
PDDL+ Planning with Hybrid Automata:
Foundations of Translating Must Behavior

Sergiy Bogomolov
IST Austria, Austria

University of Freiburg, Germany
sergiy.bogomolov@ist.ac.at

Daniele Magazzeni
King’s College London

United Kingdom
daniele.magazzeni@kcl.ac.uk

Stefano Minopoli
UJF - Lab. VERIMAG

Grenoble - France
stefano.minopoli@imag.fr

Martin Wehrle
University of Basel

Switzerland
martin.wehrle@unibas.ch

Abstract
Planning in hybrid domains poses a special challenge due
to the involved mixed discrete-continuous dynamics. A re-
cent solving approach for such domains is based on applying
model checking techniques on a translation of PDDL+ plan-
ning problems to hybrid automata. However, the proposed
translation is limited because must behavior is only over-
approximated, and hence, processes and events are not re-
flected exactly. In this paper, we present the theoretical foun-
dation of an exact PDDL+ translation. We propose a schema
to convert a hybrid automaton with must transitions into an
equivalent hybrid automaton featuring only may transitions.

1 Introduction
Planning in hybrid domains considers the problem of finding
plans in domains with mixed discrete-continuous behavior.
Such behavior often occurs in practical applications (like,
e. g., in robotics, space applications, or embedded systems),
hence planning in such hybrid domains has found increasing
attention in the planning community. The continuous behav-
ior of hybrid domains is modelled with continuous variables
that evolve over time, where the evolution is described by
differential equations. In addition, in many real-world ap-
plications, exogenous events may happen. Hybrid domains
in planning are modelled with PDDL+ (Fox and Long 2006)
that provides continuous processes and exogenous events.

From a computational point of view, planning in hy-
brid domains is challenging because in addition to the “dis-
crete” state explosion problem, the continuous behavior
causes the reachability problem generally even to be un-
decidable (Alur et al. 1995). However, despite the unde-
cidability result, various techniques and tools have been
proposed in the past to solve (a subclass of) such prob-
lems that are practically relevant (Penberthy and Weld 1994;
McDermott 2003; Li and Williams 2008; Coles et al. 2012;
Shin and Davis 2005; Della Penna et al. 2009; Bryce and
Gao 2015). A recent approach in this direction has been pro-
posed by Bogomolov et al. (2014), who exploit the close re-
lationship of hybrid planning domains and hybrid automata.
More precisely, Bogomolov et al. provide a general frame-
work to translate PDDL+ to the formalism of standard hy-
brid automata. The translation guarantees that traces in the

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

obtained hybrid automata correspond to operator sequences
in the original planning domain, which basically allows one
to apply model checking tools for hybrid automata to solve
hybrid planning problems. As standard hybrid automata
are well-studied in the model checking community, various
model checking tools for this formalism exist.

Bogomolov et al.’s framework provides a first step in
bridging the gap between the hybrid planning and the model
checking world. However, their approach suffers from the
fact that must transitions, i. e., transitions that must fire as
soon as they become enabled, cannot be handled precisely,
but only as an approximation. Hence, processes and events
in PDDL+ (which feature must transitions) cannot be han-
dled precisely by their translation either. This is a quite
significant restriction, as processes and events represent an
essential ingredient of many realistic hybrid planning do-
mains. While the approximation is safe in the sense that plan
non-existence can be proven, it does not guarantee to yield
valid plans in domains where processes and events exist.

In this paper, we present the theoretical foundations for
extending Bogomolov et al.’s approach to precisely han-
dle must behavior. In more details, we provide a transla-
tion from a given hybrid automaton with must transitions to
an equivalent hybrid automaton with may transitions. Our
translation yields equal reachable state spaces for linear hy-
brid automata, and can handle hybrid automata with affine
dynamics with an over-approximation that can be made arbi-
trarily precise. Overall, translating must behavior precisely
opens a way towards an exact PDDL+ translation into the
formalism of standard hybrid automata because processes
and events can be handled precisely as well.

2 Preliminaries
In this section, we introduce the PDDL+ language and define
hybrid automata (HA) and their semantics.

The PDDL+ Language PDDL+ is particularly suited
for modelling planning domains with a mixed discrete-
continuous dynamics. This formalism provides an expres-
sive language to define hybrid planning domains. In par-
ticular, a designer can define function and relation symbols,
instantaneous and durative actions, events and processes. In
this work, we focus on modelling must transitions, i. e., is-

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/95843059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sues relevant for processes and events. For example, con-
sider the following event formalized in PDDL+:
(:event tankEmpty
:parameters (?g - generator ?t - tank)
:precondition (and (using ?t ?g)

(<= (fuelInTank ?t) 0))
:effect (and (not (using ?t ?g))))

This event is triggered if the tank is in use and the fuel
level is smaller or equal to 0. In other words, assuming
that we can model transitions which must fire as soon as
the guard is enabled, we can use them as building blocks for
events. We can reason in a similar way also for processes.

Hybrid automata We first provide some auxiliary nota-
tions. A convex polyhedron is a subset of Rn that can be
represented as the intersection of a finite number of strict
and non-strict affine half-spaces. A polyhedron is a subset
of Rn that can be represented as the union of a finite num-
ber of convex polyhedra. Given a polyhedron G ⊆ Rn, we
denote its topological closure by cl(G). We denote its repre-
sentation as a finite set of disjoint convex polyhedra by [[P ]].

Given an ordered set X = {x1, . . . , xn} of variables, a
valuation is a function v : X → R. Let Y ⊆ X a set of
variables, we denote by v �Y the projection of v onto Y . Let
Val(X) denote the set of valuations over X . There is an
obvious bijection between Val(X) and Rn, allowing us to
extend the notion of a polyhedron to the sets of valuations.
We denote by CPoly(X) and Poly(X) the set of convex
and general polyhedra on X , respectively. The set Ẋ =
{ẋ1, . . . , ẋn} stands for the set of dotted variables which
represent the first derivatives. The set X ′ = {x′1, . . . , x′n}
denotes the set of primed variables which represent the new
values of variables after a discrete transition. A continuous
activity over X is a function f : R≥0 → Val(X) that is
continuous on its domain and differentiable except for a fi-
nite set of points. Let Acts(X) denote the set of activities
over X . The derivative ḟ of an activity f is defined in the
standard way and is a partial function ḟ : R≥0 → Val(Ẋ).

A hybrid automatonH = (Loc, X,Edg ,Flow , Inv , Init)
consists of the following components:
• Loc is a finite set of locations, and X = {x1, . . . , xn} is

a finite set of real-valued variables. A state is a pair 〈l, v〉
of a location l ∈ Loc and a valuation v ∈ Val(X).

• Edg is a finite set of discrete transitions that describes in-
stantaneous location changes. Each transition (l, η, l′) ∈
Edg consists of a source location l, a target location l′
and a jump relation η ∈ Poly(X ∪X ′) that specifies how
the variables may change their value during the transition.
The guard is the projection of η on X and describes the
valuations for which the transition is enabled.

• Flow : Loc → CPoly(Ẋ∪X) is a mapping that attributes
to each location a set of valuations over the variables and
over their first derivatives. This set determines how vari-
ables can change over time. We refer to a HA with a flow
of the form Flow : Loc → CPoly(Ẋ), i. e., with a flow
that reasons only about the first derivatives, as a linear
hybrid automaton (LHA). We denote a HA with a flow

that constrains both the variables and their derivatives an
affine hybrid automaton (AHA).

• Inv : Loc → CPoly(X) is a mapping that defines the
location invariants. Finally, a mapping Init : Loc →
CPoly(X) defines the initial states of the automaton.

The set of states ofH is S = Loc ×Val(X). Moreover, we
use the shorthand notations InvS =

⋃
l∈Loc({l} × Inv(l)).

Given a set of states A ⊆ S, a set of locations L ⊆ Loc
and a set of variables Y ⊆ X , we denote by the projection
of A onto L and Y the set of valuations A�L,Y = {v �Y ∈
Val(Y ) | 〈`, v〉 ∈ A and ` ∈ L}.

(May) Semantics The behavior of a HA is based on two
types of steps: discrete steps correspond to the Edg com-
ponent, and produce an instantaneous change in both the
location and the variable valuation; continuous steps de-
scribe the change of the variables over time in accordance
with the Flow component. Given a state s = 〈l, v〉, we set
Loc(s) = l and val(s) = v. An activity f ∈ Acts(X)
is called admissible from s if (i) f(0) = v and (ii) for all
δ ≥ 0, if ḟ(δ) is defined then ḟ(δ) ∈ Flow(l). We denote
by Adm(s) the set of activities that are admissible from s.

Given two states s, s′, and a transition e ∈ Edg , there
is a discrete step s

e−→ s′ with source s and target s′ iff
(i) s, s′ ∈ InvS , (ii) e = (Loc(s), η,Loc(s′)), and (iii)
(val(s), val(s′)[X ′/X]) ∈ η, where val(s′)[X ′/X] is the
valuation in Val(X ′) obtained from s′ by renaming each
variable in X with the corresponding primed variable in X ′.
Whenever condition (iii) holds, we say that e is enabled in s.

There is a continuous step s
∆,f−−→ s′ with duration ∆ ∈ R≥0

and activity f ∈ Adm(s) iff (i) s ∈ InvS , (ii) for all 0 <
δ′ ≤ ∆, (〈l, f(δ′)〉) ∈ InvS , and (iii) s′ = 〈Loc(s), f(∆)〉.
A run is a sequence r = s0

∆0,f0−−−−→ s′0
e0−→ s1 → · · · → sn

of alternating timed and discrete steps. Given the automaton
H, the set of all states and valuations reachable by runs is
denoted by Reach(H) and CReach(H), respectively. Note
that in the default (may) semantics of a discrete step, the
guard only provides the information on when an automaton
may make a discrete step. Hence, even if a guard of an out-
going transition is satisfied, the automaton may proceed by
following an activity as long as the invariant is not violated.
This semantics is often referred to as may semantics.

Example 1. Consider the HA in Figure 1(a). This HA has
two locations l and l′ and two continuous variables x and
y. Furthermore, there is a transition from l to l′ with the
guard G ≡ x ≥ 3 ∧ y ≥ 2. The initial state is given by
s0 = (〈l, x = 1 ∧ y = 1〉). The blue regions in Figure 1(b)
and Figure 1(c) show the reachable valuations from s0 by
following linear and affine dynamics, respectively. We ob-
serve that the HA may stay in l also when G is satisfied.

Must semantics We consider a further class of discrete
transitions which we call must transitions. Informally, a HA
is enforced to take a discrete must transition as soon as its
guard is satisfied. We formally define a continuous step for a
must transition with the guardG in the following way. Given

43



l l′
x ≥ 3 ∧ y ≥ 2

(a) Example HA

G ≡

x

y

s0
3

2
1

1

G ≡
x ≥ 3 ∧ y ≥ 2

(b) LHA

G ≡
x ≥ 3 ∧ y ≥ 3

x

y

s0
3

2
1

1

G ≡G ≡
x ≥ 3 ∧ y ≥ 2

(c) AHA

Figure 1: Set of reachable valuations for LHA and AHA (in
location `) which honors the may semantics.

two states s and s′, there is a continuous step s
δ,f−−→ s′ with

duration δ ∈ R≥0 and activity f ∈ Adm(s) iff (i) there

exists a continuous step s
δ,f−−→ s′ in the corresponding HA

with may semantics, and (ii) for all 0 ≤ δ′ < δ, f(δ′) /∈ G
and f(δ) ∈ G. In other words, the δ represents the first time
moment when the guard is satisfied. Assuming a discrete
transition in Figure 1(a) to honor the must semantics, then
the reachable region in Figure 1(b) is reduced to the closure
of the difference between the blue region and the guard.

3 Translation of Must Semantics
In this section, we describe a translation of a given hybrid
automaton featuring must transitions to an equivalent hybrid
automaton with only may transitions (a corresponding theo-
rem is given at the end of the section). We first provide the
intuition behind our construction based on the HA HM in
Figure 1(a). Assume that the transition from l to l′ with the
guard G honors the must semantics. Our translation leads
to the may automaton Hm in Figure 2. We will discuss our
construction step-by-step based on this example.

l2

l′

x ≥ 3 ∧ y < 2

Flow(l)

l1

x < 3

Flow(l)

l̆1
x ≤ 3 ∧ t ≤ ε

F low(l) ∧ ṫ = 1

l̆2

x ≥ 3 ∧ y ≤ 2 ∧ t ≤ ε
F low(l) ∧ ṫ = 1

lu

x ≥ 3 ∧ y ≥ 2 ∧ t = 0

Flow(l) ∧ ṫ = 1

l12

x ≤ 3 ∧ y < 2

Flow(l)

t := 0

t := 0

t := 0

t := 0

Figure 2: The HA obtained by applying the construction.

For our translation, we first consider a negation of the
guard G and partition this set into a finite number of dis-
joint sets. Intuitively, in this way, we define the regions from
which the guard can be reached. In our example, we have
two sets Q1 = x < 3 and Q2 = x ≥ 3 ∧ y < 2. For
those sets we introduce auxiliary locations l1 and l2 with the
invariants Q1 and Q2, respectively. We say that the guard
G induces those two locations. Furthermore, those locations
exhibit the same flow as the original location l. In this way,
the behavior of a HA in those locations mimics the behav-
ior in the location l. However, the guard G can be reached

from neither of them. We observe that the state of the orig-
inal HA may generally evolve from Q1 to Q2 or vice versa.
In the current version of the translation, this is, however,
prohibited as Q1 ∩ Q2 = ∅. In order to account for this is-
sue, we add a further auxiliary location l12 with the invariant
x ≤ 3 ∧ y < 2 and connect it to both l1 and l2. Note that
this invariant does not allow to enable the guardG, however,
makes the transition between l1 and l2 possible.

We move on by adding the locations l̆1 and l̆2. We use
these locations to properly reflect the situation when the au-
tomatonHM , by following an activity, reaches the border of
the guard G. For this purpose, we add as invariants the clo-
sures of the sets Q1 and Q2, respectively. Furthermore, we
add a clock t to measure the dwelling time in those locations
and the invariant of the form t ≤ ε. In other words, the HA
might stay at the locations l̆1 and l̆2 at most ε time units. We
will discuss this design choice in more details below.

Finally, we add an urgent location lu, i.e. we leave it for
the target location l′ of the must transition immediately after
entering it. This location features the invariant equal to the
guard G. We use this location to collect all options which
enable the must transition.

Now we discuss the idea behind the ε-invariant of the lo-
cations l̆1 and l̆2. The main challenge in reflecting the must
semantics lies in capturing the first time moment when the
guard is enabled. This becomes problematic if a run does
not proceed to the interior of the guard after touching its
border. We illustrate this problem on the following example
(see Figure 3(a)). Let us assume that the location l has the
flow of the form ẋ ∈ [−1, 1]. In this setting, a HA might
reach the border of the guard using the activity f and switch
afterwards to the activity f0 which is constant in the dimen-
sion x. Therefore, our translation schema would allow the
HA state to evolve according to activity f0 for ε time units
in either location l̆1 or l̆2, whereas the must transition is re-
quired to fire immediately. However, at the same moment,
we observe that all the reachable valuations within those ε
time units are anyway reachable. To see this, we refer to the
following fundamental property of the class of LHA (Wong-
Toi 1997): for the reachable states within one continuous
step, it holds that, if a valuation is reachable by a sequence
of activities, then it is also reachable by a single activity. In
other words, we can always replace a zigzag run with one in
the form of a line. Hence, for the class of LHA, we can con-
clude that the set of reachable valuations of the translation
coincides with the one of the original automaton.

Considering the size of the translation, we observe that for
every must transition (given the negation of its guard can be
partitioned into n disjoint convex polyhedra), our construc-
tion induces O(n2) locations. In common planning bench-
marks, n is typically small. In contrast, the method intro-
duced in Bogomolov et al. does not introduce auxiliary lo-
cations as it over-approximates the must semantics.

Now we proceed to the case of AHA (see Figure 3(b)).
We observe that the run touches the guard twice. Further-
more, we assume that the time progresses for δ time units
in between. We distinguish two cases. If ε ≥ δ, then the
HA can dwell in the locations l̆1 or l̆2 long enough to touch

44



G ≡

x

y

s0
3

2
1

1

G ≡
x ≥ 3 ∧ y ≥ 2

f

f0

(a) LHA

G ≡
x ≥ 3 ∧ y ≥ 3

x

y

s0
3

2
1

1

G ≡
x ≥ 3 ∧ y ≥ 2

(b) AHA

Figure 3: Runs of HA with the may semantics (in location l).

the guard border twice and thus violate the must semantics.
Otherwise, the invariant t ≤ ε ensures that the run reaches
the guard only once. Therefore, by picking a small enough
ε we can ensure that the guard is reached only once before
the invariant t ≤ ε is violated.

Finally, we remark that the set Reach(Hm) still con-
tains the additional states reachable in the locations l̆1
or l̆2 within the ε time units. Moreover, the valuations
of this set are defined for the extra variable t. In or-
der to account for this issue, we compute the projection
Reach(Hm)�{l1,l12,l2,lu,l′},{x,y}.

To extend the technique to HA with multiple locations and
transitions, we apply the construction to each location l of
HM such that l is the source of a must transition. If l has
several outgoing must transitions, then we apply our con-
struction with the guard G equal the union of the individual
guards. Finally, given a may transition from l to another
location l′′, we just add transitions between either those lo-
cations themselves or the corresponding induced locations.

Before presenting a general construction of our transla-
tion, we introduce an auxiliary definition of the boundary.
Given two convex polyhedra A and B, their boundary is

bndry(A,B) = (cl(A) ∩B) ∪ (A ∩ cl(B)). (1)

Clearly, bndry(A,B) is nonempty only if A and B are ad-
jacent to one another or they overlap; otherwise, it is empty.

Now we formally describe our construction. Let HM =
(Loc, X,Lab,Edg ,Flow , Inv , Init) be an automaton with
must semantics, consisting of two locations l and l′ and a
single must transition from l to l′. The transition guard
is provided by a closed convex polyhedron G. Assuming
that [[G]] = Q1 ∪ . . . ∪ Qn, the may automaton Hm =
(Loc′, X ′,Lab′,Edg ′,Flow ′, Inv ′, Init ′) is defined by

• Loc′ = {l′}⋃Loci
⋃
Locb

⋃{lu}. Here, l′ is the tar-
get location of the must transition in HM , lu is a further
auxiliary location, Loci =

⋃
i∈[1..n]{li, l̆i}, and Locb =⋃

i,j∈[1..n]
i6=j

⋃
B∈[[cl(Qi)\G]]

B 6=Qi

bndry(B,Qj)6=∅

{lij}. Intuitively, the set Locb

stores a set of auxiliary locations which are used to ensure
that the transition from the polyhedron Qi to Qj is pos-
sible. In this way, we enable the transitions of the form
Qi → B → Qj . Furthermore, we ensure that B ∩G = ∅,
i.e., it is impossible to reach the guard from B.
• X ′ = X

⋃{t}, where t is an auxiliary clock.
• Edg ′ is defined as follows: For all li ∈ Loc′, it holds that
〈li, µ, l̆i〉 ∈ Edg ′, where µ defines an update function to
reset the variable t ∈ X . For every li ∈ Loc′, if there

exists a location lij ∈ Loc′, then 〈li, µ, lij〉, 〈lij , µ, li〉 ∈
Edg ′, where the guard is true and the update function is
the identity. For every l̆i ∈ Loc′, it holds 〈l̆i, µ, lu〉 ∈
Edg ′, where µ defines an update function to reset the vari-
able t ∈ X . Finally, there is a transition 〈lu, µ, l′〉 ∈ Edg ′,
where the update function corresponds the original update
function and the guard is true.

• Flow ′ is defined as follows: For every location li ∈ Loc′,
Flow ′(li) = Flow(l) holds, where l is the source location
of the must transition in HM . For every location l̆i ∈
Loc′, Flow ′(l̆i) = Flow(l) ∩ {ṫ = 1} holds, where l
is the source location of the must transition in HM , For
every location lij ∈ Loc′, Flow ′(lij) = Flow(l) holds,
where l is the source location of the must transition in
HM , Finally, Flow ′(lu) = Flow(l) ∩ {ṫ = 1}, where l
is the source location of the must transition in HM , and
Flow ′(l′) = Flow(l′).
• Inv ′ is defined as follows: For every location li ∈ Loc′,
Inv ′(li) = Qi holds. For every location l̆i ∈ Loc′ and
some arbitrarily small ε ∈ R≥0, it holds that Inv ′(l̆i) =
cl(Qi) ∩ {t ≥ ε}. For each location lij ∈ Loc′, we
have that Inv ′(lij) = B, where B ∈ [[cl(Qi \ G)]] and
bndry(B,Qj) 6= ∅. Finally, Inv ′(lu) = G∩{t = 0}, and
Inv ′(l′) = Inv(l′).
• For each v ∈ Init(l), if v ∈ Qi then v ∈ Init ′(li) holds.

Otherwise if v ∈ G, then v ∈ Init ′(l′).
According to the description above, our translation offers

the following properties. A formal proof is given in a sepa-
rate technical report (Bogomolov et al. 2015).
Theorem 1. For a hybrid automaton (LHA or AHA)HM =
(Loc, X,Edg ,Flow , Inv , Init) with must transitions fea-
turing closed guards, there exists a hybrid automaton
Hm = (Loc′, X ′,Edg ′,Flow ′, Inv ′, Init ′) with may tran-
sitions and a location set Locε ⊂ Loc′ such that:
1. CReach(HM ) = Reach(Hm)�Loc′\Locε,X for LHA.
2. CReach(HM ) ⊆ Reach(Hm) �Loc′\Locε,X for AHA,

and the approximation can be made arbitrarily precise.
In Theorem 1, the set Locε contains locations of the form

l̆i which are projected away as part of the construction. The
theorem states the equivalence and inclusion relationships
for the set of reachable valuations of the automata, which is
the crucial part in the must behavior translation. The gen-
eral result for the entire reachable state space (including lo-
cations) holds as well (Bogomolov et al. 2015).

4 Conclusions
We have presented the theoretical foundations for translating
hybrid automata with must transitions to hybrid automata
with may transitions. Our construction results in the same
reachable state space for linear hybrid automata. For hybrid
automata with affine dynamics, the resulting reachable state
space is over-approximated in an arbitrarily precise way.
Overall, our construction provides the foundation for exactly
translating PDDL+ problems in their full generality (includ-
ing processes and events) into standard hybrid automata.

45



Acknowledgments
This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.
org/), by the European Research Council (ERC) under grant
267989 (QUAREM), by the Austrian Science Fund (FWF)
under grants S11402-N23 (RiSE) and Z211-N23 (Wittgen-
stein Award), and by the Swiss National Science Foundation
(SNSF) as part of the project “Automated Reformulation and
Pruning in Factored State Spaces (ARAP)”.

References
Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger, T.;
Ho, P.; Nicolin, X.; Olivero, A.; Sifakis, J.; and Yovine, S.
1995. The algorithmic analysis of hybrid systems. Theoret-
ical Computer Science 138:3–34.
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014. Planning as model checking in hybrid domains.
In Proceedings of the Twenty Eighth Conference on Artificial
Intelligence (AAAI-14). AAAI Press.
Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle,
M. 2015. From PDDL+ to hybrid automata: Foundations
of translating must behavior: Proof. Technical Report TR-
2015-3, Verimag.
Bryce, D., and Gao, S. 2015. SMT-based nonlinear PDDL+
planning. In Proceedings of the Twenty Nineth Conference
on Artificial Intelligence (AAAI-15). AAAI Press.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012.
COLIN: Planning with continuous linear numeric change.
Journal of Artificial Intelligence Research (JAIR) 44:1–96.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrig-
ila, B. 2009. UPMurphi: A tool for universal planning on
PDDL+ problems. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS
2009). AAAI.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research (JAIR) 27:235–297.
Li, H. X., and Williams, B. C. 2008. Generative planning
for hybrid systems based on flow tubes. In ICAPS, 206–213.
McDermott, D. V. 2003. Reasoning about autonomous pro-
cesses in an estimated-regression planner. In ICAPS, 143–
152.
Penberthy, J. S., and Weld, D. S. 1994. Temporal planning
with continuous change. In AAAI, 1010–1015.
Shin, J.-A., and Davis, E. 2005. Processes and continuous
change in a sat-based planner. Artif. Intell. 166(1-2):194–
253.
Wong-Toi, H. 1997. The synthesis of controllers for linear
hybrid automata. In IEEE Conf. Decision and Control, 4607
– 4612. IEEE Computer Society.

46




