		1
1		
2	1	
4		
5	2	To eat and not be eaten: Ontimal foraging behavior in suspension feeding
6	-	To cat and not be catched optimier for aging benavior in suspension recaing
7	3	copepods.
8 9		
10	4	Thomas Vischoo ^a & Houshus Lions ^b
11	4	Thomas Kiørdoe & Houshuo Jiang
12		
13 17	5	^a Centre for Ocean Life, National Institute for Aquatic Resources, Technical University
15		
16	6	of Denmark, Kavalergården 6, 2920 Charlottenlund, Denmark; and Department of
17	-	Anglied Ocean Discission of Engineering, Wesde Hele Oceanomy his Institution
18 10	/	Applied Ocean Physics and Engineering, woods Hole Oceanographic Institution,
20	8	Woods Hole MA 02543 USA
21	0	
22	9	
23		
24 25	10	
26		
27	11	Running head: Optimal foraging in zooplankton
28	40	
29 30	12	
31	13	
32	15	
33	14	Corresponding author : Thomas Kiørboe, tk@aqua.dtu.dk; Tel: +45 3588 3401; Cell:
34 35		
36	15	+45 4011 1884; Fax: +45 3588 3434
37		
38	16	
39 40	17	
41	17	
42		
43	18	
44 45		
46		
47		
48		
49 50		
51		
52		
53 54		
54 55		
56		
57		
58		

19	
20	Abstract
21	Zooplankton feed on microscopic prey that they entrain in a feeding current or
22	encounter as they cruise through the water. They generate fluid disturbances as they
23	feed and move, thus elevating their risk of being detected and encountered by predators.
24	Different feeding modes generate different hydrodynamic signals to predators and
25	different predator encounter speeds but may also differ in their efficiency; the optimal
26	behavior is that which maximizes the net energy gain over the predation risk. Here, we
27	show by means of flow visualization and simple hydrodynamic and optimization
28	models that copepods with a diversity of feeding behaviors converge on optimal, size-
29	independent specific clearance rates that are consistent with observed clearance rates of
30	zooplankton, irrespective of feeding mode, species and size. We also predict magnitudes
31	and size-scaling of swimming speeds that are consistent with observations. The
32	rationalization of the magnitude and scaling of the clearance rates of zooplankton makes
33	it more suitable for development of models of marine ecosystems, and is in particular
34	relevant in predicting the size structure and biomass of pelagic communities.
35	Key words: Zooplankton fluid dynamics; Mortality risk; Optimal foraging; Copepod;
36	Centropages typicus; Temora longicornis.
37	

1 2 3

3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
30
22
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
<u>18</u>
40
49
50
51
52
53
54
55
56
50
ວ/ 50
58
59

60

39 INTRODUCTION

Marine zooplankton are the principal consumers of the oceans' primary production. 40 They feed in a viscous and nutritionally dilute environment and they must daily clear an 41 enormous volume of water of prey to cover their needs. The maximum clearance rate of 42 43 zooplankton varies substantially between species, but it scales with body mass when considered over the entire size, taxonomic, and feeding type range of zooplankton, from 44 heterotrophic flagellates a few micrometers long to centimeter sized krill, and the 45 specific clearance rates scatter around a value corresponding to $\sim 10^6$ times their own 46 body volume per day (Hansen et al. 1997, Kiørboe 2011). However, feeding not only 47 leads to acquisition of food but also involves an elevated mortality risk because feeding 48 and swimming generate hydrodynamic disturbances that may be perceived by rheotactic 49 predators (Gallager 1993), and motility increases encounter velocities (Evans 1989). 50 Different feeding modes imply different risks but may also differ in efficiency in terms 51 52 of volume of water cleared. For example, passive ambush feeding creates minimal fluid 53 signals and predator encounter velocities but is inherently less efficient than the more 54 active but 'noisy' feeding strategies of generating a feeding current or cruising through the water to hunt for prey (Kiørboe et al. 2010, Jiang & Kiørboe 2011). The optimal 55 foraging strategy is that which maximizes the clearance rate or energy gain over the 56 mortality risk. Thus, the trade-offs associated with the 3 principal feeding behaviors of 57 zooplankton – ambush feeding, feeding-current feeding (hovering), and cruise feeding – 58 59 determine the optimal feeding strategy and the magnitude and scaling of the clearance rate (Lima & Dill 1990, Visser 2007, Visser et al. 2009, Kiørboe 2011). The magnitude 60 of the clearance rate of zooplankton cannot be explained by its sufficiency to maintain a 61 population because natural selection operates at the level of the individual. The question 62

of what governs the magnitude of the clearance rate may be addressed, however, by quantifying the trade-offs and determining the behavior that optimizes these trade-offs. Here, we attempt to quantify the trade-offs and determine the optimal foraging strategies and resulting clearance rates for zooplankton. We consider only the two active feeding modes since ambush feeding is restricted to a few groups of zooplankton (Kiørboe 2011). The clearance rate is determined by the flow of water past the animal and by its ability to remotely detect and capture prey. The feeding-dependent mortality risk is governed by the fluid disturbances that the animal produce that make it detectable by rheotactic predators, and by the velocity at which it translates through the water that influences the encounter rate with predators irrespective of their sensory modes (rheotactic, visual, or tactic). Hydrodynamics of swimming and feeding in zooplankters are rather well understood, both through observations and flow visualization (Tiselius & Jonsson 1990, Malkiel et al. 2003, Catton et al. 2007, Leptos et al. 2009) and by means of fluid dynamical models (Lighthill 1975, Tiselius & Jonsson 1990, Visser 2001, Jiang et al. 2002a,b). The simplest analytical models to describe zooplankton feeding consider either a hovering zooplankter that generates a feeding current, or a neutrally buoyant one that cruises through the water. Far-field flow fields generated by these behaviors are traditionally approximated by, respectively, a stokeslet, i.e., a stationary downward-directed force that works in a point in the water and exactly balances the gravitational force acting on the animal; or a stresslet, two oppositely directed forces of equal magnitude corresponding to the propulsion force that drives the animal through the water and counterbalances the oppositely directed drag force (Fig. 1, Visser 2001). One conclusion from such simple models is that not only do the imposed flow fields differ significantly, making the hovering feeding mode the more efficient of the two (Lighthill 1975); the hovering zooplankter also generates a fluid signal that extends much further

Under review for J. R. Soc. Interface

89	in the water than that generated by the cruising one, thus exposing it to a greater
90	predation risk. This conclusion is generally supported by observations of copepods
91	(Tiselius & Jonsson 1990, Catton et al. 2007) and microorganisms (Glud & Fenchel
92	1999, Christensen-Dalsgaard & Fenchel 2003). Real zooplankters, however, are neither
93	exactly neutrally buoyant nor apply a force that exactly balances gravity. Rather, most
94	are negatively buoyant, so part of the force generated by the vibrating appendages or
95	cilia goes into countering gravity and generating a feeding current and part into
96	translating the zooplankter through the water. The resulting far-field flow may be
97	described by the sum of a stokeslet and a stresslet (Jiang et al. 2002a, Fig. 1). This
98	idealized model describes the entire range of active feeding behaviors, from pure
99	hovering to pure cruising and, importantly, it quantifies the associated trade-offs, i.e.,
100	the clearance rate from which the animal gains food, and the translation velocity and
101	fluid disturbance that together govern the risk of feeding.
102	Here we use flow visualization of feeding zoonlankters and simple stakes let stresslet
102	There we use now visualization of reeding zooplankters and simple stokesiet-suessiet
103	and optimization models. We show that optimal foraging is consistent with the entire
104	range of feeding behaviors reported for zooplankton and that it predicts specific
105	clearance within the range observed. As study object we use planktonic copepods, the
106	absolutely dominating mesozooplankton group in the ocean (Humes 1994).
107	MATERIAL AND METHODS

108 Experiments

- 109 Late copepodids and adults of two species of copepods, *Temora longicornis* (prosome
- 110 length 0.5 1.0 mm) and *Centropages typicus* (0.9 1.3 mm), were collected from a
- pier in Woods Hole, Massachusetts, USA, at ~ 5 ⁰C and acclimated overnight at room
- temperature ($\sim 20^{0}$ C). Observations were made in small aquaria (65-200 ml) containing
- 113 5-10 copepods, flagellates and diatoms (to stimulate feeding) and 5 μm neutrally

114	buoyant beads to visualize the flow. The flow generated by feeding copepods was
115	visualized using Particle Image Velocimetry (PIV). A red, vertically oriented laser sheet
116	(1 W, 1 mm thick) was directed into the aquarium to illuminate the beads occurring in a
117	well defined plane. We filmed through a dissecting microscope oriented perpendicular
118	to the laser sheet using a high-resolution (1024×1024 pixels) Photron Fastcam 1024 PCI
119	camera with a field of view of 8.24×8.24 mm ² . Recordings were made at 500 Hz and
120	sequences of feeding copepods swimming in the illuminated plane were analyzed at 250
121	Hz, with standard PIV software (DaVis 8, LaVision) to yield flow fields.
122	We analyzed 12 sequences for <i>T. longicornis</i> and 11 for C. <i>typicus</i> (all different
123	individuals). Sequences varied in duration between 500 and 3000 ms. The animal itself
124	was excluded from the PIV analysis by masking it. The areas (excl. the animal) within
125	which the imposed fluid velocity exceeded threshold values, U^* , were measured using
126	ImageJ software for set values of U^* between 0.1 – 3.0 mm s ⁻¹ . For U^* exceeding the
127	translation velocity of the copepod, the cross-sectional area of the copepod was added to
128	estimate the area of influence, S. This area is of interest because the flow component
129	that a rheotactic predator perceives is the velocity generated by the prey (Visser 2001).
130	S is therefore the encounter cross section of the zooplankter towards a rheotactic
131	predator with a threshold velocity for detection, U^* . Animal translation velocities,
132	frequencies of appendage vibration as well as the size (prosome length) of the animals
133	were measured on the videos. The average translation velocity and flow velocities were
134	computed for periods when the flow field had developed fully after onset of swimming.
135	Model
130	We model a hovering zooplankter as a stokeslet, a neutrally buoyant, cruising
138	zooplankter as a stresslet, and we combine the stresslet and stokeslet models to describe
139	the feeding or swimming current of a negatively buoyant, swimming zooplankter (Fig.
139 140	the feeding or swimming current of a negatively buoyant, swimming zooplankter (Fig. 1). The models assume low Reynolds numbers, and we utilize that flow components are

Under review for J. R. Soc. Interface

141	additive at low Reynolds numbers. Equation derivations are given in the electronic
142	supplementary material, Appendix A1. For both models we derive explicit equations for
143	the area of influence, S; for the combined model it can only be calculated numerically.
144	We estimate the zooplankter's clearance rate (Ω) as the flux of water through a circle
145	oriented perpendicular to the direction of the applied force(s) and with its center in the
146	application point of the stokeslet or the center of the stresslet. The radius of this circle is
147	the sensory distance or encounter radius of the zooplankter. The model thus assumes
148	that all prey passing within the sensory or encounter radius are captured and hence
149	provides an upper limit.
150	Optimal foraging
151	The contribution of a particular foraging behavior to the fitness of an organism can be
152	approximated by the ratio of the net gain over the risk associated that behavior (Visser
153	et al. 2009, Gilliam & Fraser 1987, Houston et al. 1993). The optimal foraging behavior
154	is that which maximizes this ratio. Specifically, we define a dimensionless foraging
155	index, χ, as:
156	$\chi = \frac{\Omega - \Omega'}{E + E_0},$
	$\Sigma + \Sigma_0$
157	where $\Omega'(L^3T^{-1})$ is the overhead clearance rate covering basal metabolism and costs of
158	swimming and generating a feeding current, E is the volumetric predator-specific
159	encounter rate ($L^{3}T^{-1}$), and E_{0} is the background mortality normalized by the
160	concentration of predators. E depends on the type of predators present; for rheotactic
161	predators, $E=S(v^2+u^2)^{1/2}$ and for visual and tactic predators, $E=\pi R^2(v^2+u^2)^{1/2}$, where v is
162	the velocity of the predator and R is the detection radius of the predator.
163	Parameterization of the foraging index is described in the electronic supplementary
164	material, appendix A1.
	 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

RESULTS

166	We recorded the fluid flow generated by two free-swimming copepods, Temora
167	longicornis and Centropages typicus. T. longicornis (0.5-1.0 mm prosome length)
168	vibrates its feeding appendages more or less continuously at a frequency of 28 ± 4 Hz,
169	generating a rather constant feeding current that extends a few body lengths away from
170	the animal (Fig. 2). The animal also translates slowly through the water at a speed (1-5
171	body lengths s^{-1}) and direction that depends on the orientation of the animal. The
172	individual shown in Fig. 2 moves horizontally, from right to left, i.e., more or less
173	backwards. The well-defined feeding current pulls in water from above and generates a
174	posteriorly and mainly downward directed jet away from the animal.
175	The velocity of the imposed fluid flow attenuates with increasing distance to the
176	copepod, and the area of influence (S) therefore declines with increasing threshold
177	velocity, U^* . The magnitude of this area, and its scaling with U^* , is quite well described
178	by the combined stokeslet-stresslet model (Fig. 3 A-C).
178 179	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted
178 179 180	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal
178 179 180 181	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding
178 179 180 181	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding
178 179 180 181 182	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding appendages at a significantly higher frequency than <i>T. longicornis</i> (43 ± 5 vs. 28 ± 5
178 179 180 181 182 183	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding appendages at a significantly higher frequency than <i>T. longicornis</i> (43 ± 5 vs. 28 ± 5 Hz; P < 0.001), and <i>C. typicus</i> also translates through the water at a much higher speed
178 179 180 181 182 183 184	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding appendages at a significantly higher frequency than <i>T. longicornis</i> (43 ± 5 vs. 28 ± 5 Hz; P < 0.001), and <i>C. typicus</i> also translates through the water at a much higher speed (5.5 ± 1.7 vs. 3.0 ± 1.5 BL s ⁻¹ ; P = 0.001). During feeding bouts the animal produces a
178 179 180 181 182 183 184 185	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding appendages at a significantly higher frequency than <i>T. longicornis</i> (43 ± 5 vs. 28 ± 5 Hz; P < 0.001), and <i>C. typicus</i> also translates through the water at a much higher speed (5.5 ± 1.7 vs. 3.0 ± 1.5 BL s ⁻¹ ; P = 0.001). During feeding bouts the animal produces a backward-directed jet (Fig. 2B). The backward jet of <i>C. typicus</i> is more pronounced
178 179 180 181 182 183 184 185 186	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding appendages at a significantly higher frequency than <i>T. longicornis</i> (43 ± 5 vs. 28 ± 5 Hz; P < 0.001), and <i>C. typicus</i> also translates through the water at a much higher speed (5.5 ± 1.7 vs. 3.0 ± 1.5 BL s ⁻¹ ; P = 0.001). During feeding bouts the animal produces a backward-directed jet (Fig. 2B). The backward jet of <i>C. typicus</i> is more pronounced than that produced by <i>T. longicornis</i> , but its feeding current is much less defined. The
178 179 180 181 182 183 184 185 186 187	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding appendages at a significantly higher frequency than <i>T. longicornis</i> (43 ± 5 vs. 28 ± 5 Hz; P < 0.001), and <i>C. typicus</i> also translates through the water at a much higher speed (5.5 ± 1.7 vs. 3.0 ± 1.5 BL s ⁻¹ ; P = 0.001). During feeding bouts the animal produces a backward-directed jet (Fig. 2B). The backward jet of <i>C. typicus</i> is more pronounced than that produced by <i>T. longicornis</i> , but its feeding current is much less defined. The spatial structure of the flow field for the example shown in Fig. 2B is roughly
178 179 180 181 182 183 184 185 186 187 188	by the combined stokeslet-stresslet model (Fig. 3 A-C). <i>Centropages typicus</i> (0.9-1.3 mm prosome length) has short feeding bouts, interrupted by sinking events. Feeding and sinking events are of variable but approximately equal durations, 100-500 ms. During feeding bouts the animal vibrates its feeding appendages at a significantly higher frequency than <i>T. longicornis</i> ($43 \pm 5 \text{ vs. } 28 \pm 5$ Hz; P < 0.001), and <i>C. typicus</i> also translates through the water at a much higher speed ($5.5 \pm 1.7 \text{ vs. } 3.0 \pm 1.5 \text{ BL s}^{-1}$; P = 0.001). During feeding bouts the animal produces a backward-directed jet (Fig. 2B). The backward jet of <i>C. typicus</i> is more pronounced than that produced by <i>T. longicornis</i> , but its feeding current is much less defined. The spatial structure of the flow field for the example shown in Fig. 2B is roughly approximated by that predicted from the combined stokeslet-stresslet model for the

Under review for J. R. Soc. Interface

190	The flow field generated by <i>C. typicus</i> fluctuates with the activity (swimming-sinking)
191	of the animal, but the response is not immediate: The area of influence increases for
192	some time after the onset of the vibration of the feeding appendages; similarly, after
193	cessation of appendage movements, the area of influence attenuates over some time. For
194	example, it takes about 300 ms for $S(U^* = 0.6 \text{ mm s}^{-1})$ to stabilize. This time scale may
195	be compared to the viscous time scale (S/viscosity), which is of the order of 1 s for $S \sim 1$
196	mm^2 . For smaller values of U^* , the area of influence increases, and the temporal
197	variation in the extension of the flow field declines. Hence, at further distances, the
198	signal perceived by a predator becomes more temporally uniform. The extension and
199	dependency of U^* of the stabilized area of influence are again well approximated by the
200	combined stokeslet-stresslet model (Fig. 3 D-F).

201 DISCUSSION

The simple stokeslet-stresslet model captures essential features of the observed flow fields generated by two copepod species with rather different behaviors, i.e., one near hovering and with a rather well developed feeding current (*T. longicornis*), and one that cruises relatively fast through the water and has a less well developed feeding current (C. typicus). The spatial extension of the flow field is of the same magnitude as that predicted (Fig. 2, 3). The observed scaling of the area of influence (S) with the threshold velocity (U^*) appears to deviate slightly but systematically from that predicted, having a slightly steeper slope. The main reason for the slower-than-anticipated spatial attenuation of the flow is likely to be the unavoidable background convection in the observation aquaria. However, the overall fair correspondence warrants using this idealized model to evaluate the trade-offs associated with the hovering, cruising, and intermediate behaviors. The trade-offs are in the magnitude of the clearance rate (Ω), the area of influence (S), and the swimming velocity (u) that together determine the fitness-contribution of the behavior, as defined by the foraging index, γ .

216	Feeding behavior and the fitness contribution of the feeding behavior so defined are
217	solely functions of the magnitude of the force that the zooplankter generates and of its
218	excess density ($\Delta \rho$). Both are under partial control of the animal on an evolutionary time
219	scale, and we can therefore construct landscapes of the foraging index within this
220	parameter space (Fig. 4). The diagonal in these plots corresponds to the force exactly
221	balancing gravity: the zooplankter is hovering. Below this line, the animal produces a
222	feeding current and translates through the water, the faster the further away from the
223	diagonal. At $\Delta \rho = 0$ the zooplankter is a 'pure' cruiser with no feeding current.
224	In the presence of visual or tactile predators only (Fig. 4A-C), the global optimum of the
225	foraging index landscape suggests that the zooplankter should be hovering and be very
226	heavy and generate a correspondingly large force. However, there is a limit to how
227	much muscle force a zooplankter can produce and how heavy it can be, and the optimal
228	strategy depends on whether the zooplankter is limited by its density or by the force it
229	can produce (Fig. 4A-F). The maximum mass-specific net force output of muscle
230	motors is strikingly constant across all animal taxa, including both vertebrates and
231	invertebrates, it is limited by material fatigue rather than power production, and it
232	averages a temperature-independent value of 57 N kg ⁻¹ muscle (Marden 2005, Marden
233	& Allen 2002). Assuming that 20 % of the copepod volume is muscle (Lenz et al.
234	2004), this corresponds to about 10^4 N m ⁻³ . Mass-specific force output of ciliary motors
235	may be higher (Marden 2005). If force rather than excess density is the limiting factor,
236	hovering should always be the preferred strategy independent of organism size if visual
237	and tactic predators dominate (Fig. 4A-C).
238	The limit to how dense a zooplankter can be, however, typically defines a more narrow
239	constraint. Excess densities of most zooplankters, evaluated from direct measurements

or from sinking speeds, are <30 kg m⁻³ - from ciliates to copepods and including even

larvae of echinoderms with calcified skeletons (Knutsen et al. 2001, Dunham & Child

Under review for J. R. Soc. Interface

1961, Pennington & Strathman 1990). Only shelled forms, such as bivalve larvae and pteropods (wing snails), have much higher densities, $\sim 100 \text{ kg m}^{-3}$ (Davenport & Bebbington 1990, Wildish & Kristmanson 1997). There are obvious disadvantages to a high excess density; there are costs of maintaining ion pumps and depositing ballast (Visser et al. 2009), and a high density hampers rapid escape jumps, essential for predator avoidance in many zooplankters, from flagellates and ciliates to copepods (Jakobsen 2001, Buskey et al. 2002). With density as the limiting factor, there is a clear optimum in the foraging index landscape that depends on the excess density that the zooplankter can achieve (Fig. 4A-C). The optimum force production and the resulting specific clearance rate are both largely invariant with density, and the optimum specific clearance is $\sim 10^6 \text{ d}^{-1}$. The optimum swimming velocity depends on the excess density (the denser and slower the better) but the predicted magnitudes are comparable with those observed for zooplankters of this size (Fig. 5) and realized by the experimental organisms examined here. In the presence of only rheotactic predators, or for zooplankters too small to be detected by vision and where hydrodynamic perception are more important, there is a global optimum in the foraging index landscape within the likely constraints set by density and force production, at least for intermediately sized zooplankters (Fig. 4D-F). The predicted specific clearance rate at the optimum is similar to that predicted above, i.e., of order 10⁶ d⁻¹. Again the predicted strategy changes if the optimum excess density or force is unachievable and depends on whether one or the other is limiting. If force is the limiting factor, the optimum strategy is either hovering at low forces, or slow swimming with higher forces, and the optimum density is $< 100 \text{ kg m}^{-3}$, consistent with observations. The predicted swimming velocities are of the same order as for tactile and visual predation (Fig. 5).

2
3
4
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
19
20
21
22
23
24
24
25
26
27
28
29
30
24
31
32
33
34
35
36
27
37
38
39
40
41
42
43
10
44
45
46
47
48
49
-5 50
50
51
52
53
54
55
56
50
5/
58
59
60

267	Zooplankters may overcome limitations caused by low excess density in various ways:
268	they may attach to solid surfaces such as those provided by marine snow and utilized by
269	some flagellates (Fukuda & Koike 2000); they may increase their drag by attaching to
270	particles as reported for some free-living flagellates (Christensen-Dalsgaard & Fenchel
271	2003) or by producing mucus strings such as done by some bivalve larvae (Fenchel &
272	Ockelmann 2002); or they can otherwise be equipped with 'drift anchors', such as some
273	copepods that have long, plumose appendages (Kiørboe 2011). These are common
274	strategies that can be readily understood in the foraging optimization framework.
275	While the predicted optimum strategy is sensitive to the choice of parameters and
276	underlying assumptions, the magnitude of the optimum specific clearance rate is not;
277	even order-of-magnitude variation in input parameters leads to rather small changes in
278	predicted specific clearance rate that remains of order $10^6 - 10^7 d^{-1}$ and within the range
279	observed (Table 1). Even if we make the extreme assumption that there are no
280	metabolic costs and no background mortality (i.e., $\Omega' = 0$ and $E_0 = 0$) then for realistic
281	excess densities (say, 5 kg m ⁻³) the predicted clearance rates are within a factor of 5 of
282	those predicted for default parameters, and well within the range observed (Fig. 5).
283	Our model considers the feeding behaviors that are hardwired in the genes of the
284	zooplankter and, hence, the potential clearance rates that are adapted to the general
285	environment. This is the clearance rate that one can measure at non-saturating
286	concentrations in an experimental bottle, and these are the rates taken from the literature
287	and to which we compare our predictions (Fig. 5, Hansen et al. 1997, Kiørboe 2011).
288	Obviously, zooplankton may in addition adapt behaviorally on short time scale to their
289	immediate environment, and realized clearance rates may therefore be lower due to food
290	saturation or presence of predators (Visser 2007).

Under review for J. R. Soc. Interface

While we have used copepods as model organisms in this study, our results may apply more generally to marine zooplankton, because the present categorization of feeding behaviors applies to other zooplankters as well (Kiørboe 2011). However, the model is invalid for some very small zooplankters that operate at low Péclet numbers, where diffusion rather than advection governs prey encounter (Langlois *et al.* 2009), and for the largest zooplankters (krill, jellyfish), where the assumption of low Reynolds number is violated.

Sensitivity of the predicted feeding behavior to changes in parameter values and in particular to variation in the excess density that a zooplankter can achieve may account for the huge diversity in feeding behaviors that one can observe in nature. Copepod feeding behaviors, for example, range from very nearly hovering to very fast cruising with velocities of > 10 body lengths s⁻¹, and cruising and hovering may even be found within the same species (Tiselius & Jonsson 1990, Mazzocchi & Paffenhöfer 1999). The same range of behaviors is found among small zooplankters that may swim fast (10-100 body lengths s⁻¹; Hansen *et al.* 1997), or 'pseudohover' by attaching to surfaces.

While our model predicts rather well the central tendency in the observations of clearance rates and swimming velocities over a 6 order-of-magnitude range in individual biomasses and for very diverse zooplankters, there is substantial variability in the observations of in particular specific clearance rates (Fig. 5). This variability may be explained by factors that are not accounted for in our simple model. Higher clearance rates may be due to a number of potential mechanisms: zooplankters may hide from rheotactic predators in turbulence and hence can afford a stronger fluid signal, and turbulence may lead to behavior-independent increases in both predator- and prey contact rates (Rothschild & Osborne 1984), all leading to higher optimum clearance rates. Predators may be selective and zooplankters may escape predators, which imply

Page 14 of 26

that predation mortality rate is less than predator encounter rate and thus allows for a more risky zooplankton behavior. Lower zooplankton clearance rates may similarly be predicted if zooplankters are selective and if their prey can escape or defend themselves (e.g. spines), or if the zooplankton predators are mainly visual ambush feeders. In general, different species of copepods and zooplankton may be adapted to different environments and possess defense and sensory capabilities as indicated above, which together may account for the substantial scatter in clearance rates observed between species. The magnitude of the zooplankton clearance rate has interest on its own as it governs the growth, reproduction and entire bioenergetics of the individuals. However, it also

327 has implications for properties of the ecosystem: the biomass – not the productivity – of

planktonic ecosystems is inversely related to the magnitude of the clearance rate of the

329 zooplankton. This result follows both from ecosystem size spectra theory (Andersen &

Beyer 2006) and from simple predator-prey models, such as Lotka-Volterra: the

biomass of both predators and prey are inversely related to the magnitude of the

332 predator's clearance rate (Pielou 1969). Thus, the biomass of planktonic ecosystems is a

333 property that partly emerges from interactions between individuals that, in turn, are

334 governed by natural selection.

ACKNOWLEDGMENT. The work was supported by grants from the Danish Council
for Independent Research, The Niels Bohr Foundation, and The Carlsberg Foundation
to TK, and by grants from the U.S. National Science Foundation to HJ (NSF OCE1129496 and ISO-0718506).

Page 15 of 26	Under review for J. R. Soc. Interface
	15
1 2 34(References
4 341 5	Andersen, K.H. & Beyer, J.E. 2006 Asymptotic size determines species abundance in
6 342 7 342	the marine size spectrum. Am. Nat. 168, 54-61. (doi: 10.1086/504849)
8 9 343 10	Buskey, E.J., Lenz, P.H. & Hartline, D.K. 2002 Escape behavior of planktonic
11 344 12	copepods in response to hydrodynamic disturbances: High-speed video analysis.
13 14 345	Mar. Ecol. Prog. Ser. 235, 135–146. (doi: 10.3354/meps235135)
16 346 17	Catton, K.B., Webster, D.R., Brown, J. & Yen, J. 2007 Quantitative analysis of tethered
18 19 347	and free-swimming copepodid flow fields. J. Exp. Biol. 210, 299-310.
20 21 348 22	(doi:10.1242/jeb.02633)
23 24 349	Christensen-Dalsgaard, K.K. & Fenchel, T. 2003 Increased filtration efficiency of
25 26 350	attached compared to free-swimming flagellates. Aquat. Microb. Ecol. 33, 77-86.
27 28 351 29	(doi:10.3354/ame033077)
30 31 352	Davenport, J. & Bebbington, A. 1990 Observations on the swimming and buoyancy of
32 33 353 34	some cosomatous pteropod gastropods. J. Mollus. Stud. 56, 487-497.
35 36 354	Dunham, P.B. & Child, F.M. 1961 Ion regulation in Tetrahymena. Biol. Bull. 121, 129-
37 38 355 39	40.
40 356 41 356	Evans, G.T. 1989 The encounter speed of moving predator and prey. J. Plankton Res.
42 43 357 44	11, 415-417.
45 358 46	Fenchel, T. & Ockelmann, K.W. 2002 Larva on a string. Ophelia 56, 171-178.
47 48 359 49	Fukuda, H. & Koike, I. 2000 Feeding currents of particle-attached nanoflagellates-a
50 360 51	novel mechanism for aggregation of submicron particles. Mar. Ecol. Prog. Ser.
52 53 361 54	202 , 101–112. (doi:10.3354/meps202101)
55 362 56	Gallager, S.M. 1993 Hydrodynamic disturbances produced by small zooplankton: case
57 58 363 59 60	study for the veliger larva of a bivalve mollusk. J. Plankton Res. 15, 1277-1296.
	http://mc.manuscriptcentral.com/jrsi

	10					
364	Gilliam, J.F. & Fraser, D.F. 1987 Habitat selection under predation hazard: test of a					
365	model with stream-dwelling minnows. Ecology 68, 1856–1862.					
366	(doi:10.2307/1939877)					
367	Glud, R.N. & Fenchel, T. 1999 The importance of ciliates for interstitial solute transpor					
368	in benthic communities. Mar. Ecol. Prog. Ser. 186, 87-93.					
369	(doi:10.3354/meps186087)					
370	Hansen, P.J., Bjørnsen, P.K. & Hansen, B.W. 1997 Zooplankton grazing and growth:					
371	scaling within the 2-2,000-µm body size range. Limnol. Oceanogr. 42, 687-704.					
372	Houston, A.I., McNamara, J.M. & Hutchinson, J.M.C. 1993 General results concerning					
373	the trade-off between gaining energy and avoiding predation. Phil. Trans. R. Soc.					
374	Lond. B 341, 375-397. (doi:10.1098/rstb.1993.0123)					
375	Humes, A.G. (1994). How many copepods? Hydrobiologia, 292/293, 1-7.					
376	Jakobsen, H.H. 2001 Escape response of planktonic protists to fluid mechanical signals.					
377	Mar. Ecol. Prog. Ser. 214, 67-78. (doi:10.3354/meps214067)					
378	Jiang, H., Osborn, T.R. & Meneveau, C. 2002a The flow field around a freely					
379	swimming copepod in steady motion: Part I theoretical analysis. J. Plankton Res.,					
380	24, 167-189. (doi: 10.1093/plankt/24.3.167)					
381	Jiang, H., Meneveau, C. & Osborn, T.R. 2002b The flow field around a freely					
382	swimming copepod in steady motion: Part II numerical simulation. J. Plankton					
383	Res. 24, 191-213. (doi:10.1093/plankt/24.3.191)					
384	Jiang, H. & Kiørboe, T. 2011 The fluid dynamics of swimming by jumps in copepods.					
385	J. Roy. Soc. Interface 8, 1090-1103. (doi:10.1098/rsif.2010.0481)					
386	Kiørboe, T. 2011 How zooplankton feed. Mechanisms, traits and trade-offs. Biol. Rev.					
387	86 , 311–339. (doi:10.1111/j.1469-185X.2010.00148.x)					
	http://mc.manuscriptcentral.com/jrsi					

388	Kiørboe, T., Jiang, H. & Colin, S.P. 2010 Danger of zooplankton feeding: The fluid
389	signal generated by ambush feeding copepods. Proc. Ro. Soc. B 277, 3229-3237.
390	(doi:10.1098/rspb.2010.0629)
391	Knutsen, T., Melle, W. & Calise, L. 2001 Determining the mass density of marine
392	copepods and their eggs with a critical focus on some previously used methods. J.
393	Plankton Res. 23, 859-873. (DOI: 10.1093/plankt/23.8.859)
394	Langlois, V., Andersen, A., Bohr, T., Visser, A. & Kiørboe, T. 2009 Significance of
395	swimming and feeding currents for nutrient uptake in osmotrophic and interception
396	feeding flagellates. Aquat. Microbiol. 54, 35-44. (doi: 10.3354/ame01253)
397	Lenz, P.H., Hower, A.E. & Hartline, D.K. 2004 Force production during pereiopod
398	power strokes in Calanus finmarchicus. J. Mar. Syst. 49, 133–144.
399	(doi:10.1016/j.jmarsys.2003.05.006
400	Leptos, K.C., Guasto, J.S., Gollub, J.P., Pesci, A.I. & Goldstein, R.E. 2009 Dynamics of
401	Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic
402	Microorganisms. Phys. Rev. Lett. 103,
403	198103.(doi:10.1103/PhysRevLett.103.198103)
404	Lighthill, J. 1975 Flagellar hydrodynamics. SIAM Review 18, 161–230.
405	Lima, S. & Dill, L.M. 1990 Behavioral decisions made under the risk of predation: a
406	review and prospectus. Can. J. Zool. 68, 619-640. (doi: 10.1139/z90-092)
407	Malkiel, E., Sheng, I., Katz, J. & Strickler, J.R. 2003 The three-dimensional flow field
408	generated by a feeding calanoid copepod measured using digital holography. J.
409	Exp. Biol. 206, 3657–3666. (DOI: 10.1242/jeb.00586)
410	Marden, J.H. 2005 Scaling of maximum net force output by motors used for
411	locomotion. J. Exp. Biol. 208, 1653-1664. (doi: 10.1242/jeb.01483)

Marden, J.H. & Allen, L.R. 2002 Molecules, muscles, and machines: universal performance characteristics of motors. Proc. Natl. Acad. Sci. USA 99, 4162-4166. (doi:10.1073/pnas.022052899) Mazzocchi, M.G. & Paffenhöfer, G.A. 1999 Swimming and feeding behaviour of the planktonic copepod Clausocalanus furcatus. J. Plankton Res. 21, 1501-1518. (doi: 10.1093/plankt/21.8.1501) Pennington, J.T. & Strathman, R.R. 1990 Consequences of the calcite skeletons of planktonic echinoderm larvae for orientation, swimming, and shape. Biol. Bull. 179, 121-133. Pielou, E.C. 1969 An Introduction to Mathematical Ecology. New York: Wiley-Interscience. Rothschild, B. R. & Osborn, T. R. 1988 Small-scale turbulence and plankton contact rates. J. Plankton Res. 10, 465-474 Tiselius, P. & Jonsson, P.R. 1990 Foraging behavior of 6 species of calanoid copepods - observations and hydrodynamic analysis. Mar. Ecol. Prog. Ser. 66, 23-33. Visser, A.W. 2001 Hydromechanical signals in the plankton. Mar. Ecol. Prog. Ser. 222, 1-24. (doi:10.3354/meps222001) Visser, A.W. 2007 Motility of zooplankton: fitness, foraging and predation. J. Plankton *Res.* **29**, 447-461. (doi:10.1093/plankt/fbm029) Visser, A.W., Mariani, P. & Pigolotti, S. 2009 Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J. Plankton Res. 31, 121-133. (doi:10.1093/plankt/fbn109) Wildish, D.J. & Kristmanson, D.D. 1997 Benthic Suspension Feeders and Flow. Cambridge University Press, Cambridge, United Kingdom.

436	
437	
438	Legends for figures
439	Figure 1. Illustration of the three simple models used to describe (A, D) a hovering
440	zooplankter (stokeslet), (B, E) a cruising zooplankter that is neutrally buoyant
441	(stresslet), and (C, F) a cruising zooplankter that is negatively buoyant (stokeslet +
442	stresslet). The upper panels show the forces acting on the water (as vectors) and the
443	lower panels the velocity contour lines superimposed on flow velocity vectors for the
444	three models. The forces acting on the water due to a hovering and a cruising
445	zooplankter are described in the text. The negatively buoyant cruising zooplankter acts
446	with three forces on the water (C), one downward force to counter gravity (the stokeslet
447	component), and two forces corresponding to the propulsion and drag forces (the
448	stresslet component). The flow velocity at any point in space in the combined model is
449	simply the sum of velocity contributions from the stokeslet and the stresslet
450	components. The cruising zooplankter swims at velocity U, the stokeslet is of the point-
451	force magnitude W_{excess} (the zooplankter's excess weight), and the stresslet of intensity
452	$6\pi\mu a_{\rm e} \mathbf{U} \times 2a_{\rm e}$. The calculation example uses parameters for the <i>Centropages typicus</i>
453	shown in Fig. 3B.
454	Figure 2. Examples of instantaneous flow fields of feeding <i>Temora longicornis</i> (A) and
455	<i>Centropages typicus</i> (B). Regions with flow velocities exceeding $U^* = 0.6 \text{ mm s}^{-1}$ are
456	shaded white.
457	Figure 3. Examples of observed and modeled magnitude of 'area of influence', S, as a

458 function of the threshold velocity, U^* . A-C are *Temora longicornis*; D-E are

Centropages typicus. L and *u* are prosome length and swimming speed, respectively.

460	Fig 4. Landscapes of the foraging index for 3 sizes of zooplankters in the presence of					
461	visual/tactile predators (A-C) or rheotactic predators (D-F) and optimum swimming					
462	velocities ($u_{optimal}$) as a function of excess density ($\Delta \rho$) of the zooplankter (G-I). The					
463	landscapes are contoured in the parameter space of the excess density of the zooplankter					
464	and the body-volume specific force that it produces (f^*). Black lines in (A-F) are					
465	contour lines for body-volume specific clearance rates (x $10^6 d^{-1}$). Purple and blue lines					
466	in (A-F) describe the optimum foraging behavior when, respectively, force production					
467	or excess density limits the performance of the zooplankter. We used $V = 0.059 L^3$ to					
468	convert between body length (L) and body volume (V)					
469	Figure 5. Comparisons of observed and predicted clearance rates and swimming speeds					
470	of zooplankton. All observed values are those compiled by Kiørboe (2011). Clearance					
471	rates are unsaturated rates on prey of near optimal size. ESD is the equivalent spherical					
472	diameter of the zooplankter. For the purpose of comparison, the ESD and equivalent					

body volume of jellyfish with an inflated volume were computed from their body

carbon and as if they had a carbon density similar to that of other zooplankters (10^5 g C

m⁻³). The predicted values are for zooplankters of lengths L = 0.03 mm, 0.3 mm, 1.0

mm, and 2.5 mm and the predictions are based on default values of all parameters.

Under review for J. R. Soc. Interface

Table 1. Sensitivity analyses. Predicted body-volume specific clearance rates ($\times 10^6 \text{ d}^{-1}$)

for a L = 1 mm zooplankter using default input parameters (see electronic

480 supplementary material, appendix A1) and input parameters varying by 1 or 2 orders of

481 magnitude relative to the default. Predictions are reported for scenarios with only

482 rheotactic or only visual/tactic predators and assuming excess densities ($\Delta \rho$) of 5 or 99

483 kg m⁻³ for the latter.

Parameter	Deviation from	Rheotactic	Visual, $\Delta \rho = 5 \text{ kg m}^{-3}$	Visual, $\Delta \rho = 99 \text{ kg m}^{-3}$
	default value			
Default	-	1.91	3.36	15.7
Zooplankton food	× 10	0.425	6.59	15.6
concentration, e	× 10 ⁻¹	3.62	1.15	15.5
Basal metabolism,	× 10	2.54	3.57	15.8
$M_{ m b}$	× 10 ⁻¹	1.91	3.36	15.7
Detection radius of	× 10	-	3.00	15.5
visual predator, R	× 10 ⁻¹	-	4.62	18.6
Detection radius of	× 3	3.80	4.33	45.5
hovering	× 3 ⁻¹	1.54	3.06	6.58
zooplankter, R _{hovering}				
Detection radius of	× 3	18.2	93.2	74.1
cruising zooplankter,	$\times 3^{-1}$	1.19	0.80	15.1
$R_{ m swimming}$				
Fluid velocity	× 3	4.16	-	-
threshold for prey				
detection in	$\times 3^{-1}$	1.09	-	-
rheotactic predator,				
U				
Predator swimming	× 3	1.10	4.27	17.3
velocity, v	$\times 3^{-1}$	2.25	2.56	15.2
Feeding independent	× 10	4.65	4.20	17.0
background	$\times 10^{-1}$	0.492	3.07	15.6
mortality, β				
Efficiency of energy	× 10	2.25	9.90	15.8
conversion, η				

http://mc.manuscriptcentral.com/jrsi