syslogs), address both challenges. The
DCH-syslogs, have no sensitive data, need less disk space,
take less time to analyze, and give a clear view over the
system behavior without hiding the important information.

Since DCH-syslogs, do not contain any sensitive data and
take less disk space, they can freely and easily be released
to the public domain. By using DCH-syslogs, we are in-
tentionally ignoring some details in the data. These details
do not have interesting information for our failure prediction
approach. The benefits gained, e.g. diverse syslogs from dif-
ferent HPC machines to test and prove the efficiency of pre-
diction mechanisms, faster analysis, reproducible researches,
contributing to open science, and so on, outweight the costs.

1. REFERENCES

[1] F. Cappello, A. Geist, and W. Gropp. Toward
Exascale Resilience: 2014 update. Supercomputing
Frontiers and Innovations, 1(1):5-28, 2014.

[2] R. M. Cowan and M. L. Griss. Hashing, the key to
rapid pattern matching. In Proceedings of the
International Symposiumon on Symbolic and Algebraic
Computation, EUROSAM ’79, pages 266-278, London,
UK, UK, 1979. Springer-Verlag.

[3] A. Gainaru, F. Cappello, M. Snir, and W. Kramer.
Failure prediction for HPC systems and applications:
Current situation and open issues. International
Journal of High Performance Computing Applications,
27(3):273-282, July 2013.

[4] R. Gerhards. RFC 5424, 2009.

[5] S. Ghiasvand, F. M. Ciorba, and W. E. Nagel. Toward
Resilience in HPC: A Prototype to Analyze & Predict
System Behavior. International Supercomputing,
poster, 2016.

[6] S. Ghiasvand, F. M. Ciorba, R. Tschiiter, and W. E.
Nagel. Analysis of Node Failures in High Performance
Computers Based on System Logs. Supercomputing,
poster, 2015.

[7] S. Ghiasvand, F. M. Ciorba, R. Tschuter, and W. E.
Nagel. Lessons Learned from Spatial and Temporal
Correlation of Node Failures in High Performance
Computers. 2016 24th Euromicro International
Conference on Parallel, Distributed, and
Network-Based Processing, pages 377-381, 2016.

[8] Google. www.github.com/google/cluster-data, 2011.

[9] LANL. www.usenix.org/cfdr-data, 2005.

[10] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V.
Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose,
F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A.
Debardeleben, P. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson,
S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra,
T. S. Munson, R. Schreiber, J. Stearley, and E. V.
Hensbergen. Addressing failures in exascale
computing. International Journal of High
Performance Computing, 2013.

[11] Top500. www.top500.org, 2016.

Source code

We are using Python? scripts to analyze syslogs. The Python
scripts used in this work can be freely downloaded®. Please
note that these script are only a proof of concept, and re-
leased solely to support better understanding of this work.
Therefore, they are kept as simple as possible.

*https://www.python.org/
Shttp://wuwpub.zih.tu-dresden.de/~ghiasvan/
publications/sc16/



