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ABSTRACT

An aggregated model to evaluate tsunami response in semi-enclosed water bodies is 

presented in this work. The model is based on one-dimensional shallow water equations 

and can include long-wave external forcing such as a tsunami. It has been successfully 

validated against experimental data from a physical model, and its predictions for a case 

study have been compared with results from the COMCOT numerical model. The model 

can be used as a predictive tool because a calibration using a theoretical value for 

expansion and contraction losses has been performed, and differences with the typical 

calibration are less than 10% which is considered acceptable. This allows using the model 

in the absence of measured data, which is very difficult to obtain in case of a tsunami 

event. A case study  for the Gulf of Cádiz (Spain) has been simulated with the COMCOT 

model. The aggregated model predicted the response for a harbor more accurately than 

for estuarine systems with tidal flats. Nevertheless, the aggregated model has been 

demonstrated as a useful general tool to predict the response of semi-enclosed tidal basins 

to a tsunami event, and hybrid models coupling advanced models to simulate ocean 

tsunami propagation with the model presented here would be useful in developing coastal 

warning alert systems.
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INTRODUCTION 

Tsunamis, hurricanes and winter storms are the main processes causing the inundation of 

coastal and estuarine areas. The Asian 2004 tsunami and Hurricane Katrina (2006), which 

created a tragic loss of life and extensive property damage, are two examples of the most 

destructive natural phenomena observed in recent years. In order for human communities 

to exist alongside nature’s most destructive forces there is a need for studies of the 

vulnerability of coastal areas together with long term planning actions to reduce coastal 

flooding risk. 

Along the coast there are many  semi-enclosed water bodies (estuaries, coastal lagoons, 

harbors, etc.) that could potentially be affected by  a tsunami. Whatever the size of the 

water body (lagoon or bay), these are by definition connected to the sea by  narrow 

channels. Modeling long wave propagation towards semi-enclosed water bodies using 

advanced numerical tools requires a very  high grid resolution to include the connection 

channels. Most of these coastal systems are small enough (on the order of tens of 

kilometers or less) for the water surface to rise and fall uniformly (co-oscillate) in 

response to the forcing ocean processes (Defant, 1961). Therefore, the hydrodynamics 

can be studied using aggregated numerical models.

Aggregated numerical models are based on the one-dimensional shallow water equations, 

and the name arises from aggregation of geometry, i.e. only a few parameters are required 
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to define the geometry of the system (volume, area, mean depth, etc.). Commonly, the 

estuaries at which this kind of models may be applied are known as Keulegan’s bays 

(Keulegan, 1951), main properties of which are: a) the walls of the bay and inlet are 

vertical, b) the length of the estuary is shorter than the length of forcing wave, hence bay 

water level rises uniformly, and c) depth is enough for seabed friction to be neglected. 

The proposed model solves the one-dimensional equation of motion and the continuity 

equation to find the flow velocity through the inlet, the free surface elevation of the bay 

and the phase lag of the bay relative to the wave in the ocean. The main inputs to the 

model are a) the bay volume law as a function of water depth and b) the external forcing. 

Likewise, the model is versatile because it is capable of modeling a wide range of 

morphologies, from simple bays connected to the sea by a narrow channel to systems 

with more complex geometries, composed of several bays or connected by  culverts under 

berms or roadways, pipes or other hydraulic structures.

Analytic or idealized models have been generally  used to describe tidal propagation 

towards inner estuaries. Aubrey and Speer (1985), Friedrich and Aubrey (1988) and 

Friedrich and Madsen (1992) have documented the nonlinear interaction of the offshore 

tidal constituents, showing how the offshore tide becomes strongly  distorted as it 

propagates into shallow estuarine systems. More recently, Stanev et al. (2003) used a 

simple analytical theory to perform a volumetric analysis based on the basin hypsometry 
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of the Wadden Sea, highlighting that idealized models are helpful to understand the basic 

processes underlying advanced modeling. 

The majority  of tidal propagation studies have been applied to single inlet systems. As 

examples of studies focused on estuaries with more complex geometries can be cited Van 

de Kreeke (1988, 1990) and Salles et al (2005), who studied multiple tidal inlet stability. 

However, few works have dealt with systems characterized by concatenated bays. 

Equations for several geometrical configurations of coastal lagoons have been formulated 

by Jain (2002), but they have not been validated in practice. 

The present study aims to improve knowledge about long wave propagation through 

estuaries, demonstrating that a) one-dimensional equations are able to simulate 

hydrographical behavior of coastal lagoons even for those with complex geometries, and 

b) idealized models may be also very useful to predict the response of a tsunami event at 

semi-enclosed estuaries. The purpose of this study is to develop a simple and fast method 

to compute the propagation of long waves such as tsunamis into semi-enclosed bays. A 

hybrid model coupling this aggregated model with advanced models widely used to 

simulate ocean tsunami propagation, such as MOST (Method Of Splitting Tsunami), 

developed originally by  researchers at  the University  of Southern California (Titov and 

Synolakis, 1998), COMCOT (COrnell Multi-grid COupled Tsunami model), developed at 

Cornell University (Liu et al., 1994) and TSUNAMI2, developed at Tohoko University  in 
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Japan (Imamura, 1996), would improve the computational effort required for operating 

early warning systems.

This paper consists of three main parts. In the first part  the aggregated model and its 

equations are introduced both for a single bay estuary  and concatenated bays systems. In 

the second part we describe the validation of the model against experimental data from a 

physical model of an estuary  consisting of three concatenated bays. In the last  part results 

from the aggregated model are compared to the outcomes of the COMCOT model 

through the application to a case study in the south of Spain. 

MODEL DESCRIPTION

The fundamental concept behind the model presented here is that semi-enclosed basins 

(Figure 1) are characterized by the trivial fact that the fluid volume change is purely  a 

result of the constant spatial sea-level variations, i.e. the theory  of the Helmholtz 

oscillator (Lighthill 1978). The water volume and related sea-level of the bay change due 

to the transport  of water through the connecting strait. This transport  of water is, in turn, 

driven by the pressure difference, due to a difference in sea-level heights that exists 

between the entrance and exit of this channel (Maas, 1997). The novelty  of this work is 

that the forcing is not a harmonic function but is instead a solitary wave.
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Aggregated model for a single bay

The oscillations in a simple inlet-bay system can be described by the following 

momentum and continuity equations (Bruun et al., 1978):

  (1)

  (2)

where  is the acceleration due to gravity,  is the current velocity through the inlet,  

is the sea-level elevation in the bay and  is the sea-level elevation in the open ocean. 

The volume of water body can be defined as  where  is the bay  horizontal 

area. Parameters describing the geometrical characteristics of the system are the area of 

the bay, , the cross-sectional area of the inlet (or channel), Ac, and the channel length, 

L. Equations 1 and 2 intrinsically  assume that the water oscillations change 

simultaneously  throughout the basin. This implies that the forcing wavelength needs to be 

bigger than the length scale of the basin-channel system.  is the head loss coefficient 

defined by Bruun et al. (1978):

  (3)

where  accounts for losses occurring at expansions and contractions, L has been 

already defined as the channel length,  is the channel depth below mean sea level and C 

is the Chezy coefficient, which has been assumed to be 45 . The second term of the 
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right side of the equation (3) represents the friction losses through the channel, while the 

parameter  includes the head losses associated to expansion and contraction of the 

flow, commonly known as minor losses (Chanson, 1999). Those losses are related to 

turbulent processes (i.e., formation of eddies); therefore, they are usually estimated 

empirically, and  can be treated as a calibration parameter. 

Let us assume that the cross-sectional area of the inlet is a linear function of depth:

 , (4)

where , and  is the inlet  width at mean sea level. The free surface at the 

channel ( ) changes along the tidal cycle and it depends on the open ocean sea level 

( ).

For simplicity, the side walls can be assumed as vertical and therefore the bay  area, , is 

constant. Hence, , and equations (1) and (2) will become:

  (5)

  (6)

Thus, (5) and (6) are a system of two differential equations with two unknowns,  and 

, which depends on the time-dependent open sea surface elevation, . These 
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equations are solved numerically using a Runge Kutta method with a variable time step 

for efficient computation.

Usually,  represents a tidal wave by means of a harmonic function. However, because 

we are developing a model to simulate the tsunami-induced wave propagation, forcing is 

described by  an analytical expression for a solitary wave (7) that  reproduces the main 

behavior of the first wave of a tsunami (Liu et al., 1994). The expression used to describe 

the temporal variation of the free surface elevation of a tsunami wave is

  (7)

where  is the wave height in open sea,  is the water depth at the mean sea level in 

open waters, t is time and c is the wave celerity, which has been defined by

  (8)

Equations for systems of concatenated bays

The main strengths of aggregated models are that the input data can be easily prepared 

and that their application has sufficient accuracy  for engineering planning and design. 

Due to their simplicity they  can be easily applied to systems covering multiple 

geometries. Open channels can have prismatic, parabolic or irregular sections; closed 

conduits can have circular, rectangular or other shapes, but systems consisting of several 

water bodies interconnected can also be modeled. To illustrate this aspect, the model has 
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been validated against a physical model with three concatenated bays, i.e. bays connected 

in a raw (see lower panel in Figure 1). The equations for this type of estuarine systems 

are given by  momentum equations (9) and  continuity equations (10), where  is the 

number of bays of the system and  the index that represents each bay individually.

  (9)

   (10)

The water level in the last bay  ( ) depends only  on the flux through the inlet which 

connects this bay with the previous one. However, water level in the intermediate bays 

(from 1 to n-1) depends on the flux exchanged with the preceding and following bay, 

including the open ocean (bay 0).

Comparison with experimental data

Tsunamis are events occurring very rarely and therefore, validating numerical models 

with field measurements is very difficult. Further, reliable measurements are very  scarce 

due to the unpredictable character of tsunami events in time and in unknown or remote 

locations. As an alternative, the proposed numerical model has been validated using an 

experimental physical model. 
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Experiment description

The experiments were performed in the wave basin of the Coastal and Ocean Laboratory, 

Environmental Hydraulics Institute, ‘IH Cantabria’, in Spain. The wave basin is 28.4 m 

long, 8.6 m wide and 1.2 m deep. It is equipped with a multi-board electric-drive piston 

wave maker. This wave maker has ten paddles, 85 cm wide each, with a maximum stroke 

of 1 m and the total installed power is 100 kW. Although the main function of the wave 

maker is the generation of short period waves, the control system and paddle geometry 

allows the generation of long waves with periods exceeding 20 s and wave heights 

between 5 and 10 cm, depending on the water depth. Moreover, power is sufficient to 

generate solitary waves with height up to 50% of the water depth at the wave maker.

The physical model layout was composed of three interconnected bays in series. Bays 1 

and 2 were 1.5 m x 1.5 m while bay  3 was 1.5 m wide and 1.25 m long. The inlet  widths 

were, respectively, 21.5, 11.5 and 5.5 cm. Bays were located in the centre of the basin, 

over a 23 cm high concrete horizontal platform, which simulates a constant depth floor. 

The water depth was 15 cm. The platform was preceded by a mild 1:20 shoaling slope, 

equivalent to the continental shelf; so shoaling effects were represented by  the wave 

propagation into shallow waters. The regularization zone, from the wave maker to the toe 

of the slope, was 5.4 m long, and the model first inlet was located 3 m from the end of the 

shoaling slope, providing a space of more than 13 m from the wave maker to the model. 

The model was also bounded by a highly dissipative gravel slope to avoid undesired 
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reflections. In Figure 2, the layout of the multi-connected bay  system in the basin is 

shown, and the location of the wave gauges is also depicted.

A 12-bit data acquisition board was used to record the surface elevation time series. 

Resistive-type wave gauges can resolve up to 4096 increments within the calibration 

range, i.e. a theoretical resolution of less than 0.1 mm in a 10 cm calibration range. In 

practice, the actual resolution of the gauges accepted is approximately 0.5 mm, mainly 

due to surface tension effects. One sensor (S2 station of Figure 2) was placed 1 m outside 

the inlet  in order to measure the forcing wave’s characteristics. Another two gauges (S3 

and S4) were placed inside bay 1 and two more (S5 and S6) inside bays 2 and 3 

respectively.

A standard procedure for solitary  wave generation was applied. The wave maker was 

controlled by its position, and the stroke time series was derived directly  from eq. (7) as 

described fully in Hughes (1993). For comparison purposes, in Figure 3 the theoretical 

profile of a 3 cm solitary wave was shown with the measured surface elevation at the 

regularization zone. The arrival, rise and crest of the solitary wave was properly 

generated by the wave maker, while the symmetric branch of the wave was already 

affected in the measurement by the reflections of the shoaling ramp and model. 

Nevertheless, since the model allows the introduction of an arbitrary wave profile, the 

measured surface elevation in front of the first  inlet has been introduced as boundary 
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condition into the model, regardless of the presence of asymmetries, solitons or scattered 

waves.

Numerical model validation

The same physical conditions as in the laboratory experiments were modeled using the 

aggregated model. The forcing in the numerical runs were those measured outside the bay 

system. The solitary wave amplitude decreased when it arrived in the different bays 

(Figure 4). The heights outside of the system and in each bay were 2.13 cm, 1.36 cm, 

0.76 and 0.61 cm, respectively. This is a consequence of the inlet  width of the physical 

model becoming narrower from bay 1 to 3, hence the volume of water going through 

consequent bays was declining and thereby the amplitude of the solitary wave was lower. 

There is also a small phase lag between the different bays, caused mainly by  the finite 

wave speed of the incoming solitary wave. It is also noteworthy that the level variations 

measured outside the system after the soliton (the tail of the solitary  wave) had also a 

response inside each bay.

Usually, the calibration parameter K must be evaluated by comparison of modeled and 

measured data, finding the value of K that minimizes the difference between them. This is 

called typical calibration. Because it is difficult  to obtain data with which to compare 

model outputs, an assessment of the model assuming a theoretical value of the calibration 

parameter has been performed, henceforth referred to as blind calibration. For 
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engineering purposes the most typical value for the local head loss coefficient in 

problems of large wave propagation through enclosed sections is  (Blevins, 1992).

Typical calibration is based on the calculation of the root mean square error  between 

experimental and modeled data for each bay. Because there is a local head loss coefficient 

for each bay ( ), the calibration process consists in looking for the combination 

of these coefficients that minimizes the error. The optimal combination that minimizes 

 is given by ,  and . The results from blind calibration (Figure 

4) show that the numerical model reproduces for all bays, not  only the initial soliton but 

also the following water level fluctuations, both elevation and depression of the water 

surface. The  between measured and modeled data (indicated in Table 1) ranges from 

1 to 4% of input wave for both types of calibration. The difference of  between the 

two is less than 10%. Therefore, the commonly assumed value of local head loss 

coefficient  is suitable to reproduce the response of a tsunami inside a bay and 

identify the proposed numerical model as a predictive tool.

Comparison with COMCOT Model

In this section the performance of the aggregated model as a suitable and useful tool for 

flood detention is assessed by comparing the results of the aggregated model with those 

obtained from the COMCOT (COrnell Multigrid COupled Tsunami) model, (Liu et al., 

1994) implemented for the Gulf of Cadiz. This is one of the areas that are most sensitive 
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to tsunamis in Spain, due to the proximity of the Gottinge Bank, the eastern end of the 

Azores-Gibraltar Fracture, which is considered to be the boundary between the Eurasian 

and African plates (Gjevik et al 1997).

The COMCOT model is a finite-difference Non Linear Shallow Water (NLSW) tsunami 

code, able to simulate the generation, propagation and run-up of earthquake or landslide 

generated tsunamis. This model has been used to investigate several historical tsunamis, 

such as the 1960 Chilean tsunami (Liu et al., 1994) and the Sumatra tsunami in 2004 

(Wang and Liu, 2006). It uses an explicit leap-frog finite difference scheme to solve the 

shallow water equations.

The case study simulated in this paper corresponds to one of the worst tsunami generation 

scenarios in the Gulf of Cadiz region. Omira et al (2009) have studied the tsunamigenic 

potential of this area that could affect coasts of Portugal, Spain and Morocco. Here we are 

modeling with the COMCOT a seabed displacement of the Horseshoe/Marques de 

Pombal faults, so it was assumed that the epicenter was located at 36º N and 10.5º W with 

a 216 km long and 70 km wide surface of tectonic drift. The focal depth was 40 km, and 

vertical displacement of ocean floor was 14 m. Fault geometry was described by  strike, 

dip and rake, which were respectively 48º, 35º and 90º. The simulated time was two hours 

and required 125 hours of CPU time. 
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The main strength of this model is that it allows the use of embedded grids, i.e. there is a 

fine grid for the objective area inside a coarse grid for open sea. To simulate the 

propagation of this tsunami from the source region to Cadiz and assure a good description 

of bathymetric and topographic effects near shore, a system of three nested grids with 

800, 200 and 50 m resolution was used. The locations and extensions of each of the 

considered grids are shown in Figure 5. The finer grid is focused on the target areas, 

namely Cadiz Harbor and Bay. 

The major aim of this section is to analyze the response of this tsunami in two semi-

enclosed water bodies, the Bay of Cadiz (case A) and the Cadiz harbor (case B). The 

former has large tidal flats; however the characteristics of the latter are closer to Keulegan 

bays; i.e. owing to it being small and without  differences in depth a co-oscillation 

response throughout the basin may  be expected. Several control points were chosen 

inside both coastal systems to evaluate the results of COMCOT (lower panel of Figure 5). 

In order to validate the aggregated model, the free surface variation on both case studies 

has been compared against the mean value of the control points for each basin.

Implementation of the aggregated model requires the definition of the time-dependent 

sea-level outside of the systems, which in this case is the elevation from the COMCOT 

model at point 1, and the description of the geometrical characteristics of both systems, 

i.e. flooding law of the basin, and length and cross-sectional area of the inlet. In both 

cases it has been assumed that the inlets have a rectangular section. The area in case B is 
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1275000 m2, bounded by vertical walls, thus the area is constant. The inlet is 285 m wide, 

10 m deep and 500 m long. The tidal inlet length is estimated as the effective length of 

the jet generated by a uniform flow in the strangulated water body. In case A, it is not 

possible to assume that the boundaries are vertical; hence a polynomial expression has 

been used for . The inlet is 5560 m long, 1000 m wide and 12.5 m deep. The local 

head loss coefficient ( ) has been assumed to be equal to 1.0, since has already been 

demonstrated that  this value is suitable for using the model as a predictive tool. The 

simulation characteristics were the same as for COMCOT model, two hours using a time 

step of 20 s. In comparison with the advanced model the computational effort of the 

aggregated model is negligible; it took less than 10 s CPU time.

Elevation for each control point computed by COMCOT, and the average against which 

the aggregated model has been compared, is shown in Figure 6. The difference in 

response between the two cases is noteworthy. The free surface variation in the harbor is 

similar to the wave outside. Nevertheless, in case A because of the frictional effects 

induced by the channel connecting the Bay  of Cadiz with the sea, it takes the wave 

twenty  minutes to propagate into the bay. The wave shape is modified, having a smaller 

amplitude and longer wave period than outside the system. In Bay of Cadiz the spatial 

variation of the free surface elevation is larger than in the harbor, mainly because there 

are tidal flats and hence the spatial variation of depth affects the spatial response of the 

sea level.
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Figure 7 shows the comparison between the spatially averaged free surface elevation 

computed with COMCOT and the results of the aggregated model for both case of study. 

In case A the  between solutions of the two models is 10.7 cm. Simulation from the 

aggregated model shows that the fall in the level preceding the solitary wave occurs ten 

minutes earlier than predicted by COMCOT. Omira et al (2009) concluded that the 

arrival time difference between linear and non linear computations of the same tsunami 

was about six minutes. Therefore the error derived by using an aggregated model instead 

of an advanced model is within an acceptable order of magnitude. There is also a 

difference between the lengths of flooding - the COMCOT simulation shows that it takes 

17 minutes while the crest of the soliton predicted by the aggregated model lasts seven 

minutes before starting to fall. Nevertheless, elevation is correctly  modeled by the 

aggregated model; the difference with COMCOT is 8 cm for the lowest level and 6 cm 

for the highest. In case B, the aggregated model reproduces better the mean solution of 

COMCOT model than in case A, the  being 8.1 cm. Further research is needed to find 

the reason of the discrepancy in case A; the assumption of pressure loss coefficient  

is suitable for basins with vertical walls such as the laboratory test and case B of this 

section, but the geometry of case A is not so simple, and possibly there is a combination 

of parameters that restricts the application of the aggregated model, such as, for example, 

the relation between bay and channel lengths. 

SUMMARY AND CONCLUSIONS
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In this work, the response of a semi-enclosed coastal system for a tsunami-induced wave 

using an aggregated model has been analyzed. In general, the approximate solution from 

the aggregated model is useful for engineering purposes and could be very helpful in high 

risk situations where  a rapid assessment of the hydrodynamic response of an estuary is 

required.

 

This model has been successfully validated against experimental data from a physical 

model, and its predictions for a case of study have been compared with results from the 

COMCOT numerical model. The aggregated model was able to reproduce the 

propagation of tsunami waves in semi-enclosed water bodies. Because the physical model 

was composed of three concatenated bays, this work validates the equations of 

conservation of the moment and continuity  for multiple-bay systems. The  between 

laboratory data and numerical model results was ranged from 1 to 4% of the input wave. 

Because the simulations in which K was assumed to be 1 also gave RMS errors in this 

range, the model can be used to predict the effects of tsunamis even when measurements 

are sparse.

A case study  for the Gulf of Cádiz (Spain) has been simulated using the COMCOT 

model. Comparison of the aggregated model with this advanced model shows that the 

aggregated model response provides a better fit to the results of the advanced model for 

simplified coastal systems such as harbors than for estuarine systems with tidal flats. 
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In applying the aggregated model to emergency systems (i.e. tsunami alert tools) to 

protect coastal areas, which requires a rapid answer, it is sensible to use a coupling to 

advanced numerical models that provide it the external forcing. Therefore, we 

recommend the use of hybrid systems, composed of complex hydrodynamic models of 

generation and propagation of tsunamis and aggregated models to downscale sea-level 

variations in semi-enclosed water bodies.
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