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The shallow water acoustic channel supports far-field propagation in a discrete set of 
modes. Ocean experiments have confirmed the modal nature of acoustic propagation, 
but no experiment has successfully excited only one of the suite of mid-frequency 
propagating modes propagating in a coastal environment. The ability to excite a 
single mode would be a powerful tool for investigating shallow water ocean pro
cesses. A feedback control algorithm incorporating elements of adaptive estimation, 
underwater acoustics, array processing and control theory to generate a high-fidelity 
single mode is presented. This approach also yields a cohesive framework for evalu
ating the feasibility of generating a single mode with given array geometries, noise 
characteristics and source power limitations. Simulations and laboratory waveguide 
experiments indicate the proposed algorithm holds promise for ocean experiments. 
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Write down the vision 

Clearly upon the tablets, 

so that one can read it readily. 

For the vision still has its time, 

presses on to fulfillment, and will not disappoint; 

If it delays, wait for it, 

it will surely come, it will not be late. 

Habakuk 2:1-2 
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Chapter 1 

Introduction 

The shallow water channel is a waveguide for pressure waves, supporting propagation 

for a discrete set of normal modes in t he far field, [1], [2]. Ocean acoustics problems 

such as internal wave tomography [3], [4] remote sensing [5], and noise propagation 

[6] [7] often discuss propagation in terms of modes. Numerous experiments have 

verified the modal model of propagation in the shallow water [8], [9], [2], [10], [11], 

but no mid-frequency (circa 400 Hz) ocean experiment has successfully excited a 

single mode in a shallow water environment. 

This thesis proposes an algorithm for controlling a vert ical array of narrowband 

sources such that the pressure field in the shallow water acoustic channel measured 

at a reference location consists of only a single mode. While none of the individ

ual aspects of the proposed algorithm are original, the synthesis of t hese elements 

produces a novel approach to excit ing a single mode. The algorithm uses feedback 

cont rol to obtain the desired pressure field at the reference hydrophone array. This 

technique is commonly used for pressure field control in open-air acoustics applica

t ions such as active noise cont rol [12], [13] but is not often used in the underwater 

acoustics community. The specific feedback technique used to control the pressure 

field at the feedback array is the method of indirect control as described by Narendra 

and Annaswamy [14]. The control algorithm estimates the Green's function between 
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each element of the source array and each hydrophone of the reference array. This 

matrix of estimated Green's functions is then inverted to determine the shading to 

apply to the source array in order to obtain the desired pressure field at the feedback 

hydrophone array. Both the acoustic model and control algorithm are simple and 

standard techniques in their respective fields. Although much more sophisticated 

approaches to the feedback control algorithm and ocean acoustics are possible, this 

simple approach will allow a clearer understanding of the problem in this preliminary 

investigation. If the algorithm proposed using these straightforward ideas proves suc

cessful here, further investigations can determine if more sophisticated approaches 

to both the acoustics and control can provide further gains. 

Although the feedback control algorithm requires measurements of the sound 

speed profile at the feedback array, it obviates the need for detailed a priori infor

mation throughout the control volume in order to excite the desired pressure field. 

Previous work exciting a single mode in a laboratory waveguide exploited detailed 

environmental knowledge and time-invariance to find the array weights for exciting 

a single mode analytically [15], [16] . While these experiments successfully controlled 

the pressure in laboratory tanks in open loop mode, this approach appears unlikely 

to work in an arbitrary ocean situation without detailed knowledge of the environ

ment. Range inhomogeneities in the environment may couple energy among modes 

or from the continuum into propagating modes before the pressure wave reaches the 

desired observation volume. 

T he distribution of propagating modes can be inferred from the pressure field 

sampled at the locations of the hydrophones in the reference array. This estimation 

problem is known as mode filtering in the ocean acoustics literature [17], [9]. A 

variety of algorithms have been proposed for solving this inverse problem. The 

sensitivity of this estimate to noise depends on the geometry of t he hydrophone array 

and the mode filtering algorithm. A crucial issue for this thesis is determining how 

the error between the desired and observed pressure profiles is related to the error 
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between the desired and actual mode distribution propagating in the channel. This 

problem and mode filtering are intrinsically related. The control theory framework 

developed in this thesis for determining the observability of modes can offer insight 

into this problem. 

Source Array 

..... ····· 

Feedback Array 

... .. · 

···· ...... 
. . . . 

.. 

1-2 km 10-20 km 

r=O r = rF 

Figure 1-1: Proposed Experimental Setup 

Observation Array 

Figure 1-1 shows the proposed experiment configuration. The region between 

the source and feedback arrays will be called the feedback volume, while the region 

between the feedback and observation arrays will be referred to as the observation 

volume. The feedback algorithm attempts to control the pressure field such that 

only a single mode is propagating at the start of the observation volume, i.e. , at the 

feedback array. This allows the observers at the observation array to be confident 

the pressure field they measure was generated by a high-fidelity mode impinging on 

the observation volume. The source array is tended by a ship, while the feedback 

array is located at rp = 1-2 km downrange, at the start of the far field [18]. The 

far-field is defined as beginning at the range where all the significant energy prop

agating in the waveguide is described by the trapped modes. The feedback array 

transmits the pressure observed at its hydrophones back to the source ship over a ra-
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dio telemetry link. The scientific observation array is deployed 10-20 km downrange 

to measure the distribution of modes emerging from the observation region. For the 

purposes of the pressure received at the observation array, the feedback array can be 

considered a virtual source exciting the ocean at that location with a single mode. 

Knowing the pressure field entering the observation volume consisted of only a single 

mode, the modes arriving at the observation array can give information about the 

oceanographic properties of the intervening water mass. 

Several studies have examined the effect of internal waves on acoustic propagation 

in the coastal environment. Lee [19) used a ray approach to demonstrate the presence 

of internal waves supported on a thermocline intensified the contrast in the shadow 

zones compared with a similar environment without the internal waves. Studies by 

Zhou, Zhang and Rogers [4) and Peregrym [3) simulated the propagation of acoustic 

normal modes through internal wave packets with sinusoidal displacement profiles. 

These simulations demonstrated a narrowband resonance coupling energy between 

modes when the difference between the modes' horizontal wavenumbers equaled the 

spatial wavenumber of the internal wave packet. More recent work by Preisig and 

Duda [20) have found the earlier studies may have exaggerated the narrowness of 

the resonance by using an unrealistically periodic displacement profile. All of this 

work indicates that given the pressure field entering the observation volume contains 

only one mode, the modes observed at the observation array contain significant 

information about the properties of any internal waves in that volume. 

The problem of exciting a single mode using feedback control incorporates ele

ments of underwater acoustics, mode filtering, control theory, and signal processing. 

The subsequent sections of this chapter summarize relevant aspects of each of these 

disciplines. 

Chapter 2 describes the proposed control algorithm obtained by synthesizing the 

material covered in Chapter 1. First, a model is proposed for the acoustic channel 

of the feedback volume. The indirect control algorithm developed in this chapter 
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first estimates the parameters of the channel model, then uses this model to choose 

the complex source weights to excite the desired pressure field at the feedback array. 

Several different estimators are presented for the identification of the channel model. 

The proposed control algorithm is evaluated in Chapter 3 in simulations of a vari

ety of shallow water ocean environments. All of the environments modeled are based 

on measured profiles from the South Continental Shelf off Martha's Vineyard. The 

propagation for these environments is simulated using the finite-element parabolic 

equation (FEPE) approximation to the wave equation [21]. 

In addition to the simulations, the thesis presents results from a series of ex

periments using the algorithm to control the pressure field at a hydrophone array 

in a scale model laboratory waveguide. These experiments, described in Chapter 

4, demonstrate the algorithm is robust enough to work in real time with actual 

sources, hydrophones, and acoustic waves propagating through water. The different 

algorithms for estimating the channel model are examined for both steady state and 

transient performance. 

Chapter 5 makes conclusions about t he algorithm proposed based on the simu

lations and experiments described in the thesis. In addition, this chapter suggests 

future directions for developing algorithms for single mode excitation and other pos

sible uses for feedback control and single mode excitation in ocean acoustics. 

1.1 Normal Mode Model for Acoustic Propaga

tion 

The pressure field for a t ime-harmonic point source located at r 0 in a range-independent 

environment can be described by the wave equation [22], 

p(z)\7 · [ptz) V'p(r )] + k2 (z)p(r) = -47r<5(r- ro), (1.1) 
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where r = (r, 8, z) is the observer's location in cylindrical coordinates, r 0 = (0, 0, z0 ) 

is the source location, and the wavenumber k ( z) = w / c( z) is the ratio of the angular 

frequency to the depth-dependent sound speed. Assuming cylindrically symmetric 

solutions separable in range and depth of the form 

p(r, z) = Wm(z)Rm(r) (1.2) 

yields the normal mode solution for the field (22], (23), and (1]. Substituting Eq. 1.2 

into the homogeneous form of Eq. 1.1 and separating the functions of depth and 

range gives the differential equations specifying the eigenfunctions for each of these 

coordinates: 

where the separation constant is k~, its square root km is the horizontal wavenumber, 

and kzm(z) = JP(z ) - k~ is the vertical wavenumber. 

The total solution for the pressure will be a superposit ion of all solutions of the 

form of Eq. 1.2 

p(r, z) = L am(zo)Wm(z)Rm(r). (1.5) 
m 

Substituting this expression into Eq. 1.1 and simplifying the resulting equation with 

Eq. 1.3 reveals 

Rm(r) 

w:n(zo) / p(zo), 

(1.6) 

(1.7) 

where Ha1
) ( kmr) is the zeroth-order Hankel function of the first kind, and the oper

ator ( · )* denotes complex conjugation. Combining these gives the solut ion for the 
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pressure field: 
- 'l.?r ~ * (1) p(r,z)- -(-) L..t wm(zo)'llm(z) H0 (kmr). 

p Zo m 
(1.8) 

For the far field (kmr » 1) , the Hankel function can be replaced by its asymptotic 

approximation to get 

(1.9) 

In general, the sound speed profile c and density p are functions of range as well 

as depth. Consequently, the solutions to Eq. 1.3 vary with range. The solutions to 

the depth eigenfunction equation for the hydrographic and boundary conditions at a 

given range are known as the local modes at that range. The pressure field at range 

r can be described as a superposition of the local modes Wm(z; r), or 

p(r, z) = L dm(r, zo)'llm(z; r), (1.10) 
m 

where dm(r, z0 ) are the complex mode coefficients. If the channel is linear, the 

pressure field excited by an array of sources can be written as a superposition of 

solut ions of the form of Eq. 1.10. Equivalently, the complex mode coefficients can 

be considered to be functions of the source depth vector Z s and the complex source 

weights w , in addit ion to r. The pressure field generated by a vertical array of 

sources at depths Zs weighted by w is 

p(r, z) = L dm(r, Z 5 , w)Wm(z; r) . (1.11) 
m 

The proposed algorithm attempts to choose w such that only one mode coefficient 

dm0 is non-zero at the feedback hydrophone array at r = rF . 

Acoustic propagation of range-dependent modes is categorized as adiabatic or 

coupled. The adiabatic model of propagation assumes no energy is exchanged be

tween different modes although the local modes Wm(z; r) may vary slowly with range. 
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In coupled propagation, energy is exchanged between the local modes due to range 

variations in bathymetry and sound speed [24),[25] . 

The normal mode formulation for acoustic propagation is especially attractive 

in shallow water environments at medium to low frequency. In this scenario, the 

horizontal wavenumber spectrum can be segmented into three classes of waves. The 

propagating, or "trapped," modes are the solutions to the eigenfunction equations 

(Eqs. 1.3 and 1.4) such that the horizontal wavenumber km is real, or at least has only 

a very small imaginary part due to medium attenuation during propagation. The 

evanescent modes have vertical profiles which are solutions to the depth eigenfunction 

equation (Eq. 1.3) , but with kzm > k , so km = Jk2
- k;m is imaginary. These 

modes decay exponentially in range. In an ideal waveguide with perfectly reflecting 

boundaries, the trapped and evanescent modes contain all the energy. For a realistic 

ocean waveguide, the situation is complicated by the absence of a perfectly reflecting 

bottom. The solut ions in this environment can be found by taking the limit as the 

ideal boundary goes to infinite depth [22] . This results in a continuum of horizontal 

wavenumbers from the solutions to Eqs. 1.3 and 1.4. A discrete finite subset of these 

solutions propagate in range with little or no attenuation; these solutions are the 

trapped modes for the waveguide. The rest of the solutions constitute the modal 

continuum. The contribution of the continuum is significant at short ranges, but 

quickly decays in range to leave only the trapped modes in the far field. 

Many shallow water environments have bathymetry that is sufficiently range

varying to invalidate the adiabatic propagation model. Desaubies [25] quantified 

measures indicating the importance of modal coupling in an environment. He found 

that the precise conditions when the adiabatic approximation breaks down depends 

on the quantity of interest, i.e., pressure, transmission loss, propagation time, etc .. . . 

For many of the quantities of interest, Desaubies found the conditions when the 

adiabatic approximation became invalid depended in subtle and sometimes intricate 

ways on the rate of change of the environment in range. Because the coupling induced 
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by the bottom or range-inhomogeneities in the water column can be strong, it is very 

difficult to compute the source weights w to excite only a single mode without very 

extensive and accurate environmental measurements. 

Many researchers have investigated and validated the modal model of shallow 

water propagation. The seminal work in shallow water modal propagation is the 

monograph "Theory of Propagation of Explosive Sound in Shallow Water" by C. L. 

Pekeris [2]. T his paper develops the so-called "Pekeris waveguide," consisting of an 

isovelocity water layer, bounded above by a pressure release boundary and below by 

a higher-velocity isovelocity halfspace. Using this model and the theory of normal 

modes, the paper predicts the features of the pressure pulse caused by an impulsive 

source (TNT detonation) on the ocean bottom (26] . 

Bucker did significant work verifying the modal model of propagation for the 

shallow water channel. In [10], he compared experimental and theoretical mode 

curves for explosive sources in the Bering Sea, obtaining close agreement. The t ime

frequency distribution of the arrivals allowed him to identify the various modes 

in the energy observed at a single hydrophone. In a later paper (27], he computed 

expressions for t he normal mode shapes for a variety of analytic sound speed profiles, 

as well as one measured experimental environment. Bucker used the computed mode 

shapes to predict transmission loss as a function of range in that experiment, and 

found reasonable agreement with the observed values. 

Ferris et al. [11], [8], transmitted time-windowed sinusoidal pulses from a single 

400 Hz source to a nine element vertical array of hydrophones 10 km downrange. 

The differing group delays of the modes resulted in different travel times between the 

source and receiver. These travel times differed by enough that two, and sometimes 

three, distinct modes could be temporally resolved at the receiver without any spatial 

processing. The vertical profiles of these modes across the array corresponded well 

with the computed mode shapes for t he sound speed profile. The later paper, [8], also 

employed a simple spatial filter which projected the pressure field against samples 
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of the theoretically derived mode shapes to verify the mode strength as a function 

of source depth matched the computed mode shapes. 

Tindle et al. [9] performed an experiment very clearly demonstrating shallow 

water propagation was well-modeled by modes. They found a site almost perfectly 

homogeneous in range and depth. Over a range of 5 km, the bottom depth was 

50 ± 1 m, with a sound speed profile that was nearly perfectly homogeneous in depth 

and range with value 1508.7± 0.3 m/s. The analytically derived depth eigenfunctions 

for an isovelocity water column fit this experimental environment very well. By 

running experiments transmitting windowed sinusoids centered at 60, 100, and 140 

Hz and using the least squares mode filter which is discussed in Section 1.3, they 

were able to resolve the predicted arrivals of one, two and three modes, respectively. 

Buckingham [28], [29] analytically derived an approximate expression for the 

modes for a downslope wedge environment with an isovelocity water column over an 

isovelocity halfspace bottom. Although the propagation for this environment can be 

approximated wit h t he coupled mode model, he demonstrated the true eigenfunctions 

of the wave equation for this geometry were circularly curved wavefronts, centered on 

the apex of the wedge, sinusoidally varying in angle. These wedge modes propagate 

downslope without coupling energy among them, and thus are the true modes of 

the system. Since the wedge possesses spherical symmetry rather cylindrical , it 

is intuitively reasonable that the azimuthal angle plays the role depth played in 

cylindrical geometry with a flat bottom. 

Tindle, Hobaek, and Muir [30], [31] confirmed Buckingham's theory in a series of 

thorough and elegant experiments investigating modal propagation in a scale model 

downslope environment. Their laboratory tank was 93 em wide and 10 m long with 

10 em of water at the source over a 20 em deep sand bottom. The bottom could 

be tilted at any angle between 0° and go. Their source transmitted pulses centered 

on 80 kHz and the pressure field in the tank was measured by a hydrophone moved 

between successive transmissions to create a synthetic discrete array. Tindle et al. 
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observed the signals propagated downslope with curved wavefronts centered on the 

apex of the wedge as predicted by Buckingham. They resolved these modes by 

spatially filtering the pressure field using the least-squares technique of Tindle et 

al. in [9]. Comparing the results obtained using a mode filter designed with the 

local vertical modes to those obtained when the filter used the curved wedge modes 

demonstrated that only the latter propagated without coupling. 

Several experiments examined single mode excitation in laboratory tanks. Clay 

and Huang attempted to transmit and receive a single mode in a laboratory tank as 

part of an experiment to measure backscattering from fish [15]. The tank they used 

had 25 em of water and they transmitted at a frequency of 220 Hz. The experimen

tal waveguide had pressure-release surfaces both above and below, thus supported 

roughly 70 modes at this frequency. Clay and Huang attempted to excite only the 

first mode using 8 source transducers, shading these sources with samples of the 

desired mode shape quantized to three levels. The same array and shading were 

used as a receiver. Under these conditions of gross undersampling and coarse quan

tization, it is not surprising that the received pressure field roughly matched the 

shading. While Clay and Huang claim this indicates only the first mode was excited, 

it also seems possible t hey synthesized an approximation to this crudely quantized 

first mode shape using all the modes as basis functions. Thus, the channel may 

not have contained just one mode, but may actually have contained many propagat

ing modes whose superposition approximated a quantized version of the first mode 

shape. Because Clay and Huang's receiver undersampled the channel spatially and 

they gave no information about temporal dispersion, it is not possible to conclude 

with certainty from their results what modes were propagating in the channel. Also, 

their experiment used fixed array weights built into the source/receiver array. The 

laboratory environment was almost certainly t ime-invariant, so the fixed nature of 

the weights was probably not an issue. Because it could not respond to any tempo

ral variations in the channel, this open-loop control algorithm probably would not 

23 



perform well in many ocean environments. 

One of the best experiments for single-mode generation in a laboratory setting 

was performed by Gazanhes and Garnier, [16]. They used a tank with only 57mm of 

water over a sand bottom. At their working frequency of 124kHz, this environment 

only supported 5 trapped modes, making control and estimation of the modes much 

more tractable than the Clay and Huang experiment. Using the Pekeris model of 

propagation, Gazanhes and Garnier computed the mode shapes for the channel and 

used samples of these shapes to weight 15 independent piezoelectric transducers. 

Although this is not the optimal weighting in the least-squares sense, it is a much 

better discrete approximation to the orthogonality condition than Clay and Huang's 

very coarse sampling and weighting. Gazanhes and Garnier confirmed that they 

excited only a single mode using synthetic aperture arrays in both range and depth. 

Although their control scheme is also open loop, it works well because they have a 

known time-invariant environment. This is encouraging evidence that it is possible 

to excite a single mode given an accurate channel estimate. 

This concludes our review of previous work on mode propagation both in the 

ocean and in laboratory settings. The next section describes the Green's function 

for underwater acoustics. The Green's function is the foundation of our model for 

the channel between the source array and feedback array. 

1.2 Green's Function 

The Green's function characterizes the acoustic propagation between a source and 

receiver at a given frequency. To find this function in regions of constant density, 

simplify the Helmholtz equation (Eq. 1.1) to obtain 

(1.12) 
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for a point source at r 0 . The solut ion to this equation, p(r) = G(r, r 0 ) , is the 

Green's function [22], [32] . In linear system theory terms, the Green's function is 

the transfer function between a point source at r 0 and a receiver at r evaluated at 

a single frequency w. The Green's function is a very general model for propagation, 

and is still valid in many environments where a discrete set of normal modes cannot 

accurately model propagation. For a driving term f(r0 ) it can be shown the pressure 

field is 

p(r) = { G(r, ro)f(ro)dro + 
4

1 
{ [a(r, ro) o~(ro) - p(r0 ) oG~r, ro)l dr0 . (1.13) 

l vo 1r l so no no 

The first integral incorporates the contribution of all sources in the volume in ques

tion Vo, while the second integral includes the effect of the boundary conditions on 

S0 , the surface surrounding V0 . 

If the acoustic channel between source and receiver arrays is a linear system with 

respect to the complex weight vector of the source array, the contribution of the 

second integral in Eq. 1.13 must be zero, and there must not be any other significant 

sources in the volume. The condition that the second integral of Eq. 1.13 be zero is 

the spatial analog of the initial rest boundary condition for a time-domain linear sys

tem. In physical terms, this corresponds to an absence of sources outside the volume 

in question, VQ. In general, the ocean may be considered time-invariant for the rela

tively brief propagation times between the feedback and source arrays. Under these 

conditions, the channel is well-modeled by a linear, time-invariant (LTI) system. 

Complex exponentials are eigenfunctions of LTI systems, so the Green's function 

completely characterizes the behavior of the channel at the frequency of excitation. 

Because it is a very general model for propagation, the Green's function can incorpo

rate effects from any spatial frequencies in the modal continuum which are not one of 

the trapped modes, but still which couple energy back into the propagating modes, 

in addition to summarizing any coupling of energy among the propagating modes. 
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In environments which are completely represented by a discrete set of normal modes, 

the depth-dependent Green's function has poles at the horizontal wavenumbers of 

the modes, indicating the pressure field consists predominantly of energy propagat

ing at those spatial frequencies. Because the set of environments where the Green's 

function accurately models propagation is a superset of those accurately modeled 

by either the adiabatic or coupled mode models, it is a good model for the control 

algorithm to use to summarize the acoustic propagation through the feedback vol

ume. The model allows single mode excitation in any environment well-modeled by 

either adiabatic or coupled mode propagation, and possibly in some more complex 

environments as well. 

1.3 Mode Filters 

The problem of estimating the coefficients of the modes propagating at a given lo

cation from samples of the pressure field obtained at hydrophones, known as mode 

filtering, is a common one in ocean acoustics. The feedback control algorithm must 

determine how the error between the desired and observed pressure profile at the 

feedback array is related to the error between the desired and excited mode coeffi

cients. These two problems are closely related, and in addition to reviewing common 

algorithms used for mode filtering, this section will also examine the similarity be

tween these problems. 

The pressure field generated by M propagating modes spatially sampled by a 

vertical array of N hydrophones can be written as 

+ (1.14) 
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or in vector notation 

p = wd + n, (1.15) 

where n is the vector of observation noise at the hydrophone locations. 

Linear mode filters estimate the mode coefficients as a linear function of the 

observed pressure samples. For Sections 1.3.1 through 1.3.3, the mode coefficient 

vector will be considered a deterministic but unknown quantity to be estimated. 

In This linear function can be represented by a matrix H multiplying the observed 

pressure field p , i.e., 

d = Hp = H'lld + Hn. (1.16) 

The various mode filters discussed in this section correspond to different choices for H 

proposed in the literature of generalized inverses [33], [34] and stochastic estimation 

[35]. For mode filters of this form, the covariance of the mode coefficient vector 

estimate Kaa = E{ddH} - E {cl}E {dH} is 

(1.17) 

where Knn is the spatial covariance of the noise vector n , and (-)H denotes the 

Hermit ian, or conjugate-t ranspose, operator. Thus, the covariance of the estimated 

mode coefficients depends entirely on the noise process covariance Knn and the mode 

filter H . The remainder of this section reviews the common choices for H in the ocean 

acoustics literature. 

1.3.1 Sampled Mode Shapes Mode Filter 

A common choice for H in mode propagation experiments is wH. The motivation for 

this choice is t hat the mode shapes are orthonormal when integrated as a function 

of cont inuous depth and weighted by the density profile [22]. However, spatially 

sampling the modes does not necessarily preserve the orthogonality of the modes, 
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i.e., wHw =I= I. This lack of orthogonality can introduce a bias into the mode 

estimate. Assuming the noise vector n is zero-mean, the expected value of the mode 

coefficient estimator is 

E{d} = wHwd, (1.18) 

giving a bias of (I- wHw)d. Theoretically, as more hydrophones are added to sam

ple the water column more finely in depth, the sampled modes matrix 'IT becomes 

arbitrarily close to orthogonal, making the effect of the bias negligible. Realistically, 

it is impractical to deploy a vertical array of hydrophones spanning the entire sed

iment layer. Thus, even in the limiting case of a continuous array of hydrophones 

spanning the water column, some bias will still be present due to the unsampled 

pressure field in the bottom (36]. Many experiments including Ferris [8], and Clay 

and Huang [15] used the sampled mode shape mode filter, assuming the samples 

of the orthogonal mode functions are themselves orthogonal without examining the 

potential bias of the sampled mode shape filter. Tindle, Hobaek, and Muir (31] and 

Gazanhes and Garnier [16] used the same mode filter but examined the "cross-talk" 

introduced by sampling to verify the bias was negligible for the purposes of their 

experiments. 

The mode coefficients may be difficult to determine from the pressure samples 

taken at the hydrophone locations if the hydrophone array either has fewer hy

drophones than t he number of propagating modes, or if the hydrophones do not 

fully span the water depth. The first difficulty will be referred to as undersampling, 

while the second will be referred to as poorly-conditioned sampling. The singular 

value decomposition (SVD) [37], an orthogonal matrix factorization, provides in

sight on how these problems affect the mode estimator. The SVD factors 'IT as 

U'~':E'~' V 'l'H, where U'~' and V '~' are orthonormal matrices. Assuming the number 
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of hydrophones exceeds the number of trapped modes, i.e., N > M, 

0 

:E= 0 (1.19) 

0 0 O'M 

0 

where a'~'1 ;:::: a-'~'2 ;:::: . . . ;:::: a'ltM ;:::: 0 are called the singular values of 'Ill . In the 

undersampled case, with N < M, the mode filtering problem is underdetermined and 

a cannot be uniquely determined from p. Practically, this is usually not a problem 

for mid-to-low frequencies in the shallow water environment, since it is not difficult 

or expensive to construct an array wit h more hydrophones t han t he environment 

has propagating modes. Even if N ;:::: M , the choice of hydrophone locations may 

give a poorly-conditioned problem for determining a. Although the problem is now 

nominally over-determined, poorly-conditioned sampling will cause 'Ill to become 

rank-deficient or nearly rank-deficient. This will make it impossible to estimate a 
reliably in the presence of noise. Golub and Van Loan [37] demonstrate poorly

condit ioned sampling results in one or more of t he singular values am becoming very 

small or zero. Rewriting the bias B(d) as 

(}'~ 0 

(1.20) 

0 

makes it clear decreasing any of the D"m 's to zero will increase the bias of the estimator . 
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The covariance of t he sampled mode shapes estimator depends on the covariance 

of the noise vector K nn. Two common models for noise in the shallow water channel 

are spatially white noise (Knn = a~I) and the Kuperman-Ingenito surface noise 

model [6]. The Kuperman-Ingenito model proposes that when the noise is dominated 

by surface generated noise, i.e., noise due to wind, surface waves, etc ... , it will have 

a spatial covariance of the form 

0 
(1.21) 

0 

0 0 

where aJ
1

, . •• , aJM are functions of the mode profiles and surface noise processes. 

The vector d is the mode coefficients of the noise process at the array. 

For the spatially white case, Eq. 1.17 becomes 

M 

Kaa =a~ L a~m Vwm VwmH, (1.22) 
m=l 

where Vwm are t he columns of V w· The Kuperman-Ingenito model gives 

a~ 
dt 

0 0 

Kaa = ( £= a~m Vwm Vwm H) 
0 a~ (f, <7~m V<>m V<>m H) . (1.23) 

d2 

m=l 0 

0 0 a~ 
dM 

Poorly-conditioned sampling decreases some values of awm, but its effect on the es

t imator covariance does not grow more extreme as the conditioning of 'IT becomes 
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more severe. Once a part icular singular value grows negligible compared to other 

singular values, further decreases in its value are insignificant in the covariance com

putations in Eqs. 1.22 and 1.23. At the other extreme, when the channel is highly 

oversampled, i.e., N--+ oo, the O">Jsm' s approach 1, so 

M 

L O"~m V>Jsm V>Jsm H --+ V lJs V lJs H = I 
m=l 

and Eqs. 1.22 and 1.23 simplify to Kaa = o-~1 and Kaa = Ka.a., respectively. 

(1.24) 

Thus, poorly-conditioned sampling of the water column by the hydrophone array 

will increase the bias of the sampled mode shape filter, but will not effect the estima

tor covariance significantly. Oversampling the channel so that the inner product of 

the sampled mode shapes closely approximates the integral of the cont inuous mode 

shapes can reduce the bias to leave only a small contribution from the unsampled 

bottom, and result in an estimator covariance reflecting t he underlying nature of the 

noise process. 

1.3.2 Pseudo-Inverse Mode Filter 

The pseudo-inverse mode filter results from choosing d to minimize the squared 

error between 'lTd and p. Tindle et al. [9] appears to be the first reference in the 

ocep,n acoustics literature to formulate the mode estimation problem in this least 

squares sense. The resulting mode filter H = (wHw)-1wH, denoted wt, is called 

the pseudo-inverse or Penrose-Moore inverse of 'lT [37], [33]. This name results from 

the fact wtw =I. A consequence of this property is that if E {n} = 0, the mode 

estimate obtained using H = wt is unbiased. However, if the hydrophone array gives 

a poorly-conditioned sampling of the modes, this estimator becomes very sensitive 

to noise. 
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For the spatially white noise model, Eq. 1.17 gives 

Kaa a~V>Ji:E>Jit (:E>Jit) Hy>JIH 

M 
2 """' -2 H an ~a>JimV>JimV>Jim . (1.25) 

m=l 

Although this estimate will remain unbiased so long as N 2: M , for very short 

aperture arrays the estimator will have a very large covariance as one more or more 

singular values a>J~m go to zero. When a full aperture array oversamples the channel, 

the singular values of 'lT approach 1, and Eq. 1.25 approaches a~I. 

Substituting the Kuperman-Ingenito noise model and the pseudo-inverse mode 

filter into Eq. 1.17 gives 

(1.26) 

which is intuitively sensible, as Ka.a. is the covariance of t he noise process as it is 

coupled into the channel by the modes. Ideally, this covariance is unchanged by 

reductions in the array aperture. Practically, t he mode filter 'l!t is usually based on 

an estimate of 'lT computed by numerical integration of an observed or estimated 

sound speed profile. As the am's of the true 'lT grow smaller as the array aperture 

decreases and the sampling becomes poorly-conditioned, the bias and covariance of 

the pseudo-inverse mode filter can become very sensitive to errors between the 'lT 

obtained by numerical integration and the actual 'lT of t he ocean channel. 

For the spatially white Gaussian noise case, the pseudo-inverse mode filter can be 

shown to be t he maximum-likelihood (ML) estimator. In general, it is not an efficient 

estimator and does not attain the Cramer-Rao Bound ( CRB) for the variance of 

unbiased estimators unless all the singular values a >Jim are equal. Poorly-conditioned 

sampling of the channel can push the covariance of this mode filter arbitrarily far 
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from the CRB as some of the singular values grow very small . If an efficient estimator 

exists, it is the ML estimator [35]; since the ML estimator is not efficient, no efficient 

estimator exists for the spatially white noise model. 

The pseudo-inverse mode filter is also t he ML estimator for the Kuperman

Ingenito noise model. For this case, this conclusion is not very informative since 

n is defined to be in the range of \lf from the formulation of the noise model. The 

existence of the ML estimator depends on the Kuperman-Ingenito model perfectly 

describing the noise process, since if n contains any component in the orthogonal 

complement to the range of 'l' , the conditional probability density PPID(Pid) = 0 

[38], and the ML estimate is meaningless since no set of mode coefficients d could 

have produced the observed signal. For this noise model, the Fisher Information 

Matrix can be shown to be Kaa, so the CRB for the mode estimator is J( a a, the 

variance of the underlying noise process in each mode. The pseudo-inverse mode 

filter attains this bound on the variance, and is an efficient estimator. 

1.3.3 Diagonal Weighting 

As noted above, when the array has poorly-conditioned sampling of the modes, one 

or more of the singular values of \lf will grow very small . This causes 'l'H\lf to be 

singular or nearly singular, and the computation of the inverse of this matrix can grow 

numerically sensitive. One method of compensating for this is to modify the error 

function being minimized to include a term proportional to the magnitude squared 

of the estimated mode coefficient vector d [39]. The quantity to be minimized is 

then 

(1.27) 
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where f3 is a scale factor indicative of the relative importance of the two terms in 

the error expression. The estimator minimizing this quantity is 

A ( H )-1 H dow = W w + /31 w p . (1.28) 

This expression is very similar to t he pseudo-inverse, except for a small diagonal ma

trix {31 has been added to WHW before inversion to alleviate conditioning problems. 

The /31 term is often referred to as t he white noise sensitivity term. The addition 

of this term places a lower bound of f3 on the singular values of (wHw + /31), and 

thus limits the covariance of the estimator shown in Eq. 1.25, since no a~m for the 

diagonally-weighted inverse can exceed /3-2 . For this reason, this approach is often 

referred to as diagonal loading or weighting. While this estimator does not possess 

many of the nice theoretical properties of the pseudo-inverse mode filter, in many 

scenarios it is computationally more stable, especially at relatively high noise levels. 

1.3.4 Maximum A Posteriori Mode Filters 

The maximum a posteriori (MAP) mode filter chooses d MAP to maximize the prob

ability density function PDIP(dlp) based on the observed pressure field , p. This 

approach assumes the mode coefficient vector d is an unknown, random quantity to 

be determined. The mode filter also assumes knowledge of the probability density 

functions of both the stochastic processes generating the mode coefficients d and the 

noise n. For the case when both these processes are Gaussian, the MAP estimate 

is ident ical to the minimum mean-squared error estimate (MMSE) (35]. A very im

portant feature of the MAP mode filter is that in many environments it gracefully 

t ransitions from the pseudo-inverse filter to the sampled mode shape filter as the con

ditioning of w deteriorates. Between these extremes, the performance of the MAP 

filter exceeds eit her of the other two filters , and t he MAP filter never exhibits the 

poor performance shown by the pseudo-inverse or sampled mode shape filters when 

34 



these filters are applied to a problem whose conditioning is inappropriate for their 

strengths. If t he mode coefficients are well-modeled by a Gaussian process with zero 

mean and covariance Kdd, while the noise is also Gaussian, zero-mean, uncorrelated 

with d , and has covariance Knn, the MAP mode filter can be written as 

(1.29) 

where 

(1.30) 

Some insight into the performance of this mode filter may be gained by consider

ing the somewhat unrealistic case when the modes are independent and identically 

distributed, i.e., Kdd = O'Jl , and the noise is spatially white with Knn = O'~l . As

suming there are more hydrophones than modes (M > N), Eq. 1.29 reduces to 

0'~0'"' 1 

0'~ 0'"' 1 +u~ 0 0 

0 0'~0''1' 2 0 
d MAP v'~' 

u~u >~'2 +u~ U'l'HP· (1.31) 

0 

0 0 O'~O'>VM 
u~u"' M +cr~ 

Eq. 1.31 has an appealing interpretation as a generalization of the discrete spatial 

Wiener filter (DSWF) (40]. Multiplying by U'~'H rotates the problem into the coordi

nate frame where the spatial components are uncorrelated. Each component is then 

weighted by t he Wiener gain for the ratio of the mode power to the noise power for 

that component O'~mO'Jf(O'tmO'J + 0'~) . These estimates of the components are then 

mult iplied by the inverse singular values 0'~~ before being transformed into mode 

coefficients by V '~'· For the case when all the singular values are 1, V '~' = I and U'~' 

is the appropriate set of samples of complex exponentials, Eq. 1.31 reduces exactly 

to the DSWF. 
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Eq. 1.31 provides theoretical justification for the pragmatically-motivated mode 

filtering algorithm proposed by T . C. Yang in [41). Yang's algorithm suggested 

deleting very small eigenvalues of 'l'H'l' before inverting this product for the pseudo

inverse mode filter. His paper proposes this approach to ensure numerical stability of 

the inverse and uses some rough a priori assumptions about the values of the mode 

coefficients. His approach is a limit ing case of Eq. 1.31 as some of the singular values 

of '11 get very small compared to J d and J n . Under these conditions, Yang's ad hoc 

"dropped eigenvalue" method is an approximation to the MAP mode filter obtained 

when the array gives a poorly-conditioned sampling of the mode shapes and some 

of t he diagonal elements in Eq. 1.31 approach zero. 

If the Kuperman-Ingenito noise model applies, and the process generating the 

modes has diagonal covariance Kdd with elements J~1 , ... , CJ~M, the MAP estimator 

is 

0 0 

0 
(1.32) 

0 

0 0 

Because both the signal and noise processes are independent random variables trans

formed by the same linear transformation ('11 ), multiplying p by the pseudo-inverse 

performs the discrete spatial Karhunen-Loeve t ransform, decorrelating the mode es

timation problem into M independent problems. Unlike the spatially white noise 

model, the physical basis of interest (mode space) coincides with the mathematical 

basis in which the underlying processes are independent. The diagonal elements in 

Eq. 1.32 become the Wiener gains for each of the independent components. Thus 
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the structure of Eq. 1.32 shows that the estimation problem becomes M indepen

dent MAP problems once p is multiplied by q,t. When the random processes have 

probability density functions which are symmetric about their means, such as the 

Gaussian distribution, Eqs. 1.31 and 1.32 are also the minimum mean-squared error 

(MMSE) solutions [35]. 

1.3.5 Relation of Mode Filters to Target Pressure Vector 

As mentioned earlier , the variety of mode filtering algorithms corresponds to a variety 

of choices for the target pressure vector for the control algorithm. It is possible to 

formulate the control problem in terms of t he desired pressure field rather than 

the desired mode coefficients. Section 2.2 discusses t he circumstances when it is 

preferable to use this approach. The control algorithm uses an estimate of how the 

pressure field observed at the hydrophone p is a function of the source array weight 

vector w to choose w to obtain some target pressure vector Pd· Formulating the 

problem as a mode filtering problem at the feedback array gives insight into t he best 

choice of Pd· The target pressure vector should be the pressure vector which would 

yield the desired mode coefficient vector d d when the most appropriate mode filter 

for the ocean environment and feedback array geometry is applied. 

The most obvious choice for Pd is 'lldd · T his target pressure vector corre

sponds to the pseudo-inverse mode filter , since q,tp d = q,t q,dd = dd. Thus, if 

this choice for Pd were observed at the feedback array, the pseudo-inverse mode filter 

would indicate the pressure consisted of the desired modes. Alternatively, the choice 

Pd = 'l' ('l'H'l')-1dd corresponds to the sampled mode shape filter, since q,HPd would 

give q,H'lf('l'H'l') - 1dd = d d. Similar expressions can be derived for the MAP mode 

filters with the various noise models. 

The algorithms described in this thesis will use Pd = 'l!dd. The feedback array 

is assumed to sample the channel sufficiently that the pseudo-inverse mode filter 

is the best choice of mode filter. This is a reasonable assumption for the relatively 
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shallow water environments and mid-frequency transmissions examined in this thesis. 

Also, over the relatively short range between the source array and feedback array, 

the signal-to-noise (SNR) ratio at the feedback array should be high if the signal 

is going to be observable at the distant observation array as shown in Fig. 1-1. At 

high SNR, the MAP formulations reduce asymptotically to Pd = "IJ!dd. If these 

favorable conditions do not apply, the target pressure vector should be chosen based 

upon the appropriate mode filtering algorithm for the environment and geometry, 

but generally this means the algorithm will not be able to produce a single mode 

with high fidelity. 

1.4 Control Theory 

The field of control theory provides some important insights into the single mode 

excitation problem. The classification of control systems as either open-loop and 

closed-loop systems is one of the fundamental distinctions in control theory [42]. 

Both kinds of systems use a control law for determining the control input to attempt 

to attain the desired behavior of the output of the plant, or system controlled. For 

the mode excitation problem, the input is the source array weights, w, the plant is 

the ocean between the source array and the feedback array, the output is the samples 

of the pressure field observed at the feedback array, p, and the desired behavior is 

the target pressure Pd· For an open-loop system, the input is chosen based solely 

on a priori or assumed knowledge of the system. All prior work on single mode 

excitation used open-loop control [15], [16]. The behavior of a plant controlled with 

this approach can be very sensitive to inaccuracies in this a priori information or in 

the model of the plant. The algorithm proposed in this thesis uses feedback control 

to obtain the desired performance. Feedback control modifies the input to the plant 

based on the difference between the observed and desired output of the plant. This 

allows the control system to compensate for inaccuracies in the a priori information 
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about the plant as well as respond to t ime-variations in the plant. Figs. 1-2 and 1-3 

below illustrate the two approaches for the single mode excitation problem. 

~~ ~....--~-Z-~_tr_o_l------'1 w ~~ Ocean 
1------1~~ p 

Figure 1-2: Open-loop Control For Single Mode Excitation 

Control w .. ... Ocean ... ... 
Law 

... ... p 

h 

Figure 1-3: Closed-loop Control For Single Mode Excitation 

Another useful concept from control theory is the use of state space models for 

systems with complicated but linear dynamics. Many feedback control algorit hms 

use such a model to estimate the behavior of a plant they wish to control. Applying 

this model to the acoustic propagation between the source and feedback arrays pro

vides important insight into several aspects of the single mode excitation problem. 

For the discrete-time case, the state-space model describes t he evolut ion of t he 1 x M 

state vector x[n] by 

x[n] = A[n- 1]x[n- 1] + B[n]u[n] + f[n] (1.33) 

where u[n] is t he 1 x L input vector for the system, and f[n] is a zero-mean white 

Gaussian noise with covariance P tr which is uncorrelated with all other signals in 

the problem. The output of the system y[n] is a 1 x N vector 

y[n] = C[n]x[n] + D[n]u[n] + n[n], (1.34) 
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where n[n] is zero-mean, white Gaussian observation noise uncorrelated with all 

other signals in the problem, with covariance P nn. Defining the state vector x[n) as 

the modes d[n) present at the feedback array at t he nth iteration, the input as w[n], 

the complex source weights, and the output y[n] as p (n), the pressure observed at 

the feedback array, the state space model for the modal propagation between the 

source and feedback arrays simplifies to 

d[n) 

p(n) 

B[n)w[n) + f [n) 

w[n)d[n) + n[n). 

(1.35) 

(1.36) 

In these equations, the B[n)w[n) term is the portion of t he total pressure field excited 

the source array, the f [n) term is the propagating background noise which satisfies 

the Kuperman-Ingenito noise model, and n[n) represents the sensor noise. The devel

opment that follows does not fully exploit this general model, but it is a conceptually 

appealing model for scenarios when there are different noise sources with differing 

spatial covariance structures. The matrix B [n) incorporates the effects of the mode 

shapes at the source array on the energy initially excited in each mode (Eq. 1.7) , 

as well as any coupling of energy among the discrete modes between the source and 

feedback arrays. Note that Eq. 1.36 has the same form as the mode filtering problem 

(Eq. 1.15) . Modeling the modal propagation in this way allows the application of 

several powerful results from control theory to t he single mode excitation problem. 

Reachability and observability are two control theory concepts germane to the 

mode excitation problem as formulated above in Eqs. 1.35 and 1.36. A system is 

said to be reachable over the interval [no, n1) if it is possible to drive the system to 

any final state x[n1) from any init ial state x[n0 ] using u[n). The effect of the input 

u [n) on the state x[n1) can be written as <I> [n1 , n]B [n]u[n], where <I>[n1 , n] is the 

state-transition matrix from time n to n 1 for the undriven system. In the absence 

of inputs, x[nd = <I> [n1, n]x [n] . The total effect of t he input over the interval [no, n1) 
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on the state at n1 can be written as 

u[n1 - 1] 

u[no] 
(1.37) 

For a system to be reachable, the partitioned matrix containing the B and ~ terms 

must have full rank. The controllability gramian W 1[n0 , nd of a system is defined to 

be the correlation of this matrix. A system is reachable if and only if W 1 [ n0 , n 1] has 

full rank. For the simple state space model of Eqs. 1.35 and 1.36, the controllability 

gramian is 

(1.38) 

so the system is reachable over [n0 , n1] if and only if B[n1] has full row rank M. A 

system is defined to be completely reachable if it is reachable over some interval, 

and is uniformly completely reachable if there exists some a and m such that the 

smallest eigenvalue of W 1 [n, n + m] is greater than a for all n. Because the modes 

present at the feedback array for this model depend only on the input weights from 

the current iteration, properties like uniform complete reachability depend solely on 

B[n]. 

A system is described as observable over the interval [n0 , n1] if the state x[n0] 

can be uniquely determined from knowing u[n] and y[n] over this interval. It can 

be shown this property is equivalent to the observability gramian M[n0 , n 1] having 

full rank M [43]. The very simple state space model of mode propagation has the 

following observability gramian: 
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Thus, the coefficients of the modes present at the feedback array can only be uniquely 

determined if the sampled mode shape matrix Wr [n] has full column rank. 

Framing the mode excitation problem in the state space model clearly separates 

t he two primary issues of the problem. The first issue is whether it is possible to excite 

the desired modes in the channel. The second issue is whether the control algorithm 

can recognize the desired mode profile by observing samples of the pressure field. 

The first issue corresponds to the reachability of the system as described by the state 

space model for mode propagation. The reachability depends on the source array 

geometry and the propagation conditions between the source array and feedback 

array. For the ranges and depths discussed in this thesis, the propagation is usually 

predominantly determined by the bottom composition and bathymetry. Since the 

source array is the only factor effecting reachability under the control of the scientist, 

care must be taken to design the source array to ensure reachability over as wide a 

range of ocean condit ions as possible. 

The ability of the algorithm to recognize the desired mode profile from pressure 

observations corresponds to the observability of the system in the state space formu

lation. The observability of the system depends on the mode shapes and feedback 

array geometry. The mode shapes are a function of t he sound speed profile and bot

tom properties at the array location, and are not under the control of the observer. 

Thus, the feedback array must be designed carefully to guarantee observability over 

as wide a range of sound speed profiles and bottom properties as possible to ensure 

the experiment's success. 

An informative experiment and persistency of input are two additional important 

concepts from system ident ification and control theory. An experiment is said to be 

informative if it allows the unique identification of a single set of system model 

parameters out of the class of proposed system models [44]. A necessary condition 

for an experiment to be informative is that the control input sequence be persistent. 

A persistent input sequence is one whose autocorrelation matrix has full rank. This 
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criteria will be formulated more precisely in Chapter 2 where the class of channel 

models used by the control algorithm is presented. The conflicting requirements of 

keeping the source weights fixed to obtain a high fidelity mode and varying them 

enough to get a persistent input for system identification will be an important issue 

for the control algorithm to address. 

1.5 Matched Signals 

Single mode excitation at a feedback array location can be viewed as a general

ization from the time domain to the mode domain of the matched signal problem 

addressed by Parvulescu and Clay [45], [46], [47]. Parvulescu and Clay investigated 

the time-domain dispersion due to propagation through underwater acoustic chan

nels. Specifically, they were interested in finding a signal which when transmitted 

from a single source through a given channel would give an "impulse-like" signal at 

a single receiving hydrophone. They observed that when they t ransmitted a short 

impulsive waveform, the received signal exhibited the well-known multi-path arrival 

structure. The matched filter whose impulse response is the time-reversed version 

of the received signal is the best linear detector for this signal in the presence of 

white noise [35]. Parvulescu and Clay noted that if the transmitted signal is a 

time-reversed version of the channel impulse response, the acoustic propagation will 

perform the matched filtering operation, and the received signal should be temporally 

concentrated. No matched filter will be necessary at the receiver. They successfully 

implemented a simple version of such a system using a reel-to-reel tape deck and 

two ships about 18 km apart in 2 km of water connected by a radio link. The source 

ship transmitted an impulsive signal, and the signal observed at the receiving ship 

was recorded on the tape deck over the radio channel. The source ship then trans

mitted a t ime-reversed version of the recorded impulse response by playing the tape 

backwards, and the received waveform was the desired temporally-concentrated sig-
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nal. In addition, by making several successive transmissions using the same reversed 

impulse response, Parvulescu and Clay attempted to estimate t he coherence time 

of the channel from the deterioration of the received impulse. Unfortunately, they 

could not separate the effects of channel variability from those due to the source ship 

drifting. The combination of these effects resulted in the received signal being almost 

completely decorrelated with the matched filter after about 30 minutes. Because the 

source ship had drifted approximately 500 m over this time interval, Parvulescu and 

Clay proposed this displacement was the primary factor causing the mismatch, but 

acknowledge without a rigorous control for the experiment it would be impossible to 

say conclusively. 

DiNapoli et al. attempted a similar experiment over a much longer range (50-

150 km) and lower frequencies (10-30 Hz) in the Arctic [48]. Because t he Arctic 

environment is fairly stable, they believed computational models could predict the 

impulse response of the propagation path, and no attempt was made observe the 

actual impulse response as Parvulescu and Clay did. The transmissions DiNapoli et 

al. made using a reversed version of the impulse response predicted by computational 

models failed to give a clearly identifiable, temporally concentrated arrival. The most 

likely causes for this disappointing result are inaccuracies in their environmental 

knowledge and in the Arctic acoustic models used to predict the impulse response. 

The impulsive nature of noise in the Arctic due to ice dynamics also would make it 

difficult to identify the desired arrival amidst the ice noise. 

The single mode excitation problem generalizes t his approach from attempting 

to create a waveform which is concentrated over a short time interval one which is 

concentrated at a single mode. The challenge is to determine which t ransmitted 

source array weights will give the desired mode coefficients at the feedback array. 

If the channel is assumed to be range-invariant, t he source array weights exciting a 

single mode can be computed from the sound speed profile and bottom composition 

at the source array. This is analogous to assuming the channel is dispersionless and 
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has no multi-path interference for the time-domain experiments of Parvulescu and 

Clay. Most shallow water channels are not range-invariant. In many range-varying 

channels, the weights computed assuming the channel is range-invariant will excite a 

variety of modes at the feedback array location, and not just the desired single mode. 

The source initially excites a single mode which is then distorted by propagation 

through the channel, coupling its energy into several modes. The question then 

arises how best to excite an initial distribution of modes at the source array which is 

pre-compensated for this distortion such that the coupling caused by the channel will 

cancel out all the modes except the desired one when the pressure field is observed 

at the feedback array. The feedback control algorithm attempts to estimate the 

matched signal for the channel coupling between the source and feedback arrays 

adaptively. This multiple input/multiple output problem is more complicated than 

the single source/single hydrophone one addressed by Parvulescu and Clay, but the 

underlying strategy of matching the transmitted signal to the environment is the 

same. 

1.6 Summary 

As noted at the start of this chapter, the primary contribution of this thesis is the 

synthesis of ideas from several disciplines to produce a new algorithm for exciting a 

single mode. This chapter has reviewed the relevant background information that 

will be used to derive the control algorithm in the next chapter. The section on 

mode filtering yielded an important perspective on the relationship among the MAP, 

pseudo-inverse, and sampled mode shape mode filters . The MAP filter was also 

shown to provide a theoretical justification for Yang's ad hoc dropped eigenvalue 

mode filter. Chapter 2 will show how observability and reachability can provide 

insight into how the source and feedback array geometries affect the ability of the 

algorithm to excite a single mode. 
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Chapter 2 

Control Algorithm 

This chapter presents an algorithm for single mode excitation using indirect control 

[14] . An indirect control algorithm explicitly estimates a model of t he plant, then 

uses this model to compute the control input giving the desired behavior. The 

algorithm proposed for single mode excitation begins with some initial estimate of 

t he acoustic propagation through the feedback volume. Based on this estimate, it 

computes the best set of source array weights w to get the desired pressure vector Pd· 

After exciting the channel using w , the algorithm compares the observed pressure 

vector p to p, the pressure predicted by the current channel estimate. The channel 

estimate is updated based on the difference between the observed and predicted 

pressure, and the process begins again. Figure 2-1 shows t he result of incorporating 

this type of control algorithm into the scenario of Figure 1-1. While this control 

scheme is fairly simple, it clearly demonstrates the potential of feedback control 

for exciting a single mode. If this straight-forward scheme proves successful, more 

advanced control schemes like robust control [49] [50] [51] can be investigated for 

this problem. 

The control algorithm uses the replica matrix described in Section 2.1 to model 

the propagation between the source and feedback arrays. Section 2.1 also presents a 

more precise definition of persistent excitation as first discussed in Section 1.4. The 

47 



Surface (p=O) 
Z=O 

Source Array t Water Receiver 
Feedback Array 

Locations 

t 
Zr 

• I 
I i c

0
(r,z,t) 

l Po(r,z,t) 

z=h(r) c1(r,z,t) r=O 
p1(r,z,t) 

p( Zr ,ro) 

w 
/\ 
Q 

Figure 2-1: Control Algorithm for Ocean Experiment 
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source array weights are computed from the current estimate of the channel replica 

matrix using the least squares method described in Section 2.2. The replica matrix 

estimator is an important part of the control algorithm, and this chapter presents 

three different estimators for the replica matrix. Section 2.3 develops the condition 

number-limited least squares algorithm for estimating the channel replica matrix. 

The replica matrix estimation problem can also be formulated as a Kalman filtering 

problem, and Section 2.4 presents the resulting replica matrix estimator. Section 

2.5 develops the least mean squares (LMS) [13] estimator for the replica matrix. 

This common adaptive algorithm will be compared with the other two estimation 

algorithms in the experimental work of Chapter 4. 

2.1 Propagation Model 

The control algorithm presented in this chapter models the pressure received at the 

feedback array p as a linear function of the complex source array weights w , i.e. , 

p = Qw, (2.1) 

where Q is the replica matrix for the channel. The .eth column of Q is the replica 

vector at the feedback hydrophone array for the .eth source array element. Equiva

lently, the (i,j)th element of Q is the Green's function between the ph source and ith 

receiver evaluated at the transmission frequency. Considering the state space mod

els of Eqs. 1.35 and 1.36, the replica matrix is Q[n] = Wr[n]B[n]. Thus, this model 

combines the effects of the feedback array hydrophone locations on Wr[n] with the 

transmission properties ofB[n] summarizing the source locations and mode coupling. 

Poor conditioning in Q[n] can be caused by any or all of the following phenomena: 

poor hydrophone sampling of the modes at the feedback array, poor placement of 

the source array elements for exciting the modes at the source array, or unfavorable 

mode coupling between the source and feedback arrays. 
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The validity of Q[n] as a propagation model depends on the time scales of varia

tions in the channel relative to the propagation time between the source and feedback 

arrays. As noted in Section 1.2, the replica matrix model is valid for continuous wave 

(CW) propagation in linear, time-invariant propagation environments. For the typi

cal scenario shown in Fig. 1-1, the propagation time from source to feedback array is 

1-2 sec. The oceanographic features and processes dominating shallow water acous

tics such as internal waves, tidal mixing, and bottom bathymetry are believed to 

vary on timescales much longer than this. Observations in the recent SWARM ex

periment indicated the predominant energy in the internal waves in a typical coastal 

environment had timescales on the order of five to seven minutes [52]. Based on 

these observations, it appears safe to assume the channel is time-invariant over the 

propagation interval between the source and feedback arrays. 

The iteration time for the algorithm will depend both on the distance r 0 from 

the source to feedback array and the group velocities of the modes as determined by 

the sound speed profile c( r, z). After changing the source array weights, the control 

algorithm must wait long enough for the slowest mode to propagate from the source 

array to the feedback array before observing the pressure field and updating its esti

mate of the channel replica matrix. The control algorithm samples the propagation 

environment with sampling period equal to its iteration time. The Nyquist sampling 

theorem [53] indicates that setting the iteration time to be at least the propagation 

time for the slowest mode means that oceanographic processes at timescales shorter 

than twice this propagation t ime will be aliased in the observations of the environ

ment. This best case limit on the bandwidth of observable processes must be taken 

into account when designing the experiment. Due to the averaging and windowing 

of data employed by the estimators described in this chapter, the limit on the fastest 

processes the control algorithm can expect to track is much slower than the limit 

specified by the Nyquist sampling theorem. 

A sequence of inputs w[O], ... , w[n] is said to be persistent if it allows unique 
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identification of one set of model parameters out of all possible models in a given 

model class (44). Since the replica matrix model for propagation defines the space of 

possible models to be all N x L complex matrices (cNxL), persistency can be defined 

more precisely than the general discussion in Section 1.4. To identify a unique Q, 

the sequence of input vectors must span CL. Thus, persistency over the interval [0, n] 

is equivalent to [w[O)Iw[l) l ... lw[n)) having rank L. This condition is also equivalent 
n 

to the square matrix 2::::: w[i)wH[i) having full rank. 
i=O 

Because the control algorithm attempts to hold the pressure field observed at 

the feedback array fixed, the input signal usually will not vary after an initial con

vergence transient if the replica matrix estimate Q is accurate and the channel is 

quasi-stationary. Later discussions will illustrate how this impersistent or nearly 

impersistent input sequence affects the convergence and transient behavior of the 

estimators. If the steady state source array weights w ss are orthogonal to the er

rors in the rows of Q[n), t hese errors will not be revealed by the algorithm in the 

steady state. Although the errors in Q are undetectable by w 88 , W ss may not be the 

source array weight vector giving the best performance. The control algorithm does 

have fixed points other than the global optimum wLs = Qtpd, and thus may con

verge to a non-optimal solution for w . In the simulations and experiments described 

later in this thesis, the performance of the algorithm was limited by the observation 

noise, and not by convergence to non-optimal solutions. The fixed points at these 

non-optimal solutions are generally unstable equilibria, so observation noise should 

provide sufficient impetus to propel the control algorithm away from t hem. This 

likely explains why no evidence was observed of the algorithm getting stuck at non

optimum source weights in the simulations or laboratory waveguide experiments. 
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2.2 Source Array Weight Selection 

The least squares solution to the system of linear equations 

Pd=Qw (2.2) 

yields the best source array weight vector for obtaining the desired pressure Pd given 

the current replica matrix Q. Assuming N > L , the singular value decomposition of 

Q is 

CJQl 0 

(2.3) 
0 CJQL 

0 

where Uq is N x N, V Q is L x L, the partitioned matrix on the right-hand 

side is N x L, and the diagonal elements of that matrix are ordered such that 

CJq1 ~ CJq2 ~ ... ~ CJQL ~ 0 [37). The pseudo-inverse of Q, Qt , is defined to be 

(2.4) 

0 

except that any CJq/ s equal to zero are not inverted, but left as zero. If all the 

singular values CJQi are non-zero, w = Q tp d gives the unique source array weight 

vector minimizing the error between the desired and obtained pressures. If the 

propagation is completely described by M trapped modes, and M < L , there will be 

singular values of Q that are zero, and the solution minimizing the magnitude of the 

error is not unique. In this case, w = Qtpd gives the minimum norm source array 
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weight vector with the minimum squared error between the observed pressure p and 

the desired pressure Pd for the true channel replica matrix Q. The weight selection 

step uses the same method to find w except Q is replaced by the current replica 

matrix estimate Q. For the nth iteration, the source array weights are determined 

by 

w[n] = ( Q[nJ) t Pd, (2.5) 

where Q[n] is the estimate of the channel replica matrix at the nth iteration. This 

gives the source array weight vector that would be the best fit if the current channel 

estimate Q[n] were correct. 

The weight selection step proposed in Eq. 2.5 minimizes the error in the pressure 

domain, which does not generally give the minimum error in the mode domain. It is 

possible to compute w to minimize the error in the mode domain using an estimate 

of B[n] from the state-space model of Eq. 1.35. The weight selection step then uses 

solves Eq. 1.35 in the least-squares sense assuming the state noise f[n] is zero. The 

resulting source array weight vector 

w[n] = (:B[nJ) t dd , (2.6) 

should minimize the error in the mode domain. In practice, this approach can be 

problematic for numerical reasons discussed below. 

It is necessary to develop a precise framework to discuss the important issues 

that arise when some of the matrices in the control algorithm computations are not 

mathematically singular, but have very large condition numbers. Golub and Van 

Loan define theE-rank, rE , of the matrix Q to be the number of singular values CJi :2: E, 

i.e., if rE = rank(Q, t:) = m, then CJQl :2: CJQ2 :2: ... :2: CJQm :2: E > CJQm+l :2: CJQL :2: 0 

[37]. It is straight-forward to extend this idea and define theE-span of a matrix with 

t:-rank rE as the span of { u 1 , ... , urJ, where the ui are the columns of Uq , the left 

orthogonal matrix of the SVD. Similarly, the t:-nullspace of the matrix can be defined 
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to be the space spanned by {vr.+l, . .. , vL}, where the vi's are the columns of V Q, 

the right orthogonal matrix of the SVD. 

If Q[n] has c-rank less than M for some c appropriate to the scale of the exper

iments, it indicates the system is either numerically unreachable or unobservable, 

either of which may be problematic for mode excitation. The terms nearly unreach

able and nearly unobservable will be used to describe t hese numerically troublesome 

conditions. If the system is nearly unreachable, both t he pressure and mode domain 

approaches for computing w[n] may have difficulty exciting the desired mode. In 

practical terms, this condition corresponds to the scenario where t he source element 

locations and propagation conditions in the feedback volume combine unfavorably 

so that some modes cannot be excited to any significant level given the power lim

itations on the sources. If the desired pressure Pd E c-span { Q} , then the desired 

pressure field may be obtained within the power limits of the practical system as 

reflected by the choice of c. Otherwise, the power required to excite this particular 

mode exceeds the limitations of the sources. It is possible that for a given source 

array geometry and propagation conditions which result in numerical unreachability, 

some modes will still be excitable and others will not, depending on the c-span of Q. 

If the c-rank deficiency of Q[n] is because the system is nearly unobservable, 

there may be undesired trapped modes propagating at the feedback array even when 

the observed pressure p [n] is a close fit to the desired pressure Pd· Numerical un

observability can be due to one or more causes. Some modes may be sampled at 

or close to a pressure null , so that any energy in these modes cannot be seen over 

the observation noise. Alternatively, if one the columns of the sampled mode shapes 

can be written as a linear combination of other columns, the pressure field cannot 

be uniquely resolved into modes. These conditions are equivalent to the poorly con

ditioned sampling for 'l1 discussed in Section 1.3. If the feedback array sufficiently 

samples the water column such that the system is observable, t he issue is not as im

portant. In this case, exciting a pressure field close to the desired Pd will correspond 
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to a mode coefficient vector d[n) close to t he desired dd. 

The weight vector minimizing IIPd- p [n) ll will not generally minimize lldd-d[n) ll . 

The errors in the two domains are related by a linear but generally non-unitary 

transformation "W: 

Pd- p[n) = w(dd- d[n]) . (2.7) 

To see why the minimum error in the pressure domain does not necessarily correspond 

to the minimum error in the mode domain, consider the extreme case when w 
possesses a non-t rivial null-space, i.e., when t he system is unobservable. Let d[n) 

be the mode vector minimizing the error in the mode domain, and p(n) be result ing 

pressure vector, i.e., p(n] = w [n]d(n). Any d(n] = d(n] + ~d, where ~d is in the 

null-space of w will at tain the same pressure domain error , but not minimize the 

mode domain error . The argument is somewhat more involved when w does not 

have a null-space, but so long as the singular values of w are not all equal, the 

problem exists. If the system is well-sampled such that the a i 's of w are at least 

commensurate with each other if not equal, the weight vector giving t he minimum 

error in the pressure domain will give a small if not minimum error in the mode 

domain. In the limiting case with t he array spanning t he entire water column as 

N--+ oo, the a'~'/s approach one and t he solution minimizing the error in one domain 

also minimizes it in the other. As noted in Section 1.3 the difficulty of observing the 

pressure in the bottom prevents the singular values from actually reaching one, but 

generally they will come very close to it . 

To see more clearly the difficulty in explicitly estimating d[n] when w is nearly 

singular , consider the scenario where the observation noise n has a Gaussian, spa

tially white component with variance a~, and the propagation physics ensure the 

magnitudes of all mode coefficients are bounded by some constant dmax, i.e., 

(2.8) 
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If rank(W,O"n/.Ad) # min(M,N), the observations d[n] = wtp[n] will be dominated 

by noise. One or more of the <J; } on the diagonal of wt will be large enough that it 

will make the white noise component in the v i direction larger than the coefficients 

of the propagating modes. This will slow the convergence of the algorithm since 

the estimator will have to average many observations of d[n] to obtain an accurate 

estimate of B from these low signal-to-noise ratio observations. Because B[n] will 

converge slowly and fluctuate significantly due to noise, the weight vector given by 

Eq. 2.6 will vary considerably. Under these conditions, the pressure vector observed 

at the hydrophone will be unsatisfactory for two reasons. Because the system is 

nearly unobservable, undesired modes may be propagating at the feedback array 

which are not visible over the observation noise. In addition, fluctuations in B[n] will 

make w[n] and consequently p[n] vary significantly from one iterat ion to the next. 

The pressure field at the feedback array may not only contain undesired modes, but 

may not even consist of the same modes on successive iterations. For these reasons , 

the pressure at the feedback array will be a poor source signal for oceanographic 

observers further downrange at the observation array. 

If the modes are nearly unobservable, formulating the problem in the pressure 

domain will not alter the fact that the pressure field may consist of many modes, 

rather than the desired single mode. If the observation noise n[n] is relatively weak 

compared to the pressure due to the propagating modes, the pressure observed at 

t he feedback array will not vary much when w[n] stays fixed. Because the noise is 

not amplified as it was when estimating d[n], the observations p[n] are more reliable, 

and the estimate Q[n] will converge faster than B[n] and be less sensitive to noise. 

In this case the pressure domain approach will give a pressure field at the feedback 

array which is at least consistent over t ime even if it does not give the desired single 

mode. Although from the perspective of the oceanographic observers a high-fidelity 

single mode is the best source, a consistent mode distribution of lower fidelity is 

preferable to the erratic mode coefficients obtained by computing w[n] from B[n] 
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when w [n] is poorly-condit ioned. 

If the spread of singular values of 'IJ1 is such that t he modes are practically ob

servable, i.e., (rank(w , O"n/ .Ad) = M), but the w [n] minimizing IIPd - p [n]ll gives 

unacceptably large errors in the mode domain, the weight selection step can be 

reformulated as a weighted least squares problem using an error metric where all 

components in the mode domain are equally weighted. The source array weights w 

are chosen to minimize 

(2.9) 

where R is an N x N positive semi-definite Hermitian matrix. Choosing 

- 1 
0"'1!1 1 0 

0 
R = U'I!l u'I!!H (2.10) 

0 - 1 
O"'I!IM 

0 0 

gives t he weighted pressure domain error whose minimization corresponds to t he 

minimum error in t he mode domain. Note that R has the same orthogonal comple

ment as wt , indicating pressure domain errors orthogonal to t he columns of 'IJ1 are 

irrelevant to t his metric. This is reasonable since if 'IJ1 is accurate, errors in these 

directions could not be due to the modes and must be observational noise. Solving 

the resulting least squares problem gives the new criteria for selecting the source 

array weight vector: 

(2.11) 
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If the replica matrix estimate Q[n] = llt'B[n], Eq. 2.11 reduces to 

(2.12) 

which would be the weight vector minimizing the error in the mode domain if an ex

plicit estimate of B[n] were available to the weight selection step. The weight vector 

that minimizes the weighted pressure domain error defined with Eqs. 2.9 and 2.10 

gives the desired weight vector minimizing the error in the mode domain. 

This section has developed a method for estimating the best source array weight 

vector w[n] to excite the desired pressure profile. This estimate depends on the 

current estimate of the channel replica matrix Q[n] . The remaining three sections 

of the chapter develop three different methods for estimating Q[n] for the feedback 

volume. 

2.3 Condition Number-limited Least Squares 

The source array weight vector w[n] is a function of the current estimate of the replica 

matrix, Q[n]. In order to determine w[n], the control algorithm must compute Q[n], 

the estimate of Q at the nth iteration, from the information available about the 

channel, specifically, the sequence of source array weights w[O], ... , w[n- 1 J and the 

pressures observed at the feedback array p[O], ... , p[n- 1]. Each of theN rows of 

Q[n] = (2.13) 

CtN[n] 

can be estimated independently of the other rows using the observed pressure at the 

hydrophone of the feedback array corresponding to that row of the replica matrix. 
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If the rows of Q[n] are assumed to be constant, the sequence of source array 

weights and feedback array pressures form a system of linear equations: 

or 

where 

[pi[O] I . . -IPi [n - 1]] = qi [w[O]I ... !w[n - 1]] , 

Pi[n- 1) 

W[n- 1] 

[pi[O)! .. -IPi[n- 1]] 

[w[O)! ... !w[n- 1]]. 

The least squares solution to this system provides CJ.i[n) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

This equat ion can be manipulated into a recursive form by following the devel

opment of the Recursive Least Squares (RLS) algorithm [54]. Although the matrix 

inversion lemma used in t hat algorithm is a tempting means of avoiding the inversion 

in Eq. 2.18, the lemma is too numerically sensitive to be useful for this problem in 

practice. The extreme conditioning of W [n- 1]WH[n- 1) and the numerical issues 

associated with it will be discussed in more detail later in this section. Because 

W[n - 1]WH[n- 1] is not a function of i, the row number, the matrix inverted is 

t he same for each row of Q. This allows all rows of the replica matrix estimate to 

be computed simultaneously. The same algebraic manipulations used to derive the 

RLS algorithm in [54] yield a partially recursive form of the least squares estimator 

for the channel replica matrix: 
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Q[n + 1] Q[n] + a[n]kH [n] (2.19) 

a[n] p[n] - Q[n]w[n] (2.20) 

k[n] ~-1 [n]w[n] (2.21) 
n 

~[n] L w[i]wH[i] = ~[n- 1] + w[n]wH [n). (2.22) 
i=O 

Although this estimator must invert ~[n] for each iteration, it is recursive in the 

sense that computing Q[n + 1] requires only the current observations (p[n) and 

w[n]), the previous estimate Q[n) and the source weight correlation matrix ~[n), 

itself easily updated. The complete sequence of source array weights and feedback 

array pressures need not be saved. Note that a[n) is the error signal between t he 

observed pressure and the pressure predicted by the current estimate Q[n) . 

The algorithm must be initialized with a replica matrix Q[O) and source weight 

correlation ~[0). These can be obtained by sequentially turning on each element of 

the source array with gain 1, then collecting t he observed pressures into the columns 

of Q [O) and setting ~[0) = I. Alternatively, Q[O) can be set equal to some a priori 

guess at the replica matrix, and 'll[O) = <51 for some small constant <5. 

In realistic ocean environments, Q will not usually be constant, but slowly vary

ing. The estimator specified in Eqs. 2.19-2.22 can be modified to include an expo

nent ial forgetting factor 'Y to depreciate older observations and allow the estimator 

to respond to changes in the ocean environment [54). This forgetting factor can be 

incorporated into the estimator by modifying Eq. 2.22 to 

~[n) = 'Y~[n- 1] + w[n]wH[n), (2.23) 

where 0 < 'Y ~ 1. Mult iplying by 'Y at each iteration modifies the estimator to 
n 

choose qi[n) to minimize L 'Yn-e iiPi[f]- Qi[f)w[£]112. This new error criteria reduces 
l=O 
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the importance of old observations until t hey are eventually insignificant. The best 

choice of 'Y will depend on the bandwidth and intensity of the oceanographic pro

cesses affecting acoustic propagation and the iteration time of the control algorithm. 

Choosing 'Y to be too small will not allow the estimator to average enough observa

tions to reduce the effects of observation noise. Too large a choice for 'Y will not allow 

the estimator to respond expeditiously to changes in the propagation conditions. The 

choice of 'Y must compromise between these conflicting demands. 

The discussion of persistency in Section 2.1 observed that single mode excitation 

will generally require w[n] to be constrained within a small region of CL. The con

dition for a persistent input sequence given there is equivalent to ~[n] as defined 

in Eq. 2.22 having full rank. An impersistent input causes problems for this algo

rithm because as w[n] remains constant or nearly constant, ~[n] will become poorly 

conditioned. This causes difficulty computing ~-1 [n] before ~[n] is mathematically 

singular. 

The large condition number of ~[n] will cause the estimator to become overly 

sensitive to observation noise even before problems computing the inverse arise. A 

large sample of noise may make the error vector a[n] =J. 0 even when Q[n] is accurate. 

The resulting small perturbation in Q[n] will cause a slight perturbation in w[n] 

away from the correct source array weight vector. As the subsidiary eigenvalues of 

~[n] grow arbitrarily small , even a minor perturbation in w[n] from its fixed value 

will cause k[n] to have a very large norm. This could result in a large correction 

to Q[n], and subsequently a large error in w[n] and p[n] for the next iteration. 

Although the estimator will quickly recover from this noise-induced transient, these 

excursions produce undesirable spikes in the error between the desired and observed 

mode coefficients. These spikes detract from the feedback array's value as a single 

mode source to observers further downrange in the scenario of Figure 1-1. 

These transients may be prevented by limiting t he condition number of the inverse 

of ~[n] to be no greater than some threshold 'fJ· To define this condition number-
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limited inversion more precisely, let the eigenvalue decomposition of <P(n] be 

A<1>1 0 

<P [n] = V <I> (2.24) 

where A<I>1 :2: A<I>2 :2: ... :2: A<I>L :2: 0. The condition number-limited inverse <Pcl(n] is 

defined to be 

~- 1 
L 

(2.25) 

where Ai = max(Ai, AI/1]). This insures the condition number of <Pcl[n] is never 

greater than 7], while A1 , the eigenvalue corresponding to the predominant eigen

vector, is correctly inverted. Using <Pcl[n] to compute k[n] insures that no compo

nent of w(n] is unduly amplified, and thus the norm of k(n] never grows too large. 

Replacing <P- 1 (n] by <Pcl[n] in Eq. 2.21 completes the definition of the condition 

number-limited least squares (CNLLS) algorithm. Note that the source weight cor

relation matrix <P[n] propagates with unlimited condition number. If the channel or 

desired mode changes abruptly, the transient response is faster if <P(n] has not been 

condition number-limited. Appendix A contains a simple example demonstrating 

the importance of limiting the condition-number of the inverse and not <P[n] itself. 

Another consequence of an impersistent excitation is that the CNLLS estimate of 

the replica matrix may converge to an inaccurate estimate. From Eqs. 2.19-2.22, it 

is apparent that any value of Q(n] yielding a(n] = 0 is a fixed point of the estimator. 

Writing p(n] = Q(n]w(n] reveals that a(n] = 0 is equivalent to ( Q(n]-Q[n])w[n] = 0 

or (.6.Q(n])w(n] = 0 where .6.Q(n] is the error in the current replica matrix estimate. 
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This condition does not imply ~Q[n] = 0, but only that the error in each row 

of the estimate is orthogonal to w[n]. Consequently, (Q[n] - ~Q[n])tpd does not 

necessarily give the w[n] minimizing JJp[n] - PdJJ. As discussed in Sec. 2.1 , these 

fixed points are unstable equilibria, and in practice the observation noise appears 

to prevent the algorithm from stalling at these incorrect channel replica estimates. 

The resulting jitter in w[n] keeps the input persistent enough to prevent any severe 

errors in Q [n] . 

2.4 Kalman Filter Estimator 

The rows of Q[n] can also be estimated as the state vectors for N separate Kalman 

filters. In order to apply the Kalman filter to the problem, the rows of Q[n] are mod

eled as evolving as separate first-order Gauss-Markov processes [55] . The covariance 

of the Gaussian process driving the state equations must be observed, computed from 

oceanographic models, or assumed. If the rows of Q[n] propagate independently, the 

state space equations can be written as 

aiqi[n] + fi[n] 

qi[n]w [n] + ni[n], 

(2.26) 

(2 .27) 

where fi[n] is the Gaussian random process driving the state update equations with 

covariance PrJn], Pi[n] is the pressure observed at the ith hydrophone of the feedback 

array, and ni[n] is the observation noise at that hydrophone, with variance a~ .. 
• 

Note the assumption of independence is very conservative in this context, as the 

estimators do not attempt to exploit any correlation between the rows of Q. This 

also prevents the estimators from suffering any deterioration in performance due to 

possible mismatch between the true values of the correlations and the values used 

by the estimator. 

Equations 2.26 and 2.27 are identical to t he formulations of the state-space model 
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in (43] and (55], except the format has been appropriately modified to make qi(n] 

a row vector instead of a column vector. Exploit ing the development of (43], the 

Kalman filter estimate of <li [n] can be written as 

Prediction Step 

Update Step 

P[nln] 

<li [nln- 1] 

P[nln- 1] 

ai<li[n- lin- 1] 

a~P [n- l in- 1] + Pr; 

A [ I ] (pi[n]- qi[nln- l ]w [n])wH[n]P[nln- 1] q · n n - 1 + _;__;:___:_ _ _:_..,:..--.,----=---..:......,:..;----=---=-=--=-------..:----'------=-

1 wH (n]P[nln- l ]w [n] + O"~i 

P[nln _ l]- P[nln- l ]w [n]wH[n]P[nln- 1] 
wH(n]P [nln- l]w[n] + O"~i · 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

where <li[nln] and <li [nln-1] are E { q[n]IPi[O], .. . , Pi[n]} and E { q(n]lpi[O], ... , Pi [n- 1]} 

respectively. The covariance matrices are defined as 

P[nln] 

P[nln -1] 

cov { q[n] - q[nln]} 

cov { q(n] - q[nln- 1]} . 

(2.32) 

(2.33) 

If Pr; and ai are assumed to be identical for all the rows of Q, and the observation 

noise n [n] is spatially white and Gaussian with variance O"~ , the row estimates may 

all be computed simultaneously as 

Prediction Step 

Q[nln- 1] 

P[nln- 1] 

aQ[n- lin- 1] 

a2P[n - l in - 1] + Pr 

64 

(2.34) 

(2.35) 



Update Step 

Q[nin] Q
A [ I ] (p(n) - Q[nln- 1)w(n])wH [n]P(nln- 1) 

n n - 1 + ...:.::....:......:.._~~--='-------''-------''-----'='--=---:--=--=-:--'---...:. 
wH [n]P[nln - 1)w(n] +a~ 

(2.36) 

P[nln] P[n ln _ 1] _ P[nln- 1]w[n]wH[n]P[nln- 1] 
wH[n]P [nln- 1]w(n) +a~ · 

(2.37) 

The Kalman filter algorithm begins with initial estimates Q(OIO) and P (OIO). These 

may be obtained as specified for the CNLLS algorithm by sequentially activating e.ach 

element of the source array, or estimated from a priori knowledge of the environment. 

The Kalman filter estimator has an advantage over the CNLLS algorithm because 

the former provides mechanisms for incorporating and exploiting any additional in

formation available about the spatial correlation of the noise or replica matrix evolu

tion over time. For instance, if the observation noise is dominated by sea surface noise 

matching the Kuperman-Ingenito model, the a~; terms can be set appropriately for 

each row. Currently, no detailed and experimentally-verified models exist describing 

how the statistics of replica matrices are affected by oceanographic processes such as 

internal waves and tidal mixing. If experiments using single mode propagation and 

other techniques yield such models , this information can be incorporated into the 

estimator in two ways. First, these models could give predictions for P f;. Second, in 

many conditions such as internal wave propagation through the control feedback vol

ume, the updating of the q/s will not be independent. An accurate model of internal 

wave dynamics could estimate the correlation between the rows of Q(n). If the rows 

are combined into one large 1 X N L state vector) these correlation estimates would 

give Pr for this new state vector , and the Kalman filter would exploit the correla

tion structure of these rows in updating its estimate of Q(n). The Kalman filter's 

ability to assimilate such informat ion as it becomes available recommends it over 

the least squares approach. As noted earlier, the possible benefits of including such 

information in the model comes with the risk of concomitant mismatch problems if 

the information is incorrect. 
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Two recent papers have presented preliminary results on the statistics and dy

namics of interval wave processes. Lynch et al. [56] measured travel-time variation 

in acoustic propagation due to large scale internal tides in the Barrents Sea Frontal 

Region. Unfortunately, equipment failure prevented the determination of directional 

spectra of the internal wave field, and also scuttled plans to observe propagation 

along a path which would have isolated internal wave effects on acoustics from t he 

effects of frontal dynamics and bottom layer fluid dynamics. Candy and Chambers 

proposed a discrete-time state-space model for internal wave dynamics [57]. They 

used this model to enhance the signature of internal waves observed by a horizon

tal current meter array. The state space model required careful hand-tuning of the 

covariance matrices for the specific environment and waves in order to detect the 

internal waves. As more data is obtained about internal wave dynamics, a careful 

evaluation of the potential benefits versus risks must be made before incorporating 

the model statistics into the Kalman filter. 

The Kalman filter estimator suffers when the input sequence is not persistent. 

The input sequence w[n] plays t he role of the output matrix C[n] in Eq. 1.34. A 

system is defined to be uniformly completely observable if there exist a and m such 

that the smallest eigenvalue of t he observability gramian M [n, n + m] is greater 

than a for all n [43]. The Kalman filter to estimate the state of a system in the 

form of Eqs. 1.33 and 1.34 will have exponentially stable dynamics if the pair of 

matrices ( A[n], K~~l2[n]C[nJ) are uniformly completely observable, and the pair 

(A[n], Kff[n]) are uniformly completely observable. The former criteria is the crit

ical one for the Kalman filter replica matrix estimator. For the state space model 

described in Eqs. 2.26 and 2.27, the observability criteria applies to (ail, a;;/w[nJ) , 

giving an observability gramian 

n+m 
M[n, n + m] = a;;;2 L a;(n+m-l)w[f]wH[f]. (2.38) 

l = n 
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If w[n] converges to a fixed value, this matrix will not satisfy the condition for 

uniform observability. If !ail < 1, it will only exacerbate this conditioning problem 

since w[n]'s earlier excursions away from the final value will be weighted even less. 

The control algorithm's tendency to produce an impersistent input sequence means 

the Kalman filter cannot theoretically be guaranteed to converge. However, the 

algorithm had no difficulty converging in either simulations or laboratory waveguide 

tests. 

2.5 Least Mean Squares Estimator 

The Least Mean Square (LMS) Algorithm [13], [54] is a computationally simple and 

commonly used algorithm. In terms of the variables of the replica matrix estimation 

problem, the algorithm adaptively chooses a row vector q(n] to give the best least 

squares solution to 

Pi[n] = qi(n]w[n]. (2.39) 

The LMS algorithm approximates the steepest descent algorithm by using the instan

taneous values of Pi[n] and w[n] to estimate the cross-correlation vector E {Pi[n]wH[n]} 

and autocorrelation matrix E { w[n]wH[n]}. The resulting estimator is 

(2.40) 

where J-L is a scalar controlling the correction step size at each iteration. If the in

put vectors w[n] are independent and persistent, and w[n] and pi[n] are mutually 

independent Gaussian random variables independent of all earlier values of pi[n], the 

LMS algorithm can be shown to converge in the mean to QiO, the Wiener estimate 

of Qi[n] as n --t oo. Even when these stringent conditions are not satisfied, the LMS 

algorithm is often still effective and used in practice because of its computational 

simplicity compared to algorithms such as those described in the previous two sec-
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tions. One problem with the LMS algorit hm given by Eq. 2.40 is the norm of the 

correction J.L (pi[n] - qi [n]w[n])wH[n] depends on the norm of the input vector w[n]. 

This can result in a convergence rate that depends on the input sequence. To reduce 

this dependence, t he normalized LMS [54] algorithm uses J.L = jjf(c + llw [nJII2
). The 

factor of llw[nJ II2 normalizes the step size by the norm of the input vector, reduc

ing the dependence of the convergence rate on the input sequence. The constant c 

prevents J.L from growing too large if llw[nJII 2 grows very small. 

The normalized LMS algorithm can be used to estimate all the rows of Q[n] 

simultaneously by 

(2.41) 

This equation reveals the normalized LMS estimator has t he same fixed point as the 

CNLLS estimator. When the estimator errors for the rows of Q[n] are orthogonal to 

the source array vector w[n] the LMS estimator will have same convergence problems 

caused by an impersistent input sequence as the CNLLS estimator. Comparing 

Eqs. 2.41 and 2.19-2.22 indicates the LMS estimator is equivalent to the CNLLS 

est imator wit h ~[n] held fixed at J.LI. T hus, the LMS estimator is not using any 

information about the past values of w[n] to update Q[n]. The CNLLS estimator 

will generally converge and respond to transients better because of its use of this 

information. If the weight sequence w[n] is distributed such that the E { ~} = I , 

the CNLLS and LMS est imators will be equivalent in the mean sense. However , 

the constraint of excit ing a fixed pressure field will generally require w[n] to remain 

fixed or nearly fixed once the estimate of Q[n] has converged close to t he true Q, 

and thus generally E { ~} =I- I . In t his situation, the LMS estimator is not expected 

to perform as well as the CNLLS estimator. The experiments presented in Chapter 

4 verify this. 
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Chapter 3 

Simulation Results 

This chapter presents the results of using the control algorithm presented in the 

last chapter in several simulated ocean environments. All of the environments were 

simulated with the finite-element parabolic equation (FEPE) model for acoustic 

propagation [21] . This is an especially good model to use for these simulations 

because it is not a mode-based propagation model. Consequent ly, this eliminates any 

concerns about the propagation model generating a single mode because it assumes 

the propagation takes place in discrete modes. The shallow water environments are 

based on observed sound speed profiles from the continental shelf in the region of 41 o 

N 71° W [58]. Figure 3-1 indicates the specific transect where t he profiles used in t he 

experiments were measured. Section 3.1 confirms the algorithm works for a simple 

range- and time-invariant environment. Sections 3.2 and 3.3 simulate two common 

shallow water bathymetric features: a rock outcropping and a downsloping wedge. 

Both of t hese features affect acoustic propagation and would cause problems for 

an open loop control algorithm which assumed the modes propagated adiabatically 

downrange. The final section, Section 3.4, simulates the propagation of a solitary 

internal wave through the feedback volume over the course of roughly twenty-five 

minutes. The successful performance of the feedback control algorithm in all these 

environments offers encouragement for its successful deployment in an oceanographic 

69 



experiment. 

41 

40.5L__ ____ ._ ___ -''--------'---- --' 
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Longitude (Deg) 

Figure 3-1: Hydrographic Transect Providing Environmental Data for Simulations 

3.1 Range-Invariant Environment 

The simulations in this section verify that the feedback control algorithm works for a 

simple but realistic shallow water environment. In addition, the performance of the 

algorithm is evaluated over a range of estimator parameters. For the CNLLS esti

mator, the parameter was the exponential forgetting factor, while the Kalman filter 

trials varied the autoregressive parameter a and the innovation covariance P r used 

by the Kalman filter's state space model for the replica matrix dynamics in Eqs. 2.34-

2.37. The environment used was time-invariant and homogeneous in range with the 

vertical profile shown in Figure 3-2. The experiments were all configured with the 

source and feedback arrays separated by 1 km, and the propagation frequency was 

400 Hz. At this frequency, the environment supports nine trapped modes. All of the 

evanescent modes and continuum energy will be completely attenuated over the km 

distance between the source and feedback arrays (18]. The source array consists of 
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10 omni-directional point sources, and the feedback array of 19 hydrophones. The 

replica matrix at this frequency for the environment was computed using a version 

of FEPE modified to give complex replica vectors rather than transmission loss. 
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Figure 3-2: Vertical Profile of Range-Invariant Environment 

Figure 3-3 plots the mode shapes for the nine trapped acoustic modes of this 

environment as computed by FEMODE, a finite-difference mode computation pro

gram. Figure 3-3 also displays the shape of the sound speed profile at the left edge 

of the plot for purpose of comparison with t he mode shapes. The feedback array 

samples the mode shapes well, and so 'lt R has a condition number of roughly 1.25. 

Because 'lt R is well-conditioned, choosing the source array weights to minimize the 

error between the desired and obtained profiles in the pressure domain will give a 

high fidelity single mode. 

T he experiments each consisted of 100 independent t rials attempting to excite 

mode two. Each trial started from a random Q(O] and then allowed the algorithm 

to converge for 250 iterations. The observation noise at the feedback array was 
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Figure 3-3: Mode Shapes for Range-Invariant Environment 

spatially white, and 20 dB below the energy in the desired pressure profile for mode 

two. This SNR is relatively high but realistic given the short distance between the 

source and feedback arrays. For the scenario shown in Fig. 1-1, the excited field must 

be strong at the feedback array if it is to be measurable at the observation array, 

which is much further downrange. If the pressure field at the feedback array is not 

significantly above the observation noise, the observation array may have difficulty 

separating the signal due to the mode input to the observation volume from noise. 

Figure 3-4 shows the convergence of the control algorithm using the CNLLS 

estimator for Q . The figure plots the mean performance over 100 trials for three 

different forgetting factors, as well as the least squares bound obtainable from perfect 

knowledge of Q. The three forgetting factors correspond to effective window lengths 

of 50, 100 and 200 iterations, where the effective window length N-y for a forgetting 
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factor 1 is defined to be the number of iterations required for it to decay to 0.1, i.e., 

The curves in Figure 3-4 plot the mean signal-to-error ratios (SERs) averaged over 

all trials for each experiment. The SER is defined to be the ratio of the energy in 

the desired pressure profile to the energy in the error at each iteration, i.e., 

where p[n] is the pressure observed at the feedback array for the current iteration 

including all observation noise. The error term JJpd-p[n] JJ2 appears in the denomina

tor of the SER expression, while the numerator JIPdJJ 2 is fixed for these experiments. 

Thus, decreasing the error between the desired and observed pressure vectors will in

crease the SER. The experiments indicate that the performance does not vary much 

with changes in forgetting factor. The ((LS Bound" at 55 dB is the least-squares 

bound on the performance that could be attained with perfect knowledge of Q and 

no observation noise. This bound is finite because of numerical differences between 

the methods for computing the pressure profiles for mode two and the replica matrix 

Q. As a result, a small component of Pd is not in the span of Q. 

Because the observed pressure includes noise, there is a practical bound on the 

curves in Fig. 3-4 considerably below the LS bound. Even if the algorithm perfectly 

excited the desired pressure field , the observation noise would still limit the per

formance to 20 dB. Figure 3-5 shows the results of several experiments using the 

CNLLS estimator with decreasing observation noise (increasing SNR). Again, each 

curve is the average performance over 100 trials of the same experiment. In each 

case, the SER approaches the SNR demonstrating the performance of the algorithm 

in this environment is limited by the level of the observation noise. Figure 3-6 shows 

the desired pressure profile at the feedback array against the pressure obtained by a 
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typical trial of this experiment with effective window length 100. While the pressure 

obtained is not a perfect fit to the desired profile, it is a good approximation. 
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Figure 3-4: Ratio of Energy in Desired Profile to Energy in Mean Error for CNLLS 
Estimator 

Figures 3-7 through 3-9 show the results of several simulations using the Kalman 

filter channel estimator with different values for a and Pr in the Kalman filter's state 

space model for the dynamics of Q. Note that this is only changing the parameters 

of the model used by the estimator, and does not change the properties of the real 

channel, which is time invariant. These experiments were performed with the same 

configuration, initialization and number of trials as the CNLLS experiments. For 

a = 0.98 and 0.99, the experiments indicate the cont rol algorithm performed best 

when a relatively large innovation covariance Pr was used in the Gauss-Markov 

model for the evolution of the rows of Q i.e., Eq. 2.26. Choosing Pr = 10-61 gave 

the best performance for these values of a . The mean absolute value of the elements 

of the true Q is 1.2 X 10-3 , SO the standard deviation of the innovation process for 
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Figure 3-5: SER for CNLLS Estimator at different SNR levels 
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Figure 3-6: Vertical Profile of Pressure for Typical Trial of CNLLS Estimator 
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these elements is on the same order as the mean replica matrix element. When 

a = 1.0, Figure 3-9 shows the estimator with P r = 10-61 does noticeably worse 

than the others. Solving for the steady-state error covariance of the Kalman filter 

reveals that for a = 1.0 the error covariance of the Kalman filter is much larger for 

Pr = 10- 61. It is sensible that a large value ofPr would make the error variance grow 

even faster and cause worse performance than smaller values of P r when a = 1.0 so 

there is no decay. For all three values of a shown here, experiments using even larger 

values for P r caused worse performance. This is reasonable because a larger P r would 

mean the innovation portion of the Gauss-Markov process f would overwhelm the 

true values of the time-invariant Q the algorithm is attempting to estimate. Figure 

3-10 plots the desired and obtained vertical pressure profiles for a typical trial with 

a = 0.99 and Pr = 10-61. Similar to the result shown in Figure 3-6, the profile 

obtained by the control algorithm is a close but not perfect fit to the desired profile. 

Figure 3-11 plots the results of a simulation comparing the CNLLS with 'Y = 1 

to the Kalman filter with a = 1 and Pr = 0. It can be demonstrated that for 

these parameter choices, the estimators are equivalent if the condition number is 

not limited in the CNLLS estimator. The curves in Fig. 3-11 are very close but 

not identical. Two factors may have caused this discrepancy. First, each curve is 

an average of 100 trials with the appropriate estimator. Each trial started with a 

different randomly chosen Q[O]. In the limit of an infinite set of trials , these averages 

should agree, but the sample averages for each estimator need not be identical after 

100 trials. Second, the CNLLS estimator did limit the condition number of .p-I [n], 

so the estimators are not exactly equivalent when .P becomes poorly conditioned. 

The increasing difference between the curves with increasing n supports this expla

nation. If the condition number-limiting is a factor , it will only matter once w[n] has 

converged and .P[n] becomes poorly-conditioned. This will take several iterations, 

and the effect will become more severe as .P becomes more poorly conditioned over 

time. The curves in Fig. 3-11 start very close together and only diverge slowly as the 
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would be expected as the conditioning of <P grew worse. This supports the hypothe

sis the condition number-limiting is the primary factor responsible for the difference 

between the estimators. On the whole, t he close agreement between the estimators 

in this experiment offers reassurance that the estimators are correctly implemented. 
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Figure 3-7: Ratio of Energy in Desired Profile to Energy in Mean Error for Kalman 
Filter Estimator with a= 0.98 

3.2 Rock Outcropping 

This section examines the performance of the control algorithm when the region be

tween t he source and feedback arrays includes a rock outcropping. Such features are 

common in shallow water environments, and the strong interaction of the pressure 

field with the bottom means these bathymetric features have an important effect 

on propagation. Given very accurate and detailed environmental measurements, an 

open loop control algorithm could theoretically still generate a single mode in the 
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Figure 3-11: Comparison of CNLLS and Kalman filter estimators 
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presence of such an outcropping. An echosounder survey could give a reasonably ac

curate bathymetric profile of the environment, though it would still have uncertainty 

in depth on the order of a quarter to half wavelength (1-2m). The acoustic effect 

of this uncertainty would probably be small, but not insignificant. Measurements 

of the geophysical parameters for the specific location would require exhaustive core 

and sediment sampling. However, representative measurements of these parameters 

exist for most coast regions, and generally these measurements would be acceptable 

approximations. The open loop algorithm would start with the available environ

mental data and try to compute the replica matrix from acoustic propagation models. 

The source array weights would then be set to be those the computed replica ma

trix predicted would give the desired pressure field at the start of the observation 

volume. In contrast , the feedback control algorithm estimates the replica matrix di

rectly from acoustic observations, removing the intermediate step of computing the 

replica matrix from hydrographic and bathymetric observations. To whatever extent 

the geophysical parameters of the environment are relevant to the mode excitation 

experiment, they should manifest themselves in the observed pressure data. 

Figure 3-12 shows the propagation environment with the outcropping. Other 

than the 6 m tall outcropping at r = 200 m, this environment is identical to the 

range-invariant environment used in Section 3.1. The source array is at r = 0 m and 

the feedback array at r = 1000 m. The outcropping has physical properties similar 

to those of limestone or basalt [32]. The experiments in this section will assume 

the extreme scenario that no a priori information was available about the rock out

cropping. The open loop algorithm assumes it is operating in the range-invariant 

environment shown in Fig. 3-2. Generally, better information will be available, but 

this exaggerated mismatch demonstrates the attractive possibility of using the feed

back array without any a priori knowledge of the environment. 

The presence of this outcropping has a strong effect on the acoustic propagation. 

Figure 3-13 plots the performance of the feedback control algorithm using both 
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Figure 3-12: Rock Outcropping Environment 

estimators, as well as for an open-loop controller which assumes the environment is 

homogeneous in range with t he vertical profile observed at the source array. All t he 

curves are t he average over 100 t rials initialized with random replica matrices. The 

CNLLS estimator used an effective window length of 100, while the Kalman filter 

had a= 0.99 and Pr = 10- 61. T he figure shows both estimators converge t o allow 

t he feedback controller t o excite a single mode. However, t he very poor performance 

of t he open loop cont roller indicates t he importance of accounting for the effect of 

the outcropping on propagat ion. By assuming the environment was range-invariant 

and t hat modes would propagate adiabatically, the open-loop controller generat ed a 

pressure profile in the far field which was a poor approximation to the desired pressure 

profile, and likely unacceptable as a source signal for oceanographic observat ions. 

Figure 3-14 shows vert ical pressure profiles at the feedback array for one trial after 

t he estimators had converged . From t hese plots, it is apparent that the feedback 

cont rol algorithm gives a good approximation to t he desired pressure profile using 
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either estimator. The open-loop controller generates a profile that is unacceptable 

as a single mode source. 
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Figure 3-13: Performance of Estimators For Rock Outcropping Environment 

Figures 3-15 and 3-16 present a revealing cont rast between the pressure fields 

excited by the open loop and feedback control algorithms. Both figures plot acoustic 

intensity as a function of range and depth, where high intensity is indicated by a 

light shading. The intensity has been normalized to remove the effect of cylindrical 

spreading. T he desired mode was mode two and the environment was the rock 

outcropping environment shown in Figure 3-12 in both cases. Figure 3-15 shows the 

pressure profile versus range and depth for the field excited by the open loop control 

algorithm, as well as t he vertical profile of the magnitude of the desired pressure field 

for mode two on the left side of t he figure for reference. Close to the source array, 

the pressure field can be seen to be sett ling towards mode two, with nulls developing 

at the surface and z = 24 m. When the wave is incident upon the outcropping at 

r = 200 m, the energy is scattered into several modes, generating the complicated 
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Figure 3-14: Vertical Profile of Pressure for a Typical Trial in Rock Outcropping 
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interference pattern seen downrange of the outcropping. Based on this pattern , it 

is clear the pressure field entering the observation volume consists of several modes, 

and not the desired single mode. 

Figure 3-16 plots the intensity for the feedback controller using the CNLLS es

timator. For this algorithm, the source array initially excites a very complicated 

interference pattern containing a rich variety of modes. When this pressure field 

impinges upon the rock outcropping, t he energy scatters such that all the undesired 

modes cancel out, leaving only mode two propagating. By the time the field reaches 

the feedback array at the start of the observation volume (r = 1000 m) , there is a 

well-developed pressure null at a depth of z = 24 m. This corresponds well with the 

desired vertical pressure profile shown at the left side of the figure. The feedback 

control algorit hm successfully estimates and compensates for the scattering effect of 

the rock outcropping to produce the desired pressure field in the far field. 
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These results can be interpreted in terms of the matched signal paradigm dis

cussed in Section 1.5. The open loop algorithm assumes an adiabatic environment 

and transmits the signal desired at the feedback array immediately from the source 

array. The outcropping distorts the transmitted mode two, coupling the energy into 

several modes. The feedback control algorithm estimates the environmental effect 

on the propagation, then transmits a complicated waveform which is matched to 

the environment so the pressure field at the start of the observation volume consists 

solely of mode two. This is analogous to the work done by Parvulescu and Clay [46], 

[45] only here the desired waveform is concentrated in the mode domain rather the 

time domain. The feedback control algorithm transmits a waveform that is initially 

not concentrated in the mode domain such that the pressure field at the start of 

the observation volume contains a single mode. The open loop controller does not 

account for any channel effects, and the field it generates at the start of the obser

vation volume is not concentrated in the mode domain, but has energy in several 

modes. 

3.3 Downsloping Wedge 

A downsloping wedge is a common feature in many shallow water environments. 

This section presents the results of simulating the deployment of the feedback con

trol algorithm in a 2° downsloping wedge using the profiles observed in [58]. For the 

portions of the wedge deeper than t he bottom used in the previous section, the deep

est measurement of sound speed from the previous section is extended downward to 

form a isovelocity layer above the bottom in the wedge. The experiments described 

in this section will compare the performance of the feedback control algorithm to 

the open-loop algorithm, which assumes t he modes excited at the source array prop

agate downslope without coupling. In reality, the slope causes coupling among the 

modes as they propagate downrange so the field excited by the open-loop algorithm 
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contains several undesired modes when it enters the observation volume. The feed-

back control algorithm successfully compensates for the coupling introduced by t he 

sloping bottom to excite the desired pressure field at the start of the observation 

volume. 
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Figure 3-17: Downsloping Wedge Environment. 

Figure 3-17 shows the environment used for this simulation. The ten element 

source array is located at r = 0, and the nineteen hydrophone feedback array is at 

r = 1000 m. The depths at the source and feedback array locations are 30.75 m 

and 65.75 m, respectively. For t he transmission frequency of 400 Hz, the channel 

supports eight modes at the source array and nineteen modes at the feedback array. 

The depth at the source array is only slightly shallower than the cutoff depth for 

mode nine. Mode nine is initially an evanescent mode, but as t he channel becomes 

deeper, it becomes trapped before the energy propagating at t hat wavenumber has 

been significantly attenuated. This phenomenon, known as mode capture, has been 

observed both in laboratory experiments [31] and numerical simulations , [60]. The 

86 



simulations in this section verify that the replica matrix model for propagation used 

by the feedback control algorithm incorporates continuum effects in propagation 

sufficiently to model mode capture in downslope propagation. The sound speed 

profile and other environmental parameters are the same as those used in Section 3.2. 

One hundred trials of the feedback control algorithm were run using both the 

Kalman filter and the CNLLS estimators. The Kalman filter estimator used Pr = 

10-61 and a = 0.99 and the CNLLS used a forgetting factor giving an effective 

window length of 100 iterations. Each trial was initialized with a random Q[O] and 

was allowed to run for 250 iterations attempting to excite mode one. The observation 

noise was spatially white and 20 dB below the energy of the desired signal, Pd· Figure 

3-17 shows the desired pressure field shape as a dotted line near the feedback array. 

Figure 3-18 shows the mean SER for these trials, as well as the performance of t he 

open loop algorithm. The open loop algorithm chooses the source array weights to 

excite mode 1 assuming the mode would propagate adiabatically downslope from the 

source array. The figure shows that both the Kalman filter and CNLLS estimators 

work well, but the error in t he open loop controller exceeds the energy of the desired 

signal. Figure 3-19 plots the vertical profile of pressure magnitude for typical trials 

using each estimator and the open loop algorithm. Regardless of which channel 

estimator is used, the pressure field generated by the feedback controller is a closer 

approximation to the desired pressure profile than the field generated by the open 

loop controller. 

3.4 Solitary Internal Wave 

This section examines the performance of the feedback control algorithm in a simu

lated environment with a propagating solitary internal wave. The previous simula

tions in this chapter studied environments where time-invariant mode coupling was 

induced by bathymetric features such as a sloping bottom or rock outcropping. One 
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of the primary motivations for developing a single mode source such as the feedback 

control algorithm is to study the acoustic coupling introduced by internal waves in 

the observation volume. If the feedback control algorithm is to function successfully 

as a single mode source in such an environment, it must be capable of exciting a 

single mode even when solitary waves are propagating t hrough the feedback volume. 

This simulation models the time-varying acoustic mode coupling between t he source 

and feedback arrays introduced by a solitary internal wave propagating through the 

feedback volume. Based on studies of internal waves supported on density gradients 

in coastal regions [61] [62] [63], the thermocline at z = 10 m of the simulated envi

ronment is displaced by 10sech2 ((r - 1300 +t)kint) m for 1000 ~ r ~ 1600, where the 

horizontal wavenumber of the internal wave is kint = (27r /300)m- 1. Starting with a 

typical sound speed profile observed in [58], this displacement profile gives the sound 

speed profile shown in Fig. 3-20. In this figure, lighter regions indicate water with a 

higher sound speed, while darker regions indicate colder water with a slower sound 

speed. 

The source array is located at r = 0 m, and the feedback array at r = 1000 m. The 

solitary wave propagates towards r = 0 m with a velocity of 1 m/s, consistent with 

the velocities observed for these waves in [61]. The replica matrices were computed 

every 10m (or equivalently every 10 seconds) using FEPE. The frequency is 400Hz, 

which gives nine trapped modes for the water depth of 34 m. The simulation used the 

same bottom parameters and source and feedback arrays as Section 3.1. The feedback 

control algorithm attempts to excite mode two starting from a randomly chosen 

Q[O] and using an iteration time of 1 sec. The slowest mode in this environment 

propagates from the source array to the feedback array in roughly 0.8 sec, so this 

choice of iteration time insures the field observed at t he feedback array reflects the 

most recent source array weights. The observation noise is again spatially white and 

20 dB below the pressure profile for mode two. 

The simulation was run wit h both the CNLLS and Kalman Filter channel estima-
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Figure 3-20: Sound speed profile c(r, z) for solitary internal wave with sech2 profile 

tors. The former used a forgetting factor of 'Y = 0.9772, giving an effective window 

length of 100 iterations. The Kalman filter estimator set a= 0.99 and Pr = 10- 61. 

Figures 3-21 and 3-22 show the performance of the feedback control algorithm using 

the CNLLS and Kalman filter estimators, respectively. Because the internal wave 

is propagating with velocity 1 m/s, the time axes of Figs. 3-21 and 3-22 can also 

be interpreted as the init ial range location in Fig. 3-20 of the sound speed profile 

currently located at the source array. Each figure also shows the performance of the 

open loop algorithm in the same environment. 

Figures 3-21 and 3-22 clearly demonstrate the feedback control algorithm using 

either estimator performs better than the open loop algorithm in exciting the desired 

mode. The open loop control algorithm observes the initial sound speed profile at 

the source array, and assumes the feedback volume is range-invariant with this profile 

throughout the experiment. Initially, t his assumption is valid and attains the limit 

on SER imposed by the observation noise. Once the solitary wave starts entering 
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the feedback volume the open loop algorithm's performance deteriorates severely and 

does not recover until the wave has largely propagated past the source array. The 

Kalman filter, in particular, tracks the t ime-varying coupling introduced by the soli

t ary wave to maintain a consistently high fidelity mode after an init ial transient. The 

pressure at the feedback array for the CNLLS has significant oscillations, making its 

pressure field a less desirable source for downrange observers than t he field generated 

by the Kalman filter. The CNLLS algorithm assumes the dynamics of the rows of 

the replica matrix are stationary over the length of the effective window introduced 

by the forgetting factor. The deterministic propagation of the solitary wave through 

the feedback volume violates this assumption. Simulations run with time-invariant 

environments chosen from the replica matrices representing the solitary wave inside 

the feedback volume show the CNLLS estimator converges under t hese conditions. 

This also suggests the oscillations are caused by the nonstationary environment. The 

Kalman filter does not assume the replica matrix is stationary, and is able to ex

cite a high fidelity single mode while a strong solitary wave propagates through the 

feedback volume inducing t ime-varying coupling. 

3.5 Summary 

This chapter has demonstrated that the feedback control algorit hm is a viable 

method for exciting a single mode in several simulated coastal environments ranging 

from a simple adiabatic range- and time-invariant channel to a complicated range

and t ime-varying propagat ion environment generated by a propagating solitary inter

nal wave. These encouraging results suggest that the next logical step is to evaluate 

the performance of the feedback control algorithm in a scale model experiment . Such 

an experiment will introduce t he limitations of real-time hardware and the vagaries 

of physical acoustic propagation, testing the robustness of the algorithm. The next 

chapter describes a set of experiments which study the feedback cont rol algorithm 
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under these conditions. 
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Chapter 4 

Laboratory Waveguide 

Experiments 

This chapter describes a series of experiments using the feedback control algorithm 

to control the pressure field in a laboratory waveguide. These experiments investi

gated the performance of the feedback control algorithm implemented on real-time 

hardware and with actual rather than simulated acoustic propagation. Section 4.1 

describes the laboratory waveguide used for these experiments as well as the trans

ducers and signal processing hardware. The acoustic characteristics of the waveguide 

are discussed in Section 4.2. The first set of experiments confirmed that t he feed

back control algorithm could successfully control the pressure field in the waveguide 

without a priori knowledge of the propagation characteristics. Section 4.3 describes 

these experiments as well as a second series of experiments that explored which 

parameters of the channel estimators gave the best performance in the waveguide. 

Section 4.4 presents the results of a series of experiments investigating the transient 

response of the feedback algorithm when an acoustic scatterer was introduced into 

the waveguide after the algorithm had been allowed to converge. 
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4 .1 Waveguide and Equipment Description 

The laboratory waveguide, or flume, used for these experiments was originally de

signed for fluid dynamics rather than acoustics experiments. Consequently, the flume 

is not an ideal acoustic waveguide, and little information is available about the as

pects of construction germane to its acoustic properties. Much of what follows about 

the materials or structure is conjecture based on inspection of the flume, since no 

records or plans exist from the waveguide's construction. The tank is roughly 20 m 

long, 1 m deep and 1.2 m wide from front to back. The front face is constructed of 

plates of 3/8-inch thick plexiglass, joined by aluminum brackets to each other and 

10 em thick concrete pilings roughly every 2 m. Fortunately, the distance the pilings 

project into the flume is insignificant compared to wavelength of these experiments. 

The back wall appears to be constructed of concrete roughly 10 em thick. The back 

wall and bottom of the flume were thickly painted or coated with a latex-type ma

terial in a manner that left large (20-30 em) bubbles irregularly spaced in several 

locations on the bottom. The bottom appeared to be largely solid concrete but a 

strip of significant width (30-40 em) sounded hollow, perhaps fiberglass over a chan

nel containing plumbing for the pumps used to generate hydrodynamic flows in the 

tank. 

Two baffling plates were installed at either end of the tank for these experiments 

to reduce the amount of energy reflected, making it a closer approximation to an 

infinitely long waveguide. Each baffler was a steel plate covered with a layer of VRC 

PB 1-94 anechoic tiles manufactured by Vector Research Corporation under con

tract from Seaward International and generously loaned to us for these experiments. 

This material consists of polyurethane encapsulated gaseous microspheres, and was 

molded into pyramids roughly 2 em square at the base and extending 6 em out from 

the plate. The material was designed for 20 kHz, rather than the 8 kHz operat

ing frequency used in these experiments. Preliminary calibration data from Vector 

Research indicates even at these lower frequencies the panels should still provide 
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roughly 10 dB of echo reduction at this lower frequency. The flume was filled with 

fresh water to a depth of 66 em at the source array, which gave a depth of 69 em 

at the feedback array due to a slight slope in the bottom of the flume. Assuming 

a frequency of 400 Hz in the ocean experiment, scaling these depths by the same 

factor of twenty as the frequency indicates this would be equivalent to a 13-14 m 

water depth for an ocean experiment. 

The source array consisted of six Channel Industries 3013 ceramic cylinder 8-

15 kHz acoustic sources, spaced 10 em apart and offset 5 em from the surface of 

the water. The feedback array consisted of seven Benthos AQ2TS hydrophones 

spaced every 8 em. The hydrophones, along with their pre-amplifiers, were sealed 

in a polyurethane tube filled with mineral oil to minimize the acoustic impedance 

mismatch with the surrounding water. A tapered lead weight ballasted the base of 

the feedback array, allowing it to be tensioned to remain vertical. The pre-amplifiers 

were calibrated before insertion into the array so that all the pre-amplifiers had 

gains of 36.5 ± 0.1 dB per WHOI standard [64]. Figure 4-1 provides a schematic of 

the physical layout of the waveguide for t he experiments. The arrays were centered 

width-wise in the waveguide, roughly 60 em from the front and back walls. If the 

source array is defined as the origin in range, with range increasing towards the 

feedback array, the baffling plates were located at r = - 1.6 m and r = 12.95 m. The 

feedback array was located at r = 10.9 m. 

The feedback control algorithm was implemented in the Acoustic Modem Sys

tem (AMS-2.0), a MATLAB-like real-time signal processing environment for the 

Texas Instrument TMS320C40 DSP chip. AMS was developed by Mark Johnson 

and Matt Grund of the Acoustic Telemetry Group at the Woods Hole Oceanographic 

Institution to assist rapid development of real-time signal processing applications in 

underwater acoustics [65]. The A/D and D/A conversion required for measuring 

the pressure at the feedback array and transmitting the source array weights were 

handled by two of the modems also developed by the Acoustic Telemetry Group. 
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Figure 4-1: Configuration of Laboratory Waveguide Experiments 

One modem sampled the pressures observed at the hydrophone array, while the sec

ond modulated t he complex source array weights onto narrowband sinusoids. These 

sinusoids were fed to six independent power amplifiers, which drove the source array. 

4.2 Acoustic Properties of the Laboratory Waveg

uide 

This section describes the acoustic properties of the laboratory waveguide for the 

experimental configuration outlined in Section 4.1. The water depth in the waveguide 

was 66 em at the source array and t he frequency was 8 kHz. The temperature 

of the fresh water used to fill the waveguide was consistently 25°C, which gives a 

sound speed of 1490 m/s. The ideal isovelocity constant-depth waveguide with a 

pressure-release surface and rigid bottom [22] supports six trapped modes for this 

water depth and frequency. The bottom of the flume is not a homogeneous perfect 

acoustic reflector, making the flume unlikely to be a good approximation to this 
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ideal waveguide. In addition, the boundary condit ions imposed across the width of 

the flume by the plexiglass front wall and back wall of unknown composition further 

complicat e the acoustic propagation. Since the flume has a rectilinear geometry, the 

width and depth eigenfunctions of the waveguide should be separable. The width 

eigenfunctions should superimpose at the location of the vertical feedback array to 

form modes with the vertical profiles of the depth eigenfunctions. 

Preliminary experiments verified t hat the acoustic propagation between the source 

array and feedback array was well modeled by an LTI system. Sequent ial excit ation 

and scaling of source array elements confirmed the channel satisfied linearity. Long 

term experiments using the same set of source array weights indicated the channel 

was effectively t ime-invariant , with a correlation time on the order of hours when 

the water in the waveguide was calm. These experiments also indicated that the ob

servation noise present in the system was more than 40 dB below the desired signal 

levels. 

The sequential excitation experiments also provided an estimate of the replica 

matrix for the waveguide. Computing the SVD of this matrix revealed that only three 

modes of the system accounted for over 99% of the energy received at the feedback 

array. Figures 4-2 and 4-3 plot the singular values (a-Q) and pressure modes (UQ) 

for the first four modes of the estimated replica matrix Q. The very high SNR in 

the waveguide means t his should be an accurate estimate of the true replica matrix. 

For the remainder of the discussion in this chapter , the replica matrix estimated by 

sequentially exciting the sources will be considered to be the true Q, and the caret C') 
will be reserved for replica matrices estimated by the feedback control algorithm. In 

general, the columns of Uq will not equal the sampled mode shapes, but they should 

span the same space as the acoustic modes. Projecting the theoretical modes shapes 

for an isovelocity waveguide with a rigid bottom onto the observed Uq will indicate 

how well these theoretical modes fall in the observed span of the system. Performing 

this projection reveals a significant portion of the energy in the first three theoretical 
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modes falls outside the span of the first three columns of U Q. This indicates the 

laboratory waveguide is not a good approximation to an isovelocity waveguide with 

a rigid bottom. This is not surprising given the unknown composition and irregular 

construction of the bottom of the flume. 

Repeated estimations of Q indicate the tank is well-modeled as LTI over the 

time-scales considerably longer than the propagation time between the source and 

feedback arrays. Although the singular values do vary slowly over time, they remain 

roughly the same size as those shown in Fig. 4-2. Based on the values plotted in 

Fig. 4-2, three, or at most four, modes propagate in the laboratory waveguide. 
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Figure 4-2: Singular Values of Replica Matrix for Laboratory Waveguide 

The remainder of the experiments described in this chapter use the columns of 

Uq , or system modes, for the desired pressure profile. In a well-designed ocean 

experiment, the acoustic modes fall within the span of the columns of UQ, allowing 

the feedback control algorithm to excite the desired mode. Demonstrating the al

gorithm is capable of obtaining pressure profiles in the numerical span of Q in the 

100 



0.-----~-----r-----.------.-----~-----.-----. 

e 
.3. 

10 

20 

..c 30 a. 
Q) 

0 

40 

50 

60L-----~-----L----~------~----~----~----~ 
1 1.5 2 2.5 3 3.5 4 4.5 

System Mode Number 

Figure 4-3: Pressure Magnitude for System Modes of Laboratory Waveguide 

flume should give us confidence that the algorithm will be successful in exciting the 

desired acoustic mode in a well-designed ocean experiment. 

4.3 Time-Invariant Waveguide 

The experiments in this section demonstrate the feedback control algorithm can suc

cessfully excite the desired pressure profile in a time-invariant laboratory waveguide. 

The initial Q[O] is the t rue Q with noise added 20 dB below the true values. Starting 

with this init ial Q [O], the feedback control algorit hm was allowed t o run for 100 iter

ations wit h a 0.9 second iteration t ime. The desired pressure profiles were the system 

modes, i.e. , the columns of UQ. The experiments were run on a different day with a 

slightly different Q than the replica matrix measured in the last section. As a result, 

the desired pressure profiles and relative energies were similar but not identical t o 

those shown in Figs. 4-3 and 4-2. The gains of the desired pressure profiles were 
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scaled to prevent saturation of either the source array D /A or the feedback array 

Aj D. Both the Kalman filter and CNLLS estimators were used in these experiments. 

The Kalman filter used a = 1.0 and P r = 10- 51; the CNLLS used a forgetting factor 

of 'Y = 0.9550 and limited the condition number of ~-1[n] to 200. This limit on 

the condit ion number is much more severe than the 106 used in the simulations of 

Chapter 3 due to numerical sensitivities in the eigenvalue library implemented in 

single precision on the T MS320C40. Experiments described later in this section ex

plore other parameter choices for the channel estimators and confirm t hat although 

these may not be the ideal parameter choices for the estimators they are reasonable. 

Figure 4-4 shows the performance of the feedback control algorithm exciting system 

mode one. Both estimators give a very high SER: the Kalman filter estimator attains 

nearly 50 dB of SER, while the CNLLS estimator levels out around 45 dB SER. The 

Kalman filter experiment shows several drop-outs of the signal. These were caused 

by network delays during the experiment. The t ransmitter and receiver modems 

used a semaphore protocol via files on the NFS server to synchronize t he sampling 

of the pressure field at the feedback array. Unfortunately, network delays sometimes 

disrupted this synchronization and the receiver did not sample the pressure until 

after t he source array stopped transmitting. These glitches are regrettable, but they 

do allow the Kalman filter estimator to demonstrate its robustness to this sort of 

error. Other experiments shown later in the chapter indicate t he CNLLS and LMS 

algorithms are also robust to this sort of error. This i.s encouraging for the ocean 

experiments because the radio telemetry link shown in Fig. 1-1 between the feedback 

array and source ship will likely experience similar intermittent disruptions. 

Figures 4-5 through 4-7 show the performance of both estimators for system 

modes two through four. All of these experiments demonstrate that the feedback 

algorithm is capable of exciting high fidelity modes. The fidelity of the excited 

pressure profile for mode four is particularly impressive, since the singular value 

corresponding to this system mode is more than 20 dB below the singular value 
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Figure 4-4: SER Performance for System Mode 1 in Time-Invariant Waveguide 

for mode one. This can be seen in Fig. 4-2, where the magnitude of the pressure 

profile of system mode four is far below that of system mode one. The performance 

for mode four shown in Fig. 4-7 indicates this mode is both numerically reachable 

and observable for the conditions in the flume. Figure 4-8 shows the performance of 

the feedback control algorithm when the desired pressure profile was system mode 

one plus 0.4j times system mode two. The high SER for this experiment confirms 

the algorithm can excite linear combinations of the system modes as well as the 

individual modes. If the desired acoustic mode in an ocean experiment is not one 

of the system modes but falls within t he appropriate numerical span of the system 

modes, the feedback control algorithm should be able to excite the pressure profile 

of the acoustic mode with high fidelity. 

Figures 4-9 through 4-11 show the performance of the channel estimators with 

different choices of parameters. All the experiments shown in these figures started 

with no a priori knowledge of Q, i.e., random Q[O], and attempted to excite system 
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mode one. Figure 4-9 shows the performance for the Kalman filter estimator for 

various values of Pr when a = 1.0. The mean magnitude of the elements of Q 

is 0.16 for this experiment. All of the covariance matrices for the experiments in 

Fig. 4-9 are far below the steady value of most elements of the replica matrix. 

With a= 1.0, the covariance of the Kalman filter estimator will grow in all direc

tions except w. This may explain why the smallest Pr gives the best performance, 

as the estimator's covariance matrix will grow the slowest for this small innovation 

covariance. From examining this figure, it is tempting to suggest the high frequency 

content of the SER increases as P r decreases. Plotting the spectra of these curves 

reveals that the P r = 2 x 10- 61 trial has more high frequency content in the SER 

than the P r = 10- 61 trial. More importantly, SER is not necessarily a good indicator 

of the frequency content of the errors. Consider the case when the observed pressure 

p(n] = Pd + .6.peiwn. This would have constant SER plotted against time regardless 

of the frequency w in the error term. Thus, the frequency content of the pressure 

error may not be reflected in the SER. It is also important to remember that the 

curves in Fig. 4-9 are from a single trial. The limited time available for experiments 

precluded running extensive trials in the flume to allow averaging of performance 

over many trials. 

Figure 4-10 plots the performance of the CNLLS estimator with different choices 

for the forgetting factor f. The relatively smallest forgetting factor (! = 0.9, effec

tive window length = 22 samples) converges the fastest of the experiments shown, 

although r = 0.925 reaches a slightly higher final SER. The strong performance of 

these relatively short windows is not surprising because the noise level in the flume 

is so low. Consequently, the channel estimator does not need to average many it

erations to minimize the effect of the observation noise. The tighter limit on the 

inverse of 4>[n] introduces more bias into the channel estimate than was seen in the 

simulation results in Chapter 3. This explains why the CNLLS performance does 

not equal the SER obtained by the Kalman filter in the waveguide, although the 
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CNLLS often performed slightly better than the Kalman filter in the simulations of 

time-invariant ocean channels. 
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Figure 4-9: Comparison of the SER for System Mode 1 in the Time-Invariant Waveg
uide for different Pr in the Kalman Filter Channel Estimator 

Figure 4-11 shows the SER of the LMS channel estimator for two different choices 

of a. The algorithm converges faster and to a higher SER for a = 0.5, although it 

does not match the performance of the Kalman filter or CNLLS estimators. It is 

reassuring that these latter estimators do obtain better performance than the LMS 

for the additional computational complexity they require. Figure 4-12 plots the 

pressure magnitude profile against depth for all three algorithms, as well as the 

desired profile for mode one. The Kalman filter and CNLLS estimators generate a 

pressure profile which is almost indistinguishable from the desired pressure profile. 

The LMS estimator does not match the desired profile quite as closely, but does still 

give a good approximation to the profile of system mode one. 
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4.4 Time-Varying Channels 

The experiments presented in this section investigate the transient performance of the 

feedback control algorithm. These experiments consisted of allowing the algorithm 

to iterate for a fixed amount of time, then inserting a scatterer to change the acoustic 

propagation in the waveguide. The scatterer used was a 40 x 19.5 x 19.5 em cinder 

block. The block was suspended in a manner allowing it to be consistently placed 

at r = 3.15 m in t he waveguide such that the bottom of the block was at a depth 

of roughly z = 25 em. The dynamic characteristics of the insertion were hand

controlled by a human operator, and were not as consistent between trials as the 

location was. This difficulty resulted in the two strategies for transient experiments 

outlined in the following sections. 

All the experiments attempted to excite system mode one starting from a cor

rupted version of the true Q. The Kalman filter estimator used Pr = 10-51 and 
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a = 1.0, while the CNLLS estimator had 1 = 0.95 (effective window length ~ 45 

iterations) and a condition number limit of 200. The normalized LMS estimator 

used a = 0.5. The physical configuration of the waveguide and arrays were t he same 

as described earlier in this chapter. 

4.4.1 Abrupt Channel Change 

These experiments changed the acoustic properties of t he waveguide such that from 

the estimators' point of view the change occurred instantaneously. To implement 

this, the feedback control algorithm ran for 100 iterations with an open waveguide, 

then paused. The cinder block was lowered into the waveguide, t he water waves 

excited in the tank were allowed to calm down, and then the algorithm resumed 

with the same state and desired pressure profile it had when it paused. From the 

estimators' vantage, the brick appeared instantaneously between iterations wit hout 

disturbing the water. This experiment was repeated for each of the channel esti

mators. This method of modifying the acoustic properties of the channel allowed 

the experiments to focus on the transient behavior of the estimators independently 

of the settling t ime of any wave dynamics introduced by the lowering of the cinder 

block. 

Figure 4-13 presents the SER curves for these experiments. T he presence of t he 

block does alter the replica matrix and t hus the modes of the system. The desired 

pressure profile at t he feedback array is kept unchanged as the first mode of the open 

waveguide. Projecting this pressure profile on the first three modes of the replica 

matrix with t he block in place reveals more than 99% of the energy of the desired 

profile still falls in the span of the first t hree system modes, i.e., 

(4.1) 

where UQBi is the ith column of the replica matrix Q with the block inserted in 
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the waveguide, and Pd is t he first mode of the system for the open waveguide. The 

dotted line at roughly 30 dB indicates the best possible performance exciting mode 

one with the block in place. This bound on the SER is down from a theoretical 

limit of 150 dB in the absence of noise for the open tank without the block. As the 

observation noise limits the performance to 45-50 dB of SER, inserting the block 

changes the environment from one where the performance is noise-limited to one 

where the performance is propagation limited by the coupling induced by the block. 

The Kalman filter estimator adapts to the new channel in roughly 12 iterations. 

The CNLLS and LMS estimators take longer to converge after the change in the 

channel. The CNLLS estimator takes about 40 iterations to converge, while the 

LMS algorithm hasn't converged 100 iterations after the block appears. Both of these 

convergence characteristics could probably be improved by modifying the estimator 

parameters: decreasing 'Y for the CNLLS or increasing P, for the normalized LMS. 

While these changes would increase the convergence rate, they would also make the 

estimators more sensitive to observation noise. Decreasing 'Y would decrease the 

effective window length the CNLLS estimator averages over, while a larger P, makes 

the LMS estimator more sensit ive to noise even after it has converged. In noisy 

ocean experiments, this sensitivity would be a more serious issue than in the very 

quiet and controlled laboratory waveguide setting. 

4.4.2 Gradual Channel Change 

In the experiments described in this section, the feedback control algorit hm ran con

tinuously while the cinder block was lowered into the waveguide, rather than pausing 

as in the experiments described in the previous section. The planned sequence was 

to allow the algorithm to run for 50 iterations, t hen gradually insert the block over 

the next ten to fifteen iterations while trying to minimize the water waves excited 

in the tank by the disturbance. The execution was not always successful in terms of 

the timing of the insertion or minimizing the fluid dynamic transient. 
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Figure 4-13: Transient Response of Channel Estimators for Abrupt Change in Chan
nel 

Figures 4-14 through 4-16 present the results of these experiments. The different 

line types on each figure represent successive trials of the same experiment. It is not 

easy to extract the sort of quantitative results obtained in the previous section from 

these plots. The Kalman filter clearly converges the fastest in these experiments, 

with the CNLLS and LMS estimators following in that order. Both the Kalman 

filter and CNLLS estimators come very close to the LS bound on SER with the 

block in the waveguide. This bound for these trials is not necessarily the same as 

the one shown in Fig. 4-13 since the waveguide characteristics drift and these trials 

were performed at a different time and took longer to complete. Consequently, the 

extent to which Pd fell within the numerical span of Q varied from trial to trial. This 

bound only varied by a few dB over the experiments shown in this section. 

The longer convergence times of all the estimators in these experiments when 

compared to Fig 4-13 could be due to a combination of several factors. The acoustic 
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properties of the waveguide are changing every iteration for roughly a dozen iterat ions 

due to the lowering of the block into the waveguide. In addition, t he water waves 

excited by insert ing the block will also affect the acoustic propagation. Even a very 

gentle touch lowering the block into the channel excited water waves that took several 

iterations to sett le. 
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Figure 4-14: Transient Response of Kalman Filter Channel Estimator for Gradual 
Change in the Waveguide 

A rough quant itative estimate of the increase in convergence time can be obtained 

by st art ing from the observation that in most of the trials in these experiments the 

block was completely lowered by iteration 65. Looking closely at Fig. 4-14 reveals t he 

Kalman filter estimator generally converged within 25 iterations after the block was 

in place. This was about twice as long as the convergence t ime observed in Fig. 4-13. 

A similar examination of Fig. 4-15 reveals an increase of convergence t ime to roughly 

70 iterat ions, rather than the 40 iterations observed in Fig. 4-13. T he LMS algorithm 

never completely converged in either set of experiments, making it impossible to 
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make a similar comparison for this estimator. Comparing these transient response 

times to those seen with the abrupt channel change, one qualitative conclusion that 

can be made is water dynamics slow the convergence of the estimators. While the 

insertion of the block was not perfectly consistent for each trial, the water waves 

were excited in roughly the same way. The varying transient response times among 

the estimators indicate that the estimators experience differing levels of difficulty 

tracking the water dynamics. If the dynamics were slow enough that the estimators 

could perfectly track the changes in Q , all of the transient times of the estimators 

would be the settling time of the water dynamics. The variation of the response 

times in Figs. 4-14 through 4-16 confirm the estimators are unable to keep up with 

the changes in Q due to the hydrodynamics. The Kalman filter does not assume 

the replica matrix dynamics are a stationary process, so it is not surprising that 

it adapts most quickly. In fact, the transient time for the Kalman filter might be 

taken as a rough estimate of the settling time for the dynamics of the water waves. 

The CNLLS and LMS estimators assume Q is stationary, so they won't be able to 

make substantial progress converging on the new Q with the block in place until the 

non-stationarity introduced by the water waves dies out. For the CNLLS estimator, 

the increase in convergence time from the abrupt channel change experiment should 

reflect the settling time for the water dynamics. The increase in convergence time 

of roughly 30 iterations is commensurate with the estimate of the time constant for 

the hydrodynamics obtained from the Kalman filter transient. The duration of the 

ripples in the LMS SER in Fig. 4-16 also supports this estimate of the hydrodynamics 

t ime constant. As noted in the discussion of Fig 4-9, time characteristics of the SER 

do not necessarily reveal all the underlying dynamics of the error, but here the SER 

curve for the LMS estimator does corroborate the estimated settling time for the 

water waves obtained from the CNLLS and Kalman filter SER curves. 

The estimators' difficulty tracking the flume water dynamics are not necessarily 

cause for concern in the ocean environment. Visual observation indicated the waves 
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excited by lowering the block propagated the 8 m from the block to the feedback array 

in less than 3 seconds. Scaling up by a factor of 20 for a 400 Hz ocean experiment, this 

indicates that in an ocean experiment t he estimators could not track water dynamics 

propagating 26 m/s, an excessive velocity for ocean phenomena. The simulat ions of 

the solitary wave in Section 3.4 suggests the Kalman filter can track ocean processes 

propagating at least as fast as 1 m/s, which is a generous estimate for the group 

velocity of these waves. 

4.5 Summary 

This chapter presented a sequence of experiments using the proposed feedback con

trol algorithm in a laboratory waveguide. These experiments demonstrate that the 

algorithm performs well in time-invariant channels when implemented on real-time 

signal processing hardware connected to real sources and hydrophones. This en

vironment provided a very useful test bed for verifying the algorithm was feasible 

and making some preliminary investigations of its transient behavior. More de

tailed investigations of the tracking performance of the estimators would require a 

well-controlled means of introducing a fluid dynamic disturbance of the appropriate 

bandwidth in the waveguide. The results obtained in the experiments described in 

this chapter are encouraging for the success of an ocean experiment. In addition, the 

experiments provided some valuable experience for the deployment and debugging 

of a real-time system implementing the feedback control algorithm. 
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Chapter 5 

Conclusions and Future Directions 

The work presented in this thesis develops an adaptive feedback controller to excite 

a single mode in the shallow water channel. No mid-frequency (circa 400Hz) ocean 

experiment has successfully generated a single mode in this environment. A single 

mode source in this frequency range would be very useful for studying oceanographic 

processes in the coastal environment . The control algorithm incorporates elements of 

control theory, adaptive estimation, array processing and underwater acoustics. The 

controller iterates between choosing the source array weight vector, and updating 

its estimate of the replica matrix between the source and feedback arrays. Three 

channel estimators are developed based on different models for t he properties and 

statistics of the replica matrix. 

The work leading to the control algorithm also yielded two additional results . 

The first is a formulation of the maximum a posteriori (MAP) mode filter. This 

filter segues between the pseudo-inverse and sampled mode shape filters as the hy

drophone array aperture decreases. This result provides a theoretical basis for an 

earlier ad hoc "dropped eigenvalue" mode filter proposed by Yang [41). The MAP 

mode filter also has an appealing interpretation as a generalization of the discrete 

spatial Wiener filter. The investigation of controllability and observability provides 

a cohesive framework for examining numerical issues germane to a practical exper-

117 



iment. Specifically, criteria are given for determining when a desired mode can be 

excited and observed given proposed array configurations, observation noise charac

teristics, source power limitations and approximate acoustic attenuation in range. 

A series of simulations presented in Chapter 3 investigate the performance of the 

proposed algorithm in several realistic shallow water environments: a range-invariant 

waveguide, a rock outcropping, a downsloping wedge, and a propagating solitary in

ternal wave. The performance of the various channel estimators in each environment 

are compared to each other and the performance of an open loop controller. The 

Kalman filter and CNLLS estimators both generated high fidelity modes in these 

simulations, with the latter usually performing slightly better. 

The proposed algorithm was also evaluated in a series of laboratory waveguide 

experiments. The algorithm successfully excited several different modes of the sys

tem. The Kalman filter channel estimator proved more robust to the computational 

limitations of the real-time DSP hardware in these experiments. The waveguide 

experiments also provided some preliminary data on the transient response of the 

channel estimators. The Kalman filter also performed better than the other estima

tors in the transient experiments. The success of the algorithm in the laboratory 

waveguide is encouraging for the prospects of an ocean experiment. 

Several aspects of the single mode excitation problem present intriguing directions 

for future research. One possible improvement in the feedback control algorithm 

would be in the weight vector selection step. Rather than choosing the source array 

weight vector w(n] to minimize the squared error between the predicted pressure 

Q(n]w(n] and desired pressure vector Pd, w(n] could be chosen to minimize the ratio 

of the energy in all modes to the energy in the desired mode. In the limit with only 

mode m 0 excited , this ratio would be 1. More precisely, the optimization problem 

the new weight selection step would solve is 

(5.1) 
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where B(n) is an estimate of the source weight to mode coefficient transfer matrix 

from Eq. 1.35 and hm0 (n) is t he m&11 row of that estimate. As formulated in Eq. 5.1, 

the optimization does not have a unique solution , but by introducing an additional 

constraint, a unique solution can be obtained. The constrained optimizat ion is 

w[n] = argmin wH:J3H (n)B[n)w subject to hm0 [n)w = 1. (5.2) 
w 

and it is clear any solution to this optimization will also be a solution to Eq. 5.1. 

The constrained problem in Eq. 5.2 has the same form as the Minimum Variance 

Spectral Estimator [66), [40). The solution to this optimization can be written in 

closed form: 

(5.3) 

The performance of this weight selection criteria would need to be evaluated in simu

lations and laboratory waveguide experiments and compared against the performance 

of the least-squares criteria used in the thesis . 

The proposed algorithm uses a very basic model for t he acoustic propagation 

in the feedback volume and also a simple feedback control algorithm. The simu

lations and laboratory experiments indicate these straightforward approaches can 

successfully excite a single mode. This success encourages further investigat ions in

corporating more sophisticated control algorithms and ocean models to see if these 

advances can provide even better performance. Specifically, the field of robust con

trol contains many important results that may provide additional insight into t he 

single mode control problem [49), [50], [51) . In pursuing t hese advances, a balance 

must be made between improved performance excit ing a mode and greater sensi

tivity to mismatch errors in either the ocean acoustics or estimated plant. While 

the algorithm proposed here is very modest in its technical scope, it is flexible in 

responding to a wide range of ocean environments. Any more sophisticated control 

algorithm will want to preserve this robustness as much as possible. 
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Another possible improvement would be a more aggressive temporal sampling 

strategy for the feedback volume. The iteration time could be reduced from the 

propagation time of the slowest mode between the source and feedback arrays to the 

difference between the travel times of the fastest and slowest modes. This would 

require accurate estimates of the mode group velocit ies. These estimates could be 

obtained numerically from the sound speed profiles at the source and feedback ar

rays [32) and if the estimates are sufficient ly accurate and reliable, several packets 

of modes could be en route between the source and feedback arrays simultaneously. 

This decrease in the iterat ion time for the control algorithm would allow the channel 

estimator to track a higher bandwidth of oceanographic processes. For t he ranges 

and environments examined in this thesis, the conservative iteration interval set by 

the propagation time of the slowest mode sufficiently samples the most important 

processes, so the incremental gains obtained by decreasing the iteration t ime do not 

merit the significantly increased risk of poor performance if the estimated group ve

locities are incorrect. Inaccurate group velocity estimates could cause mode packets 

that are no longer temporally distinct at the feedback array. Future deployments of 

the algorithm may occur in environments with ocean processes operating on shorter 

t ime scales, or with a greater distance between the source and feedback arrays. In 

such scenarios, the benefits of reducing the iteration time might merit the additional 

complexity and risk associated with this strategy. A specific instance where this 

could prove valuable would be scenarios where surface wave processes have a signif

icant effect on the mode propagation. Surface waves have much shorter time scales 

than most internal ocean processes and reducing the iteration time of the control 

algorithm could prove crucial to allowing the estimators to t rack these processes. 

The single mode source provided by the feedback control algorithm can be used 

for other acoustic measurements besides estimating the horizontal wavenumber spec

t ra of an internal wave packet. When the propagation in the observation volume is 

well-modeled by a discrete set of propagating modes, the mode coupling over that 
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volume gives a simple parametric model for predicting the propagation through t hat 

volume. Long-term measurements of these coupling statistics could provide use

ful measurements of the dynamics of acoustic propagation in coastal regions which 

could be exploited by more sophisticated ocean acoustics signal processing algo

rithms. Currently, very little data is available about the statistics and dynamic 

behavior of propagation in these regions. 

The feedback control algorithm may have other oceanographic applications be

sides a single mode source. Gingras [5] proposed a single mode source as a method 

of minimizing environmental backscatter for an active sonar system. While a sin

gle propagating mode is a useful conceptual approach to visualize which portions 

of the water column would be illuminated by such a system, such a pressure pro

file may not be the optimal transmitted pressure field to minimize backscatter from 

the bathymetry. The feedback control algorithm could adapt the source array to 

minimize the backscattered energy in the absence of targets. 

Another possible but highly speculative use for the feedback control algorit hm 

would be in a communication scenario. Different messages could be modulated 

onto distinct modes for a communication network. This would allow simultaneous 

communication at the same frequency by exploiting the modal diversity of the en

vironment. Any communication system proposed utilizing this modulation would 

have to address many issues such as mode coupling due to range-inhomogeneit ies in 

the water column or bottom bathymetry between the feedback array and receiver. 

The concept is attractive and bears closer examination. 

The ideas presented in this section are intriguing as extensions or improvements 

on the algorithm presented in the thesis. At the current t ime, the most pressing 

future work to be done is an actual ocean test of the algorithm proposed. Significant 

engineering challenges such as the radio telemetry link from t he feedback array to 

the source ship and continuous mode shape estimation at the feedback array location 

must still be addressed. The simulations and laboratory experiments indicate that 
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the feedback control algorithm should be capable of exciting a single mode. If this 

experiment is successful, more advanced uses can be explored. If the trial reveals 

unexpected shortcomings or difficulties with the feedback control algorithm, these 

problems can be addressed. Without such an experiment, any future work performed 

with the algorithm must be viewed as speculative at best. 
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Appendix A 

Transient Response of the CNLLS 

Estimator 

Section 2.3 describes the CNLLS estimator and notes that it is important to limit 

the condition number of <I>- 1 at each iteration and not the condition number of <I> 

propagated by the algorithm. Specifically, the estimator may respond more slowly 

to abrupt changes in the desired mode or the channel if the condition number of 

<I> is limited. To understand why, consider the simplified case where w[n] = w0 

for n = 1, ... , 2TJ , where T/ is the limit on the condition number. The eigenvalue 

decomposition of <I>[2TJ] can be written 

2TJ 0 0 

0 0 
<I>[2TJ] = v <I> y<I>H , (A.1) 

0 

0 0 0 

where 

V <I> = [ wo I v2l· ·· I vL ]· (A.2) 
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Suppose the desired mode changes abruptly at n = 27] such that w[n] is now or

thogonal to w0 for n > 2ry. Note that if w[n] is orthogonal to w0 , we may assume 

w[n] = v2 without loss of generality, since we can pick the vi to be any orthonormal 

basis of orthogonal complement of w 0 . Moreover, assume Q[n] has errors that were 

orthogonal to w0 but are not orthogonal to v2 , i.e., (Q[n]- Q[n])v2 =J. 0. The change 

of w[n] to v2 will cause Q[n] to converge to a more accurate estimate of Q[n] such 

that (Q[n] - Q[n])v2 = 0. 

The rate of this convergence depends on which of q, or q,- 1 has its condition 

number limited. From Eqs. 2.21 and 2.22, the correction to Q[n] is a[n]kH [n], where 

a[n] is (p[n] - Q[n]w[n]) = (Q[n] - Q[n])w[n] and k[n] = q,- 1[n]w[n]. 

Let kl[n] be the gain vector when q,[n] is propagated with its condition number 

limited, and let k2 [n] be the gain vector when q,[n] propagates without any limit 

on its condition number, but the condition number is limited at each iteration when 

q,cl is computed per Eq. 2.25. The notation (·)cL denotes the operation of limiting 

the condition number of its argument to be 7J while leaving the first eigenvalue 

unchanged. Then 

((q,)cL [2ry + 1])- 1 w[2ry + 1] (A.3) 
-1 

27] 0 0 

3 

V4> 0 2 0 (A.4) 

0 0 2 

(A.5) 
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Contrastingly, for the CNLLS estimator given in Sec. 2.3, 

(A.6) 
- 1 

0 0 

1 

0 0 0 (A.7) 

0 0 0 
C L 

= v2/2 (A.8) 

The gain vector k[n) has the same direction in each case, but takes a larger step for 

the case where the condition number is propagated without limiting, then limited 

after inversion. If the correlation matrix <I> is propagated with condit ion number 

limiting, the gain of the correction is reduced even the first step after w[n) changes. 

In fact, if k2[2TJ + 2) will still be v2/2, while kl[2ry + 2) = v2/ 4. As long as w[n) = v2, . 
kl[n] and k2[n) will have the same direction, but jjk1[n) jj < llk2[n)jj, so k2[n] will 

have a faster transient response. 

The scenario here simplifies the case in several aspects, but the underlying results 

are still valid: propagating <i> [n) with its condition number unlimited then limiting 

the condit ion number at the inversion for each iteration gives better t ransient per

formance than propagating a <i> [n) whose condition number is limited. 
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