
Graph-Based Factorization of Classical Planning Problems

Martin Wehrle and Silvan Sievers and Malte Helmert
University of Basel, Switzerland

{martin.wehrle,silvan.sievers,malte.helmert}@unibas.ch

Abstract
In domain-independent planning, dependencies of
operators and variables often prevent the effec-
tive application of planning techniques that rely on
“loosely coupled” problems (like factored planning
or partial order reduction). In this paper, we pro-
pose a generic approach for factorizing a classical
planning problem into an equivalent problem with
fewer operator and variable dependencies. Our ap-
proach is based on variable factorization, which can
be reduced to the well-studied problem of graph
factorization. While the state spaces of the origi-
nal and the factorized problems are isomorphic, the
factorization offers the potential to exponentially
reduce the complexity of planning techniques like
factored planning and partial order reduction.

1 Introduction
Automated planning is a computationally hard task [Bylan-
der, 1994], and various directions to tackle this task have
been proposed in the last decade. A popular direction is
based on exploiting the independence of variables or op-
erators in the formulation of the given planning problem.
This direction has been (and still is) investigated for plan-
ning in many different variants and contexts, e.g., represent-
ing the core idea of factored planning [Amir and Engelhardt,
2003; Brafman and Domshlak, 2006; Kelareva et al., 2007;
Brafman and Domshlak, 2008; Fabre et al., 2010] and ap-
proaches based on partial order reduction applied to plan-
ning [Alkhazraji et al., 2012; Wehrle and Helmert, 2012;
Nissim et al., 2012; Wehrle and Helmert, 2014; Holte et al.,
2015]. Factored planning solves subproblems individually
and finally combines the resulting local solutions to a global
plan. Partial order reduction explores only representatives
of “permutation equivalent” sequences of independent opera-
tors. Both directions are most beneficial in “loosely coupled”
problems with a high degree of variable and operator inde-
pendence.

Although much research has been devoted to develop ap-
proaches that exploit independence in planning problems in a
given formulation, surprisingly little research has been done
on the investigation of (automated) techniques to equivalently
reformulate a planning problem such that the reformulation

offers fewer variable and operator dependencies. Such refor-
mulation techniques appear to be attractive as they could ren-
der a given planning problem potentially more amenable to
all approaches that benefit from “loosely coupled” problems,
including the ones mentioned above. The most related pa-
per that has addressed the task of equivalently reformulating
a given planning problem in a more “factored” way is the pa-
per by Haslum [2007]. Haslum states that “a problem formu-
lation with less ‘coupling’ (fewer mutual dependencies) be-
tween variables is generally better”. However, he concludes
(and leaves as open questions) that how to instantiate his tech-
nique “to arrive at a better problem formulation is not [...]
easy, and automating [...] even more difficult”. Apparently,
finding automatic techniques appears to be challenging.

In this paper, we propose a novel direction for reformulat-
ing planning problems based on variable factorization. Plan-
ning problems are usually formalized with the help of vari-
ables to describe the states of the world. We provide the theo-
retical basis for a generic approach to algorithmically decide
how a given variable can be factorized into several indepen-
dent variables and corresponding operators. We show that
factorizing variables can be reduced to graph factorization,
which is a well-studied problem in discrete mathematics. The
resulting factorized formulation of the planning problem is
equivalent to the original problem in the sense that their state
spaces are isomorphic. However, due to fewer operator and
variable dependencies, the factorization offers the potential to
exponentially reduce the complexity of planning techniques
that rely on “loosely coupled” problems.

2 Preliminaries
For a finite set of finite-domain state variables V with finite
domain dom(v) for all v 2 V , we define a partial state s as
a mapping from a subset vars(s) ✓ V to values in dom(v)
for all v 2 vars(s). In other words, vars(s) denotes the
set of variables for which the partial state s is defined. For
v 62 vars(s), we say that the value of v in s is undefined,
which we denote by ?. In a given partial state s, the value of
v in s is s[v]. A partial state s complies with a partial state
s0 if s[v] = s0[v] for all v 2 (vars(s) \ vars(s0)). A partial
state s is called a state if vars(s) = V . We sometimes denote
(partial) states by sets of variable/value assignments.

A SAS+ planning problem ⇧ = hV,O, s0, s?i is defined
in terms of a finite set of finite-domain state variables V , a

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3286

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/95843746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

finite set of operators O, an initial state s0, and a partial goal
state s

?

. Operators o = hpre(o), e↵ (o), cost(o)i 2 O con-
sist of a precondition pre(o), an effect e↵ (o), and a func-
tion cost(o). Both pre(o) and e↵ (o) are partial states, and
cost(o) assigns a non-negative cost value to o. An opera-
tor o is applicable in a state s if pre(o) complies with s.
Applying an applicable operator o in s yields the successor
state s0, which is obtained from s by setting the values of all
v 2 vars(e↵ (o)) to e↵ (o)[v], and retaining the values of the
other variables from s. We say that an operator o 2 O reads
a variable v if v 2 vars(pre(o)), and that it writes to v if
v 2 vars(e↵ (o)). For technical reasons (and without loss of
generality), we require variables v that occur in both the pre-
condition and the effect of o to not read v and write to v with
the same value, i.e., if v 2 vars(pre(o))\ vars(e↵ (o)), then
pre(o)[v] 6= e↵ (o)[v].

A plan ⇡ = o1, . . . , on is a sequence of operators that is
sequentially applicable in the initial state, and applying this
sequence yields a state s that complies with s

?

. A plan ⇡ is
optimal if the summed cost values of the operators in ⇡ are
minimal among all plans in ⇧.
For each operator o 2 O and variable v 2 V , we define

the partial state pre\v(o) as pre\v(o)[v
0] := pre(o)[v0] for

all v0 2 vars(pre(o)) \ {v}, and pre\v(o)[v
0] as undefined

for all other variables v0. Informally, pre\v(o) represents the
partial state obtained from pre(o) when setting the value of v
to undefined. Accordingly, we define e↵ \v(o) for e↵ (o) as
the partial state obtained from e↵ (o) when setting the value
of v to undefined.

For a planning problem ⇧ = hV ,O, s0, s?i, the state
space of ⇧ is defined as the transition system T ⇧ =
(S,L, T, s0, S?

), where S is the set of states of ⇧, L is
the set {l(o) | o 2 O} of operator labels induced by O,
T ✓ S ⇥ L⇥ S is the set of transitions with (s, l(o), s0) 2 T
if o is applicable in s and yields the successor state s0, s0
is the initial state of ⇧, and S

?

is the set of goal states that
comply with s

?

. For a variable v 2 V , we define the atomic
transition system T v of v as the homomorphic projection of
T ⇧ to v via the abstraction function ↵(s) := s[v], i.e., as the
directed graph T v = hSv, L, T v, sv0, S

v

?

i with Sv = dom(v),
T v = {(↵(s), l(o),↵(s0)) | (s, l(o), s0) 2 T}, sv0 = ↵(s0),
and Sv

?

= {↵(s) | s 2 S
?

}.

2.1 Graph Factorization
In discrete mathematics, the factorization of graphs has been
studied intensively since the 1960s, both for undirected and
directed graphs, and for different kinds of products. A factor-
ization of a graph G is given by graphs G1, . . . , Gn

such that
the product of G1, . . . , Gn

yields G. More specifically, it has
been shown that undirected and directed graphs without self-
loops have a unique factorization into prime graphs with re-
spect to the Cartesian product, and that this factorization can
be computed in polynomial time [Sabidussi, 1960; Winkler,
1987; Aurenhammer et al., 1992; Imrich and Peterin, 2007].
Recently, a linear factorization algorithm for directed graphs
without self-loops has been proposed [Crespelle and Thierry,
2015]. For directed graphs G1 = hV1, E1i, . . . , Gm

=
hV

m

, E
m

i, the Cartesian product of G1, . . . , Gm

is defined

as G⇥ := hV ⇥, E⇥i, with V ⇥ := V1 ⇥ · · · ⇥ V
m

. There is
an edge hhv1, . . . , vmi, hw1, . . . , wm

ii 2 E⇥ if and only if
there is i 2 {1, . . . ,m} with hv

i

, w
i

i 2 E
i

and v
j

= w
j

for
all j 6= i. We remark that, in contrast to synchronized prod-
ucts, edges in Cartesian products are not synchronized across
different graphs, in the sense that every edge in the product
G⇥ corresponds to exactly one vertex change in one graph
G

i

. In the following, we propose a factorization approach for
planning problems based on a reduction to Cartesian graph
factorization.

3 A Motivating Example
Assume that a truck is supposed to drive from its initial lo-
cation 1 to its goal location 4, where the goal location can
be reached via the intermediate locations 2 or 3. A straight-
forward formulation in STRIPS will include four variables
at-i with i 2 {1, 2, 3, 4} to represent the location of the
truck. In SAS+, one variable poswith domain dom(pos) =
{1, 2, 3, 4} will typically be used. Figure 1 shows the atomic
transition system of the SAS+ version (left).

pos=4

pos=2 pos=3

pos=1

d

r

-

1

-

2

d

r

-

1

-

3

d

r

-

2

-

4

d

r

-

3

-

4

x = 1

x = 0

y = 1

y = 0

⇥

i
n
c
-
x

i
n
c
-
y

x = 1, y = 1

x = 1,
y = 0

x = 0,
y = 1

x = 0, y = 0

i

n

c

-

x

i

n

c

-

y

i

n

c

-

y

i

n

c

-

x

Figure 1: Atomic transition system of original formulation
(left), graphs describing factorized formulation of x and y
(middle), Cartesian product of factorized formulation (right).

Both the STRIPS and the SAS+ formulation are “tightly
coupled” in the sense that, e.g., partial order reduction will
not provide any reduction: Partial order reduction is a prun-
ing method that eliminates permutations of sequences of in-
dependent operators that lead to goal states, such that at least
one permutation thereof is preserved. In the example, par-
tial order reduction does not prune anything because the two
alternative paths from locations 1 to 4 over 2 or 3 are not
spanned by the same set of operators, i.e., there is no equiva-
lent permutation of operator sequences.

However, there exists a factorization of the SAS+ variable
pos into SAS+ variables x and y with dom(x) = dom(y) =
{0, 1}, with operators inc-x and inc-y that set x and y
from 0 to 1, respectively. Figure 1 shows the corresponding
factorized graphs representing x and y in the middle. Ex-
tending Cartesian products to labeled graphs in the straight
forward way (we will formalize this below), we observe that
the Cartesian product of the two factorized graphs (shown on
the right in Figure 1) is structurally isomorphic to the atomic
transition system in the original formulation, leaving operator
names aside for the moment. This means that we can capture
the semantics of the original formulation with the factorized
one. At the same time, the factorized formulation yields in-
dependent operators than can be permuted arbitrarily. Hence,
one of the two permutations of the plans (inc-x,inc-y

3287

and inc-y,inc-x) can be eliminated by the use of partial
order reduction. To summarize, we observe that the factor-
ization can yield a decoupled, but equivalent semantics of the
original planning problem, and there is a 1:1 correspondence
of the plans in the two formulations.

4 Factorization of Planning Problems
In the following, we will generalize the concept of Cartesian
graph factorization of unlabeled graphs to transition systems.
The following definitions consider transition systems without
self-loops – we will discuss how to handle self-loops (as they
occur in atomic transition systems of planning problems) be-
low. We start by defining Cartesian products. To keep things
simple, we restrict the definitions to two graphs (the general-
ization to an arbitrary number is straight forward).
Definition 1 (Cartesian Product). Let G1 =
(S1, L, T 1, s10, S

1
?

) and G2 = (S2, L, T 2, s20, S
2
?

) be
transition systems with common label set L and without
self-loops (i.e., without transitions of the form (s, l, s) for any
state s and any label l). The Cartesian productG1⇥G2 ofG1

and G2 is the transition system G⇥ := (S⇥, L, T⇥, s⇥0 , S
⇥
?

),
where S⇥ = {(s1, s2) | s1 2 S1, s2 2 S2} is the
Cartesian product of S1 and S2, and there is an edge
((s1, s2), l, (t1, t2)) in T⇥ iff (s1, l, t1) 2 T 1 and s2 = t2,
or s1 = t1 and (s2, l, t2) 2 T 2. Analogously to S⇥, s⇥0 is
defined as (s10, s20), and S⇥

?

as the Cartesian product of S1
?

and S2
?

.
Definition 2 (Cartesian Factor). LetG = (S,L, T, s0, S?

) be
a transition system without self-loops. The transition systems
G1 = (S1, L, T 1, s10, S

1
?

) and G2 = (S2, L, T 2, s20, S
2
?

) are
Cartesian factors of G iff G is isomorphic to the Cartesian
product G⇥ = (S⇥, L, T⇥, s⇥0 , S

⇥
?

) of G1 and G2, i.e., iff
there is a bijective function ' : S ! S⇥ such that hs, l, ti 2
T iff h'(s), l0,'(t)i 2 T⇥ for l, l0 2 L.

We remark that in Def. 2, two transition systems are
called “isomorphic” if their graph structures are isomorphic
in the usual sense, whereas labels (that correspond to opera-
tor names when used for planning problems) are allowed to
be different.

We now apply the concept of graph factorization to plan-
ning. As atomic transition systems characterize the behav-
ior of variables, values, and value changes, a factorization
of such an atomic transition system T v of variable v corre-
sponds to a factorization of v itself. Furthermore, the factor-
ized variables of v also yield a factorization of the operators
that read or write to v. To formally define these factorized op-
erators, let us come back to the question how to handle self-
loops in atomic transition systems. We observe that, apart
from the trivial case where an operator does not mention vari-
able v at all, self-loops in an atomic transition system T v can
either be induced by an operator that reads v, but does not
write to v, or vice versa does not read v, but writes to v. In
the following definition of factorized operators, these cases
are handled separately from the case where an operator both
reads and writes to v. For a given atomic transition system
T v = hSv, L, T v, sv0, S

v

?

i, we define the atomic transition
system without self-loops T v

= hSv, L, T
v

, sv0, S
v

?

i, which

is obtained from T v by removing all self-loops from T v , i.e.,
T

v

:= {(s, l, t) 2 T v | s 6= t}.
Let Ov := {o 2 O|v 2 (vars(pre(o)) [vars(e↵ (o)))}

be the operators that “work on v”. In the following, we again
restrict our definitions to two graphs to keep things simple.
Definition 3 (Factorized Operators). Let ⇧ = hV,O, s0, s?i
be a planning problem, let v 2 V be a variable with atomic
transition system T v = hSv, L, T v, sv0, S

v

?

i, and let T v

=
hSv, L, T

v

, sv0, S
v

?

i be the corresponding atomic transition
system without self-loops. Let T v1 = hSv1 , L, T v1 , sv1

0 , Sv1
?

i
and T v2 = hSv2 , L, T v2 , sv2

0 , Sv2
?

i be Cartesian factors of
T v

and let ' be the bijection between T v and T v1 ⇥ T v2
=

(S⇥, L, T⇥, s⇥0 , S
⇥
?

).
Let o = hpre(o), e↵ (o), cost(o)i be an operator with o 2

Ov . The factorized operator of of o is defined as follows. We
distinguish three cases.

1. v 2 vars(pre(o)) \ vars(e↵ (o)), i.e., o both
reads and writes to v. Then o induces a transition
(pre(o)[v], l, e↵ (o)[v]) 2 T

v

, which, via ', corre-
sponds to a transition t⇥ = ((s1, s2), l0, (t1, t2)) 2 T⇥

for some l0 2 L, where (s1, s2) = '(pre(o)[v]) and
(t1, t2) = '(e↵ (o)[v]). By the definition of Cartesian
products, the transition t⇥ is induced by exactly one
transition (s

i

, l0, t
i

) 2 T vi for some i 2 {1, 2}. The
factorized operator of o is defined as

of := hpre\v(o)[{v
i

7! s
i

}; e↵ \v(o)[{v
i

7! t
i

}; c
o

i
with c

o

:= cost(o).
2. v 2 vars(pre(o)) \ vars(e↵ (o)), i.e., o only reads v,

but does not write to v. Let '(pre(o)[v]) = (s1, s2).
The factorized operator of o is defined as

of := hpre\v(o) [
2[

i=1

{v
i

7! s
i

}; e↵ \v(o); cost(o)i,

i.e., the condition {v 7! pre(o)[v]} is replaced by the
corresponding conditions on the factorized variables
and values obtained from '.

3. v 2 vars(e↵ (o)) \ vars(pre(o)), i.e., o only writes to
v, but does not read v. Let '(e↵ (o)[v]) = (t1, t2). The
factorized operator of o is defined as

of := hpre\v(o); e↵ \v(o) [
2[

i=1

{v
i

7! t
i

}; cost(o)i,

i.e., the effect {v 7! e↵ (o)[v]} is replaced by the corre-
sponding effects on the factorized variables and values
obtained from '.

Bullet point 1 in Def. 3 refers to operators that both read
and write to v and hence induce a non-self-loop transition
in the atomic transition system T v (recall that we assume
pre(o)[v] 6= e↵ (o)[v] for o). Such operators are mapped
to factorized operators that only read and write to only one
factorized variable, and retain the precondition and effects
on the remaining variables. Bullet points 2 and 3 in Def. 3
cover the remaining cases where o only reads v or writes to

3288

v, respectively. Such operators can only induce self-loops,
hence they are not captured by the factorization (which ig-
nores self-loops). The corresponding factorized operator is
defined based on the variable/value combination of the fac-
torized variables and the bijective mapping provided by '.

We note that, due to the definition of Cartesian products,
there are generally several operators that are mapped to the
same factorized operator. For example, in the planning prob-
lem in Fig. 1, the two operators that drive from position 1 to
2 and drive from position 3 to 4, are mapped to the single
operator that sets x from 0 to 1.

We are now ready to define factorized planning problems
(for simplicity, again restricted to the case of two factors).
Definition 4 (Factorized Planning Problem). Let ⇧ =
hV ,O, s0, s?i be a planning problem, let v 2 V be a vari-
able with atomic transition system T v , and let v1, v2 be fac-
torized variables of v, i.e., let T vi = hSvi , L, T vi , svi

0 , Svi
?

i
for i 2 {1, 2} be Cartesian factors of T v

and let ' be the
bijection between T v

and T v1 ⇥ T v2 . The factorized plan-
ning problem ⇧f = hVf ,Of , sf0 , s

f

?

i with respect to v1, v2 is
defined as follows:
1. Vf := V \ {v} [{v1, v2} with {v1, v2} \ V = ;, where

dom(v
i

) := Svi for i 2 {1, 2}.
2. Of := {of factorized operator of o | o 2 Ov}[O\Ov

3. Let s0[v] = x and '(x) = (x1, x2). Then sf0 [vi] := x
i

for i 2 {1, 2}, and sf0 [w] := s0[w] for all w 2 V \ {v}.
4. If v /2 vars(s

?

), then sf
?

[v
i

] := ? for i 2 {1, 2}. Other-
wise, let s

?

[v] = x and '(x) = (x1, x2). Then s
f

?

[v
i

] :=
x
i

for i 2 {1, 2}. In both cases, sf
?

[w] := s
?

[w] for all
w 2 V \ {v}.

We remark that the definition of factorized planning prob-
lems is solely based on the bijective mapping from variable
assignments {v 7! x} to factorized assignments {v1 7!
x1, v2 7! x2} provided by ' (i.e. '(x) = (x1, x2)). As a
consequence, the state space graphs of original and factor-
ized problems are isomorphic (modulo operator renaming),
which we show formally in the following theorem. We again
only consider the case of two factors for simplicity.
Theorem 1. Let ⇧ = hV,O, s0, s?i be a planning prob-
lem, v 2 V , and v1, v2 be factorized variables of v in-
duced by an isomorphism ' in the sense of Def. 2. Let
⇧f = hVf ,Of , sf0 , s

f

?

i be the factorized planning problem
with respect to v1, v2. Then the state space graphs of ⇧
and ⇧f are isomorphic (where operators can have different
names).

Proof. Let T v

, T v1 and T v2 be the atomic transition systems
(without self-loops) of v, v1, v2. Let S and Sf be the set of
states of ⇧ and ⇧f . In the following, for a tuple '(x) =
(x1, x2), we denote the ith component x

i

of '(x) by '(x)[i],
i 2 {1, 2}. We will show that the state spaces of ⇧ and ⇧f

are isomorphic via the function : S[O ! Sf [Of , which
is defined by

 (s) := (s \ {v 7! s[v]}) [{
2[

i=1

(v
i

7! '(s[v])[i])}

for states, by (o) := of for o 2 Ov and (o) := o for
o 2 O \ Ov . For brevity, we only consider the non-trivial
case for operators o 2 Ov . Assume there is a state transition
from state s to t by applying such o in the state space of ⇧.
We will show that there is a corresponding state transition
from (s) to (t) by applying (o) = of in the state space
of ⇧f .
1. v 2 vars(pre(o)) \ vars(e↵ (o)). To simplify notation,

let x := s[v] and y := t[v], with x 6= y. As o sets v from
x to y, there is a transition hx, l, yi in T v

. As ' is an iso-
morphism between T v

and the Cartesian product T ⇥ of
T v1 and T v2 , there is a transition t⇥ := h'(x), l0,'(y)i
in T ⇥ for some l0 2 L. By the definition of Cartesian
products, the transition t⇥ is induced by a transition in
exactly one Cartesian factor i 2 {1, 2}, say factor i.
Hence there is a transition h'(x)[i], l0,'(y)[i]i in T vi .
This is the defining transition of operator of according
to Def. 3: of = hpre\v(o)[{v

i

7! '(x)[i]}; e↵ \v(o)[
{v

i

7! '(y)[i]}; cost(o)i. It follows that of is applica-
ble in (s) and leads to (t): of sets v

i

from '(x)[i]
to '(y)[i], and o and of have the same preconditions
and effects on other variables than v (hence pre(of) and
e↵ (of) comply with (s) and (t), respectively).

2. v 2 vars(pre(o)) \ vars(e↵ (o)). As o is applicable
in s, pre(o)[v] = s[v]. By the definitions of of and ,
pre(of)[v

i

] = '(s[v])[i] = (s)[v
i

] for i 2 {1, 2}, and
the preconditions of of on other variables than v1, v2 are
the same as those of o. Hence, of is applicable in (s).
As o does not modify v, of does not modify v1, v2 either,
and the effects of of on other variables than v1, v2 are the
same as those of o. Hence, because o leads from s to t,
the application of of in (s) leads to (t).

3. v 2 vars(e↵ (o)) \ vars(pre(o)). As v does not oc-
cur in the precondition of o, of does not mention v1, v2
in its precondition either, and its preconditions on other
variables than v1, v2 are the same as those of o. Hence,
because o is applicable in s, of is applicable in (s).
Because the application of o in s yields t, it follows
that t[v] = e↵ (o)[v]. By the definitions of of and ,
e↵ (of)[v

i

] = '(t[v])[i] = (t)[v
i

] for i 2 {1, 2}, and
the effects of of on other variables than v1, v2 are the
same as those of o. Hence the application of of in (s)
leads to (t).

Showing that for all state transitions in ⇧f there is a corre-
sponding transition in ⇧ is done analogously.

Corollary 1. Factorizing planning problems via isomor-
phism ' preserves plan existence and optimal plan cost.

Proof. Plan existence is preserved because the state spaces
of the planning problems are isomorphic according to The-
orem 1, and because ' preserves the initial state and goal
states: goal states are preserved because v is a goal variable
in the original planning problem with goal value s

?

[v] = x
iff the factorized variables v1, v2 of v are goal variables in
the factorized planning problem with goal values s

?

[v
i

] =
'(x)[i] for i 2 {1, 2}. Analogously, ' preserves the initial

3289

state. Optimal plan cost are preserved because factorized op-
erators have the same cost as the corresponding operators in
the original problem.

The mapping from operators O to factorized operators Of

(Def. 3) allows us to transform plans ⇡f in the factorized
planning problem ⇧f to plans ⇡ in the original problem ⇧ by
scanning ⇡f , and “mapping back” all factorized operators in
Of to operators in O. As mentioned above, assuming v to be
a variable factorized into v1, . . . , vn, and assuming of to be
a factorized operator, there are several operators in the origi-
nal problem that correspond to of , hence the inverse function
is not uniquely defined. However, as the state spaces of the
original and the factorized problem are isomorphic, there is
exactly one original operator that corresponds to of .

5 Properties of Factorized Planning Problems
We now study some properties of factorized planning prob-
lems. Brafman and Domshlak [2006] presented a factored
planning algorithm whose runtime is exponential only in the
treewidth of the (undirected) causal graph [Knoblock, 1994]
of the planning problem and its local width, the smallest num-
ber k such that a plan that writes to each variable at most k
times exists. We show that factorization can be very benefi-
cial for factored planning.
Theorem 2. Let⇧ be a planning problem and⇧f be a factor-
ized planning problem of ⇧. The runtime bound for factored
planning in ⇧f can be exponentially smaller than for ⇧.

Proof. Consider a family of planning problems ⇧
n

(n 2 N)
obtained by generalizing the example in Fig. 1. Let ⇧

n

con-
sist of one variable pos with dom(pos) = {1, . . . , 2n} such
that the corresponding factorized planning problem ⇧f

n

con-
sists of n variables v1, . . . , vn. For each v

i

, there is exactly
one operator in ⇧f

n

that sets v
i

from 0 to 1 (and hence, there
are n atomic transition systems with two locations, as shown
in the middle in Fig. 1 for n = 2). The initial and the goal
states are given by v

i

= 0 and v
i

= 1 for all i 2 {1, . . . , n},
respectively. For all n 2 N, there is a plan in ⇧f

n

that affects
every variable v

i

only once (local width 1), whereas every
plan in ⇧

n

affects pos at least n times (local width n). The
tree width of the causal graph is equal to 1 in both ⇧

n

and
⇧f

n

. Hence factored planning provides an exponential run-
time bound for ⇧

n

but a polynomial one for ⇧f

n

.

In the following, we show that similar results hold for
strong stubborn sets [Valmari, 1989; Alkhazraji et al., 2012]
and sleep sets [Godefroid, 1996; Holte et al., 2015].

For a given state s, strong stubborn sets can prune permuta-
tions of operator sequences that consist of independent oper-
ators and lead from s to a goal state, with the guarantee that at
least one of these permutations is preserved in s. Operators o
and o0 are denoted as independent if o does not disable o0 (i.e.,
there is no variable v such that e↵ (o)[v] 6= pre(o0)[v]), and
o0 does not disable o, and o, o0 do not have conflicting effects
(i.e., there is no variable v such that e↵ (o)[v] 6= e↵ (o0)[v]).
Theorem 3. Let⇧ be a planning problem and⇧f be a factor-
ized planning problem of ⇧. The size of the reachable state

space with strong stubborn sets in ⇧f can be exponentially
smaller than the corresponding size in ⇧.

Proof. Consider again the problems ⇧
n

and factorized prob-
lems ⇧f

n

from the proof of Theorem 2. In every state of ⇧f

n

,
strong stubborn sets contain only one of the operators of ⇧f

n

(all factorized operator pairs are independent). This yields a
reachable state space of size n + 1. In contrast, strong stub-
born sets do not prune in ⇧

n

because all operators are not
independent with each other. Hence, ⇧

n

has 2n reachable
states.

Sleep sets are usually applied in tree search algorithms to
avoid exploring equal states reached via different paths in the
state space. Sleep sets can prune state transitions induced by
commutative operators. Operators o and o0 are denoted as
commutative if o and o0 are independent, and additionally, o
and o0 do not enable each other (i.e., there is no variable v
such that e↵ (o)[v] = pre(o0)[v], and vice versa).
Theorem 4. Let⇧ be a planning problem and⇧f be a factor-
ized planning problem of ⇧. The number of generated nodes
with iterative deepening search and sleep sets can be expo-
nentially smaller in ⇧f than in ⇧.

Proof. Consider the problems ⇧
n

and factorized problems
⇧f

n

from the proof of Theorem 2. Optimal plans in ⇧
n

and
⇧f

n

have length n, and therefore iterative deepening search
explores all paths of length n� 1 in the second last iteration.
Without pruning, ⇧

n

and ⇧f

n

have n! paths of length (n� 1)
from the initial state.

Sleep set pruning in⇧
n

does not prune any search node be-
cause there is no pair of operators that is commutative. Hence
n! search nodes are generated at depth n� 1.
In contrast, sleep set pruning in ⇧f

n

prunes all but one path
to every reachable state: Because operators in this problem
are commutative, sleep sets assume an (arbitrary) total order
< on the set of operators, and it is easy to see that under this
restriction, every state can only be reached by a single path.
This results in a runtime bound ofO(2n) when searching⇧f

n

,
an exponential reduction compared to n! for ⇧

n

.

6 Discussion
Our approach provides the basic theory of a novel direction
for problem reformulation. As shown in the previous sec-
tion, techniques that rely on “loosely coupled” problems can
benefit from factorization. However, we also observe that the
current theory for factorizing atomic transition systems such
that the resulting state spaces are isomorphic is stronger than
needed, as we only need the reachable part of the product to
be equal to the original. Consider the example in Fig. 2, an
extension of the example in Fig. 1.

The example shows an atomic transition system T , where
a truck is supposed to drive from location 1 to 5 via one of the
locations 2 or 3. Again, typical partial order reduction meth-
ods do not fire in this problem formulation because all pairs
of operators interfere (i.e., they are not independent). How-
ever, although T cannot be factorized into non-trivial Carte-
sian factors, there exists a factorization into variables x, y, z
and corresponding operators o1 = h{x 7! 0}; {x 7! 1}i,

3290

pos=2

pos=1 pos=4

pos=3

pos=5

d

r

-

1

-

2

d

r

-

1

-

3

d

r

-

2

-

4

d

r

-

3

-

4

dr-4-5

Figure 2: Example atomic transition system.

o2 = h{y 7! 0}; {y 7! 1}i and o3 = h{x 7! 1, y 7!
1}; {z 7! 1}i such that the reachable state space (with the
initial state {x 7! 0, y 7! 0, z 7! 0}) induced by o1, o2, o3
is isomorphic to T . We observe that o1, o2, o3 are indepen-
dent, which can be exploited by, e.g., partial order reduc-
tion. How to compute such “relaxed factorizations” remains
an open question.

Factorizing variables into an equivalent problem formu-
lation can be viewed as a variant of “inverse fluent merg-
ing”. Fluent merging [van den Briel et al., 2007; Seipp and
Helmert, 2011] merges several variables to a joint new vari-
able with corresponding variable domain. As a result, the
merged formulation can be more amenable to the computa-
tion of accurate heuristics. On the other hand, fluent merging
can increase coupling in the problem formulation.

7 Towards a Planning Algorithm
Factorization algorithms for planning need to handle labeled
transitions, while existing graph factorization algorithms do
not handle transition labels (see Section 2.1). A straight-
forward, yet rather restrictive way to still make use of these
algorithms is based on a try-and-check approach: Given a
planning problem ⇧ and a variable v of ⇧, such an algorithm
considers the atomic transition system T v , and computes a
factorization of the underlying directed graph without self-
loops T v

where labels are ignored. To obtain a correct fac-
torization according to our theory, the algorithm then needs
to check if operators that are supposed to be mapped to the
same factorized operator as defined by the Cartesian factors
have the same preconditions and effects on other variables
than v in ⇧. If this is the case, the factorized planning prob-
lem ⇧f can be computed. The Cartesian graph factorization
can be achieved in linear time [Crespelle and Thierry, 2015].
The remaining part of checking the conditions on the factor-
ized operators can be done in low-order polynomial time in
the compact size of the planning problem, yielding an overall
low-order polynomial time complexity. In addition, atomic
transition systems for typical planning problems often have
rather small sizes, hence the overhead of checking for Carte-
sian factors will mostly be negligible.

Currently, we do not have a fully automatic implemen-
tation. A preliminary analysis of planning domains from
the international planning competitions up to 2014 revealed
that some domains (Floortile, Grid, Sokoban, Tetris and Visi-
tall) contain atomic transition systems whose unlabeled graph
structure can be factorized. However, they do not pass the try-
and-check approach, i.e., cannot be factorized into non-trivial
Cartesian factors according to our theory.

As a proof of concept, we slightly modified the IPC Vis-
itall domain such that “moving” and “marking as visited”
are represented by different operators. We applied the Fast
Downward planner [Helmert, 2006] to this domain and its
factorization, using A⇤ with strong stubborn sets as well
as IDA⇤ with sleep sets. While the factorization does not
yield additional pruning with strong stubborn sets (as “mov-
ing” can still disable “mark-as-visited”), it does when ap-
plied with sleep sets. We compare IDA⇤ with and without
sleep sets, using Fast Downward’s blind heuristic and Fast
Downward’s implementation of iPDB [Haslum et al., 2007;
Sievers et al., 2012]. Table 1 shows the resulting number
of generated nodes (without the last f -layer to avoid tie-
breaking issues) and the runtime in seconds.

original formulation factorized formulation

#nodes runtime #nodes runtime

size nop prune nop prune nop prune nop prune

blind

6 3853 3853 0.0 0.0 3853 987 0.0 0.0
9 2.5e+6 2.5e+6 12.2 14.4 2.5e+6 93613 12.2 0.6
12 — — — — — 1.1e+7 — 86.0

iPDB

12 81042 81042 0.7 0.8 72721 19102 4.5 4.2
16 1.9e+7 1.9e+7 112.6 125.5 1.3e+7 1.5e+6 107.7 22.9
20 — — — — — 1.6e+8 — 1710.8

Table 1: IDA⇤ without pruning (nop) and with sleep sets
pruning (prune); dashes mean out of time (> 1800 seconds)

Focusing on the results with the blind heuristic (to measure
the pure pruning ability on the factorization) displayed in the
upper part, we observe that the factorization allows sleep sets
to cut down the number of generated nodes by avoiding the
generation of duplicates. The smaller search space translates
into lower runtime. When using iPDB (lower part), we ob-
serve that the factorization causes iPDB to compute a more
accurate heuristic (i.e., fewer nodes are generated on the fac-
torized formulation also when no pruning is applied), which
results in a slightly higher precomputation time. More impor-
tantly, we again observe that the factorization can be benefi-
cial when applied with sleep sets, which can in turn result in
fewer generated nodes and lower runtime.

8 Conclusions

We have proposed a theory for equivalently reformulating
planning problems based on Cartesian graph factorization.
Factorized planning problems offer the potential to yield ex-
ponentially smaller state spaces when factored planning or
partial order reduction is applied. In the future, it will be im-
portant to turn the theory into practice: As we have observed,
the requirement for the resulting state spaces to be isomorphic
is stronger than needed, because we only need the reachable
part of the product to be equal to the original. Furthermore, it
will be important to investigate more sophisticated factoriza-
tion algorithms for labeled graphs.

3291

Acknowledgments
This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Automated Refor-
mulation and Pruning in Factored State Spaces (ARAP)”.

References
[Alkhazraji et al., 2012] Yusra Alkhazraji, Martin Wehrle,

Robert Mattmüller, and Malte Helmert. A stubborn set al-
gorithm for optimal planning. In Proc. ECAI 2012, pages
891–892, 2012.

[Amir and Engelhardt, 2003] Eyal Amir and Barbara Engel-
hardt. Factored planning. In Proc. IJCAI 2003, pages 929–
935, 2003.

[Aurenhammer et al., 1992] Franz Aurenhammer, Johann
Hagauer, and Wilfried Imrich. Cartesian graph factoriza-
tion at logarithmic cost per edge. Computational Complex-
ity, 2:331–349, 1992.

[Brafman and Domshlak, 2006] Ronen I. Brafman and
Carmel Domshlak. Factored planning: How, when and
when not. In Proc. AAAI 2006, pages 809–814, 2006.

[Brafman and Domshlak, 2008] Ronen I. Brafman and
Carmel Domshlak. From one to many: Planning for
loosely coupled multi-agent systems. In Proc. ICAPS
2008, pages 28–35, 2008.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artificial In-
telligence, 69(1–2):165–204, 1994.

[Crespelle and Thierry, 2015] Christophe Crespelle and Eric
Thierry. Computing the directed cartesian-product decom-
position of a directed graph from its undirected decompo-
sition in linear time. Discrete Mathematics, 338(12):2393–
2407, 2015.

[Fabre et al., 2010] Eric Fabre, Loı̈g Jezequel, Patrik
Haslum, and Sylvie Thiébaux. Cost-optimal factored
planning: Promises and pitfalls. In Proc. ICAPS 2010,
pages 65–72, 2010.

[Godefroid, 1996] Patrice Godefroid. Partial-Order Meth-
ods for the Verification of Concurrent Systems – An Ap-
proach to the State-Explosion Problem, volume 1032 of
Lecture Notes in Computer Science. Springer-Verlag,
1996.

[Haslum et al., 2007] Patrik Haslum, Adi Botea, Malte
Helmert, Blai Bonet, and Sven Koenig. Domain-
independent construction of pattern database heuristics for
cost-optimal planning. In Proc. AAAI 2007, pages 1007–
1012, 2007.

[Haslum, 2007] Patrik Haslum. Reducing accidental com-
plexity in planning problems. In Proc. IJCAI 2007, pages
1898–1903, 2007.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Holte et al., 2015] Robert C. Holte, Yusra Alkhazraji, and
Martin Wehrle. A generalization of sleep sets based on
operator sequence redundancy. In Proc. AAAI 2015, pages
3291–3297, 2015.

[Imrich and Peterin, 2007] Wilfried Imrich and Iztok Pe-
terin. Recognizing cartesian products in linear time. Dis-
crete Mathematics, 307(3-5):472–483, 2007.

[Kelareva et al., 2007] Elena Kelareva, Olivier Buffet, Jinbo
Huang, and Sylvie Thiébaux. Factored planning using de-
composition trees. In Proc. IJCAI 2007, pages 1942–1947,
2007.

[Knoblock, 1994] Craig A. Knoblock. Automatically gen-
erating abstractions for planning. Artificial Intelligence,
68(2):243–302, 1994.

[Nissim et al., 2012] Raz Nissim, Udi Apsel, and Ronen I.
Brafman. Tunneling and decomposition-based state re-
duction for optimal planning. In Proc. ECAI 2012, pages
624–629, 2012.

[Sabidussi, 1960] Gert Sabidussi. Graph multiplication.
Mathematische Zeitschrift, 72:446–457, 1960.

[Seipp and Helmert, 2011] Jendrik Seipp and Malte
Helmert. Fluent merging for classical planning problems.
In ICAPS 2011 Workshop on Knowledge Engineering for
Planning and Scheduling, pages 47–53, 2011.

[Sievers et al., 2012] Silvan Sievers, Manuela Ortlieb, and
Malte Helmert. Efficient implementation of pattern
database heuristics for classical planning. In Proc. SoCS
2012, pages 105–111, 2012.

[Valmari, 1989] Antti Valmari. Stubborn sets for reduced
state space generation. In Proc. APN 1989, pages 491–
515, 1989.

[van den Briel et al., 2007] Menkes van den Briel, Subbarao
Kambhampati, and Thomas Vossen. Fluent merging: A
general technique to improve reachability heuristics and
factored planning. In ICAPS 2007 Workshop on Heuristics
for Domain-Independent Planning, 2007.

[Wehrle and Helmert, 2012] Martin Wehrle and Malte
Helmert. About partial order reduction in planning and
computer aided verification. In Proc. ICAPS 2012, 2012.

[Wehrle and Helmert, 2014] Martin Wehrle and Malte
Helmert. Efficient stubborn sets: Generalized algorithms
and selection strategies. In Proc. ICAPS 2014, pages
323–331, 2014.

[Winkler, 1987] Peter Winkler. Factoring a graph in poly-
nomial time. European Journal of Combinatorics, 8:209–
212, 1987.

3292

