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Impact of polygenic schizophrenia-related risk and
hippocampal volumes on the onset of psychosis
F Harrisberger1,2, R Smieskova1,2,3, C Vogler2,4, T Egli4, A Schmidt5, C Lenz1,2, AE Simon6, A Riecher-Rössler1,2,
A Papassotiropoulos2,4,7,8 and S Borgwardt1,2,3,5

Alterations in hippocampal volume are a known marker for first-episode psychosis (FEP) as well as for the clinical high-risk state. The
Polygenic Schizophrenia-related Risk Score (PSRS), derived from a large case–control study, indicates the polygenic predisposition
for schizophrenia in our clinical sample. A total of 65 at-risk mental state (ARMS) and FEP patients underwent structural magnetic
resonance imaging. We used automatic segmentation of hippocampal volumes using the FSL-FIRST software and an odds-ratio-
weighted PSRS based on the publicly available top single-nucleotide polymorphisms from the Psychiatric Genomics Consortium
genome-wide association study (GWAS). We observed a negative association between the PSRS and hippocampal volumes
(β=− 0.42, P= 0.01, 95% confidence interval (CI) = (−0.72 to − 0.12)) across FEP and ARMS patients. Moreover, a higher PSRS was
significantly associated with a higher probability of an individual being assigned to the FEP group relative to the ARMS group
(β= 0.64, P= 0.03, 95% CI = (0.08–1.29)). These findings provide evidence that a subset of schizophrenia risk variants is negatively
associated with hippocampal volumes, and higher values of this PSRS are significantly associated with FEP compared with the
ARMS. This implies that FEP patients have a higher genetic risk for schizophrenia than the total cohort of ARMS patients. The
identification of associations between genetic risk variants and structural brain alterations will increase our understanding of the
neurobiology underlying the transition to psychosis.
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INTRODUCTION
Schizophrenia can be a severe mental disorder, affecting ~ 1% of
the population.1 Although the pathophysiological mechanisms
underlying schizophrenia are still poorly understood, it is known
that genetic factors and combinations thereof (that is, single-
nucleotide polymorphisms (SNP), copy-number variations or
mutations) are involved in disease aetiology, as is indicated by
the substantial heritability estimates for schizophrenia.2 Moreover,
in combination with environmental trigger factors, it might lead to
the transition to psychosis from the clinical high-risk state. Around
30% of clinical at-risk mental state (ARMS) individuals will make a
transition to psychosis within the subsequent 2 years.3–5 Finding
markers that further characterise these ARMS individuals is the
main goal of psychiatric research, as early treatment of this group
is thought to prevent or delay the onset of a first episode of
psychosis.6,7 Several markers besides clinical characteristics
describe prodromal psychosis, for example, structural and
functional brain alterations or cognitive functioning.8,9 Even in
the ARMS, neuroimaging observations revealed reductions in the
grey matter of the medial temporal lobe, including the
hippocampus,10–14 as well as neurofunctional aberrations within
the hippocampus15 and deficits in verbal fluency and memory
functioning.16 However, results are inconsistent in the differences
in hippocampal volume between first-episode psychosis (FEP)
patients and ARMS individuals, regardless of future transition to

psychosis.10,11,17 Moreover, hippocampal volumes were shown to
be highly heritable in twin studies of healthy individuals;18,19

however, twin studies where one of the twins was affected by
schizophrenia also revealed substantial modulation of hippocam-
pal volumes by environmental factors.20–23 In addition, moderate
genetic heritability of the hippocampal volumes was shown in
large extended families affected with schizophrenia.24

Although individual effects of SNPs on the genetic risk for
schizophrenia were found to be small, it was estimated that 23%
of variation in liability to schizophrenia is captured by SNPs with a
substantial proportion of this variation attributed to common
causal variants.25,26 The largest genome-wide association study
(GWAS), performed by the Psychiatric Genomic Consortium (PGC),
identified 108 schizophrenia-associated loci,27 which explained up
to 3.4% of the phenotypic variance in case–control studies. In
general, the combination of GWAS-significant risk SNPs, the
Polygenic Schizophrenia-related Risk Score (PSRS), describes the
estimated cumulative genomic risk for schizophrenia.
Only a few studies have reported associations between a PSRS

and brain volumes. All of these studies investigated the above-
mentioned association in different cohorts of schizophrenia
patients, their relatives and/or healthy controls.28–30 They found
association of a PSRS with total brain volume,28 especially with
white matter volume.28,29 Unfortunately, these results could not
be replicated in another independent sample.30 However, none of
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these studies investigated the association of a PSRS with brain
volume in ARMS individuals and FEP patients. Moreover, a GWAS
identified single SNPs linked to hippocampal volume in healthy
controls;18 however, no study to date has investigated the
association of a PSRS with volumetric differences in this region.
On the basis of findings supporting a role for hippocampal

alterations in FEP and even in the ARMS,10–14 we aimed to explore
the association between the PSRS, hippocampal volume and the
onset of psychosis. The identification of associations between
genetic risk variants and structural alterations will increase our
understanding of the neurobiology underlying psychosis, as well
as the transition to psychosis. Linking the PSRS to structural
alterations in the brain will be helpful in elucidating the
neurobiology underlying psychosis and may also increase our
understanding of the factors contributing to the transition to
psychosis in ARMS individuals. We hypothesised that a higher
PSRS is associated with both smaller hippocampal volumes and
the probability of being FEP.

MATERIALS AND METHODS
Participants and clinical assessment
Individuals included in this study were recruited via the early detection of
psychosis research programme at the Psychiatry Outpatient Department,
Psychiatric University Clinics Basel5,31 and were either ARMS individuals or
FEP patients. All individuals were assessed using the Basel Screening
Instrument for Psychosis,32 the Brief Psychiatric Rating Scale (BPRS), the
Scale for the Assessment of Negative Symptoms (SANS) and the Global
Assessment of Functioning (GAF) at the time of the magnetic resonance
imaging scan. We additionally obtained information on current and
previous psychotropic medication, nicotine and illegal drug consumption
using a semistructured interview adapted from the Early Psychosis
Prevention and Intervention Centre Drug and Alcohol Assessment
Schedule (eppic.org.au).
ARMS was defined in accordance with the criteria by Yung et al.33 and

resulted in the inclusion of N= 43 ARMS individuals in the study. Thus,
inclusion required one or more of the following: (a) 'attenuated' psychotic
symptoms, (b) brief limited intermittent psychotic symptoms or (c) a first-
or second-degree relative with a psychotic disorder plus at least two
indicators of a clinical change, according to the Basel Screening Instrument
for Psychosis.31,34 Inclusion because of criterion (a) required a change in
the mental state at least several times a week and for more than 1 week (a
score of 2 or 3 on the BPRS hallucination item or 3 or 4 on BPRS items for
unusual thought content or suspiciousness). Inclusion because of (b)
required BPRS scores of ⩾ 4 on the hallucination item or ⩾ 5 on the unusual
thought content, suspiciousness or conceptual disorganisation items, with
each symptom lasting less than 1 week before resolving spontaneously.
None of the included subjects fulfilled criterion (c). All individuals were
antipsychotic-naive at the time of scanning, whereas 18 of the ARMS
individuals were receiving antidepressants.
The FEP patients (N= 36) met the operational criteria according to Yung

et al.,33 and they fulfilled criteria for acute psychotic disorder according to
International Statistical Classification of Diseases, 10th Revision (ICD-10) or
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)
but not for schizophrenia. Inclusion required scores of ⩾ 4 on the
hallucination item or ⩾ 5 on the unusual thought content, suspiciousness
or conceptual disorganisation items of the BPRS. The symptoms had to
have occurred at least several times a week and persisted for more than
1 week. Fourteen of our FEP patients were antipsychotic-naive, three
were antipsychotic-free and ten were receiving antipsychotic medication
at the time of scanning (three quetiapine, three risperidone, two
olanzapine, one clozapine and one aripiprazole). In the antipsychotic-free
group, antipsychotic medication (two risperidone and one aripiprazole)
has been stopped 4, 19 and 24 months previously. Antipsychotic dose was
converted into chlorpromazine (CPZ) equivalents using the Supplementary
Table Antipsychotic dose conversion by Ho et al.35 The mean CPZ
equivalents (s.d.) were 227.39 (202.90). Of all FEP patients, three received
only antidepressants and four were on a combined treatment with
antidepressants and antipsychotics.
The following exclusion criteria were applied for both groups: history of

previous psychotic disorder, psychotic symptomatology secondary to an
‘organic’ disorder, psychotic symptoms associated with an affective

psychosis or a borderline personality disorder, substance abuse according
to ICD-10 research criteria, head trauma, neurological illness, serious
medical or surgical illness, being younger than 18 years, inadequate
knowledge of the German language and IQ less than 70 as measured by
the Mehrfachwahl Wortschatz (Multiple Choice Vocabulary) Test Form B
(MWT-B).
All participants provided written informed consent and received

compensation for participating. The studies had permission from the
ethics committee beider Basel (EKBB).

Magnetic resonance imaging acquisition
All anatomical scans were performed on a 3 T magnetic resonance
imaging scanner (Siemens Magnetom Verio, Siemens Healthcare, Erlangen,
Germany) using a 12-channel phased-array radio frequency head coil. For
structural images, a 3D T1-weighted magnetisation-prepared rapid
gradient echo sequence was used with the following parameters: an
inversion time of 1 000 ms, flip angle = 8 degrees, repetition time (TR) = 2 s,
echo time (TE) = 3.37 ms, field of view (FOV) = 25.6 cm, acquisition
matrix = 256× 256× 176, resulting in 176 contiguous sagittal slices with
1× 1× 1 mm3 isotropic spatial resolution. All scans were screened for gross
radiological abnormalities by an experienced neuroradiologist.

Genotyping and imputation
DNA was extracted from whole-blood samples using the QIAamp DNA
Blood Maxi kit according to the standard procedures (Qiagen, Chatsworth,
CA, USA). DNA samples were further processed on the Affymetrix Genome-
Wide Human SNP Array 6.0. in one centralised microarray facility as
described in the Genome-Wide Human SNP Nsp/Sty 6.0. User Guide
(Affymetrix, Santa Clara, CA, USA). Generation of SNP calls and array quality
control (QC) were performed using the Affymetrix Genotyping Console
Software 3.0 (Affymetrix). According to the manufacturer’s recommenda-
tion, contrast QC was chosen as QC metric, using the default value of 0.4.
All samples passing QC criteria were subsequently genotyped using the
Birdseed (v2) algorithm, leading to a total of 921 523 genotyped SNPs per
sample. Appropriate SNP QC filtering was applied in the PLINK 1.9
software,36,37 where the gender check in PLINK led to the exclusion of
three individuals.
Population stratification was assessed using principal component (PC)

analysis implemented in the EIGENSTRAT software38 to detect genotypic
outliers (with default parameters: 46 s.d.'s on any of the top 10 PCs in five
iterations) and to correct for the potential population substructure by
analysing all array-based pruned, autosomal SNPs. Eight individuals were
identified as outliers and therefore were excluded from further analyses.
Before autosome-wide genotype imputation, haplotype estimation was

performed using SHAPEITv2 software,39 allowing a per individual and a per
SNP missing rate for observed markers of max. 5%. After pre-phasing,
genotype imputation was performed using IMPUTE v2.3.0 software, which
imputes missing genotypes using a multipopulation reference panel.40,41

The integrated variant callset of 1092 individuals from the 1000 Genomes
Project (release v3 in NCBI build 37/hg19 coordinates, March 2012) served
as panel data (http://mathgen.stats.ox.ac.uk/impute/ALL_1000G_phase1in
tegrated_v3_impute_macGT1.tgz). Only genotype calls exceeding a
probability score of 90% were converted into genotype calls for statistical
analysis using the PLINK 1.9 software.42

PSRS calculation
PSRS were calculated, following the suggestions by Wray et al.,43 by taking
linkage disequilibrium (LD)-pruned loci identified by the Schizophrenia
Working Group of the PGC in a GWAS of 36 989 schizophrenia patients and
113 075 healthy controls27 (http://www.med. unc.edu/pgc/downloads). A
total of 87 SNPs that could be mapped to one of the top SNPs of the 108
loci associated with schizophrenia and that survived QC were used to
calculate the PSRS. (The following were included: 17 SNPs represented on
the Affymetrix 6.0 Genotyping Array and 70 imputed SNPs (see
Supplementary Table 1). The following were excluded: 7 SNPs that could
not be imputed, 3 SNPs on allosome, 11 insertion/deletion variants and 20
variants in physically dependent genomic regions.). In summary, the
number of risk alleles per person was weighted for each SNP by the
logarithm of its odds ratio as reported in the PGC SZ data set27 and
summed across SNPs44 using the PLINK 1.9 software.36,37 The PSRS was
then corrected for the first 20 genotypic PCs and the number of SNPs used
to calculate the PSRS by using the z-transformed residuals of a linear
regression.
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Image processing
Subcortical structures were segmented from T1-weighted magnetisation-
prepared rapid gradient echo images with FMRIB's Integrated Registration
and Segmentation Tool 5.0.4. (FSL-FIRST).45 Raw volumes for the left and
right hippocampi were extracted and separately corrected for intracranial
volume, age, gender, antidepressant intake as dichotomous variable and
CPZ equivalents of antipsychotics by using the z-transformed residuals of a
linear regression. After a separate outlier control for both hippocampal
sides (mean± 3.5 s.d.), which resulting in the exclusion of three individuals,
the mean hippocampal volume was calculated.

Statistical analysis
The R 3.0.2 software46 with the packages stats was used for statistical,
group-related analysis. Χ2-tests or t-tests were used to test the distribution
between diagnosis group and age, sex, handedness, years of education,
IQ, BPRS, SANS, Global Assessment of Functioning, antipsychotics and

antidepressants. Values are presented as mean± s.d. (see Table 1). In
addition, associations between clinical symptoms and PSRS or hippocam-
pal volumes were examined with linear regression analysis. The relation-
ship between corrected PSRS (corrected for the first 20 genotypic PCs and
the number of SNPs used to calculate the PSRS) and the corrected bilateral
hippocampal volumes (corrected for intracranial volume, age, gender,
antidepressant intake as dichotomous variable and CPZ equivalents of
antipsychotic doses) was assessed in a linear regression model. We then
fitted a logistic regression using the generalised linear model function in R
with diagnosis status as binary dependent variable and the corrected
bilateral hippocampal volumes and the corrected PSRS score as
independent variables (both having similar variance between groups).
Furthermore, mediation analysis47–49 was conducted to assess the driving
factor of these associations using the R package mediation.50 The indirect
effect was tested using the quasi-Bayesian Monte Carlo method based on
normal approximation and the 95% confidence interval (CI) was obtained
through 1000 simulations.

Table 1. Demographics and clinical characteristics

Characteristics ARMS (n=38) FEP (n= 27) Statistics P-value

Gender M/F (% M) 26/12 (32%) 20/7 (26%) χ2= 0.05 0.83
Mean age in years (s.d.) 23.83 (4.31) 28.33 (7.91) t=− 2.68 0.01
Handedness r/l (% l) 35/3 (8%) 20/7 (26%) χ2= 2.68 0.11
Years of education (s.d.) 13.72 (2.59) 13.76 (3.15) t=− 0.05 0.96
MWT-B (s.d.) 110.73 (13.85) 109.23 (17.88) t= 0.33 0.74
BPRS (s.d.) 37.16 (7.28) 50.33 (15.49) t=− 3.90 0.001
SANS (s.d.) 19.55 (15.31) 24.14 (15.15) t=− 1.13 0.27
GAF (s.d.) 70.11 (12.35) 59.59 (17.07) t= 2.73 0.009
AP no/yes (% y) 38/0 (0%) 17/10 (37%) χ2= 13.91 o0.001
AD no/yes (% y) 20/18 (47%) 20/7 (26%) χ2= 2.23 0.14

Abbreviations: AD, antidepressants; AP, antipsychotics; ARMS, at-risk mental state; BPRS, Brief Psychiatric Rating Scale; F, female; FEP, first-episode psychosis;
GAF, Global Assessment of Functioning; l, left; M, male; MWT-B, Mehrfachwahl Wortschatz Test (Multiple Choice Vocabulary) Form B; r, right; SANS, Scale for the
Assessment of Negative Symptoms.

Table 2. Results of linear regression, logistic regression and mediation analyses

Variable Coefficients s.e. Z-value P-value 95% CI lower 95% CI upper

Linear regression: ARMS and FEP
Intercept 0.02 0.12 0.15 0.88 − 0.22 0.26
Hippocampal volumes − 0.42 0.15 − 2.83 0.01 − 0.72 − 0.12
R2= 0.11; comparison with null model: χ2= 7.75, P= 0.01

Linear regression: ARMS only
Intercept − 0.20 0.16 − 1.29 0.21 − 0.52 0.12
Hippocampal volumes − 0.51 0.21 − 2.39 0.02 − 0.94 − 0.08
R2= 0.14; comparison with null model: χ2= 5.60, P= 0.02

Linear regression: FEP only
Intercept 0.32 0.17 1.82 0.08 − 0.04 0.68
Hippocampal volumes − 0.41 0.20 − 2.03 0.05 − 0.83 0.01
R2= 0.14; comparison with null model: χ2= 4.11, P= 0.04

Logistic regression: ARMS and FEP
Intercept − 0.43 0.29 − 1.48 0.14 − 1.01 0.13
PSRS 0.64 0.30 2.11 0.03 0.08 1.29
Hippocampal volumes 0.59 0.37 1.60 0.11 − 0.11 1.36
PSRS x hippocampal volumes − 0.14 0.37 − 0.39 0.70 − 0.88 0.60
Nagelkerk’se-R2= 0.1; c-statistic: 64.4%; comparison with null model: χ2= 5.88,
P= 0.12

Mediation analysis
ACME − 0.03 0.09 − 0.09 0.006
ADE 0.14 0.03 0.02 0.27
Total effect 0.12 0.07 −0.01 0.25

Abbreviations: ARMS, at-risk mental state; ACME, average causal mediation effect; ADE, average direct effect; CI, confidence interval; FEP, first-episode
psychosis; PSRS, Polygenic Schizophrenia-related Risk Score.
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RESULTS
Clinical and demographic characteristics
There were no significant differences among the investigated
groups with respect to gender (P= 0.83), handedness (P= 0.11),
years of education (P= 0.96) MWT-B (P= 0.74), SANS (P= 0.27) and
number of individuals treated with antidepressants (P= 0.14).
There were significant between-group differences in age (P= 0.01),
BPRS (P= 0.001), Global Assessment of Functioning (P= 0.009) and
the number of patients treated with antipsychotics (Po0.001;
Table 1). None of the clinical characteristics was associated with
the PSRS or the hippocampal volumes at the time of MR scanning.

Association between diagnosis, PSRS and hippocampal volume
Linear regression analysis revealed a significant relationship
between the PSRS and hippocampal volumes (β=− 0.42,
P= 0.01, 95% CI = (−0.72 to − 0.12), Table 2) in our total sample
and the subgroup of ARMS individuals (β=− 0.51, P= 0.02, 95%
CI = (−0.94 to − 0.08), Figure 1, Table 2) and FEP patients separately
(β=− 0.41, P= 0.05, 95% CI = (−0.83 to 0.01), Figure 1, Table 2). To
further analyse this association in the total sample, we performed
a logistic regression analysis. A significant main effect of the PSRS
on the log odds of an individual being assigned to the FEP state
was observed (β= 0.64, P= 0.03, 95% CI = (0.08–1.29), Table 2,
Figure 2). In addition, neither a main effect of the hippocampal
volumes (β= 0.59, P= 0.11, 95% CI = (−0.11 to 1.36), Table 2) nor an
interaction effect of PSRS and hippocampal volumes (β=− 0.14,
P= 0.70, 95% CI = (−0.88 to 0.60), Table 2) on the log odds was
detected. Therefore, a higher PSRS score is associated with a
higher likelihood that an individual would be assigned to the
group of FEP individuals than to the group of ARMS individuals.
Moreover, the mediation analysis indicated no mediating role of
the hippocampal volumes between PSRS and group assignment

(β=− 0.03, P= 0.09, 95% CI = (−0.09 to 0.006), Figure 3, Table 2).
And, the direct effect of PSRS on group assignment when
controlling for hippocampal volumes remained significant
(β= 0.14, P= 0.03, 95% CI = (0.02–0.27), Figure 3, Table 2).

DISCUSSION
To our knowledge, this is the first study to analyse the association
between a PSRS, hippocampal volumes and the onset of
psychosis. We found a negative association between the
hippocampal volumes and the PSRS across ARMS individuals
and FEP patients, derived from the top hits within genome-wide
significant loci identified by the large GWAS analysis from the
Psychiatric Genomics Consortium.27 Moreover, a higher PSRS was
significantly associated with a higher probability of being assigned
to the FEP group than to the ARMS group.
We demonstrate that reduced hippocampal volumes were

associated with higher PSRS in the total sample of ARMS
individuals and FEP patients as well as for each group separately.
This association might suggest that schizophrenia-related SNPs

Figure 3. Mediation analysis scheme. Indirect effect of PSRS on
group assignment through hippocampal volumes and direct effect
of PSRS on group assignment. P-values are reported as estimate of
significance. PSRS, Polygenic Schizophrenia-related Risk Score.

Figure 1. Linear regression analysis of PSRS and hippocampal
volumes. Standardised residuals of the PSRS are adjusted for the
first 20 genotypic PCs and the number of SNPs used to calculate the
PSRS. Standardised residuals of the mean hippocampal volume are
adjusted on each side separately for ICV, age, gender antidepressant
intake and CPZ equivalents. Red dashed line, regression line with
95% confidence interval of FEP cohort; blue dot-dashed line,
regression line with 95% confidence interval of ARMS cohort. ARMS,
at-risk mental state; CPZ, chlorpromazine; FEP, first-episode psycho-
sis; ICV, intracranial volume; PC, principal component; PSRS,
Polygenic Schizophrenia-Related Risk Score; SNP, single-nucleotide
polymorphism.

Figure 2. Plot of estimated probability for being FEP versus PSRS.
The standardised residuals of the PSRS are adjusted for the first 20
genotypic PCs, and the number of SNPs used to calculate the PSRS
are plotted against estimated probability of logistic regression. Black
dashed line, regression line with 95% confidence interval of FEP and
ARMS cohorts. ARMS, at-risk mental state; FEP, first-episode psychosis;
PC, principal component; PSRS, Polygenic Schizophrenia-Related
Risk Score; SNP, single-nucleotide polymorphism.
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are directly linked to smaller hippocampi. However, such a direct
link cannot be inferred from our results because other factors such
as stressful life events51 or neuropsychiatric medication52,53 have
been shown to modulate the volumes of the hippocampus. It
should be further noted that volumetric alterations in the
hippocampus have been linked to psychotic symptoms and
cognitive deficits of schizophrenia,54 a core function of the
hippocampus, and ARMS individuals already show some deficits in
verbal fluency and memory functioning.5,16

We also observed that a higher PSRS was associated with a
higher likelihood of an individual being assigned to the FEP group
than to the ARMS group. This finding might reflect the fact that
only ~ 30% of ARMS individuals are correctly predicted to develop
psychosis4,5 and thus might not have a high PSRS. Moreover, the
hippocampal volumes were not identified as mediator between
PSRS and group assignment. Therefore, further studies should
analyse whether the PSRS could be used to further characterise
those ARMS individuals who will develop psychosis and whether
ARMS individuals with a higher PSRS are more likely to develop
psychosis. Owing to the limited number of ARMS individuals with
later transition to psychosis, we could not investigate whether this
PSRS might be a vulnerability trait for transition. Nevertheless, we
observed that four of our six ARMS individuals who (until now)
have developed psychosis had a PSRS above the median of the
total sample. Therefore, further longitudinal studies should
examine whether a combination of clinical, genetic, environmen-
tal, neuroimaging and neurocognitive markers can improve the
prediction rate for transition to psychosis.
The absence of a significant association between hippocampal

volumes and being in either the ARMS or FEP groups supports
several findings of similar volumes.10,11,17 Furthermore, it has been
reported that the volumes of the hippocampus were negatively
associated with negative symptoms in ARMS individuals and
schizophrenia patients55–58 and that the hippocampal–prefrontal
pathway was linked to negative symptoms and cognitive deficits
in schizophrenia.59 Therefore, it might be speculated that the
similar levels of negative symptoms in FEP patients and ARMS
individuals might partially underlie the absence of volumetric
hippocampal differences. However, future functional and struc-
tural connectivity studies should further examine the hippocam-
pus and the inter-related cortical and subcortical regions,
including the dorsolateral prefrontal cortex to assess possible
impairments in neuronal networks in schizophrenia. Moreover, it
was demonstrated that a PRS was associated with negative
symptoms and not positive symptoms in a large sample of
adolescence from the general population.60 Therefore, it might be
especially important to focus on the combined analysis of clinical,
genetic and neuroimaging data.

Limitations
There are some limitations to bear in mind concerning the results
of this study. First, the sample size is relatively small. However, the
groups are homogeneous with regard to genetic background and
clinical characteristics related to disease status and prognosis.61

This makes confounding effects of disease duration or anti-
psychotic medication unlikely. In addition, polygenic risk scores
derived from large GWAS generate robust estimators,62 which can
be used in small samples. Second, the PSRS explains only a small
amount of variance in liability to schizophrenia and cannot be
considered as a classifier between ARMS individuals and FEP
patients. Thus, prediction of actual transition to psychosis is not
possible; however, this aspect will be further investigated when
we have obtained enough follow-up data. Third, as the aim of the
present study was to include patients with a first psychotic
episode independent of the underlying diagnosis according to
ICD/DSM classification systems, no conclusions can be drawn
regarding non-affective versus affective psychoses specifically.

CONCLUSION
In summary, this is the first study to evaluate a negative
association between a PSRS and hippocampal volumes in ARMS
individuals and FEP patients. Our findings suggest that the
combination of a subset of schizophrenia risk variants is related to
hippocampal volume and that higher values of this genome-wide
significant PSRS (but not hippocampal volume or the interaction
effect) are associated to FEP status than to the ARMS. These
findings imply that FEP patients have a higher genetic risk for
schizophrenia than the total cohort of ARMS individuals, and
encourage further studies on the use of PSRS as an additional
marker in the prediction of psychosis from the prodromal state.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
We thank out radiographer, Tanja Haas, from Basel University Hospital for performing
the magnetic resonance measurements and the FePsy (Frueherkennung von
Psychosen) Study Group for the recruitment and management of the study
participants. Finally, we thank all participants for taking part in our study.

REFERENCES
1 Lopez AD, Murray CC. The global burden of disease, 1990-2020. Nat Med 1998; 4:

1241–1243.
2 Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence

from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.
3 Nelson B, Yuen HP, Wood SJ, Lin A, Spiliotacopoulos D, Bruxner A et al. Long-term

follow-up of a group at ultra high risk (‘prodromal’) for psychosis: the PACE
400 study. JAMA Psychiatry 2013; 70: 793–802.

4 Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L et al.
Predicting psychosis: meta-analysis of transition outcomes in individuals at high
clinical risk. Arch Gen Psychiatry 2012; 69: 220–229.

5 Riecher-Rössler A, Pflueger MO, Aston J, Borgwardt SJ, Brewer WJ, Gschwandtner
U et al. Efficacy of using cognitive status in predicting psychosis: a 7-year fol-
low-up. Biol Psychiatry 2009; 66: 1023–1030.

6 van der Gaag M, Smit F, Bechdolf A, French P, Linszen DH, Yung AR et al. Pre-
venting a first episode of psychosis: meta-analysis of randomized controlled
prevention trials of 12 month and longer-term follow-ups. Schizophr Res 2013;
149: 56–62.

7 Clark SR, Schubert KO, Baune BT. Towards indicated prevention of psychosis:
using probabilistic assessments of transition risk in psychosis prodrome. J Neural
Transm (Vienna) 2015; 122: 155–169.

8 Goff DC, Romero K, Paul J, Mercedes Perez-Rodriguez M, Crandall D, Potkin SG.
Biomarkers for drug development in early psychosis: current issues and promising
directions. Eur Neuropsychopharmacol 2016; 26: 923–937.

9 Fusar-Poli P, Borgwardt S, Bechdolf A, Addington J, Riecher-Rössler A, Schultze-
Lutter F et al. The psychosis high-risk state: a comprehensive state-of-the-
art review. JAMA Psychiatry 2013; 70: 107–120.

10 Fusar-Poli P, Radua J, McGuire P, Borgwardt S. Neuroanatomical maps of psy-
chosis onset: voxel-wise meta-analysis of antipsychotic-naive VBM studies. Schi-
zophr Bull 2012; 38: 1297–1307.

11 Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J et al. Neu-
roimaging predictors of transition to psychosis—a systematic review and
meta-analysis. Neurosci Biobehav Rev 2010; 34: 1207–1222.

12 Smieskova R, Allen P, Simon A, Aston J, Bendfeldt K, Drewe J et al. Different
duration of at-risk mental state associated with neurofunctional abnormalities.
A multimodal imaging study. Hum Brain Mapp 2012; 33: 2281–2294.

13 Fusar-Poli P, Borgwardt S, Crescini A, Deste G, Kempton MJ, Lawrie S et al.
Neuroanatomy of vulnerability to psychosis: a voxel-based meta-analysis. Neurosci
Biobehav Rev 2011; 35: 1175–1185.

14 Boos HBM, Aleman A, Cahn W, Hulshoff Pol H, Kahn RS. Brain volumes in relatives
of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry 2007; 64:
297–304.

15 Fusar-Poli P, Perez J, Broome M, Borgwardt S, Placentino A, Caverzasi E et al.
Neurofunctional correlates of vulnerability to psychosis: a systematic review and
meta-analysis. Neurosci Biobehav Rev 2007; 31: 465–484.

16 Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, Howes O et al. Cognitive
functioning in prodromal psychosis: a meta-analysis. Arch Gen Psychiatry 2012; 69:
562–571.

Hippocampus and genetic risk in psychosis
F Harrisberger et al

5

Translational Psychiatry (2016), 1 – 6



17 Fusar-Poli P, Smieskova R, Serafini G, Politi P, Borgwardt S. Neuroanatomical
markers of genetic liability to psychosis and first episode psychosis: a voxelwise
meta-analytical comparison. World J Biol Psychiatry 2014; 15: 219–228.

18 Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivières S, Jahanshad N et al.
Common genetic variants influence human subcortical brain structures. Nature
2015; 520: 224–229.

19 Blokland GAM, de Zubicaray GI, McMahon KL, Wright MJ. Genetic and environ-
mental influences on neuroimaging phenotypes: a meta-analytical perspective on
twin imaging studies. Twin Res Hum Genet 2012; 15: 351–371.

20 Narr KL, van Erp TGM, Cannon TD, Woods RP, Thompson PM, Jang S et al. A twin
study of genetic contributions to hippocampal morphology in schizophrenia.
Neurobiol Dis 2002; 11: 83–95.

21 van Haren NEM, Picchioni MM, McDonald C, Marshall N, Davis N, Ribchester T
et al. A controlled study of brain structure in monozygotic twins concordant and
discordant for schizophrenia. Biol Psychiatry 2004; 56: 454–461.

22 van Erp TGM, Saleh PA, Huttunen M, Lönnqvist J, Kaprio J, Salonen O et al. Hip-
pocampal volumes in schizophrenic twins. Arch Gen Psychiatry 2004; 61: 346–353.

23 Rijsdijk FV, van Haren NEM, Picchioni MM, McDonald C, Toulopoulou T, Hulshoff
Pol HE et al. Brain MRI abnormalities in schizophrenia: same genes or same
environment? Psychol Med 2005; 35: 1399–1409.

24 Roalf DR, Vandekar SN, Almasy L, Ruparel K, Satterthwaite TD, Elliott MA et al.
Heritability of subcortical and limbic brain volume and shape in multiplex-
multigenerational families with schizophrenia. Biol Psychiatry 2015; 77: 137–146.

25 Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al. Genome-
wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet
2013; 45: 1150–1159.

26 Lee SH, DeCandia TR, Ripke S, Yang J et al. Schizophrenia Psychiatric Genome-
Wide Association Study Consortium (PGC-SCZ), International Schizophrenia
Consortium (ISC) Estimating the proportion of variation in susceptibility to
schizophrenia captured by common SNPs. Nat Genet 2012; 44: 247–250.

27 Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological
insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511:
421–427.

28 Terwisscha van Scheltinga AF, Bakker SC, van Haren NEM, Derks EM, Buizer-
Voskamp JE, Boos HBM et al. Genetic schizophrenia risk variants jointly modulate
total brain and white matter volume. Biol Psychiatry 2013; 73: 525–531.

29 Oertel-Knöchel V, Lancaster TM, Knöchel C, Stäblein M, Storchak H, Reinke B et al.
Schizophrenia risk variants modulate white matter volume across the psychosis
spectrum: evidence from two independent cohorts. NeuroImage Clin 2015; 7:
764–770.

30 Papiol S, Mitjans M, Assogna F, Piras F, Hammer C, Caltagirone C et al. Polygenic
determinants of white matter volume derived from GWAS lack reproducibility in a
replicate sample. Transl Psychiatry 2014; 4: e362.

31 Riecher-Rössler A, Gschwandtner U, Aston J, Borgwardt S, Drewe M, Fuhr P et al.
The Basel early-detection-of-psychosis (FEPSY)-study--design and preliminary
results. Acta Psychiatr Scand 2007; 115: 114–125.

32 Riecher-Rössler A, Aston J, Ventura J, Merlo M, Borgwardt S, Gschwandtner U et al.
[The Basel Screening Instrument for Psychosis (BSIP): development, structure,
reliability and validity]. Fortschr Neurol Psychiatr 2008; 76: 207–216.

33 Yung AR, Phillips LJ, McGorry PD, McFarlane CA, Francey S, Harrigan S et al.
Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br
J Psychiatry Suppl 1998; 172: 14–20.

34 Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell’Olio M et al. Mapping the
onset of psychosis: the comprehensive assessment of at-risk mental states. Aust N
Z J Psychiatry 2005; 39: 964–971.

35 Ho B-C, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic
treatment and brain volumes: a longitudinal study of first-episode schizophrenia.
Arch Gen Psychiatry 2011; 68: 128–137.

36 Purcell S, Chang C. General usage - PLINK 1.9. https://www.cog-genomics.org/
plink2/general_usage (accessed 8 September 2015).

37 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation
PLINK: rising to the challenge of larger and richer datasets. GigaScience 2015; 4: 7.

38 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal
components analysis corrects for stratification in genome-wide association stu-
dies. Nat Genet 2006; 38: 904–909.

39 Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for
disease and population genetic studies. Nat Methods 2013; 10: 5–6.

40 Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation
method for the next generation of genome-wide association studies. PLoS Genet
2009; 5: e1000529.

41 Howie B, Marchini J, Stephens M. Genotype imputation with thousands of gen-
omes. G3 (Bethesda) 2011; 1: 457–470.

42 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. PLINK: a
tool set for whole-genome association and population-based linkage analyses.
Am J Hum Genet 2007; 81: 559–575.

43 Wray NR, Lee SH, Mehta D, Vinkhuyzen AAE, Dudbridge F, Middeldorp CM.
Research review: polygenic methods and their application to psychiatric traits.
J Child Psychol Psychiatry 2014; 55: 1068–1087.

44 International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher
PM, O’Donovan MC et al. Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

45 Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape
and appearance for subcortical brain segmentation. NeuroImage 2011; 56:
907–922.

46 R Core Team. R: A Language and Environment for Statistical Computing.
Verfügbar unter, 2013; http://www.R-project.org.

47 MacKinnon DP. Introduction to Statistical Mediation Analysis. Routledge, New York,
2008.

48 Yuan Y, MacKinnon DP. Bayesian mediation analysis. Psychol Methods 2009; 14:
301–322.

49 MacKinnon DP. Mediation Analysis. In: The Encyclopedia of Clinical Psychology.
John Wiley & Sons Inc., New York, 2014.

50 Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal
mediation analysis. J Stat Softw 2014; 59: 1–38.

51 Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review.
Learn Mem 2015; 22: 411–416.

52 Shepherd AM, Laurens KR, Matheson SL, Carr VJ, Green MJ. Systematic meta-
review and quality assessment of the structural brain alterations in schizophrenia.
Neurosci Biobehav Rev 2012; 36: 1342–1356.

53 Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S.
Progressive brain changes in schizophrenia related to antipsychotic treatment? A
meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev 2013; 37:
1680–1691.

54 Heckers S, Konradi C. Hippocampal pathology in schizophrenia. Curr Top Behav
Neurosci 2010; 4: 529–553.

55 Bernasconi R, Smieskova R, Schmidt A, Harrisberger F, Raschle NM, Lenz C et al.
Hippocampal volume correlates with attenuated negative psychotic symptoms
irrespective of antidepressant medication. NeuroImage Clin 2015; 8: 230–237.

56 Anvari AA, Friedman LA, Greenstein D, Gochman P, Gogtay N, Rapoport JL. Hip-
pocampal volume change relates to clinical outcome in childhood-onset schi-
zophrenia. Psychol Med 2015; 45: 2667–2674.

57 Brambilla P, Perlini C, Rajagopalan P, Saharan P, Rambaldelli G, Bellani M et al.
Schizophrenia severity, social functioning and hippocampal neuroanatomy: three-
dimensional mapping study. Br J Psychiatry 2013; 202: 50–55.

58 Rajarethinam R, DeQuardo JR, Miedler J, Arndt S, Kirbat R, Brunberg JA et al.
Hippocampus and amygdala in schizophrenia: assessment of the relationship of
neuroanatomy to psychopathology. Psychiatry Res 2001; 108: 79–87.

59 Ghoshal A, Conn PJ. The hippocampo-prefrontal pathway: a possible therapeutic
target for negative and cognitive symptoms of schizophrenia. Future Neurol 2015;
10: 115–128.

60 Jones HJ, Stergiakouli E, Tansey KE, Hubbard L, Heron J, Cannon M et al. Phe-
notypic manifestation of genetic risk for schizophrenia during adolescence in the
general population. JAMA Psychiatry 2016; 73: 221–228.

61 Fusar-Poli P, Cappucciati M, Bonoldi I, Hui LMC, Rutigliano G, Stahl DR et al.
Prognosis of brief psychotic episodes: a meta-analysis. JAMA Psychiatry 2016; 73:
211–220.

62 Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet
2013; 9: e1003348.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/

© The Author(s) 2016

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

Hippocampus and genetic risk in psychosis
F Harrisberger et al

6

Translational Psychiatry (2016), 1 – 6

https://www.cog-genomics.org/plink2/general_usage 
https://www.cog-genomics.org/plink2/general_usage 
http://www.R-project.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Impact of polygenic schizophrenia-related risk and hippocampal volumes on the onset of psychosis
	Introduction
	Materials and methods
	Participants and clinical assessment
	Magnetic resonance imaging acquisition
	Genotyping and imputation
	PSRS calculation
	Image processing
	Statistical analysis

	Table 1 Demographics and clinical characteristics
	Table 2 Results of linear regression, logistic regression and mediation analyses
	Results
	Clinical and demographic characteristics
	Association between diagnosis, PSRS and hippocampal volume

	Discussion
	Figure 3 Mediation analysis scheme.
	Figure 1 Linear regression analysis of PSRS and hippocampal volumes.
	Figure 2 Plot of estimated probability for being FEP versus PSRS.
	Limitations

	Conclusion
	We thank out radiographer, Tanja Haas, from Basel University Hospital for performing the magnetic resonance measurements and the FePsy (Frueherkennung von Psychosen) Study Group for the recruitment and management of the study participants. Finally, we tha
	We thank out radiographer, Tanja Haas, from Basel University Hospital for performing the magnetic resonance measurements and the FePsy (Frueherkennung von Psychosen) Study Group for the recruitment and management of the study participants. Finally, we tha
	ACKNOWLEDGEMENTS
	REFERENCES




