
ADAMpro : Database Support for Big Multimedia Retrieval

Ivan Giangreco · Heiko Schuldt

Abstract For supporting retrieval tasks within large
multimedia collections, not only the sheer size of data

but also the complexity of data and their associated
metadata pose a challenge. Applications that have to
deal with big multimedia collections need to manage

the sheer volume of data and to effectively and effi-
ciently search within these data. When providing simi-
larity search, a multimedia retrieval system has to con-
sider the actual multimedia content, the correspond-

ing structured metadata (e.g., content author, creation
date, etc.) and – for providing similarity queries – the
extracted low-level features stored as densely populated

high-dimensional feature vectors. In this paper, we pre-
sent ADAMpro , a combined database and information
retrieval system that is particularly tailored to big mul-

timedia collections. ADAMpro follows a modular ar-
chitecture for storing structured metadata, as well as
the extracted feature vectors and it provides various
index structures, i.e., Locality-Sensitive Hashing, Spec-

tral Hashing, and the VA-File, for a fast retrieval in the
context of a similarity search. Since similarity queries
are often long-running queries, ADAMpro supports pro-
gressive queries that provide the user with streaming
result lists by returning (possibly imprecise) results as
soon as they become available. We provide the results

of an evaluation of ADAMpro on the basis of several col-
lection sizes up to 50 million entries and feature vectors
with different numbers of dimensions.

Keywords Databases, Multimedia retrieval systems,
Big data

Ivan Giangreco · Heiko Schuldt
Databases and Information Systems Group,
University of Basel,
Basel, Switzerland
E-mail: ivan.giangreco@unibas.ch

1 Introduction

Multimedia is Big Data, both in terms of their volume
and their heterogeneity. Many applications that have
to deal with such big multimedia collections need sup-

port for managing the sheer volume of data and for
effectively and efficiently searching within these data
– based on annotated (structured) metadata and/or

based on intrinsic features of the multimedia objects.
Consider, for instance, the following applications: a TV
station is looking for videos and scenes with some spe-
cific visual content to enrich a news report; a medical

researcher is looking for all mammograms showing a
certain visual characteristic which might indicate a case
of breast cancer; or a user is looking for a piece of mu-

sic that she remembers without, however, knowing its
name.

Obviously, all these applications have in common

that large multimedia collections need to be searched
on the basis of their content. In the last years, this
has successfully spurred research in the field of Machine

Learning in order to detect and possibly learn features
for characterising the content of multimedia objects and
thus to serve as basis for retrieving results when com-
paring the object features to a query (e.g., [9,10]). How-
ever, these feature extractors only form one side of the
coin. The other side of the coin is formed by the organi-
sation and storage of feature data (in general: any form
of metadata on multimedia objects), and the support
for various types of queries using these metadata.

In this paper, we address multimedia queries that
combine Boolean retrieval based on structured meta-
data (e.g., content author, creation date, etc.) with the
vector space retrieval model to support similarity queries
on the objects’ content. By this, we consider both the
information retrieval and the database approach: In-

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/95844555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Ivan Giangreco, Heiko Schuldt

formation retrieval systems traditionally focus on high
dimensional feature spaces and support nearest neigh-
bour queries (similarity search). Database systems, on
the other hand, traditionally only come with very lim-
ited support for similarity searches and partial matches,
but are very good at organising data and retrieving ex-
act matches. For multimedia content and its associated
metadata, the ‘one size fits all’ approach generally does
not work. As a consequence, multimedia retrieval sys-
tems often store feature data in file-based structures.
From a database perspective, this has various draw-
backs: On the one hand, the absence of physical and log-
ical data independence makes the organisation of data
a difficult and tedious task that is prone to errors. On
the other hand, by letting the retrieval system take
care of storing data, the principle of separation of con-
cerns is violated in that application logic (i.e., on what
feature data to store) and storage logic (i.e., on how
to organise and store feature data) are not well sepa-
rated. The missing separation of concerns leads to the
re-engineering of components necessary for the sole task

of managing and organising data.
In this paper, we introduce ADAMpro , a database

and information retrieval system that jointly supports

Boolean and vector space retrieval and that is par-
ticularly tailored to very large multimedia collections.
ADAMpro is an extension of the ADAM system [6,7]

and focuses on storage support for big multimedia data.
It follows a modular architecture: based on the nature
of the data to be managed (structured or unstructured),
individual modules can be replaced to increase the over-

all query efficiency and to reduce response time. In ad-
dition, ADAMpro jointly supports various index struc-
tures. By combining index structures that quickly pro-

duce (approximate) results with index structures that
take longer to produce (correct) results, so-called pro-
gressive queries can be supported. In the context of
the retrieval process, results are presented to a user in
a streaming fashion as soon as they become available.
The query results will be continuously updated as more
(and also more precise) results will be available. While
this is not necessary for small collections, progressive
queries in ADAMpro allow to provide fast query results
especially for big multimedia collections.

The contribution of the paper is threefold:

1. We present the architecture of the ADAMpro system
and the interplay between its components at query
time to be able to efficiently process a query. In this

paper, we focus on the vector space retrieval model
in which feature data reflecting the objects’ content
is represented by means of (high-dimensional) fea-
ture vectors and a k nearest neighbour (kNN) search
to find the most similar objects.

2. We introduce introduce the concept of progressive
query evaluation which aims at reducing retrieval
time. ADAMpro seamlessly combines various index
structures, i.e., Locality-Sensitive Hashing (LSH),
Spectral Hashing, and the Vector Approximation
File (VA-File), to answer kNN searches efficiently;
the former two are used to generate early, albeit
pre-mature (approximate) results while the latter
guarantees exact results, but at the price of higher
retrieval times.

3. We present results of the evaluation of ADAMpro
under varying configurations and particularly ad-
dress the scalability of ADAMpro . This includes both
the sheer size of collections (no. of objects) as well
as the complexity of the feature data (no. of dimen-
sions of the feature space).

The remainder of the paper is organised as follows:
in Section 2, we present a sample application. Section 3
discusses details of the system architecture of ADAMpro
and introduces the concept of progressive queries. Sec-
tion 4 reports on the evaluation of ADAMpro . Section 5
discusses related work and Section 6 concludes.

2 IMOTION: A Sample Application

As an example for the use of ADAMpro , consider IMO-
TION (Intelligent Multi-Modal Augmented Video Mo-
tion Retrieval System)1, a system for large-scale video

retrieval applications [14]. The objective of IMOTION
is to provide a rich variety of different query paradigms
for searching in video collections. This includes tra-
ditional keyword search on the basis of automatically

collected metadata (e.g., content author, video length,
etc.) or manually added tags describing the content of
a video or a shot. In addition, IMOTION also sup-
ports a large variety of similarity search-based queries,
e.g., Query-by-Sketch (QbS), Query-by-Example (QbE),
querying by motion and querying by audio. For the re-

trieval, this means that users can specify either an ex-
isting image or a video snippet as a query, or provide
the system with a hand-drawn sketch of the most rele-
vant object(s) (e.g., using a color sketch as depicted in
Figure 1), or draw motion or record an audio snippet
to search for. All the query options can be seamlessly
combined – either in a pipelined fashion (e.g., start with
a keyword query and use one of the results as query
object for QbE), or combined in a single query by su-
perimposing for instance a sketch and a query image
(by adding, via a sketch, an object that is not visible

on the query image).

1 http://www.imotion-project.eu

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

ADAMpro : Database Support for Big Multimedia Retrieval 3

Fig. 1: Sketch-based video retrieval in IMOTION
(from [14]).

For supporting retrieval, IMOTION makes use of
a large number of feature extractors [14] which pro-
duce comparatively high-dimensional dense feature vec-
tors (up to over several hundred dimensions) that are
used at query time for comparison to the query object.
Given the large size of the video collections the IMO-
TION query engine is supposed to handle this exceeds
the capabilities of current storage systems that are not

adapted to the use case at hand (as will be shown in
Section 4). In the IMOTION system, ADAMprotakes
over the task of storing and organising both the struc-

tured metadata and the extracted feature vectors, and
supports the retrieval logic for retrieving exact or ap-
proximate matches.

3 Architecture

In retrieval systems such as the IMOTION system, two
phases can generally be distinguished: In the off-line

phase, the retrieval engine extracts features from the
given multimedia objects. The feature extraction phase
serves two purposes: First, it allows the adaption of

a (multimedia) document to the retrieval framework
used; second, it reduces the search complexity, since it
avoids the full inspection of objects, but only considers
the extracted features for comparison. In the on-line
phase, i.e., the time-sensitive query phase, on the other
hand, the extracted features are compared to the query
object, and ranked by similarity.

Figure 2 shows ADAMpro in the described setting:
in the off-line phase, ADAMpro takes over the task of
storing the feature vectors as they are inserted into the
system. In the on-line phase, ADAMpro is responsible

for a fast response time given a query.

To this end, ADAMpro combines various storage
subsystems depending on the data and the queries at
hand; the combination of various systems shows the

advantage of each system over the others (and over a
monolithic system) in one specific phase of the retrieval:

collection

query input

on
-li

ne
of

f-l
in

e

query

upload
collections

0
B@

x1

...
xn

1
CA

0
B@

x1

...
xn

1
CA

0
B@

x1

...
xn

1
CA

{select: ‘*’,
 conditions: ‘x == b’,
 kNN-q: ‘<0.1,0.2,0.3>’,
 top: 100 }

proADAM

Fig. 2: On-line and off-line phase of a retrieval system.

– for structured metadata, ADAMpro uses a relational
DBMS, as it allows querying for all attributes in a
very elegant manner with good performance; these
data are used for a pre-filtering,

– the index structures for a k nearest neighbour (kNN)
search are stored in a file-based format, as they can

be well distributed over multiple workers; these data
are used to further filter the tuples to retrieve,

– for the feature vector data, we use a key-value store

which allows to retrieve the full feature vectors (us-
ing the keys filtered by the index) quickly and effi-
ciently for further computation; these data are used
for the full distance computation.

The overall architecture of ADAMpro is depicted
in Figure 3: On the left hand side, the orchestrator is
depicted, which takes care of incoming requests (such
as insert operations or queries) by calling the corre-
sponding components. The metadata storage compo-
nent is responsible for storing and retrieving structured
metadata in a relational database. The index storage
component builds the index structures and stores them
in index files, separated from the actual content and

metadata. Finally, the feature storage component stores
the full feature vectors. At query time, the metadata
storage component will filter results based on Boolean
predicates (i.e., on the metadata, for instance date =

15/03/2015). The results will then be processed by the
index storage component that further prunes the result
list, by using the index structures available for retriev-
ing the k nearest neighbours and performing a similar-
ity search on the basis of the given query vector. Finally,
the remaining elements are collected from the feature

storage component that retrieves the full feature vec-
tors and performs the exact computation of distances.

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

4 Ivan Giangreco, Heiko Schuldt

Orchestrator

Metadata
Storage

Component

Index
Storage

Component

Feature
Storage

Component

Relational
Database

Files

Key-Value Store

k → v

LSH Index

VA-File

0
B@

x1

...
xn

1
CA

Storage
Engine

SH Index

Fig. 3: Architecture of the ADAMpro system.

3.1 Schema Definition and Data Insertion

In the data definition step, the user specifies the logi-
cal schema for the data. Given the various data types,
ADAMpro distributes the physical data to different sys-

tems: ADAMpro stores feature data in a key-value store
and indexes the data using various index structures
built into the system. The metadata, on the other hand,

is stored in a relational DBMS. In this phase, ADAMpro
takes care of creating the appropriate schema in the
various systems involved.

3.2 Retrieval

Consider as an example the following query: A user is
looking for the top 100 images that were taken on the
15th of March 2015 and that are similar to the given

query image. This query uses a Boolean predicate (e.g.,
date = 15/03/2015) and involves a similarity query
(i.e., all objects similar to the query image or all fea-
ture vectors similar to the query vector, respectively).
The results should obviously be ordered by similarity
and pruned at 100 results. As shown in this example, a
query in this setting may ask for all objects similar to

the given query object while at the same time fulfilling
all Boolean predicates.

ADAMpro supports both Boolean retrieval and kNN
similarity search. Retrieval based on Boolean predicates

can be applied on all structured fields (i.e., the struc-
tured metadata). The similarity search is applied on the
feature vector. To increase the retrieval performance,
various index structures for high-dimensional data are
used (Section 3.3). To increase the retrieval performance,

these index structures prune results from the final re-
sult set (as they take into account the limiting factor k
of a kNN search), rather than only ordering the results.
Therefore, it is crucial that the Boolean retrieval is al-

ways performed before the kNN search, as otherwise
results would get lost. Furthermore, by first perform-
ing the (fast) Boolean retrieval, the similarity search

can avoid to consider results that do not adhere to the
Boolean predicate and by that improve the system’s
performance.

In Figure 4, we display a high-level execution plan

for a query in the ADAMpro system: (1) If Boolean
predicates are available in the query, the query is first
sent to the relational database that returns a result
set fulfilling the Boolean predicates (TID list). (2) Us-
ing the built-in index structures, the query vector and
the TID result set from step 1, in the second step, the
nearest result candidates are retrieved. This result set

contains possibly more than k elements and is not yet
sorted. Furthermore, the result elements do not yet con-
tain the exact distance values. (3) In the last step, us-
ing the TID set of step 2, the full feature vectors are
retrieved and the exact distances are computed. The
result is then returned.

3.3 Index Structures

To support efficient k nearest neighbour retrieval, the
ADAMpro system implements Locality-Sensitive Hash-
ing (LSH) [8], Spectral Hashing (SH) [18] and the Vec-
tor Approximation-File (VA-File) [17]. We detail the
implemented index structures in the following.

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

ADAMpro : Database Support for Big Multimedia Retrieval 5

Relational
Database

Orchestrator

Boolean
predicates

TID result
set

Files

Query vector
and TID result set

TID result
set

Key-Value Store
k → v

TID result
set

Result list

❶

❷

❸

Metadata
Component

Indexing
Component

Feature
Component

Fig. 4: General query plan in the ADAMpro system.

3.3.1 Locality-Sensitive Hashing

The main idea of Locality-Sensitive Hashing [8] is to
hash each feature vector f using several hash functions
and use the hashes for finding near neighbours. For-
mally, using a hash function, a d dimensional vector is

mapped onto the space of integers (ha(f) = Rd 7→ N).
A family H of hash functions is called locality-sensitive
or more specifically (R, cR, P1, P2)-sensitive, if for any

two feature vectors p, q ∈ R:

– if ||p− q|| ≤ R then PH[h(q) = h(p)] ≥ P1

– if ||p− q|| ≥ cR then PH[h(q) = h(p)] ≤ P2

with P1 > P2. Intuitively, if two vectors are close, the
probability that they collide in their hash should be
high; vice-versa if two vectors are far apart, the proba-
bility that they collide in their hash should be small.

ADAMpro currently supports the Minkowski dis-
tance; therefore, for LSH, we use the family of hash
functions proposed in [4] for lp norms, based on p-stable
distributions. For the hash function, we pick a random
projection a ∈ Rd with entries from a p-stable distri-
bution, chop the line into equi-width segments (w) and
shift by a random value b ∈ [0, w). Formally, the hash-
ing function is given as ha,b(v) = bav+b

w c.
While LSH can be very efficient, it has to be noted

that the hashing approach yields both false positive
(irrelevant items in the result list) and false negatives
(missing relevant items).

3.3.2 Spectral Hashing

Spectral Hashing [18] belongs also to the family of hash-
based indexing methods, however, falls into the cate-
gory of ‘learning to hash’, i.e., the hash functions are
generated based on the data at hand. The idea of Spec-
tral Hashing [18] is to find a hash function such that
similar items are mapped to similar hash codes, i.e.,
small distances in the feature space should result in
small Hamming distances between the codes. The em-
bedding is done using the eigenfunctions computed along
the PCA directions. In essence, the algorithm will

1. find the principal components of the data using a
principal component analysis (PCA)

2. compute the Laplacian eigenfunctions with the small-
est eigenvalues along every PCA direction

3. threshold the eigenfunctions at zero to obtain the
binary codes

As with LSH, Spectral Hashing may yield both false

positive and false negatives.

3.3.3 Vector Approximation (VA) File

Behind Vector Approximation-File (VA-File) [17] lies
the idea to build an index that yields exact results and

at the same time is very performant. The authors ar-
gue that for increasing dimensionality, any tree-based
index structure degenerates to a sequential scan. There-

fore, the authors suggest to compress the feature vec-
tors in a quantization step to a short signature that can
quickly be scan in a sequential manner and which al-
lows to early prune the result list. This is achieved, by

using the signatures to compute at query time upper
and lower bounds to the distance and by that early ex-
clude items that are too distant. The upper and a lower

bound of the distance can be calculated with very few
simple calculations and the computation is therefore
computationally less complex than a full distant com-
putation on the vectors. Furthermore, by only reading
the signatures, less page accesses and therefore I/O ac-
cesses are necessary, which would largely increase the
retrieval time. While VA-File may degenerate to a se-
quential scan, it will always return all true positives.

To create a VA signature, a fixed-length bit string
for each data point is generated. For that purpose, the
data space is divided in 2btot cells, where btot denotes
the total length of the bit signature, and the cells are
enumerated in a binary way. Each dimension d receives
bd bits that are finally concatenated to create the full
bit mask [17].

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

6 Ivan Giangreco, Heiko Schuldt

3.4 Progressive Query Results

Queries in multimedia retrieval systems are often com-
parably long-running queries, as they cannot profit from
tree-based index structures that significantly reduce the
search time complexity. The reason for this is that fea-
ture vectors, on which the queries are performed, do not
have an absolute ordering, but the ordering results only
based on the given query. [17] argues that with increas-
ing dimensionality, tree-based index structures degen-
erate to a sequential scan of the data. Therefore, pre-
dicting the query time for indexes for high-dimensional
data is a very difficult task: Traditional database sys-
tems consider the number of index and data pages,
the height of the index tree, the length of TID lists
in the leaf nodes of the tree, etc. For the indexes used
in ADAMpro , these parameters are not appropriate pre-
dictors for the retrieval time. Consider, for example, a
VA-File index: The algorithm behind the VA-File will
scan all database elements. However, by decreasing the

size of the signature to be scanned, the number of op-
erations to be performed for computing the final dis-
tance and consequently the number of data pages to

be loaded, can be significantly decreased. Nevertheless,
using the number of index pages containing the signa-
ture for estimating the retrieval time, will actually not
correctly estimate the retrieval time, as in the most de-

generate case, the VA-File has to consider all vectors
stored on the data pages. In particular, as this is not
an inherent property of the data only, but the data in

combination with the query at hand, it is a hard task
to achieve to predict the query time. Finally, these pre-
dictions do not consider whether the indexes will return
exact or only approximate results.

For this reason, ADAMpro supports so-called pro-
gressive querying that results in streamed result lists.
Using this approach, ADAMpro runs at the same time
all physical plans to execute the same logical plan and
returns the (possibly approximate) answer(s) as soon
as they become available to the user. Starting the same
query using different query plans at the same time may
decrease the efficiency of the entire system, but it al-
lows to trade computation (which is not a bottleneck in
modern environments) with query response time. For a
user who is waiting a short time for her results, the re-
sults from the database may only be very approximate;

if the user, on the other hand, waits a bit longer, she
may get an answer that is for sure precise. In any case,
she will get the first possible answer as soon as it is
available.

Consider, for clarification, the following example: A
query for the k nearest neighbours is started on all avail-
able indexes: the Spectral Hashing index may return

first, due to its low query complexity, however the result
may contain false positives or lack true positives. Only
in the next step, the exact results from the VA-File in-
dex may arrive. On the other hand, in very degenerate
cases, a sequential scan may return even before the VA-
File index, ensuring that the user gets the results as fast
as possible.

3.5 Distribution

In a distributed setting, there is no obvious partitioning
scheme that can be generally applied to the feature data
and that allows to prune nodes at query time from the
retrieval without possibly losing result elements (this
is also a consequence of the fact that tree-based meth-
ods do not work well for feature vector data). While,
for instance, text retrieval systems can choose to query
only specific nodes that are responsible for a certain

keyword appearing in the query, this approach is not
easily adaptable to kNN retrieval in the multimedia
context. As a consequence, for a query, all data items
have to be considered, i.e., a query has to be processed

by all nodes and the sub-results of each node have fi-
nally to be merged. The distribution of the VA-File, for
instance, has already been discussed in [16]. We have

implemented the same ideas for all index structures and
we perform the retrieval in ADAMpro in a map/reduce
fashion. At query time, the index structures are par-

titioned to be processed by multiple workers (possibly
residing on the same node). Each node takes care of
filtering out the k nearest neighbours and sends the
partial result list to the master node that merges the

result lists to a global result list of nearest neighbours.

4 Performance Evaluation

4.1 Implementation

ADAMpro is implemented in Java/Scala using Apache
Spark 1.52. For storing the metadata, we use Post-
greSQL3, the Apache Parquet columnar file format on
the Hadoop file system (HDFS) for the index, and Apa-
che Cassandra 2.14 as key-value store for storing the
feature vectors. ADAMpro can be accessed via a REST
interface. LSH is implemented based on E2LSH5 and
Spectral Hashing is based on the Matlab code provided
by the authors6.

2 http://spark.apache.org/
3 http://www.postgresql.org/
4 http://cassandra.apache.org/
5 http://www.mit.edu/ andoni/LSH/
6 http://www.cs.huji.ac.il/~yweiss/SpectralHashing/

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

ADAMpro : Database Support for Big Multimedia Retrieval 7

10K 50K 100K 500K 1M 5M 10M 20M 50M

2.

36

1.
00

1.

13

2.
97

1.

06

0.
92

1.

11

0.
99

1.

55

5.
01

5.

27

4.
54

1.

25

1.
03

1.

93

7.
26

 1
0.

63

9.
05

1.

83

1.
38

4.

35
 3

8.
93 5

3.
78

 4
5.

26

2.

20

1.
61

6.

38
 7

6.
68

 1
08

.1
3

 9
0.

82

6.

25

3.
30 2

2.
35

 4
06

.3
6

 5
39

.1
8

 4
54

.2
0

6.

83

5.
62

 3
3.

91
 8

26
.9

4

10
80

.1
7

 9
06

.6
0

 1
2.

16

9.
90

 5
9.

57
18

11
.6

8

21
46

.3
9

18
09

.5
2

 3
1.

86

 2
5.

45

 1
67

.5
2

55
84

.9
7

45
56

.0
5

0

100

200

300

Sp
ec

tra
l H

as
hi

ng
LS

H
VA
−F

ile
Se

qu
en

tia
l

Po
st

gr
eS

Q
L

M
on

go
D

B

Sp
ec

tra
l H

as
hi

ng
LS

H
VA
−F

ile
Se

qu
en

tia
l

Po
st

gr
eS

Q
L

M
on

go
D

B

Sp
ec

tra
l H

as
hi

ng
LS

H
VA
−F

ile
Se

qu
en

tia
l

Po
st

gr
eS

Q
L

M
on

go
D

B

Sp
ec

tra
l H

as
hi

ng
LS

H
VA
−F

ile
Se

qu
en

tia
l

Po
st

gr
eS

Q
L

M
on

go
D

B

Sp
ec

tra
l H

as
hi

ng
LS

H
VA
−F

ile
Se

qu
en

tia
l

Po
st

gr
eS

Q
L

M
on

go
D

B

Sp
ec

tra
l H

as
hi

ng
LS

H
VA
−F

ile
Se

qu
en

tia
l

Po
st

gr
eS

Q
L

M
on

go
D

B

Sp
ec

tra
l H

as
hi

ng
LS

H
VA
−F

ile
Se

qu
en

tia
l

Po
st

gr
eS

Q
L

M
on

go
D

B

Sp
ec

tra
l H

as
hi

ng
LS

H
VA
−F

ile
Se

qu
en

tia
l

Po
st

gr
eS

Q
L

M
on

go
D

B

Sp
ec

tra
l H

as
hi

ng

LS
H

VA
−F

ile

Po
st

gr
eS

Q
L

M
on

go
D

B

tim
e

[s
]

Fig. 5: Performance evaluation showing the retrieval time at varying collection sizes for the various methods
implemented in ADAMpro with dimensionality of the feature vectors at 100. As a baseline, both PostgreSQL and
MongoDB have been added to the plot. The experimental runs are summarised by the mean time for each method.

The plot is cut at 300 seconds; for all values above 300 seconds only the mean time is displayed.

4.2 Experimental Setup

We have evaluated ADAMpro using artificially gener-
ated data at various numbers of dimensions and collec-

tion sizes. The evaluation setup involves the following
parameters:

– collection size: 10K, 50K, 100K, 500K, 1M, 5M, 10M,
20M, 50M

– dimensions: 10, 50, 100, 200, 500

– execution plans: sequential scan, LSH scan, Spectral
Hashing scan, VA-File scan

The vectors added to the collection and the query
vectors are composed of uniformly distributed float val-
ues ∈ (0, 1). To avoid anomalies in the results, we have
run each experimental setting five times and average
over the different runs for the same parameter setting.
We run ADAMpro (and the systems to compare it to)
on Microsoft Windows Azure using one DS13 instance
running Ubuntu 14.04 with 8 cores and 56 GB memory.
For all experiments, the parameters for generating the

index (number of bits for signature, etc.) have been set
beforehand to a general value independent of the given
data.

As a baseline, we use PostgreSQL 9.47 and Mon-
goDB 3.08. In PostgreSQL, we use a custom function

7 http://www.postgresql.org/
8 http://www.mongodb.com

to compute the distance between two float arrays and

use ORDER BY and LIMIT to model a k nearest neighbor
search. In MongoDB, on the other hand, we make use
of a server-based script that computes in a map/reduce

fashion the distance between a query array and the vec-
tors stored in the collection: the map function emits
the distance between the query vector and the vector

from the collection, whereas the reduce function sorts
and slices the results. Both baselines do not make use
of any indexing structure that could improve the kNN
retrieval.

4.3 Evaluation of single execution plans

We first consider the results of the evaluation for every
single execution plan: Figure 5 shows a box plot that
compares the retrieval time at varying collection sizes
with a fixed dimension of 100 for the feature vectors.
Note that the plot has been cut at 300 seconds and

for all values above this threshold, only the mean time
is displayed. It can be seen that when increasing the
number of items, Locality Sensitive Hashing and Spec-
tral Hashing retrieve the results faster than the other
scanning methods (i.e., than the VA-File scan and the
sequential scan). Furthermore, it can be seen that in
our experiments the VA-File always performs better
than the sequential scan. This means that given the
data and the queries used in the evaluation, we never

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

8 Ivan Giangreco, Heiko Schuldt

10 50 100 200 500

 1
.8

1

 0
.9

8

 1
.1

6

 4
0.

46

 1
.5

2

 1
.1

9

 2
.7

9

 5
9.

47

 2
.2

0

 1
.6

1

 6
.3

8

 8
3.

95

 2
.5

8

 2
.3

1

 1
6.

11

23
8.

36

 4
.7

9

 4
.5

1

 5
1.

69

72
8.

92

0

25

50

75

100

125

Sp
ec

tra
l H

as
hi

ng

LS
H

VA
−F

ile

Se
qu

en
tia

l

Sp
ec

tra
l H

as
hi

ng

LS
H

VA
−F

ile

Se
qu

en
tia

l

Sp
ec

tra
l H

as
hi

ng

LS
H

VA
−F

ile

Se
qu

en
tia

l

Sp
ec

tra
l H

as
hi

ng

LS
H

VA
−F

ile

Se
qu

en
tia

l

Sp
ec

tra
l H

as
hi

ng

LS
H

VA
−F

ile

Se
qu

en
tia

l

tim
e

[s
]

Fig. 6: Performance evaluation showing the retrieval time at varying number of dimensions of the feature vectors
stored in ADAMpro using the various methods implemented at a collection size of 1M elements. The plot is again
cut at 120 seconds and for all values above this threshold only the mean time is displayed.

get into the degenerate case in which a sequential scan
is truly necessary.

This behaviour is as expected, as LSH and SH allow

for a simple lookup, whereas the VA-File has to scan all
signatures; however, in exchange, the VA-File returns
precise results. For increasing collection size, in particu-

lar for collections that contain more than 50K elements,
our system performs in any case better than perform-
ing a sequential scan in MongoDB or PostgreSQL, the

baseline to our evaluation.

As can be seen from Figure 5, the retrieval time is
obviously dependent on the collection size. Moreover,

as it can be seen from Figure 6, it also depends on the
dimensionality. Figure 6 shows the retrieval time for in-
creasing numbers of dimensions of the feature vectors
(at a fixed collection size of 1M elements). As can be
seen, the retrieval time increases with the dimensional-
ity of the feature vector.

4.4 Evaluation of progressive querying

Given these observations, we evaluate the behaviour of
progressive querying. In particular, we show the results

exemplified at collection sizes of 100K (Figure 7a) and
1M (Figure 7b) elements, respectively. In Figure 7, we
show at which time after starting the query ADAMpro
presents its results to the user. In the original ADAMpro
implementation, the query execution is normally can-
celled as soon as exact results (i.e., results from the
sequential scan or from VA-File) are retrieved; for this
evaluation, to be able to show the times of the vari-
ous scans, we have adjusted the implementation not to

abort the execution (nevertheless, we have marked the

time at which ADAMpro would stop the further execu-
tion in its normal setup with a red line). This means
that even after finding the final and exact results, we

continue to execute the query and measure the query
time for the remaining execution plans.

In Figure 7, it can be seen that predicting the query
time for the various indexing structures is a difficult
task: it cannot be clearly said which index structure
performs better under which conditions. Particularly

for small dimensionalities, it is not obvious whether
LSH, Spectral Hashing or VA-File will return first its
results. With increasing dimensionality, both hashing
based methods perform clearly better than VA-File and
the sequential scan. Particularly for increasing dimen-
sionality (and collection size), the progressive querying
approach becomes more and more important: If, in a
collection of 1M elements and feature vectors with a
dimensionality of 200 elements, a user realises that the
results received after about 20 seconds are good enough
or not worthy to further consider, she may as well abort
the further execution of the query; on the other hand,
she may wait to get precise results after about 60 sec-

onds. As expected, in all runs, the sequential scan is
the last execution plan that returns its query results.
Since our query handler is aware of the fact that VA-
File returns precise results, it would abort the further
execution after VA-File has answered.

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

ADAMpro : Database Support for Big Multimedia Retrieval 9

LSH (4.42 s)
Sequential (8.28 s)

Spectral Hashing (4.14 s)
VA−File (3.63 s)

LSH (2.21 s)

Sequential (7.36 s)

Spectral Hashing (2.35 s)
VA−File (2.50 s)

LSH (5.88 s)

Sequential (10.36 s)
Spectral Hashing (8.89 s)

VA−File (7.45 s)

LSH (15.09 s)

Sequential (20.70 s)

Spectral Hashing (15.45 s)
VA−File (19.20 s)

LSH (23.30 s)

Sequential (79.74 s)

Spectral Hashing (19.13 s)

VA−File (47.74 s)

10
50

100
200

500

0 25 50 75 100
time[s]

(a) Collection with 100K elements.

LSH (11.62 s)
Sequential (14.51 s)

Spectral Hashing (10.10 s)
VA−File (10.08 s)

LSH (16.05 s)

Sequential (43.89 s)

Spectral Hashing (9.59 s)

VA−File (22.60 s)

LSH (18.28 s)

Sequential (89.18 s)

Spectral Hashing (15.76 s)

VA−File (30.37 s)

LSH (21.28 s)

Sequential (239.59 s)

Spectral Hashing (20.53 s)

VA−File (64.85 s)

LSH (34.17 s)

Sequential (1679.22 s)

Spectral Hashing (34.85 s)
VA−File (140.35 s)

10
50

100
200

500

0 100 200 300
time[s]

(b) Collection with 1M elements.

Fig. 7: Timeline displaying the mean time at which the results using the various scans become available when
using progressive querying for various dimensions at a collection size of 1M. The red line denotes when ADAMpro
would stop the further execution of the retrieval, as precise results have been found.

5 Related Work

One of the earliest works attempting to integrate an in-
formation retrieval system and a database management
system can be found in [15]. In this early work from
1980, the authors note especially the lack of support for

information retrieval queries in the query language and
in the internal indexing techniques of a database man-
agement system (DBMS). The authors motivate the in-

tegration of the two systems into a database manage-
ment and information retrieval system (DBMIRS) by
the need for queries supporting both formatted (struc-

tured) and unformatted (unstructured) data retrieval.

An early integration of multimedia data in databases
can be found in the IBM project Garlic [3]. In here, the
authors integrate multiple federated databases (some of

those from the IBM project QBIC) into one distributed
system for multimedia data. The system is based on an
object-oriented database model. For query formulation,

the authors extend the object-oriented query language
(OQL).

Similarly, [12] introduces Chabot, an information re-
trieval system using an underlying PostgreSQL database
for storing extracted features. The authors implement
complex types, user-defined indices and user-defined
functions into the database to support information re-

trieval data types and queries. Chabot not only sup-
ports text-based queries, but also allows to improve re-
sults by providing content-based queries (e.g., “images
with some orange in it”). Both Garlic and Chabot sup-
port Boolean predicates rather than similarity-based
queries.

[5] presents Mirror, a database supporting content-
based multimedia retrieval. The authors describe the

engineering factors for creating a distributed multime-
dia IR-DBMS that uses Moa, a new relational algebraic

framework based on the non-first normal form (NF2).
Mirror is implemented on top of the object-relational
DBMS Monet [2].

Further, DISIMA DBMS [13] is a DBMS that al-
lows to store syntactic features, i.e., color, shape, tex-

ture, and semantic features, i.e., real world objects or
concepts, in an object-oriented data model. The sys-
tem supports content-based searches and searches on
image semantics. The authors implement an extended

version of OQL for multimedia objects (MOQL) and
VisualMOQL, a visual counterpart to MOQL. To in-
crease the performance of the system, the authors use

three-dimensional extendible hashing (3DEH) that al-
lows to pre-filter images based, for instance, on the av-
erage color.

[1] introduces a system that combines low-level (syn-
tactic) features with semantic features in a commercial
object-relational database. The database is extended
by several User Defined Types following the MPEG-
7 standard descriptors, and operations implemented in
PL/SQL, e.g., to evaluate similarity measures.

In [11], the authors make use of the map/reduce
paradigm for querying large sets of image data in a
cloud environment. The authors use an indexing method
called extended Cluster Pruning (eCP) for indexing the
feature data and port it to the map/reduce paradigm
on the Hadoop platform.

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

10 Ivan Giangreco, Heiko Schuldt

6 Conclusion

In this paper, we have presented ADAMpro , a modu-
lar system that manages large multimedia collections.
ADAMpro flexibly supports various storage systems and
indexing structures (LSH, Spectral Hashing, VA-File)
to increase the overall query efficiency and reduce re-
sponse time. Furthermore, with ADAMpro , we have pre-
sented the concept of progressive queries that embraces
the idea of returning a result stream to the user: de-
pending on how long the user waits, the system will
refine the results and produce correct instead of only
approximate results.

In our future work, we plan to consider different dis-
tribution scenarios for ADAMpro and we plan to further
increase the collection size and dimensionality.

Acknowledgements This work was partly supported by
the Swiss National Science Foundation in the context of the
CHIST-ERA project IMOTION, contract no. 20CH21 151571.
Furthermore, the authors would like to thank the reviewers
for their time in reviewing our manuscript and for their help-
ful comments to improve this paper.

References

1. Carlos E. Alvez and Aldo R. Vecchietti. Combining Se-
mantic and Content Based Image Retrieval in ORDBMS.
In Rossitza Setchi, Ivan Jordanov, Robert J. Howlett, and
Lakhmi C. Jain, editors, Knowledge-Based and Intelli-
gent Information and Engineering Systems, 14th Inter-
national Conference, KES 2010, Cardiff, UK, September
8-10, 2010, Proceedings, Part II, volume 6277 of Lecture
Notes in Computer Science, pages 43–55. Springer Berlin
Heidelberg, 2010.

2. Peter A Boncz and Martin L Kersten. Monet. an im-
pressionist sketch of an advanced database system. In
In Proc. IEEE BIWIT workshop, San Sebastian, Spain,
1994.

3. Michael J. Carey, Laura M. Haas, Peter M. Schwarz,
Manish Arya, William F. Cody, Ronald Fagin, My-
ron Flickner, Allen Luniewski, Wayne Niblack, Dragutin
Petkovic, Joachim Thomas II, John H. Williams, and Ed-
ward L. Wimmers. Towards Heterogeneous Multimedia
Information Systems: The Garlic Approach. In RIDE-
DOM 1995: International Workshop on Research Issues
in Data Engineering - Distributed Object Management,
pages 124–131, Taipei, Taiwan, 1995.

4. Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. In Proceedings of the 20th ACM
Symposium on Computational Geometry, Brooklyn, New
York, USA, June 8-11, 2004, SCG ’04, pages 253–262,
2004.

5. Arjen P. de Vries and H. M. Blanken. Database technol-
ogy and the management of multimedia data in the mir-
ror project. In Proc. SPIE, volume 3527, pages 443–453.
International Society for Optics and Photonics, 1998.

6. Ivan Giangreco, Ihab Al Kabary, and Heiko Schuldt.
ADAM - A database and information retrieval system for

big multimedia collections. In Proceedings of the 2014
IEEE International Congress on Big Data, pages 406–
413, Anchorage, AK, USA, June/July 2014. IEEE.

7. Ivan Giangreco, Ihab Al Kabary, and Heiko Schuldt.
ADAM: a system for jointly providing IR and database
queries in large-scale multimedia retrieval. In Proceed-
ings of the 37th International ACM Conference on Re-
search and Development in Information Retrieval (SI-
GIR’14), pages 1257–1258, Gold Coast, Australia, July
2014. ACM.

8. Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: Towards removing the curse of dimensionality.
In Proceedings of the 13th Annual ACM Symposium on
the Theory of Computing, pages 604–613, Dallas, Texas,
USA, 1998.

9. Andrej Karpathy and Fei-Fei Li. Deep visual-semantic
alignments for generating image descriptions. CoRR,
abs/1412.2306, 2014.

10. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. Imagenet classification with deep convolutional neu-
ral networks. In F. Pereira, C.J.C. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

11. Diana Moise, Denis Shestakov, Gylfi Thór Gudmunds-
son, and Laurent Amsaleg. Indexing and searching 100m
images with map-reduce. In International Conference
on Multimedia Retrieval, ICMR’13, Dallas, TX, USA,
April 16-19, 2013, pages 17–24, 2013.

12. Virginia Ogle and Michael Stonebraker. Chabot: Re-
trieval from a Relational Database of Images. Computer,
28(9):40–48, 1995.

13. Vincent Oria, M. Tamer Özsu, and Paul Iglinski. Query-
ing Images in the DISIMA DBMS. In MIS 2001: Work-
shop on Multimedia Information Systems, pages 89–98,
Capri, Italy, 2001.

14. Luca Rossetto, Ivan Giangreco, Heiko Schuldt, Stéphane
Dupont, Omar Seddati, Metin Sezgin, and Yusuf
Sahillioğlu. IMOTION – a content-based video retrieval
engine. In Proceedings of the 21st International Confer-
ence on MultiMedia Modeling (MMM’15), Part II, pages
255–260, Sydney, Australia, January 2015. Springer.

15. Hans-Jörg Schek. Methods for the Administration of
Textual Data in Database Systems. In Robert N. Oddy,
Stephen E. Robertson, C. J. van Rijsbergen, and P. W.
Williams, editors, SIGIR 1980: International Conference
on Research and Development in Information Retrieval,
pages 218–235, Cambridge, England, 1980. Butterworth
& Co.

16. Roger Weber, Klemens Böhm, and Hans-Jörg Schek.
Interactive-time similarity search for large image collec-
tions using parallel va-files. In Research and Advanced
Technology for Digital Libraries, 4th European Confer-
ence, ECDL 2000, Lisbon, Portugal, September 18-20,
2000, Proceedings, pages 83–92, 2000.

17. Roger Weber, Hans-Jörg Schek, and Stephen Blott.
A Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces.
In VLDB 1998: International Conference on Very Large
Data Bases, pages 194–205, New York, USA, 1998.

18. Yair Weiss, Antonio Torralba, and Robert Fergus. Spec-
tral hashing. In Advances in Neural Information Process-
ing Systems 21, Proceedings of the Twenty-Second An-
nual Conference on Neural Information Processing Sys-
tems, Vancouver, British Columbia, Canada, December
8-11, 2008, pages 1753–1760, 2008.

Author Manuscript
The final publication is available at http://link.springer.com
see https://doi.org/10.1007/s13222-015-0209-y

