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Abstract 

Evidence of enhanced oceanic convection over Maud Rise in the Weddell Sea indicates 
that bottom topography may play a role in selecting the location and scale of deep 
convecting oceanic chimneys below large scale atmospheric negative buoyancy forcing. 

Topographic preconditioning of open ocean deep convection is studied using an ide­
alized, three-dimensional, primitive-equation model. A barotropic mean flow impinges 
on an isolated Gaussian-shaped seamount in a stratified domain with uniform negative 
surface buoyancy forcing. A region of topographically trapped flow forms over the topog­
raphy. When this "Taylor cap" is tall enough to interact with the surface mixed-layer, 
the local isolation from mean horizontal advection forms a conduit into the deep water. 
The convective penetration depth within this local region is significantly enhanced rel­
ative to ambient levels away from the seamount and to similar runs performed without 
bottom topography. The parameter dependencies for these preconditioning processes are 
investigated. 

With uniform background stratification, t he doming of isopycnals does not play a 
major role in the preconditioning process. However, when a surface intensified strat­
ification is included, domed isopycnals associated with the Taylor cap circulation can 
also play a preconditioning role. In this case, the pycnocline is first ventilated over the 
seamount, leading to rapid convective deepening into the weakly stratified deep water. 
An analytical formula for one-dimensional, non-penetrative convection into an exponen­
tial stratification profile is derived and compares well with results from the numerical 
model. 

Previous modeling studies have often parameterized the mehanism by which the hor­
izontal scale of oceanographic chimneys is set through the use of disk-shaped surface 
forcing functions. Unlike in such experiments, topographically preconditioned chimneys 
are not prone to breakup by the growth of baroclinic instabilities. Instead, convection 
is generally shut down by horizontal fluxes of heat due to the mean flow across the 
temperature gradients of the chimney walls. The presence of the mean flow, which is 
neccessary in order for the topographic preconditioning to work, causes instabilities to 
be advected downstream faster t han they can grow locally. These results suggest that 
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the role of baroclinic eddies in shutting down oceanographic convection is probably mis­
represented in studies which parameterize the preconditioning mechanism, particularly 
if the preconditioning mechanism being parameterized is a topographic one. 

Thesis Supervisor: W. Brechner Owens, 
Professor, 
Physical Oceanography Department 
Woods Hole Oceanographic Institution 
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Chapter 1 

Introduction 

In the Antarctic, during the winter, a vast region of ocean is subject to intense atmo­

spheric cooling and salt rejection resulting from sea ice formation. Despite the widespread 

nature of this buoyancy loss, the resulting deep reaching open ocean convection occurs 

on a much smaller spatial scale. The wide disparity in the spat ial scales of the atmo­

spheric forcing and oceanic response can be explained if certain regions of t he ocean have 

been preconditioned such that they preferentially convect. Killworth [1979], in a study 

of one convective feature, even hypothesized that in the absence of some mechanism for 

preselecting specific regions for convection, the entire Weddell gyre would be prone to 

overturning given the magnitude of typical winter forcing. Insofar as the basin scale 

cyclonic circulation of the Weddell gyre represents a broad doming of isopycnals and 

an associated reduction in the heat content of the upper water column, the entire gyre 

is to some extent prone to convective overturning. In order to generate convection on 

the horizontal scales typically seen in the ocean, however, smaller regions of addit ional 

preconditioning must be superimposed within this larger gyre scale. 

Preconditioning is used here as a general term for any dynamical processes in the 

ocean which can isolate a small, order 10 to 100 kilometer radius , patch of t he ocean 

and allow it to convect to great depth relative to the ambient surface mixed-layer. This 

isolated deepening of the mixed-layer is often called a convective chimney. Thus, a 
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preconditioning mechanism must select both a specific location as well as set a horizontal 

scale on which the chimney subsequently penetrates into the interior. 

Because deep convection is forced at the ocean surface, far from the bottom boundary, 

the effect of bottom topography on the convective process is often ignored. However, 

convection tends to occur in regions of low ambient background stratification. In addition, 

oceanic :flows are generally characterized by small Rossby number and are nearly inviscid. 

Given these conditions - low stratification, low Rossby number, and inviscid :flow - the 

Taylor-Proudman theorem [eg. Pedlosky 1987] suggests that :fluid motions in a rotating 

system should tend to be independent of the coordinate parallel to the axis of rotation. 

Thus, the influence of bottom topography can be expected to reach well up into the water 

column. As a result, bottom topography can be expected to influence the dynamics 

of surface driven convection, perhaps acting as a preconditioning mechanism. There 

are at least two means by which mean :flow interacting with isolated topography can 

precondition the water column for convection: uplifted isopycnals associated with :flow 

over the topography and isolation of topographically trapped :fluid. 

The purpose of this thesis is to examine how the interaction of oceanic mean :flow with 

isolated bottom topography can influence the initial location of convecting chimneys, the 

depth to which they can be expected to penetrate, and the mechanisms by which the 

convection is shut down. In order to motivate the problem in terms of its application to 

the real ocean, section 1.1 provides an overview of some of the historical data indicative of 

open ocean convection in the Weddell Sea. I have chosen to concentrate on convection in 

the Weddell Sea because of its importance in setting the properties of Antarctic Bottom 

Water, which makes up the majority of the deep water in the world oceans. In addition, 

the scant evidence which does exist suggests that much of the open ocean convection 

which occurs in the Weddell Sea is concentrated in the vicinity of Maud Rise, a large 

isolated seamount with a horizontal scale of about 100 kilometers which rises roughly 

halfway into the water column from the otherwise fiat and featureless 5000 meter deep 

Weddell Abyssal Plain. 
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In section 1.2, a short summary of the problem of flow over isolated topography is 

presented. Some of the important physical aspects of the problem of idealized flow over 

topography are introduced. In addition, an introduction to numerical modeling of oceanic 

convection is provided. This study has arisen as a direct amalgam of these two lines of 

research, in that it incorporates both flow over isolated topography and deep convection 

driven by surface buoyancy forcing. Finally, section 1.3 introduces this thesis research, 

a process oriented numerical modeling study, incorporating continuous strat ification, t all 

topography and surface buoyancy forcing. 

1.1 Open Ocean Convection in the Weddell Sea 

Data indicative of open ocean convection in the Weddell Sea are primarily of two types: 

hydrographic data from ship based surveys and ice concentration data from satellite 

measurements. Most of the hydrographic data from the Weddell Sea have been taken 

in the summer season when retreat of the seasonal ice cover, combined with summer 

temperature and light conditions, allows relative ease of shipboard operations. However, 

modern high resolution CTD data are available for the Eastern Weddell from the Po­

larstern ANT V / 2 cruise in the winter of 1986. Unfortunately, the 1986 winter cruise 

located no actively convecting chimneys. 

1.1.1 Hydrographic Data 

Evidence for open ocean convection appears in hydrographic data as anomalous regions 

of low stratification thought to be relict chimneys from the previous winter, and in 

changes in deep water characteristics following a winter of particularly strong, or weak, 

convection. 
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Relict Convective Chimneys 

Several summertime remnants of deep reaching convective chimneys, capped by warm, 

fresh, surface water due to ice melt and solar insolation, have been found in the Weddell 

not far to the west of Maud Rise. Gordon [1978] described a roughly 14km radius 

eddy extending to at least 4000 meters depth with a surface cyclonic velocity signature 

of over 50 cmjs located in the central Weddell Gyre. Temperat ure, salinity, oxygen 

and density sections through this convective feature are reproduced from Gordon in 

figure 1.1. The direction and magnitude of the mean flows in the region make it plausible 

that the chimney had been actively convecting the previous winter over Maud Rise, to 

the northeast of the location at which this remnant was found. Gordon suggested that 

open ocean convection in the vicinity of Maud Rise may produce a variety of Antarctic 

Bottom Water which can spread along isopycnals to replenish deep water outside of the 

Antarctic, whereas the denser bottom water produced along the continental margins may 

be topographically confined to some extent. 

Foldvik et.al. [1985] reported two separate CTD casts showing anomalous thermoha­

line stratification similar to that found in the eddy observed by Gordon, and suggested 

that such deep convection phenomena may be quite common. Due to their wide station 

spacing, however, Foldvik was not able to determine the horizontal scale of these fea­

tures. In 1983, Bersch [1988] found a region of convectively cooled and freshened water 

in the central Weddell reaching to at least 3000 meters depth, below which no data were 

available. He concluded, based on the same convective signal being seen in an XBT 

section 200 kilometers distant, that the horizontal scale of the convection was greater 

than 200km. Clearly, however, the possibility of two separate convective chimneys of 

smaller size cannot be excluded. A compendium of hydrographic evidence for convective 

chimneys, together with discussion of the possible evolution of convective features in the 

Weddell Sea has been published by Muench [1988]. 
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Figure 1.1: Along track temperature, salinity, oxygen and sigma-p showing the location and 
structure of a deep reaching convective feature west of Maud llise. This figure is reproduced 
from Gordon [1978). 

13 



Deep Water Temperature and Salinity Characteristics 

A high resolution wintertime hydrographic section running roughly north to south over 

Maud Rise is reproduced from Gordon and Huber [1990] in figure 1.2. The two panels 

show potential temperature and salinity along their cruise track. Maud Rise is clearly 

evident in the bottom topography. It is interesting to note that the warm salty water 

of North Atlantic origin lying between 500 and 1000 meters depth t hrough most of the 

section is not present over Maud Rise. One likely explanation for t his feat ure is that 

enhanced ventilation of the water over Maud Rise has partially homogenized t he water 

column. In addition, a slight doming of isotherms is apparent over the topography. 

Changes in the structure and properties of the deep water provide evidence for anoma­

lously strong or weak convection. Gordon [1982], noted that the temperat ure of Weddell 

Deep Water was dram atically lower in 1977 than it was in 1973, with intense thermal 

alterations reaching to approximately 3000 meters depth. He attributed this cooling of 

the deep water to enhanced convective ventilation associated with t he Weddell Polynya 

in the intervening years, which he estimates to have been between 1.6 and 7. 7 Sverdrups 

depending primarily on whether t he convection is assumed to have been occuring con­

tinuously, or primarily during the winter months. The Weddell Polynya, a large ice free 

region which occured in the Weddell sea for several consecutive years in the 1970's IS 

discussed below. 

In subsequent years a warming of the deep water has been observed. Foldvik et. al. 

[1985b] reported approximately 1 °C of warming in the core of the Weddell Deep Water 

between 1977 and 1979 which they attributed to the lack of Polynya act ivity during 

those years. It is important to note that these changes in deep water charact eristics 

are only evidence of anomalous levels of open ocean convection, not the absolute rate of 

ventilation. The Weddell Polynya, because it occurred only for a few years, is ideally 

suited to this type of measurement. However, to the extent that a background level, or 

average amount, of convection occurs every year in the Weddell Sea, it will not show 

up as anomalous changes in the deep water characteristics. Rat her, t his open ocean 
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Figure 1.2: Wintertime sections of potential temperature and salinity over Maud Rlse. This 
figure is reproduced from Gordon and Huber (1990]. 
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ventilation is, in part, what sets the average Weddell Deep Water characteristics around 

which these anomalous measurements are defined. 

The Weddell Polynya 

Perhaps the most remarkable convective feature in the Weddell Sea was the magnificent 

Weddell Polynya. This immense region of open water was maintained through several 

winter seasons in the mid-1970's despite severe atmospheric cooling. After its initial 

formation in the vicinity of Maud Rise in 1974, the polynya drifted slowly westward 

with the mean circulation of the Weddell gyre over the following three seasons before 

vanishing. Although there remains evidence of significant convection in the vicinity of 

Maud Rise, the midwinter polynya has not been observed since 1976. 

Martinson et. al. [1981] used a two layer model to demonstrate that surface cooling 

and brine rejection from ice formation can lead to entrainment of warm salty water from 

depth with enough heat content to either melt back the initial ice cover or prohibit its 

formation all together, even given midwinter levels of atmospheric cooling. They sug­

gested that bottom topography, although not explicitly included in their model, probably 

played a role in determining the initial location of the polynya by virtue of t he locally 

uplifted pycnocline. Parkinson [1983] used a numerical model forced with realistic wind 

fields to suggest that the polynya may have been initiated by slow wind speeds in the 

centers of atmospheric lows, which would have reduced both sensible and latent heat loss 

to the atmosphere. However, given that her modelled polynya could not last the winter 

season, she concludes that heat fluxes from below due to oceanic convection are probably 

necessary to maintain the open water. Motoi et. al. [1987] used a one-dimensional, 

mixed-layer model to show that the major preconditioning factor was the presence of a 

salty mixed-layer in the preceding summer. Subject to the condition that atmospheric 

fresh water fluxes were less than 0.4 m/year, they conclude that the existence of the 

saline water was sufficient to ensure deep convection, without requiring either wind field 

anomalies or sea ice formation. 
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1.1.2 Satellite Passive Microwave Sea Ice Concentration Data 

Unlike hydrographic data, sea ice concentration information from satellite radar measure­

ments is available continuously, with excellent temporal and spatial resolution. Indeed, it 

is only because of the advent of remote satellite measurements that the Weddell Polynya 

is known to have existed at all. On the negative side, satellite measurements are only 

capable of discerning the percentage of water covered by sea ice; they do not reveal any­

thing about ice thickness (other than differentiating first year and mult i-year ice which is 

of little use in the Weddell where nearly the entire ice cover is seasonal). In addition, the 

underlying isopycnal structure of the water column is opaque to electromagnetic sampling 

from satellite. 

Sea ice concentration alone can be indicative of convective activity, however . If enough 

warm water from depth is brought to the surface, t he sea ice can be partially or completely 

melted, leading to enhanced heat losses , further convection , and additional sea ice loss . 

The most magnificent evidence of such sea ice removal is of course the Weddell Polynya. 

False color satellite imagery of the entirely ice free polynya region and the rest of the 

Antarctic is available from NASA satellite passive radar data in Zwally et.al [1983]. 

Figure 1.3, reproduced from Zwally et.al, compares the September average ice cover in 

1973, when no polynya was present, with the 1974 data when the polynya was situated 

directly over Maud Rise, just east of the Greenwich meridian, at 65 degrees south latitude. 

Less obvious but more frequently occuring evidence of convection and the associated 

enhanced ocean heat fluxes is found in the consistent early spring melt back of the sea ice 

around Maud Rise. This early spring melt back is also visible in NASA false color images 

provided by Gloerson et. at. [1992]. Figure 1.4, derived from t he Gloerson et. at. data, 

shows the sea ice distribution in December for several non-polynya years. Remarkably, 

nearly every spring the sea ice in the Weddell does not melt back from the ice edge, as 

one might expect given the latitudinal temperature gradient and mechanical forcing at 

the ice edge, but rather from the middle, in the vicinity of Maud Rise. This pattern 

of spring meltback can be taken as evidence suggestive of convection during the winter, 
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Figure 1.3: Wintertime (September) sea ice coverage in the Weddell Sea in 1973, a non­
polynya year, and 1974, when the polynya first appeared. This figure is adapted from false 
color satellite data in Zwally et.al (1983]. 
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which would reduce ice thickness in the region over Maud Rise and thus allow for earlier 

removal in the spring, or, alternatively, as evidence of active convection in the early 

spring. In either case, a source of oceanic heat, as provided by deep reaching convection, 

is suggested by these data. 

1.2 Historical Overview 

1.2.1 Flow over Isolated Topography 

The study of the effect of isolated bottom topography on rotating fluid motions has a 

long history. The seminal work by G.I. Taylor [1923] was primarily done with labora­

tory experiments in the context of unstratified flow. Taylor showed that when a mean 

flow impinges on a small bump on the bottom of a rotating tank, t he fluid over the 

bump is trapped while the mean flow diverts around the obstacle. Such a column of 

topographically trapped fluid is now generally referred to as a Taylor column. 

In the 1960's and 70's, a number of laboratory studies and analytical progress ex­

panded on Taylor's original result . Hide [1966,1968] considered t he st rat ified problem and 

determined the critical topographic height required to trap fluid columns in a uniformly 

stratified, constant rotation system assuming small topography and Rossby number. In 

the stratified case, the steady-state flow past a seamount is characterized by both a local 

trapping of the fluid over the seamount and a doming of isopycnals , with st ronger st rat­

ification increasing the degree to which these perturbations to the mean flow are bottom 

trapped. This region of trapped fluid is often called a Taylor cap, to dist inguish it from 

the barotropic Taylor column. The effects of stratification together with background 

vertical shear were investigated by Hogg [1973]. Johnson [1978] looked at the effects of 

finite obstacle height and finite Rossby number. An excellent compendium of analytical 

work has been published by Thompson [1990, 1993]. 

As the investigation of flow over obstacles has become more sophisticated, numerical 

models have become increasingly useful. Huppert and Bryan [1976] used a numerical, 
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Figure 1.4: Late spring (December) sea ice coverage in the Weddell Sea for several non­
polynya years in the 1980's. This figure is adapted from false color satellite data in Gloersen 
et.al [1992]. 
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primitive-equation model with periodic boundary conditions to invest igate parameter 

dependencies for the stratified, uniformly rotating Taylor column spinup problem. As 

the incoming flow first impinges on the seamount, moving into shallower water, fluid 

columns are squeezed generating anticyclonic relative vorticity. Similarly, fluid columns 

moving off the seamount generate a cyclonic vorticity anomaly. These two vorticity 

anomalies are initially trapped on the flanks of the seamount and corotate. However, the 

mean flow, if it is strong enough relative to the eddy interactions, eventually advects the 

cyclonic anomaly downstream. 

Open boundary conditions were incorporated in a barotropic, quasigeost rophic model 

by Verron and Le Provost [1985] in order to extend integration time and study eddy 

interactions and steady state oscillatory regimes without having information wrap around 

the domain and influence the upstream flow. The open boundary conditions allow a 

smooth transition from the transient problem described by Huppert and Bryan to a 

steady-state solution. Chapman and Haidvogel [1992] examined the spinup and steady­

state behavior of the system outside of the restrictive quasigeost rophic limits using a 

primitive-equation model with open boundary conditions. Open boundary conditions 

are vital for examining the topographic effect on the convection problem because they 

allow the numerical integration to achieve a steady-state Taylor cap flow. 

1.2.2 Open Ocean Convection 

Deep reaching convective chimneys in the ocean, driven by buoyancy fluxes at the surface, 

occur in only a very few, small regions. One of the interesting aspects of t he oceanic 

thermohaline circulation is the huge disparity between the limited size of these sinking 

regions and the much larger area thought to be characterized by slow upwelling. Killworth 

[1983] gives a summary of regions in the world ocean known to convect. He separates deep 

convection into two categories: (i) the "classic" sinking occurring on continental shelves 

and (ii) open ocean convection. This thesis is concerned only with the later. Killworth 

classifies three phases of open ocean convection, beginning with preconditioning, followed 
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by violent mixing, and finally a sinking and spreading. Some historical perspective into 

the research that has been done to understand each of these phases in the convective 

process is given below. 

Preconditioning 

Early convection modelling was usually based on one-dimensional budgets which neglect 

the horizontal advection of heat . These models balance buoyancy loss through the upper 

surface with the difference between the buoyancy content of some initial profile and the 

homogenized water column after convection has taken place. Killworth [1979] used such a 

model with summertime hydrographic data from the Weddell Sea as an initial condition 

and realistic winter cooling rates. His surprising conclusion was that the entire Weddell 

gyre is susceptible to overturning and that a preconditioning mechanism must be oper­

ating in order for convection to occur only in limited geographic areas. There are many 

oceanographic phenomena which could potentially act as preconditioning mechanisms. 

Remnants of previous convective chimneys are more likely to convect than surrounding 

water due to their reduced stratification; thus, these relict features may precondition 

convection. Killworth [1979] suggests that baroclinic instability in regions of zonal mean 

flow in the presence of meridional density gradients will generate cyclonic (as well as 

anticyclonic) eddies with an associated domed isopycnal structure. Domed isopycnals 

might tend to reduce the net heat content of the upper water column and thus serve 

as a preconditioning mechanism. Hakkinen [1988] suggests that upwelling at the ice 

edge due to differential Ekman drift occurs due to the sharp gradient in surface drag 

coefficient between ice covered and ice free regions as a preconditioning mechanism. 

Atmospheric forcing of surface divergence can remove insulating sea ice. The divergence 

leads to temporarily exposed open water and results in enormous local values of negative 

buoyancy flux as heat is lost to the atmosphere and new sea ice forms. All of these are 

plausible mechanisms for preselecting the location of deep penetrating convection. This 

thesis concentrates on the preconditioning effect of bottom topography. 
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Violent Mixing 

Large scale numerical models of the ocean have generally parameterized the effects of 

convection with a convective adjustment scheme in an otherwise hydrostatically stable 

model. However, high resolution three-dimensional primitive-equation modeling which 

attempts to resolve the convective processes in the ocean has been carried out with 

a nonhydrostatic model described in Brugge et.al. [1991] . The same model was used 

to examine the "violent mixing phase" of convection into a neutrally stratified ocean by 

Jones and Marshall [1993]. Jones and Marshall applied cooling to a circular region at the 

surface of an initially unstratified ocean. They found, in the parameter regime they feel is 

appropriate for oceanic convection, that the growth rate and depth reached by mesoscale 

convective chimneys is determined by a single non-dimensional parameter formed from 

the rate of rotation, ocean depth, and buoyancy flux. Klinger et.al. [in press] compared 

the use of traditional hydrostatic model physics with an associated convective adjustment 

scheme to the explicit inclusion of nonhydrostatic plume dynamics. They found that on 

the chimney scale and larger, hydrostatic models accurately reproduce the results of high 

resolution nonhydrostatic models. 

It is worth noting that these disk-cooled convection studies, although informative, 

are forced in a rather unrealistic manner, with the surface cooling distribution setting 

the horizontal scale of the underlying chimney. In reality, atmospheric forcing is unlikely 

to occur on the same time or space scales as the resulting convective chimneys in the 

ocean. These studies rely on the implicit assumption that preconditioned regions exist 

in the real ocean which will determine the location and horizontal scale of the chimney 

without changing the other dynamical conclusions such as the depth to which the chimney 

penetrates. It is not clear that this assumption is justified. 

Sinking and Spreading 

After overturning and geostrophic adjustment of a convective chimney has occurred, 

lateral fluxes, perhaps due baroclinic eddies, distribute the newly formed dense water 
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horizontally. Legg and Marshall [1993] used a heton model, initialized as a cloud of 

vortex pairs, analogous to individual plumes within a convective chimney, to model the 

breakup. The mass and energy fluxes from an initially uniform chimney in a linearly 

stratified fluid over an unstratified abyss were examined as a function of chimney size by 

Hermann and Owens [1993]. The breakup of chimneys in a neutrally st rat ified rotating 

fluid has also been examined in rotating tank experiments by Maxworthy and Naramosa 

[1994]. A useful review of both laboratory and numerical experiments is provided by 

Marshall, Whithead and Yates [in press]. 

Visbeck et.al. [in press] have extended the nonhydrostatic modeling work of Jones 

et.al. to include an initial background stratification. In this case, the convecting plume 

reaches a steady-state depth when baroclinic instability of the dense chimney allows 

sufficient horizontal eddy transports to balance the localized surface cooling. The final 

depth reached by the chimney is a function of the radius of the cooling disk , the magnit ude 

of the surface forcing and the background stratification. Interestingly, this final depth 

of penetration is independent of the rotation parameter. The usefulness of a scaling 

argument which includes this arbit rary surface disk radius, rather than a horizontal length 

scale which might be important in real oceanic convection, seems questionable. In fact , in 

Chapter 5 of this thesis, one important result from the Visbeck et. al. study, namely the 

breakup of the chimney by baroclinic instability, is shown to be significantly altered when 

the chimney scale is determined by a topographic preconditioning mechanism rather t han 

the scale of the surface forcing disk. 

1.2.3 Topographic Influences on Convection 

Although both flow over topography and surface forced convection have been studied 

in much detail, there have been few attempts to model them simult aneously. However, 

it has long been recognized that flow over topography can serve as a preconditioning 

mechanism for deep convection forced by buoyancy fluxes at the surface. The role of the 

Rhone Deep Sea Fan in preconditioning deep convection in the northwest Medit erranean 
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Sea was discussed from an observational point of view by Swallow and Caston [1973] 

and modelled analytically, albeit without an explicit incorporation of surface forcing, 

by Hogg [1973b] . Hogg concluded that the topographically trapped, bottom intensified, 

anticyclonic flow serves to precondition the overlying fluid both because of the associated 

doming of isopycnals and by isolating the region from lateral fluxes of heat. 

The problem of convection leading to ventilation of the deep waters around Maud Rise 

has received significant attention in recent years. Gordon and Huber [1990] discussed the 

hydrography around the rise in winter and postulated the presence of a Taylor column 

because of the significantly raised pycnocline. Ou [1991] studied how a Taylor column 

over Maud Rise may lead to enhanced convection. He used a highly idealized analytic 

model of two layer flow over a finite, right circular cylinder which did not include an 

explicit surface buoyancy forcing. Ou also pointed out that having the Taylor column 

((stacked" in both layers of his model was necessary for ventilation to reach below the 

pycnocline. 

In summary, considerable evidence, from both hydrography and sea ice concentration 

data, suggests that open ocean convection occurs in the Weddell Sea, in the vicinity of 

Maud Rise. The numerical modeling of open ocean convection which has been done to 

date has set the scale and location of convective chimneys through the use of disk shaped 

surface forcing functions. This type of experiment assumes that some unmodeled oceanic 

mechanism sets the convective scale in the real ocean, but that this does not change the 

overall conclusions of the more idealistic modeling study. Previous modeling of flow over 

topography suggests that the influence of bottom topography could provide one such 

realistic mechanism for selecting the location and scale of oceanic convection. This thesis 

is an attempt to combine these two lines of research by incorporating surface buoyancy 

forcing in the context of flow over isolated bottom topography. 
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1.3 Overview of the Thesis 

This thesis is primarily a process oriented numerical modeling study of the role that 

isolated bottom topography can play in open ocean convection. The key parameters 

associated with this problem are a combination of those traditionally associated with 

convection and those associated with flow over topography: the surface buoyancy flux, 

the rate of planetary rotation, the background stratification, the mean upstream velocity, 

the length and height scales of the topography, and the ocean depth. 

The primary motivation for this study is to understand the open ocean convection 

thought to occur in the vicinity of Maud Rise in the Weddell Sea. As a process oriented 

study, however, no attempt has been made to reproduce the exact topography, back­

ground stratification or surface fluxes in the Weddell Sea. As a consequence the st udy 

does not produce realistic estimates of bottom water formation rates around Maud Rise. 

Similarly, no attempt has been made to study, in a prognostic sense, likely changes in 

the deep water production due to environmental perturbations. However, the results do 

indicate the relative importance of the various physical parameters which describe this 

system, and can serve as a framework on which more detailed regional studies can be 

grounded. In addition, the results should be relevant to convection over topographic 

features in other parts of the world ocean such as the Mediterranean Sea and, perhaps, 

the Arctic or other regions in the Antarctic. 

Chapter 2 is an introduction to the Semispectral Primitive-Equation Model (SPEM) 

developed by Haidvogel et.al. [1991) as well as the specific experimental setup used in this 

study. The chapter begins with a short description of the changes in the standard form of 

the hydrostatic, primitive-equations when they are expressed in sigma coordinates with 

a vertical spectral representation; the horizontal metrics associated with a stretched grid 

are also given. In addition, since open boundary conditions are vital to this problem, 

there is a short introduction to the problem of radiative boundary conditions in hyperbolic 

systems as well as the specific boundary conditions which I have employed. Finally, the 
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incorporation of surface fluxes requires some form of mixed-layer dynamics. Thus, a 

constant depth slab mixed-layer which was developed to allow realistic incorporation of 

surface fluxes into the SPEM is described. 

Chapter 3 details how mean flow, interacting with isolated bottom topography, can 

precondition a region to preferentially convect , relative to the surrounding area. Despite a 

uniform surface forcing, a convective chimney deepens significantly further over the flank 

of the topography than does the mixed-layer elsewhere in the domain. The essential 

mechanism for this topographic preconditioning is not domed isopycnals. Rather, it 

is primarily the local trapping of fluid in a Taylor cap, which cuts off the horizontal 

advection of heat by the mean flow. Away from the seamount t he initial deepening 

of the mixed-layer is halted eventually by fluxes of heat associated with warmer fluid 

being advected into the model region from the upstream boundary; in the region of 

topographically trapped flow, however, the entire surface buoyancy loss is balanced by 

convective deepening. The parameter dependencies for this preconditioning process are 

investigated. Essentially, increasing mixed-layer depth and increasing Taylor cap height 

both tend to ensure that the effect of t he topography is felt within the deepening mixed­

layer, the key to chimney formation. 

In chapter 4 the domed isopycnal paradigm for convective preconditioning is examined 

in some detail. Domed isopycnals do not appear to be important in the simplified topo­

graphic preconditioning problem examined in chapter 3. A one-dimensional, analytical 

calculation comparing constant background stratification to a somewhat more realis­

tic surface intensified exponential profile demonstrates the reason for this phenomenon. 

Given a uniform stratification, doming of isopycnals actually tends to decrease local pen­

etration of a convectively deepening mixed-layer. Thus, it is only when a pycnocline is 

present that domed isopycnals serve as a preconditioning mechanism. Given a surface 

intensification in the background stratification, the deep waters are first ventilated in the 

region of doming, and once this happens a convective chimney rapidly forms. A topo­

graphic preconditioning SPEM run similar to those in Chapter 3, but with an exponential 
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background stratification, is described. The model run is in good agreement with the 

results of the analytical, one-dimensional calculation, indicating that once a pycnocline 

is present the doming of isopycnals over the topography, rather than the trapping of flow 

in a Taylor cap, serves as the primary preconditioning mechanism. 

Finally, in Chapter 5, the shutdown of convective deepening in a topographically pre­

conditioned chimney is compared to that observed in a chimney generated with a localized 

surface forcing. The presence of a mean flow around the topography has important ef­

fects with respect to the instability of the chimney. While chimneys generated under a 

disk of surface forcing are prone to baroclinic instability, the chimneys over topography 

show surprising stability. The reason for this stability appears to be that the growth rate 

of instabilities is an order of magnitude smaller than the timescale associated with flow 

past the chimney. As a consequence, instabilities are advected downstream away from 

the edge of the chimney faster than they can grow locally. 

28 



Chapter 2 

The Model 

2 .1 The Numerical Mode l 

The dynamics associated with finite bottom topography combined with surface buoyancy 

forcing in a continuously stratified ocean have not been examined in much detail to date. 

The inherent nonlinearities in these dynamics suggest that a full primitive-equat ion model 

is necessary in order to capture the details of the relevant physics. I have chosen to 

work with the Semispectral Primitive-Equation Model (SPEM) version 3.2 developed 

by Haidvogel et. al. (1991). In this chapter I describe this model and some minor 

modifications that I have made to it as well as the details of my particular application. 

The SPEM solves the hydrostatic, Boussinesq, Navier-Stokes equations. These equa­

tions, consisting of momentum equations in three coordinate directions, the equation of 

continuity, the equation for the conservation of temperature and the equation of state, 

can be written: 

8u _ f 
- +u· \lu - v 
8t 
8v _ n f ot + u · vv + u 
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Here u and v are the two horizontal components of the velocity vector, i1, f is the Coriolis 

parameter, equal to half the local vertical component of the rate of rotation of the earth, 

P is pressure, p is the density, p0 is a constant reference density, g is the gravitational 

acceleration. The equation of state has been simplified by ignoring the effects of pressure 

and salinity, such that density is a linear function of temperature only, where a is the 

coefficient of thermal expansion. Horizontal diffusion is represented by the F terms in 

the momentum and temperature equations. B represents the surface heat flux. The 

terms representing horizontal diffusion (F) and surface buoyancy flux (B) are discussed 

in detail in sections 2.2 and 2.4 respectively. 

Since the model is hydrostatic, any static instabilities must be removed using a simple 

convective adjustment scheme. The convective adjustment scheme operates after each 

timestep at each horizontal location in the domain. If the density at a given location in the 

vertical is greater than at the point immediately underneath, indicating a hydrostatically 

unstable state, the two grid cells are mixed and a new uniform density is applied to both 

levels. If any mixing is required, the routine is repeated until static stability has been 

achieved throughout the water column. The convective mixing scheme operates only on 

the density :field. Thus, it does not directly change the momentum associated with each 

vertical level. However, given the rapid geostrophic adjustment to the changes in the 

density :field, the mixing of density does, of course, effect the velocity. 

The surface and bottom boundary conditions, in their most general form, include 

surface wind stress, bottom stress, and surface and bottom temperature flux conditions 

as well the kinematic conditions. In practice, however, I have set the surface and the 
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bottom stress terms to zero: 

(2.2) 

where d( x, y) is the depth of the domain. In addition, I have reformulated the manner in 

which surface heat flux is incorporated into the model. The surface cooling is incorporated 

in the B term in the heat conservation equation 2.1 rather than as a surface flux condition. 

The surface and bottom flux conditions are simply: 

(2.3) 

The kinematic boundary condition at the surface is a rigid lid condition, which filters out 

surface gravity waves. The removal of these rapidly propagating surface gravity waves 

allows the use of a relatively long timestep. Finally, the bottom kinematic boundary 

condition is: 

8d 8d 
W l.z=o= ( U OX + V f)y) lz=-d= 0. (2.4) 

In order to concentrate horizontal resolution where it is needed the SPEM allows for 

stretching of the horizontal grid. Given finite amplitude topography, there is a large 

horizontal variation in the local Rossby radius of deformation, which is proportional to 

the square root of the local depth. Hence, in order to minimize computational effort 

while resolving as well as possible the scale of the deformation radius, it is advantageous 

to incorporate a denser mesh of gridpoints over the seamount while sacrificing resolution 

in the deeper water. To this end, I make use of the curvilinear horizontal coordinate 

transformation incorporated in the SPEM. 

In order to concentrate resolution at the center of the domain, where the seamount 

is located, I use a cosine shaped stretching of the coordinates: 

27ri 
d( = (1 + S cos(-L-))dx 

-1 
27rj 

dTJ = (1 + S cos( ))dy. 
M-1 
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Here S is a stretching factor set to 0.4, i and j are the grid indices, and L and M are the 

total number of gridpoints in the x andy coordinate directions respectively. The nominal 

values of dx and dy are simply the domain size divided by total number of gridpoints in 

each horizontal direction. 

One common problem encountered when bottom topography is incorporated into a 

numerical model is the difficulty in treatment of the bottom boundary condition. Z­

coordinate finite difference models have a steplike approximation of the bottom topogra­

phy which prohibits an easy implementation of nonzero vertical velocities required when 

there is flow across isobaths at the bottom of the model. The SPEM uses a stretched 

vertical coordinate which conforms to the bottom topography. This new vertical coor­

dinate, commonly referred to as a "sigma" coordinate, varies from a value of 1 at the 

surface to -1 at the bottom. The coordinate transformation is simply: 

z 
17(x,y) = 1 + 2(d(x,y)). (2.6) 

Together with this sigma transformation comes a new expression for t he vertical velocity 

in sigma space, n, given by: 

dO" 817 817 817 817 n =- = -+u-+v-+w-. 
dt 8t 8x 8y 8z 

(2.7) 

Note that the sigma coordinate transformation greatly simplifies the bottom kine­

matic boundary condition in equation 2.4, which becomes n = 0 in the new coordi­

nate frame. This simplificat~on in the boundary conditions, however, comes at the ex­

pense of introducing some inaccuracy in the calculation of pressure gradient forces near 

steep topography and decreased numerical stability [Me Galpin 1994]. In addition, there 

is some complication of the interior equations of motion. The hydrostatic, primitive­

equations 2.1, after application of the horizontal and vertical transformations given by 

equations 2.5, 2.6, and 2. 7, are the form of the dynamical equations solved by the SPEM. 

The SPEM employs a spectral representation in the vertical. This means that rather 

than being represented on a grid, as with finite difference models, the model variables 
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are expressed as the sum of a set of polynomial basis functions. A given model variable 

¢( (, TJ, a) can be expressed as: 

¢((,rJ,a) = "£Pk(a)¢k((,TJ), (2.8) 
k 

where Pk are a set of basis functions and ¢k are their associated amplitudes. The default 

set of polynomial functions used by the SPEM are modified Chebyshev Polynomials, 

which provide enhanced resolution near the upper and lower boundaries of the domain 

relative to the interior. The model fields are actually stored at collocation points located 

at the maxima of the highest order polynomial mode rather than as modal amplitudes. 

Haidvogel et. al [1991] provide a detailed description of the SPEM. 

2.2 Mode l Configuration 

In order to examine the effectiveness of topographic preconditioning mechanisms, an 

experimental setup is required which allows investigation of mixed-layer deepening, the 

presence of a Taylor cap over isolated bottom topography, and lateral advection of heat 

due to a mean flow. The model domain I have chosen is a square channel 300 kilometers 

on a side with a depth, H, of 4000 meters. In the center of the domain is a Gaussian 

shaped bump characterized by a height, h , and horizontal e-folding scale, L . Thus, the 

depth as a function of x and y throughout the domain is: 

d( ) = H _ h ( (x- Xo)
2 

_ (y- Yo)
2

) 
x, y exp L2 L2 , (2 .9) 

where ( x 0 , Yo) is the location of the seamount peak, in this case the center of the domain. 

The initial background stratification is linear with an associated buoyancy frequency, N . 

The variation of the coriolis parameter with latitude (the (3 effect) is ignored. Thus, 

the entire domain rotates counterclockwise at a constant rate given by half the Coriolis 

parameter, f . Finally, the model is forced with a mean flow and surface cooling. The 

mean flow is an impulsively initiated barotropic zonal flow of speed U forced by setting 
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Figure 2.1: A schematic of the model domain and important physical parameters governing 
the flow: the characteristic scales of the seamount, h and L, the buoyancy forcing, B, the mean 
flow velocity, U, the Coriolis parameter, f, the buoyancy frequency of the linear background 
stratification, N, and the ocean depth H. 

streamfunction values on the inflow and sidewalls of the channel. The outflow is an open, 

radiative condition, discussed in more detail in section 2.3. A schematic of the model 

domain, including all of the physical parameters is shown in figure 2.1. 

As can be seen from the extensive list of dimensional parameters needed to define the 

forcing and the domain itself, the dynamics of the flow are quite complex. The list of 

seven physical parameters: h, L , H , U, N, f, and B is unfortunately quite long. Since 

all of the dimensional parameters can be expressed in terms of two fundamental units, 

time and space, the Buckingham-Pi theorem [Buckingham 1914] states that the number 
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Parameter symbol definition 

Rossby Number R U/ fL 
Stratification Parameter E N f f 
Fractional Height 8 h/ H 
Aspect Ratio !::::. H / L 
Convective Rossby Number RN (B/ fa H2)1/ 2 

Table 2.1: Non-dimensional parameters important for governing Taylor cap formation and 
surface cooling. 

of parameters can be reduced by two through an arbitrary choice of non-redundant 

dimensionless parameters. Although any set of non-dimensional combinations of the 

dimensional parameters is theoretically able to determine the system, I have chosen five 

dynamically relevant numbers, for convenience and recognizability, the Rossby Number, 

stratification parameter, fractional height, aspect ratio, and convective Rossby Number. 

These parameters are listed in Table 2.1. 

The domain is modeled with 14 vertical polynomial modes and with 50 gridpoints in 

each horizontal direction. The coordinate stretching described by equation 2.5 results in 

a minimum horizontal resolution of 8. 7 kilometers near the domain edges and a maximum 

of 3. 7 km at the center of the domain. The stretched horizontal grid is shown in figure 2.2. 

Subgridscale processes are parameterized by the diffusion terms, Fu, Fv and FT, in 

the horizontal momentum and temperature equations 2.1. I have chosen to represent 

diffusion with biharmonic mixing coefficients rather than the more traditional laplacian 

formulation primarily in an attempt to ensure numerical stability within the widest pos­

sible range of parameter space. In all of the runs, the diffusivity is kept as small as 

possible in the hope of closely approximating inviscid dynamics. Unfortunately, the cen­

tered difference scheme used by the SPEM is prone to growing numerical instabilities 

in calculation of horizontal derivitives, especially during spinup of the Taylor cap, when 

strong property gradients form over the topography. A small frictional smoothing of the 

gradients is one way of avoiding numerical, unrealistic strengthening of these fronts. The 
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Figure 2.2: The horizontal grid with a stretching factor of 0 .4. 

biharmonic mixing is applied along sigma surfaces, such that Fu. = K-u. '\;74u, Fv = K-u. \74v, 

and FT = K-T\74T, using values of 4 x 109 5 x 109 and for K-T and K-u respectively. 

The mean flow forcing leads to the well studied spinup of a stratified Taylor cap. 

A series of horizontal density slices at 2000 meters depth during this spinup process is 

shown in figure 2.3 for one particular run (82). This run is forced with a Rossby Number 

of 0.08, an initial background stratification parameter of 5.556, a seamount fractional 

height of 0.5, and an aspect ratio of 0.16. 

As the incoming flow first impinges on the seamount, moving into shallower water, 

fluid columns are squeezed generating anticyclonic relative vorticity. Similarly, fluid 

columns moving off the seamount are spun up in a cyclonic vorticity anomaly. These 

two vorticity anomalies are initially trapped on the flanks of the seamount and co-rotate. 

However, the mean flow, if it is strong enough relative to the eddy interactions, eventually 

advects the cyclonic anomaly downstream. The entire spinup process takes on the order 

of an advective timescale, Lx / U, to occur. In this case Lx, the length of the domain, is 

300 kilometers, and the mean flow, U, is 20 cm/ s, giving a spinup time of approximately 

17 days. 
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Figure 2.3: Temperature contours at 2000 meters for a Taylor cap spinup with an Orlanski 
open boundary condition and an associated sponge layer. The sponge layer is shaded. 
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Once a Taylor cap is spun up over the topography, the ensuing steady-state is used 

as an initial condition for the convection experiments. Surface forcing is then applied 

as a negative buoyancy flux, B , applied uniformly to the upper boundary. The steady­

state Taylor cap which serves as an initial condition for the convection experiments is 

marked by a region of trapped fluid over the seamount flank. Although the specifics 

of the flow field are of course dependent on the exact parameters of a given run, it is 

generally characterized by a doming of isopycnals over the topography. Associated with 

this doming is an anticyclonic relative vorticity anomaly and a deflection of the mean 

flow. 

Figure 2.4 shows some of the fields for run S2 after 20 days of integration, once 

a steady-state has been achieved. The upper left panel shows the density field at 2000 

meters in the same format as the slices shown for the spinup of this run in figure 2.3. The 

upper right hand figure shows the velocity field at 2000 meters depth. In each of the upper 

panels the underlying topography is shaded. The upper left panel shows a Y-Z density 

through the center of the domain, showing the doming of isopycnals. Finally, the lower 

right hand figure shows an X-Z density slice through the center of the domain. In this 

slice the doming of isopycnals is displaced somewhat to the right, looking upstream, as 

expected given the velocity field is in thermal wind balance. The details of this and other 

steady-state Taylor cap runs, used as initial conditions for the convection experiments, 

are described in Chapter 3. 

2.3 Open Boundary Conditions 

2.3.1 Background 

The initial condition required for the standard cooling experiments, is a steady-state 

flow over and around a seamount. In order to model such a steady-state, a working 

open boundary exit condition is absolutely vital. Without an open exit, eddies such as 

the cyclone shed during the spinup process could not leave the computational domain. 
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Figure 2.4: Steady-state property distributions for run S2 after 20 days of integration, once 
a steady-state has been achieved. The shading indicates the location of t he seamount. 
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Much of the early Taylor column modeling work concentrates on the spinup problem 

and, as a consequence, periodic boundary conditions are generally employed [Huppert 

and Bryan 1975, Smith 1991]. However open boundary conditions have been developed 

in the quasigeostrophic context [ Verron and LeProvost 1985, Verron 1986] and, more 

recently, with a full primitive-equation model [Chapman and Haidvogel1992]. 

The problem of how to incorporate open boundaries into numerical models has been 

the object of considerable study. In general , finite computer resources combined with a 

desire for high spatial and temporal resolution of relevant dynamics make it advantageous 

to choose boundaries to the computational domain other than the physical basin walls. 

Eventhough considerable effort is required to formulate a numerical boundary condition 

in a location where no physical boundary exists , this effort can be rewarded by allow­

ing modeling efforts which would otherwise be unfeasible due to inadequate computer 

resources. There is a wide variety of problems in oceanography for which development of 

open boundary conditions is desirable, and has been attempted. Some examples include 

coastal modelling, flow around isolated obstacles and regional process studies. This study 

falls within the realm of both of the latter two examples. 

The first question which must be answered when contemplating the incorporation 

of a boundary condition is whether it leads to a problem which is mathematically well­

posed, in the sense of having a unique solution. In addition, when the mathematical 

condition does not coincide with any physical boundary in the system, there is the further 

complication that the problem could be physically ill-posed, in the sense that the interior 

solution is affected by the presence of this boundary in a way which does not reflect any 

processes inherent to the physical system being modeled. 

As an example, consider the homogeneous one-dimensional wave equation: 

(2.10) 

The equation is hyperbolic, with characteristics given by: 
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e = X - Ct and 77 = X + Ct. (2.11) 

Waves propagating toward the right from a source at x = 0 travel along the character­

istics. A perfect open boundary condition at , say, x = L would be one which absorbs 

all of this incident energy with zero reflection or generation of energy propagating back 

into the domain, toward the left. For this simple one-dimensional case such a boundary 

condition is easy to construct, and is given by: 

au au 
at = c ax I x= L . (2 .12) 

This .boundary condition is commonly referred to as a Sommerfeld radiation condition. 

Note that the characteristic for this condition is x-Ct = constant, which exactly matches 

the characteristics incident on the boundary from the interior. Thus, the boundary 

will perfectly absorb all energy incident upon it from the interior without reflecting or 

generating energy. 

Unfortunately, the extension of this type of radiation condition to more than one­

dimension and to dispersive systems in which the wave propagation speed is not con­

stant is not straightforward. In multi-dimensional systems it becomes necessary for the 

boundary condition 2.12, to be formulated in terms of the component of the wave phase 

velocity incident normal to the boundary, a condition which is trivially met in the one­

dimensional case. The extension to dispersive systems is more difficult . Bennett [1975) 

has constructed exact radiation conditions for certain dispersive wave systems including 

barotropic Rossby waves and non-hydrostatic internal gravity waves and finds that they 

require weighted information from the entire space and time domain of the problem. As 

he points out , numerical implementation of such a boundary condition "would require 

computer storage approaching that which one is trying to avoid by the introduction of 

open boundaries." 

In addition, the presence of a mean flow, some component of which is incident on the 
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open boundary, further complicates the issue by altering the speed at which anomalies 

propagate, and in some cases altering the number of conditions which must be prescribed 

on a given boundary in order that the problem remain mathematically well-posed. In 

order to examine this particular difficulty it is useful to consider a second, slightly more 

complicated system. The non-rotating, one-dimensional, linearized, shallow water equa­

tions for flow in an open channel are: 

8u 8u 8h 
- + Uo- = - g-
8t 8x 8x 

8h 8h 8u 
8t + Uo 8x + H 8x = O. (2.13) 

The equations have been linearized, for simplicity, around a mean state velocity and 

depth. The characteristics for this system are: 

~ = x + (Uo + C)t and rJ = x + (Uo- C)t, (2.14) 

where C is the shallow water gravity wave speed vfiH. 

In this system, the exit condition at x = L is dependent on the magnit ude of U0 

relative to C. If U0 > C then the flow is supercritical and any information prescribed at 

the exit cannot propagate back upstream, against the :flow, and affect the interior domain. 

Consequently, the height field at the exit can only be prescribed as a meaningful boundary 

condition leading to a well-posed problem in the case of subcritical flow. 

The schematic representation of the characteristics shown in figure 2.5 helps to visu­

alize the different exit conditions required for supercritical vs. sub critical flow. In both 

cases there are two characteristics emanating from the t = 0 boundary of phase space, 

indicating that 2 pieces of information, u and h , must be supplied as init ial conditions. In 

the case of supercritical :flow, two sets of characteristics also emanate from t he entrance 

boundary at x = -L, whereas none emanate from the exit. Thus, in order to ensure a 

unique solution two boundary conditions must be supplied at the entrance while none 

may be supplied at the exit. Physically, this means that the interior :flow is entirely det er-
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Figure 2.5: A schematic of the characteristics for supercritical and subcritical flow through 
a channeL The number of boundary conditions required at a given boundary to ensure a well 
posed solution is equal to the number of characteristics emanating from that boundary. 

mined by the initial and upstream conditions. This situation is in marked contrast to the 

subcritical case , which has characteristics emanating from both boundaries, thus requir­

ing that a single boundary value be supplied at the entrance and exit respectively. This 

discussion indicates that even for certain relatively simple systems, no general, pointwise 

open boundary condition can guarantee a mathematically well-posed problem . 

Fortuitously, the supercrit ical condition, U0 > C, is not typical of oceanic flows. Thus, 

despite the many fundamental difficulties formulating rigorous mathematical open bound-

ary conditions, it is possible to construct pragmatic conditions for numerical primitive­

equation models. Because of the dispersive, nonlinear nature of the primitive-equations, 

derivat ion of exact or general open boundary conditions is not presently possible. In­

stead, a series of ad hoc numerical techniques have been developed using empirical testing 

on a case by case basis as the measure of success of the boundary condition. 

Loosely based on the Sommerfeld radiation condition, the commonly used Orlanski 

boundary condition calculates a local propagation velocity, C , using information neigh­

boring the boundary, rather than using a constant phase velocity [ Orlanski 1975]. The 
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Orlanski condition can be written: 

(2.15) 

where C<P is calculated using grid points adjacent to the boundary. The allowable mag­

nitude of the calculated phase velocity is bounded above by the fastest wave speed sup­

ported given the grid size and timestep, and below by zero. Thus C<P can be expressed 

as: 

if - a<P j~ > D.x 
at ax D.t 

-~/~ at ax if 0 < - ~ / ~ < D.x at ax D.t 
(2.16) 

0 if - ~~~ < 0 at ax 

Note that for each model variable, ¢, a separate phase velocity, Cc/J, can be calculated. 

Because the Orlanski condition, applied to the three-dimensional dispersive wave 

problem, is an approximation, it is, not surprisingly, imperfect. In many cases the open 

boundary condition may imperfectly absorb energy or even generate anomalies which 

propagate back into the interior, thus having an effect on the solution. In order to mini­

mize reflection and generation of energy it is common to combine the Orlanski condition 

with a viscous damping layer, or "sponge" layer. This combined boundary condition 

was introduced and discussed in some detail by Israeli and Orzag [1980] . An excellent 

comparative study of open boundary conditions, including both explicit and implicit 

numerical forms of the Orlanski condition, both with and without an associated viscous 

sponge layer, is presented in the context of a barotropic coastal ocean model by Chapman 

[1985]. 

2.3.2 Specifics 

In configuring the open boundary condition for my own runs I have drawn directly on the 

code written by Chapman [1985]. The implicit numerical form of the Orlanski radiation 

condition at a boundary, x = L, is: 
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(2.17) 

where, 

1 if c ~ 1 

f-L= c if 0 < c < 1 (2.18) 

0 if c :S 0 

and, 

q;n-1 _ q;n+1 
C= L-1 L-1 (2.19) q;n+l + q;n-1 2¢n L-1 L-1- L-2 

I employ this numerical condition on the vertically averaged vorticity as well as on 

the vertically varying components of the horizontal velocity fields. The condition for 

temperature is calculated differently depending on the sign of the total velocity at the 

exit. For outflow portions of the boundary, I employ a zero gradient condition, which 

is equivalent to choosing a phase velocity for temperature of C = ~~. If, on the other 

hand, the velocity calculated at the open boundary is into the domain, I employ a fixed 

boundary condition, such that C = 0. Numerically this condition is: 

if u > 0 

if u :S 0 
(2.20) 

As discussed in 2.3.1, an Orlanski radiation condition is not expected to perfectly absorb 

all incoming energy. In this case, the imperfection appears as an internal Kelvin wave, 

generated in the upper corner of the exit region, which propagates along the side wall, 

eventually fouling the interior solution. In order to remove this Kelvin wave it is necessary 

to incorporate a sponge layer near the exit. 

After some experimenting with various configurations I chose to apply the sponge 

over the five grid cells nearest to the open boundary. The sponge consists of a linearly 
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increasing Rayleigh damping term multiplying the depth dependant velocity fields and the 

barotropic vorticity field . Although I initially included a sponge layer for the temperature 

field as well, experimentation showed that it was not crucial for damping of the Kelvin 

wave. The magnitude of the frictional damping coefficient increases linearly from zero 

in the interior to 0.2 at t he exit. Figure 2.6 shows a Taylor cap spinup run without t his 

sponge. The Kelvin wave is visible as a density anomaly propagating into the domain 

from the upper corner of the exit . For comparison , recall that figure 2.3, which shows a 

spinup run with identical model settings but including a sponge layer, shows no evidence 

of Kelvin wave generation at the exit. Figure 2. 7 shows a similar run in a longer channel 

using periodic boundary conditions. The excellent agreement between figures 2. 7 and 2.3 

demonstrates that the radiation condition and sponge layer have a negligible influence 

on the interior solution. 

In conclusion, it seems that this boundary condition is adequate for the modeling I 

am doing. It allows anomalies and mean flow to leave the domain with minimal effect 

on the interior solution. However, the specific nature of the boundary condition is not 

supported by much of a theoretical base. Other than improving the condition empirically, 

by tuning the sponge parameters for example, there is no obvious method for improving 

the general applicability of the numerical condition. This particular condition, although 

robust within the parameter space I am running in, would, for example, probably fail if 

the mean flow were increased enough to move the flow into a supercritical regime. Unfor­

tunately, it appears that each numerical model, and each model parameter configuration, 

must rely on empirical testing on a case by case basis to ensure the reliablility of any 

specific open boundary formulation. 

2.4 Surface Buoyancy Flux 

In its standard configuration the SPEM treats surface and bottom fluxes by direct spec­

ification of surface fluxes . There are , however, some inherent difficulties with the use of 
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Figure 2.6: Temperature contours at 2000 meters for a Taylor cap spinup with an Orlanski 
open boundary condition. Although the cyclonic anomaly exits properly, a baroclinic Kelvin 
wave is generated in the upper corner of the exit region around day 12. 
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Figure 2. 7: Temperature contours at 2000 meters for a Taylor cap spinup in a long domain 

with periodic boundary conditions. The solid vertical lines demarcate the smaller domain size 

for comparison with runs using open boundary conditions. 
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this formulation when using a spectral vertical representation. Essentially, the surface 

flux appears as a delta function at the ocean surface in the vertical heat flux term in the 

heat conservation equation. The inability of a finite series expansion to represent such a 

singularity is the well known Gibbs effect. In practice, this difficulty produces spurious 

temperature signals in the deep water caused when surface cooling excites the highest 

order polynomial mode. 

The vertical diffusion term for temperature, can be written: 

(2.21) 

In this form, the diffusion term can be thought of as the vertical derivative of the vertical 

temperature flux. The vertical temperature flux is the flux of heat in °Cml s between 

any two levels in the model. In the interior, this flux is simply given by K;T ~:. This 

interior flux, in a given run, can be estimated using K; = 10- 4m 2 Is and ~: = 10-soc l m 

to be of the order of 10- 9°Cml s. 

At the surface boundary the temperature flux is prescribed as a boundary condition 

proportional to the desired magnitude of surface cooling. The conversion factor between 

the temperature flux, T, as it is incorporated as an upper boundary condition in the 

SPEM and the more familiar heat flux, H, in Wm- 2
, and the buoyancy flux , B , in 

H _ TC _ pCwB 
- wP -

ga. 
(2.22) 

where a is the thermal expansion coefficient in oc-1 and Cw is the specific heat of 

seawater in Joules I K g°C. A surface cooling of 40 wm - 2 thus corresponds to a surface 

temperature flux of 10-5°Cml s, which is 4 orders of magnitude greater than typical 

interior values , estimated above to be 10-9°Cml s. This huge vertical variation between 

the surface value and those in the interior must be differentiated in the vertical as per 

equation 2.21 in order to represent the surface flux in the temperature conservation 

equation. The subsequent excitation of the highest polynomial mode due to the inability 
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of the finite spectral representation to capture such a large jump in temperature flux is 

demonstrated in figure 2.8. 

The upper panel of figure 2.8 shows the magnitude of the vert ical diffusion term in 

the temperature conservation equation as a function of depth, with a surface heat flux 

equal to 40 w/m2
. The excitation of the highest polynomial mode, whose structure is 

shown in dashed lines for comparison, is evident. The lower panel shows the magnitude 

of the same vertical diffusion term in the absence of surface forcing. Without surface 

forcing, there is still some Gibbs phenomenon error introduced due to the finite number 

of modes being used. However, the error is decreased by about eight orders of magnitude, 

to a very tolerable level. 

The temperature anomalies produced in the deep water due to this excitation of the 

highest order mode are unfortunately quite robust. Consequently, I have modified the 

method by which surface buoyancy forcing is incorporated into the SPEM. One possible 

solution would be to simply remove the contribution of the highest order polynomial 

to the temperature field after each timestep. This is not entirely satisfactory however, 

not only because of the obvious sacrifice of vertical resolution, but also because any real 

information contained in this mode is lost. A more satisfactory solution is to incorporate 

the surface cooling using a simple slab mixed-layer formulation. 

The mixed-layer which I have incorporated into the SPEM is in no way an attempt 

to accurately model mixed-layer dynamics. It merely serves as a simple mechanism for 

directly incorporating surface heat fluxes into the upper water column without exciting 

artificial deep temperature anomalies. The essential idea is to arbitrarily set a mixed­

layer depth, which I have chosen to be one hundred meters, and evenly distribute the 

surface forcing within this layer. Since I am not using temporally or spatially varying, 

realistic surface fluxes, and am not particularly interested in the short term transient 

convective response to surface cooling, the lack of a dynamic mixed-layer is probably not 

of great importance. In addition, the depth of convective penetration is always deeper 

than the prescribed hundred meter mixed-layer depth. Thus, the interior model solutions 

50 



Surface Heat Flux of 40 Watts/M"2 
0 . .. 

--1000 en 
'-
(1) .... 
(1) 

6-2000 
.c .... 
Q. 
(1) 

1J -3000 

-4000 
-1 -0.5 0 0.5 1.5 2 2.5 3 3.5 4 

X 10-3 

No Surface Heat Flux 
0 

- -1000 en 
'-
(1) .... 
(1) 

6-2000 
.c .... 
Q. 
(1) 

1J -3000 

-4000 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

temperature change (degrees/second) 
X 10-11 

Figure 2.8: The upper panel shows t he magnitude of t he vertical diffusion term in the 
temperature conservation equation as a function of depth , with a surface heat flux proportional 
to 40 Wj m2

. The lower panel shows the magnitude of the same vertical diffusion term in the 
absence of surface forcing. 
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are robust, despite the oversimplification of surface processes. The specific details of the 

solution within the topmost hundred meters of the water column, however, should not, 

and indeed do not, play any role in interpretation of the model results. 

Because the SPEM uses a sigma coordinate stretching and spectral representation of 

the vertical coordinate, the method of incorporating fluxes into the surface slab mixed­

layer is not completely straightforward. First, it is determined which collocation points , 

located at the maxima of the highest spectral mode, are within the prescribed mixed­

layer. Because of the large variations in bottom topography in many of my runs, the 

number of collocation points located within the surface mixed-layer is necessarily a func­

tion of horizontal spatial location. The surface flux per unit area is multiplied by the 

local surface area, which also varies horizontally due to the stretched grid, giving the total 

heat flux into the mixed-layer. This flux is then used to change the the temperature at 

the collocation points, weighted such as to ensure uniform cooling throughout the slab 

mixed-layer. If the mixed-layer density becomes greater than that of the underlying wa­

ter column, additional deepening is ensured by the simple convective adjustment scheme 

used by the SPEM, which homogenizes the temperature vertically until static stability 

is achieved. 

The utility of this slab mixed-layer formulation as a method for incorporating sur­

face fluxes is most notable in the close match between the convective penetration depth 

measured from model output and analytic estimates of one-dimensional, non-penetrative 

convection. The model solutions also show little dependence on the exact value of the 

chosen mixed-layer depth. Finally, two experiments were performed to compare the 

mixed-layer formulation with a straightforward application of the standard flux condi­

tion provided with the SPEM. The model domain and grid for these runs was identical 

to that described in this chapter for flow over topography, except that the seamount 

has been removed and the surface forcing is applied in a 20 kilometer disk over the sur­

face of an initially quiescent stratified fluid rather than being applied uniformly over a 

steady-state, Taylor cap flow. 
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In both runs, as expected, a convective chimney forms below the cooling regwn. 

Figures 2.9 and 2.10 show time series of density slices of through the center of the 

chimneys over four days of cooling at 120W/ m 2
. Figure 2.9, taken from the run made 

using the standard surface flux formulation, shows large spurious anomalies in the deep 

water well below the depth to which the convection has penetrated. When the surface 

mixed-layer formulation is used however, as shown in figure 2.10, the deep anomalies 

are no longer present. Thus, this method of incorporating surface fluxes into a constant 

depth mixed-layer effectively solves the problem of excitation of the highest polynomial 

mode due to surface cooling. 
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Figure 2.9: A slice through the center of the domain for a run with 120 W / m 2 cooling in a 
circular patch of radius 20 kilometers, using the surface flux representation of surface cooling 
provided with SPEM version 3.2. Note the excitation of the highest polynomial mode which 
shows up as large, spurious, displacements in the deep isopycnal structure, well below the dept h 
of convective penetration. 

54 



day 0 
0 

............ -1 
E 

.::£. ........... 

..c -2 ...... 
0.. 
a> 

"'0 
-3 

-4 
0 100 200 300 

distance (km) 

day 2 

0 1---------'1) J ( \...._____ __ 
............ -1 ~------------------------~ 
E 

.::£. ........... 

..c -2 ~------------------------~ ...... 
0.. 
a> 

"'0 
-3 ~----------------------~ 

-4 L-------~--------~------~ 

0 100 200 300 
distance (km) 

day 1 
0 J l 

............ -1 
E 

.::£. ........... 

..c -2 ...... 
0.. 
a> 

"'0 
-3 

-4 
0 100 200 300 

distance (km) 

day 3 
0 1---------'~ J u l \.._____---! 

-1~------------------------~ 
............ 
E 

.::£. ........... 

..c -2r-------------------------~ ...... 
0.. 
a> 

"'0 
-3~----------------------~ 

-4~------~------~------~ 
0 100 200 300 

distance (km) 

Figure 2.10: A slice through the center of the domain for a run with 120 W/ m 2 cooling in a 
circular patch of radius 20 kilometers , using a surface mixed-layer formulation to incorporate 
the cooling. This formulation of the surface cooling effectively removes the problem of excitation 
of the highest polynomial mode. 
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Chapter 3 

Topographic Preconditioning of 

Open Ocean Convection 

3.1 Introduction 

There are at least two means by which mean flow topographic interaction can precondi­

tion the water column for convection: isolation of fluid over the seamount in a Taylor cap 

and doming of isopycnals associated with flow over and around the seamount. Domed 

isopycnals, which turn out to be of little importance when the background stratification 

is uniform, are examined in the context of surface intensified background stratification 

in Chapter 4. In this chapter, the trapping effect is examined. 

3.1.1 One-Dimensional Analytic Limit 

Before discussing the particulars of t he numerical experiments it is worth considering 

the well known analytical limit for non-penetrative convection into an initially uniformly 

stratified ocean. Non-penetrative convection is defined simply as convection which pen­

etrates only as far into the water column as the surface buoyancy flux allows, without 

additional deepening due to mechanical mixing or other effects. The one-dimensional 
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Figure 3.1: A schematic of one-dimensional, non-penetrative convection into a linearly strat­
ified ocean. The shaded area represents the loss of buoyancy in a time b.T, which is equal to 
the total surface byouancy loss over that t ime. The convective penetration depth is d. 

analytic convective depth serves as a useful comparison for many of the numerical results 

presented in this chapter. 

Consider one-dimensional, non-penetrative convection into a constant background 

stratification as shown in figure 3.1. The depth of convection, d, is easily calculated by 

setting the time integrated surface buoyancy flux equal to the loss of buoyancy associated 

with the deepening of a surface well mixed-layer. 

g jo BT =- (p(z) lt=T - p(z ) lt=o)dz 
Po -d 

(3.1) 

Here, B is the surface buoyancy loss, which remains constant in time, and the background 

linear stratification is given by p( z) lt=o= - eo~
2 z, where N is the buoyancy frequency, 

which is assumed constant for simplicity. Assuming one-dimensional, non-penetrative 

convection, the temperature of the well mixed-layer after time T is, by definition, a 

constant with the value p( z) lt=T= 20~
2

d. Substitution of these two expressions into 

equation 3.1 gives: 
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9 jo poN2 BT =- - -(d + z)dz . 
Po -d 9 

Finally, solving for the convective depth leads to: 

d = J2BT 
N2 

(3.2) 

(3.3) 

Equation 3.3 is the well known one-dimensional limit for non-penetrative convec­

tion into a linearly stratified fluid . This simple calculation assumes that as a convective 

chimney deepens into an initially stratified fluid, the negative surface heat flux is en­

tirely balanced by cooling of surface water. In the simple framework of one-dimensional, 

non-penetrative convection, this surface cooling leads to further convective deepening 

as denser surface water mixes with the underlying fluid until hydrostatic stability is re­

stored. Because the problem is one-dimensional, the only way to balance surface heat 

flux is through local cooling of the upper water column. However, when horizontal vari­

ability is allowed, a second mechanism for balancing surface heat loss comes into play, 

namely the lateral advection of heat. 

3.1.2 Local Trapping as Topographic Preconditioning 

Lateral fluxes of heat into a convecting chimney can be accomplished by mixing with 

the warmer stratified fluid surrounding the convecting patch. This mixing can be accom­

plished by eddy fluxes or by mean flow. Note that it is highly unlikely that denser water 

will be available to advect laterally into a deep convecting chimney. Consequently, the 

effect of lateral mixing will always be to reduce the convective penetration depth. 

Isolation of a region of fluid in a Taylor cap over bottom topography within a larger 

region of significant mean flow can ensure that lateral fluxes of heat are minimized. Con­

sequently, all surface buoyancy fluxes over the region of trapped flow must be balanced 

by local cooling, allowing the convective depth to approach the one-dimensional limit 

given by equation 3.3. Away from the topographic trapping however, horizontal fluxes 
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of heat by the mean flow will tend to shut down the mixed-layer deepening at a shallower 

depth than the one-dimensional calculation suggests. Thus, an isolated Taylor cap may 

serve as a pre-existing conduit into the deep water through which ventilation can occur. 

3.2 Surface Mixed-Layer Depth 

Consider first the surface mixed-layer in isolation, neglecting for the moment the presence 

of topography and any associated deflection of the mean flow. At the time that cooling 

is first initiated, a mixed-layer will begin to deepen uniformly throughout the domain. 

Near the inflow, however, this mixed-layer will immediately be influenced by advection of 

stratified water into the domain. Soon, the depth of convection will reach a steady-state 

maximum with the surface negative buoyancy flux entirely balanced by the influx of more 

buoyant water laterally. The further away from the inflow one gets, the longer it will 

take for high buoyancy stratified water to be advected in and shut down the convective 

deepening. 

From a Lagrangian point of view, a particle entering at the surface travels at a speed 

U to a point a distance x from the inflow in a time x jU. Assuming that the particle 

never leaves the mixed-layer, it will feel the surface cooling for its entire passage through 

the domain. The mixed-layer depth as a function of downstream position can thus be 

estimated by substituting this advective timescale, x j U, into the non-penetrative, one­

dimensional estimate for convective depth given by equation 3.3. This substitution gives 

an analytical estimate for the steady-state, mixed-layer depth as a function of downstream 

distance from the inflow: 

d = .;2Bx 
UN2 

(3.4) 

Thus, while the absolute depth of the mixed-layer is dependent on the magnitudes of the 

buoyancy forcing, the mean flow velocity and the initial stratification, its shape is always 

going to be given by a square root dependence on distance downstream from the inflow. 
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It is important to note that the mixed-layer depth is actually in a steady-state, rep­

resenting the maximum possible convective penetration. Once this steady-state has been 

achieved, surface cooling is in exact balance with the influx of heat associated with the in­

flow of stratified water and does not result in further convection. The extent to which the 

results of these experiments are dependent on this particular mechanism for constraining 

ambient mixed layer depth is of interest. Clearly, were the domain to be periodic, and 

neglecting the effect of bottom topography, the mixed layer would simply deepen uni­

formly as long as cooling was applied. The only way, in that case, to compare ambient 

levels of cooling with those over the seamount would be to cool for a finite period of time. 

In the context of flow in the Weddell Gyre, mixed layer depth is set by a combination of 

many factors , including the integrated amount of cooling in a winter season. 

However, it is also true that the "incoming" flow which runs over Maud Rise from 

the Nor theast, is entering the region of most intense negative buoyancy forcing as it 

moves southward and that its initial stratification is set, to some degree, by the influx 

of intermediate waters of North Atlantic origin. Thus, the simple experimental setup 

which calls for initially stratified water to continually flow into the domain and all of the 

cooling to occur within this domain is not without an oceanographic analogue. Although 

the specific physics governing mixed layer depth in this model are clearly oversimplified, 

they are not unreasonable. In addition, the presence of a large scale ambient mixed layer 

depth throughout the computation domain does reproduce, to first order, the presence of 

a large scale seasonal mixed layer in the Weddell Sea. The details of how this mixed layer 

depth is set have been parameterized within as simple a model construction as possible. 

It is hoped that this simplification does not alter the basic physical interaction of the 

mixed layer with flow over topography upon which the conclusions depend. 

Figure 3.2 shows the spinup of a steady-state, mixed-layer in run Ml. For this run the 

mixed-layer behavior has been isolated by removing topography from the problem. The 

mean flow, U, has a value of 20 em/sec, the Brunt-Vaisala frequency, N, is 5.556 x 10-4 s-1 

and the buoyancy flux , B, is 1.5 x 10-7 m 2 s-3
. The mixed-layer depth diagnosed from this 
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run is in excellent agreement with the predicted depth given by equation 3.4, as shown 

in figure 3.3. 

When bottom topography is included, the path which a particle takes through the 

domain is not a straight zonal line and it is not traversed at a constant velocity. Away 

from the seamount's influence, the mixed-layer maintains its simple square root depen­

dence on downstream distance. Along streamlines which approach the vicinity of the 

seamount, however, some of the flow is significantly retarded while traversing a deflected, 

more lengthy, route through the domain. For example, the surface velocity field for run 

S2 is shown in figure 3.4 together with contours of the magnitude of the zonal compo­

nent of the velocity. Clearly, the flow on the right hand side of the topography, looking 

downstream, is significantly retarded. Thus, along those streamlines with reduced zonal 

velocities the mixed-layer depth increases relative to elsewhere in the domain due to the 

greater cooling felt by particles spending more time in the domain. 

The extent of this effect can be quantified by integrating the local velocity along a 

streamline and using it to calculate the time spent in the domain, which can then be sub­

stituted into equation 3.3. Rather than attempting to track particles through the three­

dimensional domain, an approximation can be obtained by taking the two-dimensional 

surface velocity field and calculating the minimum zonal velocity as a function of down­

stream position. Summing local grid size divided by minimum zonal velocity from inflow 

to outflow gives an upper bound on the time a particle in the mixed-layer can spend in 

the domain. Regions of zero or reverse flow associated with fluid trapped in the Tay­

lor cap are ignored for this calculation, which is primarily an attempt to examine the 

background mixed-layer depth, away from the region of fluid trapping. Figure 3.5 shows 

the calculated mixed-layer penetration depth derived using this procedure as compared 

to that for undeflected uniform flow. The major deviation between the two curves oc­

curs , not surprisingly, near the center of the domain, around 150 kilometers downstream, 

where the surface flow is most significantly retarded. 

For the purposes of parameter space investigation, it is convenient to nondimension-
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Figure 3.2: Evolution of a surface mixed-layer for run Ml, with no bottom topography, 
initially uniform stratification, constant negative surface buoyancy forcing, and uniform mean 
flow . 
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Figure 3.3: Steady-state mixed-layer depth as a function of distance downstream from the 
inflow as diagnosed from model fields at day 20 for run Ml (circles). The analytic solution from 
a Lagrangian one-dimensional, non-penetrative calculation is also shown (solid line). 

alize the surface forcing. Following the Jones and Marshall [1993] modeling study on 

convection into neutrally stratified fluid, I have chosen to use the convective Rossby 

Number to nondimensionalize the buoyancy forcing with respect to the rate of rotation, 

f, and the total fluid depth, H. 

RN = ~J3~2 (3.5) 

In the context of my experiments, the convective Rossby Number serves primarily 

as a convenient nondimensional representation of the buoyancy flux. However, in the 

unstratified context, the convective Rossby Number can be thought of as the fractional 

depth of penetration of rotationally controlled convection. Such a ratio can also be 

calculated for the mixed-layer penetration depth estimate given by equation 3.4 divided 

by the total fluid depth , H. From the definition of convective Rossby Number, equation, 

we know: 

(3.6) 
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Figure 3.5: Steady-state mixed-layer depth as a function of distance downstream from the 
inflow for run S2. The dotted line shows the analytic solution in the constant velocity region 
away from the influence of bottom topography. The solid line shows an upper bound on the 
enhanced deepening in the vicinity of the seamount. The asterisks indicate the mixed-layer 
depth at 150 kilometers downstream, in the vicinity of the seamount . 

Substitution into equation 3.4 leads to: 

!!:_ = R (2Px)1;2 = 0.R (l_)(jx)112. 
H N u N 2 v L, N N u (3. 7) 

Finally, equation 3. 7 can be simply rewritten in terms of the nondimensional parameters 

listed in Table 2.1 (the Rossby Number, R, and the stratification parameter, E) and the 

nondimensionalized downstream distance f giving an expression for the ratio of expected 

convective depth to total depth for this problem: 

d 
H 

3.3 Taylor Cap Height 

(3.8) 

Consider now the effect of isolated bottom topography decoupled from the surface forc­

ing. After an initial spinup, a steady-state flow over and around the topography can 
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generally be found. As discussed earlier, the salient features of this flow important for 

their preconditioning effects are isopycnal doming over the seamount and the extent to 

which the flow is trapped over the seamount, isolated from horizontal advection. The 

next step, then, is to attempt to quantify to what distance above the seamount the region 

of trapped flow extends. In general, the expected height of penetration of topographic 

effects is fL/N. However, the height to which fluid trapping extends above the seamount 

is likely to be lower than this scale, which is more likely to approximate the height to 

which isopycnal doming extends into the water column. The actual Taylor cap height 

can be diagnosed, as a function of model parameters, directly from the model fields. 

Because the surface buoyancy flux is not yet turned on when the Taylor cap is initially 

spun up, only four of the nondimensional parameters listed in table 2.1 are important in 

describing the Taylor cap: Rossby Number, stratification parameter, fractional height, 

and aspect ratio. An exhaustive mapping of parameter space in order to determine power 

law type dependencies for Taylor cap height on each of these four nondimensional pa­

rameters, although possible, would require an enormous number of model runs. Instead, 

I have limited the parameter space search to a few dozen runs in order to gain some 

insight into how each parameter effects Taylor cap height. An exact quantification of the 

dependence is not necessary in any case. Table 3.1 shows all of the Taylor cap spinup 

runs used to map out the parameter dependencies. In addition, Table 3.2 shows a subset 

of these runs which are referenced by name in the text. 

Several diagnostics for determining the Taylor cap height from standard model fields 

can be developed. The two I have chosen to work with are the presence of a flow reversal 

in the horizontal velocity field and the distribution of a passive tracer. These diagnostics 

are discussed in sections 3.3.1 and 3.3.2 respectively. 

3.3.1 Flow Reversal Diagnostic 

One necessary condition for the flow to be trapped is the presence of a flow reversal 

in the velocity field on an isopycnal surface. Thus, searching for the distance above the 
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N/ f a= 0.1 a= 0.2 a= 0.3 a= 0.4 a= 0.5 a= 0.6 a= 0.7 a= 0.8 

1 R=0.08 R=0.08 
3 R=0.08 R=0.08 
4 R=0.08 
5.556 R=0.08 R=O.OB R=0.04 R=0.08 R= 0.04 R= 0.04 R= 0.08 R = 0.08 

R=0.06 R= 0.06 R=0.06 
R=0.08 R= 0.08 R=0.08 
R=0.10 R= O. l O 

R=0.12 
7 R=0.08 
8 R=0.08 

Table 3.1: A listing of all the Taylor cap spin up runs used to map out the parameter de­
pendencies of Taylor cap height. The three parameters varied are the fractional height , 5, the 
stratifcation parameter, N / j , and the Rossby number, R. The seamount aspect ratio, 6., was 
held constant in all runs , with a value of 0.16. 

Run Ross by Stratification Fractional Aspect Ratio convective Rossby 
Number (R) Parameter (E) Height (5) (~) Number RN 

Sl 0.08 3 0.05 0.16 0 
S2 0.08 5.556 0.05 0. 16 0 
S3 0.08 7 0.05 0.16 0 
M1 0.08 5.556 0 0 9.7 X 10- 2 

Table 3.2: Selected runs referred to in the text . 
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seamount at which there is no longer a significant flow reversal in the steady-state velocity 

field is perhaps the simplest method for demarcating the upper limit of the Taylor cap. 

Rather than interpolating the model velocities onto isopycnal surfaces, it is convenient to 

search for flow reversals in the horizontal velocity fields themselves. The error introduced 

due to this simplification is small relative to the vertical resolution of the model in any 

case. 

Figure 3.6 compares the minimum zonal velocities as a function of cross-stream dis­

tance for four runs, all with seamounts reaching to 2000 meters depth and mean flows of 

20 cml s, but with different N I f values of 3.0, 5.6, 7, and 8 respectively. Note that the 

run with the weakest stratification, Nl f = 3, is run S1 and the run with Nl f = 5.556 is 

run S2. Run 81, shown in the upper left hand panel, shows a pronounced flow reversal 

between about 120 and 180 kilometers cross-stream distance. There is little variability 

with height above the seamount, with flow reversals greater than 5 cmls at all depths , 

implying a nearly barotropic flow pattern with the Taylor cap reaching all the way to 

the surface. Were the domain deeper, it is likely that the Taylor cap would extend 

significantly higher than the 2000 meters associated with the upper surface in this run. 

For run 82, shown in the upper right panel of figure 3.6, there is a greater vertical 

shear in the horizontal velocities. Just above the crest of the seamount, at 2000 meters 

depth , there is still a strong, 5 cmls flow reversal from about 130 to 170 kilometers cross­

stream distance, indicating the presence of a Taylor cap at that depth. At the surface, 

however, the flow reversal is extremely small (less than 1 mml sec), and appears only at 

a single gridpoint. For this run , the Taylor cap seems to extend 2000 meters from the 

seamount peak, just barely to the surface. As the value of the stratification is further 

increased the Taylor cap height is further reduced. The lower left panel shows run 83, 

with N I f = 7, which has a Taylor cap which reaches to 1500 meters depth, 500 meters 

above the seamount peak. In the lower right hand panel , a run with N I f = 8 has a still 

lower Taylor cap height of only 200 meters. 
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Figure 3.6: Minimum zonal velocities as a function of distance across the domain at various 
depths in four runs with different values of stratification parameter. The maximum height at 
which a flow reversal occurs indicat es the height of the Taylor cap . 
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3.3.2 Passive Tracer Diagnostic 

Another method for diagnosing Taylor cap height is to seed the water column above the 

seamount with neutrally buoyant floats in order to map out the Taylor cap structure. 

Using this method, Chapman and Haidvogel [1992] conclude that increased inflow veloc­

ities reduce the Taylor cap height in a stratified flow. They do not attempt to quantify 

the parameter dependence beyond this qualitative statement however. The process of 

calculating float trajectories is not computationally negligible , meaning only a limited 

number of floats can reasonably be tracked. In addition, because of the finite Eulerian 

grid, some error is necessarily introduced in the approximation of Lagrangian particle 

trajectories, although this error may be small. 

Instead of seeding with individual floats, it is also possible to spin up the Taylor cap 

with an initially uniform tracer value of zero. Once a steady-state has been achieved the 

inflow condition can be set to bring in tracer of value one. After the domain has been 

fully ventilated with this new tracer value from the inflow, the shape of the Taylor cap 

should be reflected in the distribution of the initial tracer value remaining in the domain. 

The tracer can be thought of as a continuum of neutrally buoyant floats. Unfortunately, 

such a passive advected tracer is not numerically stable. In particular, sharp gradients 

in the tracer distribution, which tend to develop over the seamount, are not well repre­

sented with the SPEM centered difference advection formulation . Consequently, as with 

the dynamical variables, a diffusion term is required to ensure numerical stability. The 

presence of the diffusion term means that the t racer field is no longer an exact repre­

sentation of fluid particle trajectories. Thus, like the neutrally buoyant floats, the tracer 

field approximately delineates, but is not an exact measure of, the trapped region. 

In the SPEM model the tracer equation is: 

aS - ""S F Bt+u·v s 

Fs (3.9) 

where S denotes the the tracer concentration and Fs is a biharmonic diffusion term acting 
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along sigma surfaces with a value analogous to the diffusion terms in the momentum and 

temperature equations. K.s has a value of 4 x 109
, identical to the corresponding value 

for temperature. 

Figure 3. 7 shows slices through the center of the domain for runs S2 and S3. In each 

run the steady state taylor cap has been spun up with an initally uniform tracer value 

of zero and as well as an inflow value of zero. The inflow tracer value is then increased 

gradually from zero to one over the two days and is then left at one for another 20 days. 

The initial gradual increase is necessary in order to avoid too strong a gradient in the 

tracer field, which leads to numerical instabilities. In the steady-state, any region which 

contains a tracer value of zero must be made up of water which is left over from the initial 

state, unaffected by the inflow. In both runs , a Taylor cap is visible as a region of zero 

tracer over the right flank of the seamount looking downstream. The tracer diagnostic 

suggests that the Taylor cap extends to the surface in the lower stratification run, S2, but 

reaches only to a depth of about 1500 meters with the stronger background strat ification 

in run S3. 

As a consequence of the small velocities to the left of the Taylor cap looking upstream, 

diffusion plays a stronger role in this area and smears out the tracer field somewhat. In 

figure 3. 7 the zero contour is shown along with the 0.5 and 0.9 contours. Values of t he 

tracer which are between zero and 1 are either due to the diffusion term in t he tracer 

advection equation or from the initial two day long increase in tracer value from 0 to 

1. The large region covered by these intermediate tracer values gives some idea of the 

uncertainty in this measurement, which is unfortunately at least several hundred meters 

in the vertical and tens of kilometers in the horizontal. Nevertheless, using the zero 

contour as an indicator of Taylor cap height suggests that, for run S2, there is a roughly 

conical shaped Taylor cap which reaches to the surface. In contrast, in the run S3, with 

stronger stratification, the zero contour maps out a Taylor cap extending to 1500 meters 

depth, only 500 meters above the seamount peak. These values for Taylor cap height are 

consistant with the values diagnosed using the flow reversal diagnostic. 
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Figure 3. 7: Horizontal slabs of passive tracer distribution for run Sl. Tracer values of zero 
represent water which has remained in the domain since the initialization while values of one 
have been ventilated with water from the inflow. The zero contour roughly demarcates the edge 
of the Taylor cap, which reaches to the surface in this run. 
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3.3.3 Taylor Cap Height Parameter Dependencies 

The diagnostics discussed above allow a quantitative assessment of the height above the 

seamount peak to which the Taylor cap extends, referred to hereafter as Taylor cap 

height, and its dependence on the four nondimensional parameters. The diagnostics are 

broadly consistent with each other. However, the tracer diagnostic is not used because 

it does not give a very tight constraint on height. Thus, for the following discussion 

on parameter dependencies of Taylor cap height, the maximum height at which a flow 

reversal is found in the horizontal velocity field is used to infer the values for Taylor cap 

height in the various runs. An error bar of ± 150 meters, given by the midepth vertical 

reslolution of the model, is assigned assigned to this value. In a few cases there is a flow 

reversal on the flank of the seamount, indicating a region of trapped flow, but there is no 

flow reversal at a level higher than the seamount peak itself. In these cases, the Taylor 

cap height, as defined as the distance above the seamount peak, is zero, although there 

is some topographic trapping of fluid . 

Figure 3.8 shows Taylor cap height as a function of Rossby Number for two different 

seamount fractional heights . For the taller seamount, with a fractional height of 0.5, 

there is a fairly tight range of Rossby Number over which the height varies. The critical 

Rossby Number, above which no recirculation exists over the topography, is between 

0.1 and 0.2, while for Rossby Numbers of 0.08 or lower, the recirculation extends to the 

surface. If the Taylor cap is diagnosed as hitting the upper surface, denoted as the dotted 

line, then this height is of course not the same as one would get in an arbitrarily deep 

domain. For the shorter seamount, the critical Rossby Number is also around 0.1. In 

addition, only the lowest Rossby Number, 0.04, allows the trapped region to extend to 

the surface. For the lower seamount the range of Rossby numbers which support Taylor 

cap's of intermediate depth is somewhat wider than for the taller seamount. 

The dependence on N If is shown in figure 3.9, with Ross by number and fractional 

height held constant at values of 0.08 and 0.5 respectively. For N I f of 5.6 or lower, the 

Taylor cap reaches the surface. The height of the cap decreases rapidly with N I f. The 
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Figure 3.8: Taylor cap height dependence on Rossby number with stratification parameter 
N j f = 5.6 and aspect ratio D = 0.16. The upper and lower panels are for two different 
fractional heights, 0.5 and 0.3 respectively. The dotted line represents the maximum height 
attainable, namely the height corresponding to t he upper boundary. 
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Figure 3.9: Taylor cap height dependence on the stratification parameter, N J f, with R = 0.08, 
8 = 0.5, and ~ = 0.16. The maximum height attainable, the height corresponding to the 
location of the surface, is 2000 meters. 

degree of stratification required to remove the recirculation completely was not found 

because of model instability problems at high stratification. However, extrapolation 

suggests that a value of N If of 10 is probably sufficient . 

Finally, the dependence on seamount geometry is shown in figure 3.10, which shows 

runs with various fractional heights with a Ross by number of 0.08 and N If of 5.6. The 

critical height necessary for a Taylor cap to form above the level of the seamount peak 

is, in this case, between a value of 0.2 and 0.3. The Taylor cap grows with increasing 

seamount height until , for a fractional height of 0.5 or higher, the Taylor cap reaches 

the surface. The dependence on aspect ratio has not been examined. All of the runs 

in this section have been performed with an aspect ratio of 0.16, which corresponds 

to a background depth of 4000 meters and a seamount horizontal e-folding scale of 25 

kilometers. 
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Figure 3.10: Taylor cap height dependence on fractional height, with R = 0.08, N j f = 5.6 and 
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Mixed Layer 

Figure 3.11: A schematic cross section running downstream through the center of the domain. 
The mixed-layer, with its square root dependence on downstream distance, and the Taylor cap, 
a region of topographically trapped fluid, are both shown. In this schematic the two regions do 
not overlap. 

3.4 Taylor Cap Mixed-Layer Interaction 

Given the dynamics of mixed-layer penetration depth and Taylor cap height in isolation, 

as presented in sections 3.2 and 3.3 respectively, it is now of interest to examine their 

interaction. A schematic cross section running downstream through the center of the 

domain is shown in figure 3.11. This figure shows the mixed-layer as well as a region of 

trapped fluid over the seamount. In the figure the two regions do not intersect; thus the 

mixed-layer and Taylor cap dynamics do not affect each other. The key to having the 

Taylor cap precondition enhanced convection is for these two regions to overlap. 

Consider run C4, a steady-state Taylor cap spin up over which surface negative buoy­

ancy forcing has been applied, with associated nondimensional parameters as listed in 

Table 3.3. The Taylor cap for this run extends to a depth of 1200 meters below the 

surface. The expected mixed-layer depth 150 kilometers downstream from the inflow 

condition, calculated using equation 3.4, is only 850 meters. Thus, one might expect no 

interaction between the two regions except for the fact that the mixed-layer depth in the 
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Run N ondimensional Buoyancy Heat Flux convective Rossby 
Parameters Forcing ( M 2 / sec) (W/ M 2

) Number (RN) 

C1 S2 1.5x1o- s 6 3.1 X 10- 2 

C2 S2 2.5x10 ·ts 10 4.0 X 10 · <l 

C3 S2 5.0x10 · B 20 5.6 X 10 .2 

C4 S2 1.5x10 7 60 9.7 x 1o ·2 

C5 S2 2.5x10 7 100 1.3 X 10 1 

M1 N j f = 5.556 1.5x10 7 60 9 . 7 x 1o - ~ 

R = 0.08 
0 = .6..=0 

Table 3.3: Selected cooling runs. The surface forcing is listed in terms of the buoyancy forcing, 
equivalent heat flux , and the nondimensional convective Rossby Number, RN. For the C series 
of runs , which are an extension of a Taylor cap spinup. 

vicinity of the seamount, where there is a local deflection and retardation of the flow, 

will be significantly deeper than 800 meters due to the longer time a column of water has 

been exposed to the buoyancy flux. From figure 3.5, it is apparent that the mixed-layer 

around the seamount may penetrate as deeply as 1700 meters, which is well into the 

region of trapped fluid. Thus, the mixed-layer , interacting with the Taylor cap, could 

penetrate more deeply than elsewhere in the domain , leading to a convective chimney 

centered over the seamount flank. 

A time history of mixed-layer depth in a slice through the center of the seamount 

IS shown in figure 3.12. After only ten days of cooling the mixed-layer has reached 

its equilibrium depth of approximately 1000 meters. Away from the influence of the 

seamount, continued cooling does not increase surface density or deepen the mixed-layer 

perceptibly, because the cooling is completely balanced by horizontal advection of heat 

by the mean flow. Over the flank of the seamount, however , deepening continues to 

occur , creating a convective chimney. 

For this particular run, C4, the chimney penetrates down to approximately 1700 

meters depth by day 60, after 40 days of surface forcing. Continued cooling, for this set 

of parameters, does not lead to further deepening, even in the vicinity of the seamount. 
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Figure 3.12: A time history of slices viewed from downstream located at a distance of 150 
kilometers from the inflow for run Cl. Surface cooling is initiated on day 20. 
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Figure 3.13: Maximum convective depth within the topographically trapped chimney for 
run Cl diagnosed at five day intervals . The analytic upper bound on one-dimensional, non­
penetrative convection limit is also shown. 

A time series of maximum convective depth is shown in figure 3.13. For companson, 

the one-dimensional penetration estimate from equation 3.3, using the total cooling time 

is also shown. Clearly, the convective chimney is deepening without being influenced 

by horizontal advection of heat until day 40. Continued cooling, between days 40 and 

80, is significantly retarded relative to the one-dimensional estimate, indicating lateral 

advect ion of heat into the chimney is partially balancing the surface heat loss . By day 80, 

the chimney has reached a steady-state depth, with further cooling completely balanced 

by lateral advection. 

In this case, the lateral advection of heat which shuts down the convective deepening 

1s accomplished entirely by the mean flow across the horizontal temperature gradient 

associat ed with the convecting chimney. Because the region of trapped flow does not 

extend all the way to the surface, there is a significant downstream flow in the upper 

water column across the top of the chimney. This lateral flux of heat becomes large 

enough to balance the surface cooling over the top of the chimney as the horizontal 

temperature gradient increases. Note that the chimney initially forms because this mean 
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flow advection of heat near the seamount is smaller than elsewhere in the domain, due 

to the reduced mean flow. However, as the chimney deepens the horizontal temperature 

gradient becomes sufficiently large for even this slow mean flow to lead to a significant 

horizontal advection of heat. 

Since the mechanism for shutting down convection can differ for different sets of 

parameters, it is instructive to examine only the initial convective penetration depth in 

order to facilitate an understanding of the parameter dependence of the preconditioning 

alone. I have chosen, somewhat arbitrarily, to look at the extent of convective penetration 

after 20 days of cooling, at day 40 of run time. 

The spatial variation of mixed-layer depth as determined from the surface density 

field at day 40 for run C4 is shown in figure 3.14. There are at least three principal 

features to call attention to in this figure. First , away from the seamount, the square root 

dependence on downstream distance reminiscent of runs without topography is clearly 

visible. Second, the dense wake behind the seamount resulting from the retardation of the 

flow as discussed in section 3.2., is also apparent. Finally, as discussed above, the most 

pronounced deepening is centered on the right flank of the topography looking down­

stream, at the location of the Taylor cap. The parameter dependence of the penetration 

depth of this topographically trapped chimney is discussed in the next subsection. 

3.4.1 Parameter dependencies 

Surface Buoyancy Forcing 

Perhaps the most obvious parameter to vary in order to investigate the deepening of the 

convective chimney is the buoyancy forcing itself. The upper panel of figure 3.15 shows a 

set of runs varying the buoyancy forcing over a range of nearly two orders of magnitude 

while holding all other parameters fixed. For reference, these runs , which are listed in 

table 3.3, are carried out with a Ross by Number of 0.08, N j f value of 5.556, fractional 

height of 0.5, and aspect ratio of 0.16. Convective depths diagnosed from the model fields 
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Figure 3.14: Mixed-layer depth diagnosed from the surface density field as a function of 
position within the domain for run Cl after 20 days of surface cooling. 
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Figure 3.15: Convective depth as a function of buoyancy forcing. The upper panel shows the 
total convective depth reached with and without topographic preconditioning. The lower panel 
shows the difference between the two. 

for cooling over Taylor cap spinup runs and runs without bottom topography, as well as 

analytic estimates for each type of run are plotted. 

For the runs with topography, the maximum convective depth is diagnosed, regardless 

of its location in the domain. For comparison, the depth of penetration in the associated 

runs without topography is diagnosed at the same downstream distance at which the 

maximum convective depth occurs in the corresponding topographic run. The analytic 

estimates corresponding to the runs without topography are found using equation 3.4, 

the one-dimensional convection estimate with Lagrangian t imescale based on the mean 

flow velocity and the location of the maximum convection in the topographic run. The 

estimates for the topographically preconditioned runs are from equation 3.3, using the 

total cooling time of twenty days . 

The run with the weakest surface forcing , Cl, shows no preconditioning effect at 
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all. For this run the maximum convective depth is found at the outflow, and is not 

significantly different from t.l;!.e mixed-layer depth found in the run with no topography. 

Clearly, in this case the surface mixed-layer is too shallow to interact with the region 

of trapped :flow over the bottom topography. As a consequence, the presence of the 

topography does not precondition for enhanced convection. For all of the other runs, 

the deepest convection is located in an isolated chimney above the topography, and is 

significantly deeper than the mixed-layer depth measured in control runs. There is a 

tendency towards increased convection with higher buoyancy forcing in both the control 

and topographically preconditioned runs, as predicted by the dependence on square root 

of the buoyancy forcing in the analytic estimates. 

In the lower panel of figure 3.15, the control convective penetration depth has been 

subtracted from the topographically preconditioned depth for each run. This figure shows 

that in addition to the increased convective penetration with increased surface forcing, 

there is also a distinct increase in the enhancement of the convective depth due to the 

presence of the topography. 

Seamount Fractional Height 

Shorter seamounts have their peaks deeper in the water column, and are thus more 

removed from surface forcing. In addition Taylor cap height has a strong dependence 

on the seamount height , with higher seamounts having taller associated Taylor caps. 

Figure 3.16 shows slices across the domain at 150 kilometers downstream distance for runs 

with four different seamount fractional heights after 20 days of cooling. The remaining 

nondimensional parameters are held constant at convective Ross by number of 9. 7 x 

10-2(B = 1.5 x 10- 7
), Ross by number of 0.08, N / f of 5.556, and aspect ratio of 0.16. Not 

surprisingly the smallest seamount has no noticeable preconditioning effect . In this case 

the seamount is too small to create a stagnation point (see figure 3.10) and, in addition, 

does not retard the near surface :flow enough to significantly increase the time it takes 

particles in the mixed-layer to traverse the entire domain. Consequently, the mixed-layer 
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Figure 3.16: Vertical slices through the domain after 20 days of cooling at 150 kilometers 
downstream distance for runs with four different fractional heights, all other parameters held 
constant . 

depth is not significantly different from t hat in control runs done without topography. 

A slight increase in the fractional height to a value of 0.2, still does not lead to an 

actual stagnation point in the flow field. However, in this case, the vertical shear in the 

horizontal velocity field is large enough to retard the mixed-layer flow somewhat, leading 

to a slight deepening of the mixed-layer in the vicinity of the seamount. The lower left 

frame in figure 3.16 shows the results from a run with a fractional height of 0.5, well 

above the critical value for Taylor cap formation. This particular run, C4, was discussed 

earlier in this section, and the time series of slices at 150 kilometers downstream distance, 
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Figure 3.17: Convective depth as a function of seamount fractional height, holding all other 
parameters constant. The dotted line shows the analytical one-dimensional estimate of convec­
tion expected at that downstream distance neglecting topographic effects. 

including this slice (at day 40) , is shown in figure 3.12. As expected, a chimney appears 

over the flank of the seamount. Finally, for a fractional height of 0.8 , the precondit ioning 

is again evident. In this case, the convective chimney is significantly wider than in the 

other runs indicating a larger horizontal extent to the Taylor cap. The chimney also 

penetrates all the way to the bottom of the water column (the top of the seamount) , 

where the seamount crest rises to a depth of only 800 meters . 

Figure 3.17 shows the maximum penetrative depth as a function of fractional height 

for each of these four runs. There is a tendency towards increased convection with 

increasing fractional height. The effect is not very strong, however, with the difference 

in convective penetration depth between the smallest and largest seamounts being an 

increase of only about 100 meters. 

Stratification Parameter 

Varying the stratification parameter, N / f , has a twofold effect . First, the higher strat­

ification tends to reduce the depth of the mixed-layer. Second, increased stratification 
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also reduces the height of the Taylor cap. Both of these effects tend to decouple the 

surface mixed-layer and the deep topographically trapped flow. Thus, a strong depen­

dence on the stratification parameter is expected. Figure 3.18 shows a set of slices at 150 

kilometers downstream for runs with varying values of N j f . The remaining parameters 

are held constant with a convective Ross by Number of 9. 7 x 10-2
, Ross by Number of 

0.08, fractional height of 0.5, and aspect ratio of 0.16. Again, the slices are shown after 

20 days of cooling. The same contour level is used in each slice, such that the number 

of isopycnals shown gives an impression of the magnitude of the stratification in each 

run. For reference, the run with intermediate stratification in this comparison is run 04, 

referred to in the other parameter sensitivity sections. 

Figure 3.19 shows the depth of penetration of the convecting chimney versus strati­

fication parameter. Clearly dependence on the stratification parameter is quite strong. 

Varying N / f by less than a single order of magnitude roughly maps out the difference 

between a run with almost no topographic preconditioning whatsoever and one in which 

the chimney penetrates to the bottom over the flank of the seamount . 

3.5 Conclusions 

In regions of the ocean where open ocean deep convection occurs there is often a large 

discrepancy between the large spatial scale (lOO's to 1000's of kilometers) on which 

surface buoyancy forces act and the smaller scale of convective chimneys (lO's to lOO's 

of kilometers) which ventilate the deep water. Topographic influence is one of several 

ways in which regions of the ocean can be preconditioned to preferentially convect. Mean 

flow past isolated topography leads to at least two means by which the water column 

above the topography can be thought of as preconditioned. First, the isopycnals tend to 

be domed above the seamount. Second, if a Taylor cap forms over the topography, the 

isolation of the local fluid from the effects of horizontal advection maximizes the potential 

convective deepening locally because of the lack of lateral fluxes of heat into the region 
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Figure 3.18: Vertical slices through the domain at 150 kilometers downstream distance for 
runs with three different values of the stratification parameter, N /f, with all other parameters 
held constant. The contour interval is held fixed, giving an indication of the different magnitudes 
of the stratification. 
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Figure 3.19: Convective depth as a stratification parameter, holding all other parameters 
constant. 

of trapped fluid. 

In order to study these topographic effects, the SPEM model is configured as an 

open channel, with a barotropic mean flow impinging on a Gaussian seamount. Initially, 

a steady-state Taylor cap is spun up. A uniform surface cooling is then applied as a 

surface boundary condition. The surface cooling leads to a mixed-layer with a steady­

state depth which goes as the square root of the distance from the inflow of uniformly 

stratified water. The mixed-layer steady-state is achieved when the surface buoyancy 

flux is everywhere balanced by the lateral advection of heat associated with the mean 

flow bringing in stratified water from outside the computational domain. 

In the vicinity of the topography, the retardation of the mean flow and trapping of 

fluid in the Taylor cap both tend to increase the mixed-layer depth, primarily because 

of the increased time particles spend in the domain under the influence of the surface 

forcing. A convective chimney appears over the right flank of the seamount, looking 

downstream, when the Taylor cap reaches up into the surface mixed-layer. In addition a 

dense wake extends out behind the topography with water which, although not trapped 

over the topography, does slow down significantly, being exposed to a much longer period 
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under the surface cooling than water away from the topographic influences. The doming 

of isopycnals over the seamount appears to be unimportant for these preconditioning 

experiments. 

Five nondimensional parameters are used to investigate the behavior of this system. 

Four parameters, the Rossby number, seamount aspect ratio, seamount fractional height 

and stratification parameter completely define the steady-state Taylor cap problem. The 

addition of surface buoyancy forcing requires the addition of a fifth parameter, the con­

vective Rossby number. The primary requirement for a deep convecting chimney to 

develop over the topography is that the Taylor cap reach high enough in the water col­

umn to interact with the surface mixed-layer. The mixed-layer depth is calculated as the 

depth in the initial uniform stratification profile associated with the surface density at 

a given point. The Taylor cap height is determined through the use of two diagnostics, 

the location of a flow reversal in the horizontal velocity field and the distribution of a 

passive tracer. 

Increasing Rossby Number and stratification parameter both tend to reduce the sur­

face mixed-layer depth and also reduce the height of the vertical extent of topographic 

influence. Thus, the extent of convective preconditioning decreases as Rossby Number 

and stratification parameter increase. Buoyancy forcing directly affects only the surface 

mixed-layer depth. If the buoyancy forcing is low, the mixed-layer does not penetrate 

deep enough to interact with the topographically trapped flow, and there is no precon­

ditioning effect. However, there is an increasing convective depth anomaly, defined as 

the depth of convection compared to a run with no topography, as a function of buoy­

ancy forcing . The importance of fractional height is mostly due to the fact that higher 

seamounts are more likely to interact with the surface mixed-layer, all other parameters 

being held constant. However, the effect of varying fractional height is generally small 

within the range of the other parameters tested. The effect of varying the seamount 

aspect ratio was not investigated. 

These parameter sensitivity studies have all been carried out after a somewhat arbi-
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trary 20 days of cooling. In the following two chapters two important qualifications to the 

topographic preconditioning process are addressed. In chapter 4, a background stratifi­

cation which varies more realistically as a function of depth is included. The mechanisms 

which operate to shut down convective deepening, despite continued surface cooling, are 

discussed in Chapter 5. 
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Chapter 4 

Non uniform Stratification 

In section 3.1.1 the expected depth of convection for one-dimensional, non-penetrative 

convection into a constant background stratification is shown to be a simple function of 

the stratification, and the magnitude and time of cooling. The relationship is reproduced 

here for reference: 

d = J2BT 
N2 

(4.1) 

In the topographically preconditioned chimneys with constant background stratification 

studied in chapter 3, the initial convective depth within the chimney is well approximated 

by equation 4.1. Despite the fact that the derivation of the analytic scaling assumes a 

constant value for N, there is agreement between chimney depth in these model runs and 

the analytic scaling. This agreement implies that the deviation from constant background 

stratification due to doming of isopycnals over the seamount does not have a great effect 

on the depth of convection. Yet doming of isopycnals is a ubiquitous paradigm for 

topographic preconditioning. What is the reason for this apparent contradiction? 

In this chapter, I investigate the preconditioning role of domed isopycnals in the con­

text of nonuniform background stratification, first from a simple analytic viewpoint and 

then with the numerical model. Section 4.1 introduces how domed isopycnals can be ex­

pected to act as a preconditioning mechanism. In section 4.2, I describe a simple analytic 

solution for the depth of non-penetrative convection into an exponential stratification and 
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compare it with results from a run with the SPEM initialized with the same exponential 

stratification. In section 4.3 this analytic solution is used to demonstrate the drast ic 

increase in the depth of convection that the nonuniform stratificat ion allows. Finally, 

in section 4.4, some topographic preconditioning runs with an exponential background 

stratification are shown and compared with the constant stratification runs discussed in 

Chapter 3. 

4.1 Domed Isopycnals 

Imagine a region where isopycnals are domed in such a way as to maintain a const ant 

buoyancy frequency. In this case it is necessary for some isopycnals to outcrop at the 

surface, as shown schematically in figure 4.1( a). A given surface forcing will lead to 

identical depths of convection, as given by equation 4.1, throughout the domain. How­

ever the maximum surface density, corresponding to the maximum density of ventilated 

water, will always be located over the region of isopycnal doming, as it was before t he 

onset of cooling. This scenario for domed isopycnals can be thought of as lifting the 

background stratification, and requires the buoyancy content associated with the part of 

the stratification that has been lifted out of the water altogether to have been removed 

by some previous mechanism. I refer to this as the "lifting, mechanism for doming isopy­

cnals. One preconditioning scenario in which the lifting paradigm is appropriate is in a 

remnant of a convective chimney left over from a previous cold event or even from the 

previous year. In such a region isopycnal outcropping has already occured, removing 

surface buoyancy forcing and leaving an adjusted final state similar to that in figure 4.1 

(a). 

A second scenario to consider is a region of uplifted isopycnals beneath a constant 

surface temperature as shown in figure 4.1(b ). In this case, none of the isopycnals outcrop 

until the cooling commences. The near surface buoyancy frequency is greater in the region 

of isopycnal doming than elsewhere. Since the buoyancy frequency is not a constant , 
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Figure 4.1: Schematics of a hypothetical region of domed isopycnals: (a) maintains a con­
stant buoyancy frequency, requiring some isopycnals to outcrop, while (b) maintains a constant 
surface temperature, leading to locally enhanced buoyancy frequency near the surface. The 
dotted line is an estimate of the non-penetrative, one-dimensional convective penetration depth 
after some arbitrary amount of cooling. Note that in both cases the densest surface water is 
located in the region of doming, although in neither case has convection penetrated deeper in 
that region. 

but a function of depth, and equation 4.1 is not strictly valid. However, the inverse 

dependence on the local buoyancy frequency is still likely to determine penetration depth, 

leading to deeper penetration into the water column away from the domed isopycnals 

where the stratification is weaker. However, the maximum surface density will again be 

located above the region of doming. This doming scenario, which can be thought of as 

a ((squeezing" of the isopycnals, does not require any isopycnal outcropping prior to the 

onset of cooling. This squeezing paradigm for doming is consistant with preconditioning 

mechanisms such as baroclinic instability of a zonal flow or flow over topography, as 

discussed in this thesis. 

In neither of these cases 1s convection expected to penetrate more deeply in the 

region of domed isopycnals. Nevertheless, the region can be considered preconditioned 

since the densest surface water is formed there. Of course, the newly formed dense water 

can always flow along isopycnals to greater depths away from the preconditioned area 

without requiring further cooling. However, in most regions of open ocean convection in 

the real world, the convective chimney does penetrate to a much greater depth than the 

mixed-layer depth in surrounding waters. This implies that domed isopycnals alone can 
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Figure 4.2: A schematic of a more realistic, nonuniform stratification consisting of weakly 
stratified surface region and abyss, separated by a pycnocline. The dotted line represents the 
non-penetrative, one-dimensional convective penetration depth. In this case both the densest 
surface water and the deepest convection are located in the region of isopycnal doming. 

perhaps not fully explain the preconditioning effect. 

The real ocean does not have a constant background stratification. More realistic 

stratification generally consists of a weakly stratified surface layer overlying a pycnocline 

all on top of a weakly stratified deep interior. A schematic of one such stratification is 

shown in figure 4.2. In this case, the preconditioning effect of domed isopycnals is most 

readily apparent. In order to convect deeply, significant cooling is first required to punch 

through the strongly stratified pycnocline. However, once the lower layer is ventilated, its 

weak stratification allows rapid convective deepening. The proximity of the pycnocline to 

the surface in the domed isopycnal region ensures that this is where convection will first 

penetrate. Consequently, domed isopycnals preselect a region to convect most deeply, 

not just to a denser isopycnal value, for this more realistic stratification. These heuristic 

arguments suggest that only after allowing for the presence of a pycnocline can local 

doming of isopycnals precondition for convective chimney formation. This possibility is 

investigated in detail in this chapter. 
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4.2 A One-Dimensional Analytic Model 

In order to make some progress analytically, one simple and commonly used method for 

representing the effect of a surface-trapped pycnocline is through the use of an exponential 

density profile: 

p(z) = K(l - ezf o-) ( 4.2) 

Here p, the density anomaly, always has a surface value of zero while at great depth the 

density approaches the value K. The e-folding scale, 0', is a measure of the degree to 

which the pycnocline is surface-trapped. Three different exponential density profiles, all 

chosen to have approximately the same surface to bottom density difference as a constant 

stratification run with a value of N / f = 5, are shown in the left panel of figure 4.3. The 

right panel shows the buoyancy frequency as a function of depth associated with each 

of these density profiles. As in section 3.1 the penetration depth of a uniform negative 

surface buoyancy flux can be calculated by equating the time-integrated density flux 

with the difference between the vertically integrated original heat content and that of 

the uniform profile after convection has occurred. 

Two schematics are shown in figure 4.4. The schematic (a) shows the "lifting" mecha­

nism for ispopycnal doming and (b) the "squeezing" mechanism. In both cases the shaded 

area represents the total heat content difference between the original exponential strati­

fication and the uniform profile which exists after convection has occurred. Two profiles 

are shown in each schematic, one represents some background exponential stratification 

and the other the stratification as it might appear in the region of domed isopycnals. 

The measures of convective depth for each profile are denoted dl and d2 respectively. 

Clearly, for the same amount of surface cooling, conserving the area of heat content loss 

due to convection, penetration depth will be much greater in the region of doming. This 

is true for the lifted density profile in (a) as well as for the squeezed profile in (b) . In 

contrast, figure 4.5 shows a similar set of profiles, one background and one in the region 
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Figure 4.4: This figure shows set of profiles, one background and one in a region of doming. 
Panel (a) represents the doming with a lifting of the profile (as denoted by the heavy dashed 
arrows), whereas panel (b) employs a squeezing of the isopycnals . The shaded area represents 
the total heat content difference between the original exponential stratification and the uniform 
profile which exists after convection has occurred. The measures of convective depth for each 
profile, given some uniform amount of surface cooling, are denoted dl and d2 respectively. 
Clearly, conserving the area of heat content loss due to convection, penetration depth will be 
much greater in the region of doming irrespective of whether the doming is produced by lifting 
or squeezing of the exponential profile. 

of doming, for a uniuform stratification. In the case of lifted isopycnals, the two depths 

of penetration, dl and d2, are identical, as expected given equation 4.1. The penetration 

depth into the squeezed profile is actually less than in the background profile because of 

the higher near surface st ratification in the region of doming. 

For the case of exponential stratification, a solution for the convective depth can be 

obtained by setting the total surface density flux equal to the change in the total density 

of the water column during convection, giving: 

g 10 BT = - (p(d)- p(z))dz . 
Po d 

( 4.3) 

Substituting in for p(d) and p(z) from equation 4.2 gives, 

BT = .!!._ fo (K(l - edfu) - K( l - ezfu))dz. 
Po Jd ( 4.4) 
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Figure 4.5: This figure shows set of profiles, one background and one in a region of doming. 
Panel (a) represents the doming with a lifting of the profile (as denoted by the heavy dashed 
arrows), whereas panel (b) employs a squeezing of the isopycnals to represent the doming. In 
this case, unlike for the exponential profile, depth of penetration in the region of doming, d2, 
are not enhanced relative to the background level, dl. As expected, constant stratification 
precludes chimney formation in regions of domed isopycnals. 
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Which simplifies to: 

( 4.5) 

This integral is a trivial one; indeed, that is why the exponential stratification was chosen 

in the first place. Finally, an implicit analytical expression for convective penetration 

depth is obtained: 

BT = .!!_(K cr + K ded/u- K credfu). 
Po 

( 4.6) 

Although an explicit formula for the convective depth , d, IS not achievable, iterative 

solutions of this implicit formulation are readily obtainable. 

As an example, consider the stratification with e-folding scale, cr , of 500 meters and 

surface to bottom density difference, K, of 0.1. Using a surface buoyancy flux, B, of 

3 x 10- 7
, which corresponds to a heat flux of approximately 60 W / m 2 , and solving 

iteratively ford as a function of time gives the analytic predicted convective depth shown 

by the solid line in figure 4.6. For comparison, the predicted depth from equation 4.1 

for constant stratification, using N = 1.2 x 10- 6 s - 1 (the average value over the top 500 

meters of the exponential profile) is shown as a dotted line. 

Evidently, the initial convection is fairly well represented using an approximate ver­

tical average of the vertically varying stratification. This can be seen by looking at the 

limit of equation 4.6 when d ~ cr . Taylor expansion forms for the exponentials given by: 

d/ u d 
e ~1 +-+ ··· , 

cr 

can be substituted into equation 4.6 to give: 

Solving for d then gives: 

The vertical derivative of the original stratification is simply: 

100 

( 4.7) 

( 4 .8) 

( 4.9) 

( 4.10) 



Applying the same Taylor series expansion, for z ~ a, and keeping only the first term, 

op K 
-~ --
8z a 

Or, in terms of the buoyancy frequency, 

(4.11) 

(4.12) 

Substitution of this approximate buoyancy forcing into equation 4.9 reproduces the linear 

result: 

d~ [BT VN2 ( 4.13) 

Thus, in the limit of very shallow convection, the deepening is well approximated by 

the constant stratification expression. However, once the convection starts to penetrate 

into the region of significantly lower stratification which lies more than one e-folding 

scale from the surface, the difference between the prediction assuming constant N 2
, and 

that using an exponential N 2 formula, becomes large. The dramatic increase in rate 

of convective deepening once the pycnocline has been ventilated is the readily apparent 

reason for this difference. 

In order to compare with these analytical curves, I have run the SPEM in an extremely 

simple experiment. I configured the model as a square box with uniform surface cooling. 

The parameters associated with this run is listed as run N1 in table 4.1. There is no mean 

flow , and the now unnecessary sponge layers and radiative boundary conditions have 

been removed. Furthermore, the model is initialized with an exponential stratification 

identical to that used for the analytic calculation. As expected, the mixed-layer in this 

run deepens uniformly everywhere in the domain. Values for the penetration depth at five 

day intervals , as diagnosed from the model run, are shown as open circles in figure 4.6. 

Comparison with the implicit analytical result is extremely good. 
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Figure 4.6: The solid line shows the expected penetration depth as a function of time using 
the implicit formula. The surface buoyancy flux is 1.5xlo-7 and the exponential stratification 
has an e-folding scale of 500 meters. The open circles show the result of a primitive-equation 
run with the same parameters, which is in good agreement with the analytic prediction. Note 
that the model data, because it has been saved only at 5 day intervals, first shows convection 
reaching the 4000 meter bottom of the domain on day 40, but this is not inconsistent with the 
analytic curve. For purposes of comparison, the dotted line shows the analytic prediction using 
assuming a uniform stratification with N j f = 11, which is the average value over the top 500 
meters of the actual profile. It is evident that the initial penetration is close to the square root 
dependence expected for constant stratification, but that as the less stratified waters begin to 
ventilate, the rate of convective deepening is significantly enhanced. 
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Run Fractional Aspect Ratio Rossby Number Stratification convective Rossby 
Height (6) ( .6.) (R) Parameters (cr, K) Number (RN ) 

N1 0 0 0 500, 0.1 9.7 X 10-2 

N2 0.5 0.16 0.08 500, 0.1 9.7 X 10 ·:.! 

Table 4.1: A list of parameters associated with each SPEM run incorporating exponential 
backgound stratification. 

4.3 A Simple Isopycnal Doming Experiment 

This section describes a simple use of equation 4.6 to demonstrate doming isopycnals 

as a mechanism for convective precondit ioning. A hypothetical section through a region 

of domed isopycnals is shown in figure 4. 7. This section is comprised of 32 separate 

locations, each with an exponential density profile given by equation 4.2. The doming 

is produced invoking the squeezing paradigm appropriate for flow over topography by 

varying the e-folding scale from a value of 400 meters at the edges to 100 meters in the 

center. For reference , the central profile is identical to the 100 meter e-folding profile 

shown in figure 4.3. The surface and deep water densities are the same throughout the 

section. 

Given this set of exponential profiles, iterative solutions to equation 4.6 can be used 

to solve for the mixed-layer penetration depth as a function of position within the section. 

The surface density flux used for this calculation is equivalent to 30 W / M 2
• Figure 4.8 

shows the results as a time series of mixed-layer depths at two day intervals. For the 

first ten days the mixed-layer deepens throughout the domain, with slightly deeper pen­

etration in regions with the lowest N 2 values, away from the central doming. However, 

the pycnocline is first penetrated in the domed region, leading to rapid penetration of a 

convective chimney beginning just after day 10 and reaching to the bottom of the domain 

by day 16. This convective deepening of a chimney in the region of isopycnal doming is 

a direct consequence of the fact that the initial density is not a constant N 2 profile. 
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Figure 4. 7: This figure shows a section through a hypothetical region of domed isopycnals . 
Each profile along the section has an exponential density profile. The e-folding scale of the 
exponential increases linearly from a value of 400 meters at the edges to 100 meters in the 
center. The surface temperature and deep water temperatures are held constant . 

4.4 Topographic Preconditioning Experiments 

Given the important role that nonuniform background stratification can potentially play 

in terms of the effectiveness of domed isopycnals as a source of preconditioning, it is 

interesting to investigate the effect such a stratification will have in the specific topo­

graphic preconditioning scenario associated with flow over isolated topography. The first 

question that needs to be addressed in this context is to what extent the initial Taylor cap 

spinup process and steady-state flow field before the onset of surface cooling are affected 

by an exponential background stratification. For this purpose, I have run the SPEM 

model with the parameter settings listed in table 4.1 as run N2. This run is configured 

identically to the constant stratification spinup runs, 81 and 82 listed in Table 3.2, with 

the exception of the background stratification, which is chosen to be the exponential 

profile used in run Nl. 

Figure 4.9 shows the density field on slices through the center of the domain for the 

initial condition and the spun-up steady-state flow. The doming of isopycnals associated 

104 



day 2 day4 
0 0 

-
£ -100 £ - 100 - --a. a. 
Q) Q) 

~ -200 "'0 -200 
Q) 

.~ > 

~ -300 
·u 
Q) -300 

> > c c 
0 0 
0 -400 0 -400 

-500 -500 
0 10 20 30 0 10 20 30 

day 6 day 8 
0 0 

£ - 100 £ -100 
a. a. 
Q) Q) 

~ -200 ~ -200 
.~ .~ 

~ -300 ~ -300 
> > c c 
8-400 

0 
0 -400 

-500 -500 
0 10 20 30 0 10 20 30 

day 10 day 12 
0 0 

£-100 £ - 100 
a. a. 
(1) Q) 

~ -200 ~ -200 
> > u 
Q) -300 

·-a 
Q) -300 

> c > c 
0 
0 -400 

0 
0 -400 

-500 - 500 
0 10 20 30 0 10 20 30 

day 14 day 16 
0 0 

£ - 100 %-1000 a. 
Q) Q) 

~ -200 "'0 
Q) 

> ·E -2ooo ·-a 0 
Q) -300 Q) 
> > c c 
0 8 -3000 0 -400 

-500 -4000 
0 10 20 30 0 10 20 30 

Figure 4.8: A time history of the mixed-layer depth associated with uniform surface cooling 
over the hypothetical section through a region of domed isopycnals as predicted by the analytic 
solution to convection into an exponential density profile. 
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Figure 4.9: Slice plots of the density field through the center of the domain of run N2. On 
the left is the initial condition and on the right the spun up steady-state at day 20. 

with the spun-up anticyclonic Taylor cap is evident. It is interesting to note that despite 

the doming of the pycnocline, none of the isopycnals intersect the surface, indicating that 

the doming is produced by squeezing of isopycnals, rather than lifting. This is not due to 

a constant temperature boundary condition; recall from Chapter 2 that a zero gradient 

condition, associated with zero heat flux, is employed at the upper boundary. In fact, 

it is because there is no explicit vertical mixing in the interior that it is impossible for 

isopycnals to outcrop without surface forcing having been applied. 

A time series of horizontal plots of the density field at 500 meters depth in figure 4.10 

shows the spinup process. This figure can be compared with figure 2.3, which shows the 

same time series, albeit at 2000 meters depth, for run S2. Run S2 is spun-up with the 

same parameters as this run, N2, with the exception of the background stratification, 

which is constant with an equivalent top-to-bottom density difference as the exponential 

used in run N2. Comparing the two figures, it is apparent that the nonuniformity of the 

background stratification has little effect on the nature of the spinup process. However, 

the details of the steady-state flow, especially the vertical extent of the region of t rapped 
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flow, which depend critically on the stratification, are expected to differ. The analytic 

WKB approximation for a steady-state Taylor cap in an exponentially stratified fluid 

is presented by Owens and Hogg [1980). Their results, indicating a taller cap for an 

exponential stratification relative to one with a weak linear stratification equivalent to 

the deep part of the exponential, are consistant with the numerical results in this chapter. 

In order to look at differences in the steady-state flow, a passive tracer slice through 

the center of the domain is shown in figure 4.11. This figure should be compared with 

the equivalent tracer slice for run S2, shown in figure 3. 7. The most obvious difference 

between these two figures is that the region of trapped fluid, demarcated by the zero 

contour, extends significantly higher in the water column, in fact all the way to the 

surface, in run N2. Although the top to bottom total density differences are the same 

in these two runs, the exponential stratification run has very low values of buoyancy 

frequency at depth, allowing the influence of the topography to penetrate much higher 

into the water column. 

Another interesting phenomenon visible in figure 4.11, is the fact that the tilting over 

of the Taylor cap with height is predominantly occurring near the surface. With constant 

background stratification the Taylor cap also tends to tilt to the left (looking upstream) 

with height above the topography, but the tilting is more or less constant with height. 

One way of thinking about this tilting with height is in the context of a layer model. 

The lowest layer will have a region of trapped flow on the right side of the underlying 

topography (looking downstream). The next layer up feels this stagnant region in the 

same manner as it would topography and thus its own trapped retion is slightly to the 

right of the trapped region in the layer below. For stonger stratification the layers are 

compressed, leading to a stronger tilting with height. Thus, this tendency of the cap 

to tilt is directly related to the magnitude of the stratification, and a surface-intensified 

exponential stratification leads to a surface intensification of the tilting. 

Surface cooling equivalent to approximately 60 Wj m 2 is imposed uniformly over the 

surface of the model domain once the steady-state has been reached at day 20. A time 
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Figure 4.10: Time series of slab plots of the density field at 500 meters depth for the spinup 
of run N2, with exponential background stratification. 
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Figure 4.11: A slice plot of passive tracer distribution through the center of the steady-state 
of run N2. Tracer values of zero indicate water which remains from the initial state. Values of 
one have been ventilated from upstream. 

history of density slice plots through the center of the domain at 20 day intervals is shown 

in figure 4.12. After 20 days of cooling, at day 40 of run time, a. convective chimney has 

begun to form over the flank of the seamount, as in the constant stratification runs. 

For comparison with a constant stratification run with identical surface cooling and top 

to bottom total density gradient, recall figure 3.12 which shows a similar time series 

of density slices for run Cl. After only 20 days of cooling the two runs have evolved 

similarly; both have a convective chimney reaching to approximately 1000 meters depth 

trapped over the flank of the seamount, with a somewhat less deep ambient mixed-layer 

in the rest of the domain. However, after another 20 days of cooling the two runs show a 

marked difference. In run N2, the pycnocline has fully outcropped at this point, leading 

to surface ventilation of the densest water in the domain. The convective chimney soon 

reaches to the bottom and contains the densest water found in the domain. A new dense 

water mass is being formed in this case. In the constant stratification run, C1, however, 

because the deep water is still as strongly stratified as the surface layers, the penetration 

depth of the chimney is not nearly as dramatic, and the densest bottom waters remain 
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Figure 4.12: A time series of slices through the center of the domain from run N2 showing 
the convective penetration localized over the seamount . One key difference, as compared to 
constant stratification runs is the enhanced deepening leading to the generation of the densest 
water found anywhere in the domain once the pycnocline has been ventilated. 

unventilated. 

4.5 Conclusions 

A simple exponential stratification is used to examine the effect of variable background 

stratification on preconditioning of convection. A one-dimensional solution for the depth 

of convection into an exponential background stratification for a given surface density 

flux is found. The one-dimensional solution is used to examine how a region of domed 
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isopycnals will convect given uniform surface cooling. The initial penetration depth is 

slightly deeper away from the doming. The deep, less stratified, region is first ventilated 

in the center of the doming region, however, because of the proximity of the pycnocline to 

the surface. Once the pycnocline has outcropped, a rapid deepening of a deep convective 

chimney occurs. 

The SPEM model, configured with an exponential background stratification and uni­

form surface cooling, but without bottom topography or mean flow , gives a rate of 

convective deepening in excellent agreement with the one-dimensional analytical result. 

In order to investigate the effect of nonuniform stratification in the topographic precon­

ditioning problem, a Taylor cap spinup is performed with an exponential background 

stratification. The spinup process is qualitatively similar to the constant stratification 

spinup runs in Chapter 3. A cyclone and anticyclone are spun up over the topography, the 

cyclone is soon advected downstream, exiting the domain, while the anticyclone remains 

topographically trapped. The region of trapped flow extends higher in the water column 

than for runs with the same top-to-bottom density difference but a uniform background 

stratification, due to the low stratification at depth. 

Uniform surface cooling leads , initially, to a convective chimney centered over the 

seamount flank as in uniform stratification runs. Once the pycnocline has outcropped 

however, the chimney deepens to the bottom of the domain rapidly, as in the doming 

experiment with the analytical, one-dimensional model. Thus, given a slightly more 

realistic stratification, with a near surface intensification in buoyancy frequency, the 

surface outcropping of sub-pycnocline isopycnals becomes the primary factor leading to 

convective penetration into the deep water . However, mean flow topographic interaction 

still serves to precondition the region where the pycnocline first outcrops, due to the 

domed isopycnals associated with the anticyclonic flow over the seamount. 
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Chapter 5 

Shutdown of Convective Deepening 

5.1 Introduction 

In the previous chapters, this thesis has been primarily concerned with the precondition­

ing phase of open ocean convection. Although the violent mixing phase is also included 

in the numerical integrations, nonhydrostatic physics at the kilometer and smaller scales, 

which describes the mixing process, is parameterized with the use of a simple convective 

adjustment scheme. The final phase of the convective process, sinking and spreading 

of the dense chimney, is examined in this chapter. In particular, details of the shut­

down of convective deepening of a topographically preconditioned chimney are compared 

and contrasted to the more familiar shutdown of chimneys which are generated beneath 

isolated regions of strong surface cooling. 

Generally, the separation of convection into a mixing phase followed by a spreading 

phase is predicat ed on the simplified picture of two separate dynamical regimes. During 

the mixing phase, it is assumed that the surface flux is balanced by vertical entrainment 

of heat from below as the chimney burrows into deeper water. In contrast , during the 

spreading phase, continued surface buoyancy losses are balanced by horizontal fluxes as 

the chimney breaks up and exchanges heat with the surrounding stratified water. This 

horizontal exchange is usually thought to occur as a result of baroclinic instability of the 
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chimney, which leads to substantial horizontal eddy fluxes. Although this eddy exchange 

process is certainly an important one, in the context of topographically preconditioned 

chimneys it is also possible for the horizontal fluxes to be accomplished by the mean 

background :flow. 

5.2 Mechanisms 

In general, convective chimneys in the ocean do not penetrate all the way to the ocean 

floor. There are several reasons why this may be the case. In the context of a newly 

formed, dense, surface water mass sinking into a stratified fluid, one might expect the 

dense water to sink until it reaches a depth where it matches the ambient density and is 

neutrally buoyant. On the other hand, if convection is forced by a continuous surface flux , 

rather than a specific surface density, the chimney might be expected to stop deepening 

when it comes under rotational control, and is broken up by strong baroclinic instability. 

The breakup of a convecting chimney due to baroclinic instability is examined in detail 

by Visbeck et. al. [in press]. Applying closure ideas of Green [1970] and Stone [1972] to 

parameterize the horizontal transfer of heat by baroclinic eddies in terms of mean :flow 

quantities , they deduce scaling laws for the maximum depth of convection and the time 

required to reach that depth: 

(5.1) 

(5 .2) 

Here r is the chimney radius, B the suface buoyancy :flux and N the buoyancy frequency 

of the background stratification. 1 and f3 are constants of proportionality with values of 

3.9 ± 0.9 and 12 ± 3 respectively. These constants are derived from numerical integrations 

as well as laboratory experiments. 
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Run Fractional Rossby Number Radius of cooling disk, or convective Rossby Stratification 
Height (6) (R) Efolding scale of seamount Number (RN) (N/ f) 

Dl 0.5 0 20km 9.7:z:lo-2 5.556 
C4 0.5 0.08 25km 9.7:z:10 · ~ 5.556 
C6 0.5 0.08 25km 9.7:z:10 · ~ 3.0 

Table 5.1: External parameters for convective shutdown experiments. 

In order to compare the dynamics of a chimney generated in a quiescent fluid be­

neath a localized cooling patch as in Visbeck et. al. with topographically preconditioned 

chimneys, a disk-cooling experiment was performed with the SPEM model. The model 

friction parameters, timestep, and resolution are kept identical to the topographic run, 

C4, with which the comparison is to be made. This disk-cooling experiment is referred 

to as run D1 henceforth. Two topographically preconditioned runs are presented for 

comparison. The first is run C4, which is discussed in Chapter 3. The second, run C6, is 

identical to C4 in all respects except that a lower background stratification is used. All 

three runs , and the relevant non-dimensional parameters, are listed in Table 5.1. In each 

run the convective deepening is shut down in a different manner. 

5.2.1 Disk-Cooling Experiment- Dl 

Figure 5.1 shows a vertical slice of the density field through the disk-cooled chimney 

in run Dl. Note that in this run the bottom topography plays no role since there is 

no mean flow. As expected given the results from Visbeck et. al., the chimney first 

deepens following the analytic one-dimensional prediction. The strong horizontal density 

gradients separating the chimney from its surroundings imply an associated vertical shear 

in the velocity field. This shear manifests itself as a strong cyclonic rim current at the 

surface and a counter-rotating anticyclonic current at depth. Figure 5.2 shows horizont al 

slices through the domain at 1500 meters depth, near the base of the convective chimney. 

After about 20 days of cooling, strong baroclinic instability of the rim current leads 
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Figure 5.1: A cross section of the density field in run Dl after 20 days of cooling. In this case 
the bottom topography is not dynamically active since there is no mean flow. The chimney is 
being generated by a disk shaped region of cooling at the surface with a horizontal radius of 20 
kilometers. 

to large enough horizontal fluxes to shut down the convective process. The baroclinic 

instability is, in this case, visible as a mode four disturbance growing on the initially 

circular rim current. This instability of the rim current associated with chimneys formed 

beneath disk-shaped cooling regions is described in detail by several authors, including 

Jones and Marshall [1993), Hermann and Owens [1993), and Visbeck et.al. [in press]. 

The convective depth as a function of time from this model run is shown in figure 5.3 

along with the one-dimensional, non-penetrative convective limit. Around day 20 the 

model chimney deepening starts to shut down. This departure from the one-dimensional 

analytic limit is due to the horizontal :fl.uxe of heat as the baroclinic eddies carry stratified 

water underneath the cooling patch. This balance between horizontal advection of heat 

by baroclinic eddies and the surface cooling is precisely the paradigm proposed by Vis beck 

et. al. In Table 5.2, the final depth reached and the time required to achieve this depth 

for the chimney from run D1 are compared with values determined using equations 5.1 

and 5.2. Although the depth reached here is on the high side of the range predicted, 
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Figure 5.2 : A time series showing the evolution of the horizontal velocity field at 1500 meters 
depth, near the base of the disk-cooled chimney in run Dl. After initially deepening for twenty 
days the rim current begins to show a growing mode four instability. Over the next 15 days 
t his instability grows rapidly. 
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Figure 5.3: The time history of convective deepening of the disk-cooled chimney in run Dl 
is plotted with circles. The solid line shows the one-dimensional, non-penetrative convection 
limit for comparison. After roughly 25 days of cooling the horizontal fluxes of heat associated 
with baroclinic instability of the chimney have become sufficient to shut down the convection. 

the agreement is fairly good. It is rewarding to see the similarity of these results despite 

the very different treatment of the convective process in the two studies. In the Visbeck 

study, the numerical runs were done with a nonhydrostatic model resolving plume scales, 

whereas the current model uses a simple convective adjustment scheme to parameterize 

the mixing process. Both numerical representations of convection, in addition to being 

mutually consistent, are also consistent with the laboratory results obtained by Hufford 

(1994] (which are also used in the Visbeck et. al. study). 

5.2.2 Stable Topographic Preconditioning Experiment - C4 

The convective depth time series for run C4 is shown in figure 5.4. Recall that for the 

topographic runs the cooling commences after an initial 20 day spinup period required to 

generate a steady-state Taylor cap over the topography. Although the convective depth 

history appears to be quite similar to that for t he disk-cooling run (Dl ), in this case 

baroclinic eddies do not play a role in shutting down the convective deepening. After 
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Visbeck et.al. Formula Disk-Cooling Topographic Preconditioning 

Depth of convection (meters) 1000 ± 200 1250 1500 
Time to reach 
maximum depth (days) 19 ± 5 20 25 

Table 5.2: A comparison of the maximum depth of convection and the time taken to reach 
that steady-state depth for a chimney formed by cooling over a disk shaped region and one 
formed by uniform cooling over as topographically preconditioned domain. 

50 days of cooling the model has come to a steady-state with no sign of instability of 

the chimney. Despite continued surface forcing , the convective deepening has been shut 

down. In this case, the surface cooling is being balanced by horizontal fluxes of heat due 

to the mean flow crossing isopycnals. 

Figure 5.5 shows a series ~f constant depth slices of the density and velocity fields near 

the seamount for this steady-state. Away from the seamount, the mixed-layer density 

increases with distance downstream as discussed in section 3.2. There is a pronounced 

density anomaly, associated with the deep convecting chimney, centered over the right 

flank of the topography in the region of recirculating flow . In addition, there is a dense tail 

of enhanced mixed-layer deepening extending downstream from the seamount. Deeper 

down, at the 1500 meters depth, the isopycnal signal of the Taylor cap itself is visible, 

slightly to the right, looking downstream, of the base of the convective chimney. At 2000 

meters depth, below the steady-state penetration depth of the chimney, only the signal 

of domed isopycnals associated with the Taylor cap is visible. Although the horizontal 

transport of heat by the mean flow across density gradients can explain the shutdown of 

convection, it does not explain why the chimney is not susceptible to growing baroclinic 

eddies. The strong horizontal density gradients around the chimney, in the presence 

of zonal flow , as visible for example in the surface and 1000 meter depth slices, are 

one indication of the likely occurrence of baroclinic instability, yet the chimney remains 

stable. 
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Figure 5.4: The time history of convective deepening of the topographically preconditioned 
chimney in run C4 is plotted with circles. The solid line shows the one-dimensional, non­
penetrative convection limit for comparison. After roughly 30 days of cooling the horizontal 
fluxes of heat associated with mean flow across isopycnals above the region of fluid trapping 
has become sufficient to shut down the convection. 

5.2.3 Unstable Topographic Preconditioning Experiment- C6 

Run C6 is different from run C4 only in that the background stratification is lower; the 

buoyancy frequency, N, is 3 x 10-4 5-1 instead of 5.6 x 10-4 5 - 4 . This change allows 

significantly deeper penetration of the convective chimney. As shown in figure 5.6, the 

chimney deepens as predicted by the one-dimensional, non-penetrative estimate until it 

hits the bottom of the domain, which is denoted by the dashed line at 4000 meters depth. 

Shortly after reaching the bottom, however, the chimney sheds a baroclinic eddy. Unlike 

the robust mode four instability of experiment Dl , however, the instability is confined 

to the region of enhanced deepening in the wake of the seamount. 

Figure 5. 7 shows a time history of the initial eddy shedding event which leads to the 

sudden shut-off in convective deepening seen in figure 5.6 at day 90. Clearly, based on a 

comparison of runs C4 and C6, the stability of topographically preconditioned chimneys 

is dependent on the exact parameter regime in which the chimney forms. Although a 
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Figure 5.5: T he st eady-state horizontal velocity field at various depths in the topographic 
preconditioning run. Isopycnals are shown superimposed on the velocity vectors. In the upper 
water column, at the surface and at 500 meters depth, the mixed-layer deepening downtream 
from the inflow, the convective chimney over the seamount, and the dense wake are all visable. 
Deeper down, at 2000 meters depth, only the doming of isopycnals associated with the Taylor 
cap itself is visable. At 1500 meters depth, near the base of the chimney, both the chimney and 
the taylor cap are seen in the density field. 
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Figure 5.6: The time history of convective deepening of the topographically preconditionied 
chimney in run C6 is plotted with circles. The solid line shows the one-dimensional, non­
penetrative convection limit for comparison. After roughly 50 days of cooling, after the chimney 
has reached the bottom of the domain, a baroclinic eddy is shed and drifts downstream along 
the dense wake behind the chimney. 

complete parameter dependency study is beyond the scope of this thesis, possible reasons 

for the remarkable stability of some such chimneys is investigated in section 5.3. 

5.3 Baroclinic Instability of Convective Chimneys 

T he convective chimneys in runs D1 and C4 are of roughly the same radius and reach to 

similar depths and yet only the disk-cooling experiment is prone to baroclinic instability. 

The schematic in figure 5.8 demonstrates the essential cause of the unstable nature of 

the disk-cooled chimney. At depth, t he low potential vorticity interior of the chimney 

compared to the ambient stratification produces a potential vorticity gradient oriented 

radially outward. At the surface, however, the positive density anomaly can be rep­

resented as a positive vorticity anomaly, giving a potential vorticity gradient oriented 

radially inward. T he thin sheet of potential vorticity which replaces the surface density 

anomaly in this argument is generally refered to as a "Bret herton sheet" after Bretherton 
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Figure 5. 7: A time series showing the evolution of the horizontal velocity field at 2000 meters 
depth in run C6 with density contours superimposed showing the pinching off of a baroclinic 
eddy. 
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Figure 5.8: A schematic showing a cross section through a convective chimney. The change 
in potential vorticity gradient with height is a neccessary condition for baroclinic instability. 

1966] . The change in sign of the potential vorticity gradient between the deep field and 

the surface Bretherton sheet is a necessary condition for baroclinic instability. 

For comparison with this schematic representation, the potential vorticity can be 

diagnosed from model runs. I have calculated the potential vorticity on surfaces of 

constant depth rather than isopycnals , another source of some error. However, tests 

calculating potential vorticity on isopycnal surfaces show no qualitative differences in the 

resultant fields. The potential vorticity, as I have calculated it from the model fields, is 

defined as: 

(5.3) 

where the relative vorticity is given by: 

(5.4) 

This form of potential vorticity, which ignores the contribution from vertical shear terms, 

is a simplification of the full potential vorticity, (! + w) · V p. Tests comparing the full 

potential vorticity with the simplified form in equation 5.3 show the neglected terms to 

be small in this case, justifying use of the simplified form. 
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The potential vorticity field after 20 days of cooling at various depths in run D1 is 

shown in figure 5.9. Here the potential vorticity has been normalized by Jrt; of the init ial 

stratification. Zero values inside the chimney are due to the complete homogenization 

of the water column by the convective adjustment scheme. The exterior values, far from 

the chimney in the horizontal as well as below the chimney, are exactly one since the 

stratification there has not been altered and the relative vorticity effects are confined to 

the rim current associated with the chimney walls. At 1000 meters depth, near the base 

of the chimney, the potential vorticity gradient is clearly radially outward. As expected, 

this chimney does break up due to baroclinic instability. 

There are several key differences between the disk-cooled and topographically precon­

ditioned chimneys. Some of these differences are examined in turn as possibly accounting 

for the difference in the instability properties for the two different chimneys. The upper 

two panels in figure 5.10 compare X-Z density slices for the disk-cooled (run D1) and 

topographically preconditioned chimneys (run C4). The first obvious difference between 

these chimneys is that the surface density gradient corresponding to the edge of the 

convective topographically preconditioned chimney is less sharply defined than for the 

disk-cooled chimney. Because the chimney is being generated by the presence of a Taylor 

cap, in a region with much less sharply defined edges, the surface density gradients, and 

potential vorticity gradients, are reduced. In order to assess the possible importance of 

the sharp gradient imposed by the rather unrealistic tophat shape of the surface cooling 

disk , a disk-cooling experiment with a wide cosine shaped taper down of the surface 

forcing region was performed. 

In this run the disk over which the full buoyancy forcing is applied is still given a 

radius of 20 kilometers, as in run Dl. Rather than using a tophat, the edges of the 

disk are tapered down to zero forcing with a cosine shaped curve. The cosine function 

operates over a radial distance between the edge of the original disk, at 20 kilometers 

radial distance, and a maximum of 80 kilometers from the center of the disk. An X-Z 

slice through the chimney formed below this cooling distribution is shown in the lower 
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Figure 5.9: T he potential vorticity field associated with the disk-cooled chiminey in run Dl 
at four different depths. Zero values in the center of the chimney indicate a complete vertical 
homogenization by the convective adjustment scheme. Outside the influence of the disk-cooling 
the initial values of one are unperturbed. Thus, the lack of contours in the lower two panels, 
below the base of the chimney, is simply a reflection of the homogeneity of the undisturbed 
initial field. In the upper two panels , t he potential vorticity gradient in the chimney is radially 
outward as expected. 
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Figure 5.10: The upper two X-Z density slices compare the disk-cooled chimney (run 
Dl) with the topographically preconditioned chimney (run C4). Two slightly modified 
disk-cooling runs , one with a wide taper down of t he surface cooling around the edge of 
the disk and a second with an ambient mixed-layer depth outside the chimney itself, are 
also shown. 
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right panel of figure 5.10 for comparison with runs D1 and C4. 

The primary result from this run is that the chimney forced by a surface cooling 

distribution, which is tapered down over a wide zone around its edges, is still strongly 

baroclinically unstable. Due to the larger diameter of the chimney, a higher mode of 

instablity is evident as compared to the standard disk-cooling run, but the essential 

physics of baroclinic instablity shutting down the convective deepening remains . Thus, 

the artificial sharp edge to the cooling disk in this run and in run D1, as compared to 

run C4, does not appear to be the crucial condition for baroclinic instablility to occur. 

A second characteristic of run C4 not found in Dl, is the presence of a deep mixed­

layer of low potential vorticity water outside the chimney itself. At 500 meters depth , for 

example, there is a radially outward gradient to the potential vorticity field in run Dl , 

as seen in figure 5.9. Figure 5.11, by comparison, shows that the deep mixed-layer in run 

C4 causes the potential vorticity field at 500 meters depth to be nearly uniformly zero 

everywhere in the domain. The base of the chimney, however, is well below the ambient 

mixed-layer depth for the most part. Thus, there are radially outward pot ential vorticity 

gradients at 1000 meters depth. The high potential vorticity signal at 2000 meters depth, 

is due to lateral diffusion, which acts on sigma surfaces rather than isopycnals, leading 

to some crossisopycnal mixing and, consequently, a spurious pv source. Fortuitously this 

error is restricted to the deep Taylor cap region of very slow flow and domed isopycnals, 

and does not affect the use of pv as a diagnostic in the convective chimney. 

In order to check if the presence of this deep mixed-layer outside of the chimney 

could inhibit the baroclinic instability, a disk-cooling run with an initial stratification 

including a 1000 meter deep ambient mixed-layer and otherwise identical to run Dl was 

performed. An X-Z density slice for the resulting chimney is shown in the lower left panel 

of figure 5.10. The instability of this chimney is qualitatively indistinguishable from the 

mode four growth of the standard disk-cooling run (D1 ), indicating that the presence of 

the low potential vorticity mixed-layer is not inhibiting the chimney instability process. 

Finally, a crucial difference between the disk-cooling chimney and the topographically 
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Figure 5.11: The potential vorticity field associated with the topographically preconditioned 
chiminey in run C4 at four different depths. Potential vorticity has been scaled by !W;_ of the 
background stratification. Zero values in the surface mixed-layer and the center of the chimney 
indicate a complete vertical homogenization by the convective adjustment scheme. Outside and 
below the influence of the disk-cooling the initial values of one are unperturbed. The potential 
vorticity gradient in the chimney at 1000 meters depth is radially outward in part. Although 
not as simple as the corresponding picture for the disk-cooled chimney, the neccessary condition 
for instability does exist. 
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preconditioned one is the presence of the barotropic mean flow in the latter case. As 

evident in figure 5.5, there is a strong zonal flow in the region of the horizontal density 

gradients associated with the chimney walls. One possible explanation for the lack of 

growing instabilities on this horizontal density gradient is that, although the conditions 

for unstable growth do exist, the mean flow is so strong that any growing disturbances 

are advected downstream faster than they can grow locally. For comparison, in the disk­

cooling runs the velocity field, shown in figure 5.2, is entirely recirculating around the 

chimney. 

In order to test whether this advective effect is indeed responsible for the inhibition 

of instability one can compare estimates of the timescale for instability growth with the 

advective timescale given by the magnitude of the mean flow and the horizontal scale of 

the chimney. One rough estimate for the growth rate of the most unstable wave comes 

from the original estimate by Eady [1949] for parallel flow with uniform stratification: 

With an associated timescale: 

0.3f 0.3f~~ 
kc · ex -- ex ----"= • VRi N 

1 
Teady = -k 

Ci 

(5.5) 

(5.6) 

Taking the approximate shear from the Taylor cap flow from run S2 to be 5 em/sec over 

2000 meters, as seen for example in figure 3.6, and using the initial background value of 

5.556 x 10-4 for N, gives a Richardson number of approximately 500. The corresponding 

growth rate of the fastest growing unstable mode according to equation 5.6 is slightly 

over 8 days. 

Another estimate of the growth rate of instabilities can be obtained by examining 

the numerical growth rate of the mode four instability on the disk-cooling run, which 

has basic chimney characteristics very similar to this topographic chimney. Figure 5.2 

shows the development of this instability with time. The growth rate for this instability 

appears to be on the order of 10 days. 

The advective timescale for the mean flow to advect disturbances beyond the chimney 
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region is simply a function of the chimney radius and magnitude of the mean flow. 

L 
Tadvecti ve = U (5. 7) 

Substitution of a background flow speed of 0.2 m / sec and the approximate radius of the 

chimney, 20 km, into equation 5.7 leads to an advective timescale of approximately 1 

day. Note that, if anything, this is an overest imate of the advective timescale since the 

flow is actually significantly accelerated above the background levels in the vicinity of 

the northern edge of the chimney as shown in figure 5.5 . 

Both estimates of the timescale for the growth of baroclinic instabilities are an order 

of magnitude greater than the advective timescale. This indicates that the likely cause for 

the apparent stability of the topographic chimney is not a lack of conditions for unstable 

growth. Rather, the growing instabilities are simply being advected downstream, out 

of the region where the conditions allow for growth, faster than they can grow locally 

within that region. 

Given the complicated structure of the convective chimney superimposed on Taylor 

cap flow it is difficult to assess the instability growth rate with more accuracy than these 

simple scaling arguments supply. One possibility, however, is to look at the semicircle 

theorem for parallel quasigeostrophic flow, which supplies bounds on the growth rate of 

the fastest growing baroclinic mode. Given a linear, quasigeostrophic, parallel flow over 

a flat bottom and assuming a standard waveform disturbance of the form, 

(5.8) 

the growth rate of any given mode is just kci. The semicircle theorem [e.g. Pedlosky 

1987], which gives bounds on the possible values of Ci, is: 

(5.9) 

For the case of an £-plane this reduces to: 

c~ < ( Umax- Umin ) 2 
t - 2 ' (5.10) 
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which can be calculated as a function of downstream distance using the steady-state 

velocity from the C4 model run. A time scale for the growth rate can now be calculated 

by assuming that the fastest growing mode is on the order offour times the Ross by radius 

(after Pedlosky [1987]): 

The wavenumber, k, is then simply 

k = 27r f . 
4NH 

(5.11) 

These formulae for k and Ci give another estimate of the bound on local growth rate, 

as a function of downstream distance. This bound is plotted in figure 5.12 along with 

the local advective timescale. Again, even in the region of maximum growth rate, the 

advective timescale is significantly faster than that for instability growth. Obviously, 

this theory is not strictly applicable to the steady-state fiow field of run C4, since the 

fiow is not parallel, is nonlinear and is not quasigeostrophic. However, in addition to the 

preceding scaling arguments , it provides an indication that the instability growth rates 

are likely to be too small to lead to a breakup of the convective chimney. 

5.4 Conclusions 

The final depth to which convection penetrates is examined in this chapter. A run 

is made in which a chimney is generated without topographic preconditioning through 

the application of a disk-shaped cooling function at the surface. This disk-cooling run 

reproduces the results of Visbeck et. al. in which horizontal fluxes of heat associated 

with baroclinic instability of the rim current shut down the deepening of the convective 

chimney. This hydrostatic model and simple convective adjustment scheme agree with 

the scalings Visbeck et. al. have derived using a much higher resolution nonhydrostatic 

model and laboratory experiments. 

In contrast to the disk-cooled chimney, the topographically preconditioned chimneys 

catalogued in Chapter 3 are remarkably stable. Scaling arguments show that the expected 
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time scale for the growth of baroclinic instabilities is about an order of magnitude larger 

than the time for the mean flow to advect particles past the chimney feature. Thus, in the 

context of a topographically trapped chimney, any initial perturbation to the chimney is 

advected downstream beyond the region where conditions for growth exist much faster 

than it can grow locally. In addition to the scaling arguments, quasigeostrophic theory 

also suggests that the growth rate, relative to the advective t imescale, is too slow for 

instabilities to develop. 

The inhibition of instability growth by mean flow advection occurs in most of the 

runs which were run out to steady-state. In only one run, with a low enough background 

stratification for the convection to reach the bottom of the domain, were baroclinic eddies 

generated. These eddies were pinched off in the region of the dense wake downstream 

of the Taylor cap, rather than the circularly symmetric modal pattern seen in the disk­

cooled run. 

One might expect weaker mean flows to allow baroclinic instability to develop. How­

ever, if there is no mean flow, there is no Taylor cap. In other words, in the limit of weak 

mean flows, there is no longer topographic preconditioning, and no chimney will form. 

As the mean flow is increased enough to allow a Taylor cap and convective chimney to 

form, it becomes too strong to allow baroclinic instabilities to grow locally. Thus the 

inhibition of baroclinic instability is likely to be robust within the range of mean flow 

speeds wherein the topographic preconditioning mechanism is applicable. Consequently, 

inferences about the role of eddy fluxes in oceanic convection based on the more com­

mon disk-cooling type of experiment, which parameterizes the preconditioning process 

by setting the chimney scale equal to the surface forcing scale, should be treated with 

care. If the preconditiong process being parameterized in such disk-cooling experiments 

is a topographic mechanism such as that modeled in this thesis, the role of baroclinic 

eddies is probably being overemphasized. 

In the case of these stable topographically preconditioned chimneys it is the horizontal 

advection of heat across isopycnals in the upper water column which eventually balances 
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the cooling over the surface of the chimney and shuts down the convective deepening. 

This steady-state depth can be somewhat deeper than the final depth of disk-cooled 

chimneys given the same rate of cooling and initial stratification. In addition, even after 

the chimney has stopped burrowing into deeper water, its stability allows for further 

ventilation of the greatest density class that it has reached. In addition to the initial 

preconditioning effect of the topography, inhibition of baroclinic instability may also 

allow enhanced ventilation of deep waters in regions of mean flow over isolated bottom 

topography. 
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Chapter 6 

Conclusions 

6.1 Summary of the t h esis 

In this thesis I have investigated the role that isolated topography in the presence of a 

mean flow can have on convective processes forced at the surface of the ocean. It is shown 

that topography can serve to select a location where convection will preferentially occur. 

This preconditioning is primarily due to isolation of the fluid over the seamount from 

horizontal fluxes of heat by the mean flow. When surface intensification of the background 

stratification is included, doming of isopycnals associated with the anticyclonic Taylor 

cap circulation also plays a preconditioning role. In addition to selecting the location for 

chimney formation, the topography sets an oceanographic scale for the chimney, despite 

the generally much larger scale of atmospheric forcing. Finally, the presence of a mean 

flow past the topographically trapped chimney can inhibit the breakup of the chimney 

due to baroclinic in stability. 

Chapter 3 outlines a simple set of experiments where a Taylor cap is spun up over 

an isolated Gaussian seamount in a constant background stratification using a primitive­

equat ion model. Uniform negative buoyancy forcing is applied over the surface of the 

steady-state Taylor cap. The surface mixed-layer away from the influence of topography 

deepens with a square root dependence on distance downstream from the inflow, as 
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predicted by simple non-penetrative convection theory acting over a time equal to the 

advective time required for the inflow to reach that downstream location. Over the 

seamount, where the flow is trapped and is not being ventilated by the mean flow from 

upstream, the mixed-layer deepens significantly further than elsewhere in the domain. 

Within the topographically trapped chimney the deepening initially follows the one­

dimensional, analytic limit for the maximum convective deepening that could occur over 

the total period of time for which the cooling is applied. Downstream of the topography 

there is a dense wake of deep mixed-layer where particles are slowed in the region of the 

seamount, but not trapped, and experience the surface cooling for a longer period of time 

as a result. 

The essential physics of this topographic preconditioning is the interaction of the 

surface mixed-layer with the region of topographically trapped fluid. This interaction is 

increased at low Rossby number since the slower flow speeds tend to increase mixed-layer 

depth and also increase the height to which the Taylor cap reaches. Similarly, lower strat­

ification parameter, N / f, both increases mixed-layer penetration and Taylor cap height. 

Increasing the convective Rossby Number (non-dimensionalized surface forcing) increases 

the mixed-layer depth, thus increasing the preconditioning effect without directly effect­

ing the Taylor cap itself. Seamount fractional height brings the region of trapped fluid 

higher, increasing the preconditioning effect, without directly affecting the mixed-layer 

depth. The dependence on seamount aspect ratio, the final non-dimensional parameter, 

was not investigated. 

In chapter 4 the preconditioning effect of domed isopycnals is investigated. For uni­

form stratification, such as that used for the runs in Chapter 3, it is shown that domed 

isopycnals do not precondition for deeper convection. In fact, if anything the higher 

stratification required if the isopycnals dome up while holding surface temperature con­

stant can actually decrease the depth of penetration. Allowing for a nonuniform, surface 

intensification in the stratification is the key to having domed isopycnals play a precon­

ditioning role. An analytic formula for exponential stratification analogous to the well 
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known one-dimensional, non-penetrative convection into uniform stratification is devel­

oped. 

As predicted by this analytic formula, the region of isopycnal doming will be the 

first place where the pycnocline ventilates. Once the deep water has been ventilated, the 

convection rapidly penetrates into the deep region of weaker stratification. A steady-state 

Taylor cap is spun up with an exponential stratification identical to that used for the 

analytical calculation. This run confirms that a nonuniform stratification significantly 

enhances the preconditioning over the topography by allowing the domed isopycnals to 

play a role. The depth of convection in the numerically modeled chimney is in good 

agreement with the implicit analytical prediction. 

The shutdown of the deepening of convective chimneys is investigated in Chapter 

5. Previous modeling of convection using high resolution nonhydrostatic model have 

been forced by disk shaped surface cooling distributions, setting the scale of the oceanic 

response with the surface forcing. These chimneys deepen initially following the one­

dimensional, non-penetrative convection limit. However, they are prone to breakup due 

to baroclinic instability of the chimney. The horizontal fluxes of heat associated with the 

baroclinic instability are sufficient to shut down the convective deepening. One such disk 

cooled run is reproduced using the SPEM model, and compared with a topographically 

preconditioned chimney holding all other parameters constant . 

One remarkable difference between the chimney generated by a disk of cooling at the 

surface and that in which the topography sets the oceanographic scale is a lack of insta­

bility in the topographically trapped chimney. The principal mechanism responsible for 

instability, a change in the sign of the potential vorticity gradient with height, is present 

in both chimneys. However, in the case of the topographically preconditioned chimney, 

the expected time scale for the growth of baroclinic eddies is an order of magnitude 

smaller than the advective timescale associated with mean flow past the chimney. Thus, 

any perturbation that begins to grow on the topographically preconditioned chimney is 

advected downstream much faster than it can grow locally. The shutdown of deepening, 

137 



in the topographically preconditioned case, occurs as a result of fluxes of heat by the 

mean flow rather than baroclinic eddies. 

Synthesizing the results of chapters 3, 4, and 5 it is clear that isolated topography can 

potentially play an important preconditioning role by setting the location and scale of 

oceanic convective chimneys: The basic preconditioning effect is an interaction between 

the surface mixed-layer and the trapped fluid in the Taylor cap. The preconditioning 

can be further enhanced by incorporating a surface intensification of the background 

stratification, which allows the pycnocline to be ventilated first in the region of domed 

isopycnals associated with the Taylor cap. Finally, the convection can penetrate deeper 

and ventilate for a longer period of time because of the stability of the chimney due to 

the presence of a mean flow . 

Given these conclusions, it is worth recalling that the process oriented modeling ex­

periments in this thesis were motivated by the presence of high levels of convection over 

Maud Rise in the Weddell Sea. The range of Rossby numbers, stratification parameters, 

and seamount fractional heights ysed are reasonable in the context of flow over Maud 

Rise. Similarly, the range of buoyancy fluxes applied is consistent with the mean level of 

wintertime cooling in the Weddell sea. Much stronger buoyancy fluxes, perhaps as high 

as 1000 W/ m 2
, are of course likely to occur at times, especially when strong low pressure 

systems force divergent ice motion and open leads in the sea ice. These short term bursts 

of cooling, operating on time scales of a few days, are probably important in selecting 

the exact location and time of initiation of convective events over Maud Rise. 

In order to resolve the Rossby radius of deformation, while maintaining the ability 

to run the model many times through a wide range of parameter space, it was necessary 

to use a seamount aspect ratio which is not appropriate for Maud Rise. The model 

seamounts have a horizontal length scale of only 25 kilometers, whereas Maud Rise has 

a horizontal scale of more like 100 kilometers. It is assumed that the use of a wider 

seamount would lead to the same basic processes as the modeled, more narrow, seamounts 

in this study. 
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In addition, this study neglects salinity as a dynamic variable as well as the role of sea 

ice, both of which certainly play important roles in convection occurring over Maud Rise. 

Another criticism of the dynamical picture of topographic preconditioning presented in 

this thesis is the use of a purely barotropic mean flow . The volume flux through the 

model domain, a uniform 0.2 m / sec over 300 kilometers width and 4 kilometers depth, 

amounts to an enormous and unrealistic 240 Sverdrups. In addition, in the real ocean one 

does not find flow completely devoid of shear in the vertical (or horizontal) . In response 

to this potential drawback, it should be noted that the volume flux , although admittedly 

very large, includes a great deal of flow which travels through the domain well beyond 

the region affected by the presence of the seamount. The volume flux past a region of 40 

kilometers width, around the seamount, is a somewhat more palatable 32 Sverdrups. 

The issue of how inclusion of vertical shear will affect the topographic preconditioning 

problem is an interesting one. To first order, the effect of vertical shear will be to 

decouple the surface mixed-layer from the bottom trapped Taylor cap, thus reducing 

the effectiveness of the topographic preconditioning mechanism. However, weaker flows 

at depth , as are found in the Weddell Gyre for example, would allow the Taylor cap to 

penetrate higher in the water column, thereby increasing the likelihood of interaction with 

the surface mixed layer. Another interesting possibility to consider is the case in which 

mean flow at depth is strong enough to spin up a steady-state Taylor cap, thus enabling 

a chimney to form, but too weak to inhibit baroclinic instability of the chimney. This 

would perhaps lead to an interesting depth dependent structure as baroclinic instability 

leads to breakup of the base of the chimney. 

Despite the numerous potentially important processes not captured by this model, 

the first order picture of topographic preconditioning which is presented is probably 

robust. A more complicated scenario, including salinity, vertical shear in the inflow, 

sea Ice, and more realistic topography would certainly lead to quantitatively different 

levels of convection. However, the qualitative picture of Taylor cap interaction with the 

surface mixed layer as a preconditioning mechanism, as well as the first order parameter 
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dependencies for this process, are likely to remain valid. Thus, while it does not provide 

a quantitative, or prognostic, measure of convection in the Weddell sea, this thesis does 

outline the likely basic physical mechanism involved as well as how the process depends 

on some of the more basic oceanographic parameters. 

6.2 Future Work 

There are several possible extensions to this work. Continuing the parameter study of 

chapter 3, the dependence on seamount aspect ratio could be investigated. Although 

very wide seamounts would be expensive to run while still resolving the internal Rossby 

radius, the seamount width is likely to be an important parameter since the height of 

topographic influence, N / f L, is dependent on the horizontal scale of the topography. 

The inhibition of baroclinic instability by the mean flow is also an area where further 

work could be concentrated. At very low Rossby number it is not possible to generate a 

steady-state Taylor cap. Instead, the initial spinup leads to topographically trapped anti­

cyclonic and cyclonic vortices which co-rotate around the seamount. Thus, it is not easy 

to investigate the regime where mean flow is weak enough to allow baroclinic instabili­

ties to develop in the context of topographically preconditioned chimneys. However, the 

problem can be examined quite readily in the context of simpler disk cooling experiments. 

For example, consider cooling applied over a disk shaped region with uniform back­

ground stratification and a barotropic mean flow. The limit of zero mean flow is simply 

the disk cooled chimney from chapter 5, which deepens below the disk until convection is 

shut down by lateral fluxes of heat associated with baroclinic instability of the chimney 

rim current (recall run D1, shown in figure 5.2). Given weak enough mean flows one 

would expect little deviation from this dynamical regime. 

Indeed, a test disk cooling identical to run D1 except with a 1cm/ sec mean flow ap­

plied is shown in figure 6.1. Although a slight downstream elongation of the rim current 

is apparent, the baroclinic instability is clearly in evidence. For comparison, a second run 
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Figure 6.1: A Y-Z density slice and the surface velocity field for a disk cooling experiment 
with a mean flow of 1 em/sec 

with a 10 em/sec mean flow is shown in figure 6.2. In this case the mixed-layer deepens 

with downstream distance below the cooling and ext ends at constant depth from the 

downstream edge of the cooling disk to the domain exit. This mixed-layer deepening is 

certainly not chimney shaped, and, in addition, show no signs of baroclinic instability. 

These two runs are presented here simply as one possible avenue of research into how to 

understand the inhibition of baroclinic instability of convective chimneys by the mean 

flow. Perhaps, in the regime where the rim current associated with the convective deep­

ening is stronger than the background flow, perturbations are not advected downstream 

and local unstable growth becomes possible. A study of the dependence of such a criti­

cal mean flow speed on the other parameters in the problem, such as stratification and 

buoyancy forcing, would be a straightforward and elucidating extension to the thesis. 

Finally, another interesting extension of this process oriented study would be to try 

and model the Maud Rise scenario more realistically in order to get bounds on the rate 

of formation of deep water there and perhaps outline the tendency of the system to flip 
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Figure 6.2: A Y-Z density slice and the surface velocity field for a disk cooling experiment 
with a mean flow of 10 em/ sec 

from polynya to non-polynya modes. Moving towards such a realistic study would first 

entail the inclusion of salinity in the equation of state, vertical and horizontal shear in 

the incoming mean flow, and a sea ice model. 
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